JP2010153236A - Method of manufacturing contactor equipped with elastically deforming part - Google Patents

Method of manufacturing contactor equipped with elastically deforming part Download PDF

Info

Publication number
JP2010153236A
JP2010153236A JP2008330901A JP2008330901A JP2010153236A JP 2010153236 A JP2010153236 A JP 2010153236A JP 2008330901 A JP2008330901 A JP 2008330901A JP 2008330901 A JP2008330901 A JP 2008330901A JP 2010153236 A JP2010153236 A JP 2010153236A
Authority
JP
Japan
Prior art keywords
layer
platinum group
contact
manufacturing
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008330901A
Other languages
Japanese (ja)
Inventor
Shinichi Nagano
真一 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2008330901A priority Critical patent/JP2010153236A/en
Publication of JP2010153236A publication Critical patent/JP2010153236A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a contactor capable of forming an elastically deforming part on its surface layer which enables to achieve improvement of a transfer of solder and stabilization of contact resistance more than conventionally, especially by electroless plating. <P>SOLUTION: The method of manufacturing the contactor equipped with the elastically deforming part includes a step of forming a core part 23 having a fixed part 21 and the elastically deforming part 22 formed in extension from the fixed part 21, a step of plating a platinum group metallic layer 28 on the surface of the core part 23 by electroless plating, a step of plating an Au layer 29 on the surface of the platinum group metallic layer 28 by the electroless plating, and a step of forming an alloy layer of a platinum group element and Au on an outermost surface layer by heating. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ICパッケージなどの電子部品の電極と当接する、弾性変形部を備えた接触子の製造方法に関する。   The present invention relates to a method of manufacturing a contact having an elastically deforming portion that comes into contact with an electrode of an electronic component such as an IC package.

以下の特許文献1には、弾性変形部(弾性腕)を備える接触子を、複数備えた接続装置が開示されている。ICパッケージなどの電子部品の底面には複数の球状の電極が設けられており、それぞれの電極が前記弾性変形部に弾圧されて、電極と接触子とが一対一の関係で個別に接続される。   The following Patent Document 1 discloses a connection device including a plurality of contacts including elastic deformation portions (elastic arms). A plurality of spherical electrodes are provided on the bottom surface of an electronic component such as an IC package, and each electrode is elastically pressed by the elastic deformation portion, and the electrodes and the contacts are individually connected in a one-to-one relationship. .

特許文献1には、芯部の表面に、白金族金属層から成る被覆層が形成された形態が開示されている。さらに、前記被覆層の表面にAu層が形成された形態も開示されている。
特開2008−78032号公報 特開平11−260981号公報
Patent Document 1 discloses a form in which a coating layer made of a platinum group metal layer is formed on the surface of a core part. Furthermore, a form in which an Au layer is formed on the surface of the coating layer is also disclosed.
JP 2008-78032 A Japanese Patent Laid-Open No. 11-260981

しかしながら、最表面にAu層が露出している形態では、電子部品の電極が半田で形成されているとき、接触子を前記電極に繰り返し接触させると、電極と接触子との間で金属間化合物が生成され、接触子側へ半田転写が生じるという問題があった。このため接触信頼性に欠け、接続装置の短命化が問題となった。   However, in the form in which the Au layer is exposed on the outermost surface, when an electrode of an electronic component is formed of solder, an intermetallic compound is formed between the electrode and the contact when the contact is repeatedly brought into contact with the electrode. There is a problem that solder is transferred to the contact side. For this reason, contact reliability was lacking, and shortening of the connection device became a problem.

また、最表面に白金族金属層が露出する形態では、表面に酸化層を作る等して接触抵抗が安定しない。さらに、触媒作用により、使用環境によっては有機物汚染等が生じ、潤滑油を併用できない等、使用環境が限定されてしまう問題があった。また、最表面層にPd等の白金族元素を用いた場合、接触子を支持固定する固定面と接触子間を適切に半田接合できないといった問題があった。   Further, in the form in which the platinum group metal layer is exposed on the outermost surface, the contact resistance is not stabilized by forming an oxide layer on the surface. Furthermore, due to the catalytic action, there has been a problem that the use environment is limited, such as organic matter contamination depending on the use environment and the inability to use lubricating oil. Further, when a platinum group element such as Pd is used for the outermost surface layer, there is a problem in that the fixing surface for supporting and fixing the contact and the contact cannot be appropriately soldered.

上記した特許文献2に記載の発明には、リードフレームの製造方法が開示されている。特許文献2には、リードフレームの表面にAu−Pd合金めっきを形成し、さらに、Au−Pd合金めっきに封孔処理を施すことが開示されている。   The invention described in Patent Document 2 described above discloses a lead frame manufacturing method. Patent Document 2 discloses that Au—Pd alloy plating is formed on the surface of a lead frame, and further, a sealing treatment is applied to the Au—Pd alloy plating.

しかしながら特許文献2に記載の発明は、そもそも、IC等の電子部品の電極と繰り返し当接する弾性変形部を備えた接触子でなく、上記した半田転写の従来課題は存在しない。   However, the invention described in Patent Document 2 is not a contact provided with an elastically deforming portion that repeatedly comes into contact with an electrode of an electronic component such as an IC in the first place, and there is no conventional problem of the above-described solder transfer.

また、上記した弾性変形部を備える各接触子は、夫々、電気的に接続しておらず、個々分離している。よってこれら接触子に被覆層をメッキ形成する場合、電解メッキ法が使用できず、無電解メッキ法を用いて行う。   Moreover, each contact provided with an elastic deformation part mentioned above is not electrically connected, respectively, but is isolate | separated separately. Therefore, when plating a coating layer on these contacts, the electrolytic plating method cannot be used, and the electroless plating method is used.

しかしながら特許文献2に記載されたAu−Pdめっきは無電解メッキ法にて形成できないから、特許文献2に記載された形態を直接、採用することは出来ない。   However, since the Au—Pd plating described in Patent Document 2 cannot be formed by the electroless plating method, the form described in Patent Document 2 cannot be directly adopted.

そこで本発明は、上記従来の課題を解決するためのものであり、特に、無電解メッキ法を用いて、従来に比べて半田転写の改善や接触抵抗の安定性等を図ることが可能な表面層を弾性変形部に形成することが可能な接触子の製造方法を提供することを目的としている。   Therefore, the present invention is for solving the above-described conventional problems, and in particular, by using an electroless plating method, it is possible to improve the solder transfer and the stability of the contact resistance as compared with the conventional surface. It aims at providing the manufacturing method of the contactor which can form a layer in an elastic deformation part.

本発明は、弾性変形部を備える接触子の製造方法において、
固定部と、前記固定部から延出形成された前記弾性変形部とを有する芯部を形成する工程、
少なくとも前記弾性変形部を構成する前記芯部の表面に、無電解メッキ法にて、白金族金属層をメッキ形成する工程、
前記白金族金属層の表面に、無電解メッキ法にて、Au層をメッキ形成する工程、
加熱処理を施して、最表面層に、白金族元素とAuとの合金層を形成する工程、
を有することを特徴とするものである。
The present invention provides a method for manufacturing a contact provided with an elastically deforming portion.
Forming a core having a fixed portion and the elastically deformable portion extending from the fixed portion;
A step of plating a platinum group metal layer on the surface of the core part constituting at least the elastically deformable part by an electroless plating method;
Plating the Au layer on the surface of the platinum group metal layer by electroless plating,
Applying heat treatment to form an alloy layer of a platinum group element and Au on the outermost surface layer;
It is characterized by having.

本発明では、無電解メッキ法を用いて、適切且つ容易に、弾性変形部の芯部の表面に白金族元素とAuとの合金層を形成できる。よって、従来に比べて、半田転写を抑制でき、接触抵抗の安定性等を図ることが可能な弾性変形部を備える接触子を形成することが可能である。   In the present invention, an alloy layer of a platinum group element and Au can be appropriately and easily formed on the surface of the core portion of the elastic deformation portion by using an electroless plating method. Therefore, it is possible to form a contactor including an elastically deformable portion that can suppress solder transfer and can improve the stability of contact resistance and the like as compared with the conventional case.

本発明では、前記固定部にも、無電解メッキ法による前記白金族金属層及び前記Au層のメッキ形成、及び加熱処理を施して、前記合金層を形成することが好ましい。これにより、固定部を基板のランド部上に半田接合するとき、半田の吸い上がりを抑制しつつ良好な半田接合性を確保できる。   In the present invention, it is preferable that the alloy layer is formed by subjecting the fixing portion to plating of the platinum group metal layer and the Au layer by an electroless plating method and a heat treatment. Thereby, when the fixing portion is soldered onto the land portion of the substrate, good solderability can be ensured while suppressing the sucking up of the solder.

また本発明では、個々に分離された複数の前記芯部を形成し、支持シートに支持された全ての前記芯部に対して、前記無電解メッキ工程及び加熱処理工程を施して、前記合金層を備える複数の前記接触子を形成することが好ましい。このように、個々に分離された複数の芯部に対してメッキを施すには無電解メッキ法を用いることが必要であるが、本発明によれば、個々、分離された複数の接触子に対して白金族元素とAuとの合金層を適切且つ容易に形成することが可能である。   Further, in the present invention, the alloy layer is formed by forming a plurality of individually separated core portions and subjecting all the core portions supported by a support sheet to the electroless plating step and the heat treatment step. It is preferable to form a plurality of the contacts including: As described above, it is necessary to use an electroless plating method in order to apply plating to a plurality of individually separated core parts, but according to the present invention, a plurality of individually separated contactors are used. On the other hand, an alloy layer of a platinum group element and Au can be appropriately and easily formed.

また本発明では、前記加熱処理工程を、前記弾性変形部を立体成形した状態で行うことが好ましい。これにより、白金族元素とAuとの合金層の形成とともに、適切に弾性力を発揮できる立体形状の弾性変形部を形成出来る。   Moreover, in this invention, it is preferable to perform the said heat processing process in the state which shape | molded the said elastic deformation part. Thereby, the formation of the alloy layer of the platinum group element and Au and the formation of a three-dimensional elastic deformation portion capable of appropriately exerting the elastic force can be formed.

また本発明では、前記Au層を、前記白金族金属層よりも薄く形成するか、あるいは同等の膜厚で形成することが好ましい。これにより、白金族元素とAuとの合金層を適切に形成できる。また、白金族元素がリッチな合金層に形成でき、半田転写をより効果的に改善できる。また、Au層を、白金族金属層よりも薄く形成すれば特に、加熱処理後、芯部と前記合金層との間に白金族金属層を残しやすくなるが、これにより、弾性変形部の機械的強度を上げることが出来る。   In the present invention, it is preferable that the Au layer is formed thinner than the platinum group metal layer or has an equivalent film thickness. Thereby, the alloy layer of a platinum group element and Au can be formed appropriately. Moreover, it can form in an alloy layer rich in platinum group elements, and solder transfer can be improved more effectively. In addition, if the Au layer is formed thinner than the platinum group metal layer, it becomes easier to leave the platinum group metal layer between the core portion and the alloy layer after the heat treatment. Strength can be increased.

また本発明では、前記芯部を、銅又は銅合金で形成された導電部の表面に、無電解メッキ法にて、Ni−X(ただしXは、P、W、Mn、Ti、Be,Bのいずれか一種以上)からなる弾性部をメッキした積層構造で形成することが出来る。   In the present invention, the core portion is formed on the surface of the conductive portion made of copper or a copper alloy by Ni-X (where X is P, W, Mn, Ti, Be, B) by electroless plating. It is possible to form a laminated structure in which an elastic portion made of any one or more of the above is plated.

あるいは、本発明では、前記芯部を、Ni−X(ただしXは、P、W、Mn、Ti、Be,Bのいずれか一種以上)にて電鋳形成することが出来る。   Alternatively, in the present invention, the core portion can be electroformed by Ni-X (where X is any one or more of P, W, Mn, Ti, Be, and B).

本発明では、前記加熱温度を、150℃〜300℃の範囲内で調整することが好ましい。特に上記したNi−Xから成る弾性部に対して、あまりに高温の加熱処理を施すと結晶化が進み、ばね特性が低下する。また加熱温度が低すぎると、白金族元素とAuとの合金層を適切に形成できない。よって、加熱温度を150℃〜300℃の範囲内で調整することとした。   In this invention, it is preferable to adjust the said heating temperature within the range of 150 to 300 degreeC. In particular, if the above-described elastic part made of Ni-X is subjected to heat treatment at an excessively high temperature, crystallization proceeds and the spring characteristics deteriorate. If the heating temperature is too low, an alloy layer of platinum group element and Au cannot be formed properly. Therefore, it was decided to adjust the heating temperature within the range of 150 ° C to 300 ° C.

本発明では、無電解メッキ法を用いて、適切且つ容易に、弾性変形部の芯部の表面に白金族元素とAuとの合金層を形成できる。よって、従来に比べて、半田転写を抑制でき、接触抵抗の安定性等を図ることが可能な弾性変形部を備える接触子を形成することが可能である。   In the present invention, an alloy layer of a platinum group element and Au can be appropriately and easily formed on the surface of the core portion of the elastic deformation portion by using an electroless plating method. Therefore, it is possible to form a contactor including an elastically deformable portion that can suppress solder transfer and can improve the stability of contact resistance and the like as compared with the conventional case.

図1は、本実施形態における多数の接続子を備えた接触子シートの製造方法を示す工程図(断面図)、図2(a)は、多数の接触子シートを配列したワークシートの平面図、図2(b)は、図2(a)の丸Aで囲んだ一つの接触子シートの拡大平面図、図2(c)は、図2(b)の丸Bで囲んだ一つの接触子の拡大平面図、図3は、図2(c)のC−C線に沿って切断し矢印方向から見た弾性変形部の拡大断面図(加熱処理前の状態を示す)、図4(a)は、加熱処理前における弾性変形部の部分拡大断面図、図4(b)は、加熱処理後における弾性変形部の部分拡大断面図、である。   FIG. 1 is a process diagram (cross-sectional view) illustrating a method for manufacturing a contact sheet having a large number of connectors in the present embodiment, and FIG. 2A is a plan view of a worksheet in which a large number of contact sheets are arranged. 2 (b) is an enlarged plan view of one contactor sheet surrounded by a circle A in FIG. 2 (a), and FIG. 2 (c) is one contact surrounded by a circle B in FIG. 2 (b). FIG. 3 is an enlarged plan view of the child, and FIG. 3 is an enlarged cross-sectional view of the elastically deformed portion taken along the line CC of FIG. 2C and viewed from the arrow direction (showing the state before the heat treatment), FIG. FIG. 4A is a partially enlarged cross-sectional view of the elastically deformable portion before the heat treatment, and FIG. 4B is a partially enlarged cross-sectional view of the elastically deformable portion after the heat treatment.

図1(a)に示す工程では、図2(c)に示す接触子20の形状の芯部23を図2(b)に示すように多数個、配列して形成し、個々、分離して形成された前記芯部23を樹脂シート(支持シート)24で固定支持した状態を示している。   In the step shown in FIG. 1 (a), a large number of core parts 23 in the shape of the contact 20 shown in FIG. 2 (c) are formed in an array as shown in FIG. The state where the formed core portion 23 is fixedly supported by a resin sheet (support sheet) 24 is shown.

芯部23を図3のように、例えば、導電部31と、弾性部32との積層構造で形成する。   As shown in FIG. 3, the core portion 23 is formed with a laminated structure of, for example, a conductive portion 31 and an elastic portion 32.

前記導電部31は、銅(Cu)または銅を含む合金の単層である。銅合金は、高い電気導電度と高い機械的強度を有するCu,Si,Niを有するコルソン合金が好ましく使用される。コルソン合金は、例えばCu−Ni−Si−Mgで、Cuが96.2質量%、Niが3.0質量%、Siが0.65質量%、Mgが0.15質量%のものが使用される。   The conductive portion 31 is a single layer of copper (Cu) or an alloy containing copper. As the copper alloy, a Corson alloy having Cu, Si, Ni having high electric conductivity and high mechanical strength is preferably used. The Corson alloy is, for example, Cu—Ni—Si—Mg, Cu 96.2 mass%, Ni 3.0 mass%, Si 0.65 mass%, and Mg 0.15 mass%. The

銅板あるいは銅合金板をエッチング加工して図2(c)に示す平面形状から成る多数の導電部31を形成する。このとき、各導電部31は分離された状態にあるため、個々の導電部31を樹脂シート24に固定支持して接触子シート25を得る。なお、図2(c)に示すように、接触子20(導電部31)は、固定部21と、前記固定部21から延出して形成された弾性変形部22とを有する形状である。そして、樹脂シート24には穴24aが形成されており、前記穴24aの位置に弾性変形部22を対向させて、個々の導電部31を樹脂シート24に固定する(図1(a)参照)。固定の方法は例えば接着剤を用いて行う。図2(c)の接触子20の平面形状は一例である。図2(c)では弾性変形部22がスパイラル状に形成されているが、この形状に限定されるものでない。   A copper plate or a copper alloy plate is etched to form a large number of conductive portions 31 having a planar shape shown in FIG. At this time, since each conductive part 31 is in a separated state, each conductive part 31 is fixedly supported on the resin sheet 24 to obtain the contact sheet 25. As shown in FIG. 2C, the contact 20 (conductive portion 31) has a shape having a fixed portion 21 and an elastically deformable portion 22 formed extending from the fixed portion 21. And the hole 24a is formed in the resin sheet 24, the elastic deformation part 22 is made to oppose the position of the said hole 24a, and each electroconductive part 31 is fixed to the resin sheet 24 (refer Fig.1 (a)). . The fixing method is performed using, for example, an adhesive. The planar shape of the contact 20 in FIG. 2C is an example. In FIG. 2C, the elastic deformation portion 22 is formed in a spiral shape, but is not limited to this shape.

そして、図2(a)に示すように多数の接触子シート25を支持板26に支持した状態のワークシート27を得る。   Then, as shown in FIG. 2A, a worksheet 27 is obtained in a state where a large number of contactor sheets 25 are supported on a support plate 26.

図2(a)に示すワークシート27を第1メッキ浴に入れて、このとき、無電解メッキ法にて、各導電部31の周囲を覆うようにNi−X(ただしXは、P、W、Mn、Ti、Be、Bのいずれか1種以上)から成る弾性部32をメッキ形成する(図3参照)。前記弾性部32のメッキ工程では、各導電部31が分離した状態であるため、電解メッキ法は使用できず、無電解メッキ法にて、弾性部32の形成を行う。   2A is placed in a first plating bath, and at this time, Ni—X (where X is P, W) so as to cover the periphery of each conductive portion 31 by electroless plating. , Mn, Ti, Be, or B) is formed by plating (see FIG. 3). In the plating process of the elastic portion 32, since each conductive portion 31 is in a separated state, the electrolytic plating method cannot be used, and the elastic portion 32 is formed by an electroless plating method.

続いて図1(b)に示す工程では、ワークシート27を第1メッキ浴から取り出した後、第2メッキ浴に入れて、このとき、無電解メッキ法にて、導電部31と弾性部32からなる接触子形状の各芯部23の周囲を覆うように白金族金属層28をメッキ形成する(図3も参照)。ここでは白金族金属層28をPd層で形成することが好適である。   Subsequently, in the step shown in FIG. 1B, after the work sheet 27 is taken out from the first plating bath, it is put in the second plating bath. At this time, the electroconductive portion 31 and the elastic portion 32 are formed by electroless plating. A platinum group metal layer 28 is formed by plating so as to cover the periphery of each of the contact-shaped core portions 23 made of (see also FIG. 3). Here, the platinum group metal layer 28 is preferably formed of a Pd layer.

続いて、図1(c)に示す工程では、ワークシート27を第2メッキ浴から取り出した後、第3メッキ浴に入れて、このとき、無電解メッキ法にて、各白金族金属層28の周囲を覆うようにAu層29をメッキ形成する(図3も参照)。このとき、Au層29の膜厚を白金族金属層28の膜厚より薄く形成することが好ましい。   Subsequently, in the step shown in FIG. 1C, the work sheet 27 is taken out of the second plating bath and then put in the third plating bath. At this time, each platinum group metal layer 28 is electrolessly plated. An Au layer 29 is formed by plating so as to cover the periphery of (see also FIG. 3). At this time, it is preferable to form the Au layer 29 thinner than the platinum group metal layer 28.

図1(d)に示す工程では、ワークシート27を第3メッキ浴から取り出し、続いて、各接触子20の各弾性変形部22を、治具30を用いて突き上げた状態に維持しながら加熱処理を施す。加熱処理後、前記治具30を取り除く。この加熱処理で内部の残留応力が除去され、接触子20は立体形状で弾性力を発揮できるようになる。   In the step shown in FIG. 1 (d), the worksheet 27 is taken out from the third plating bath, and then heated while maintaining the elastically deforming portions 22 of the contactors 20 pushed up using the jig 30. Apply processing. After the heat treatment, the jig 30 is removed. The internal residual stress is removed by this heat treatment, and the contact 20 can exhibit an elastic force in a three-dimensional shape.

また、この加熱処理により、白金族金属層28を構成する白金族元素とAu層29のAuとが元素拡散して、図4(b)に示すように、白金族元素とAuとの合金層33が形成される。図4(a)は、加熱処理前の状態を示す断面図であり、白金族金属層28の膜厚はH1、Au層29の膜厚はH2である。図4(b)に示すように加熱処理を施すと、Au層29の膜厚H2よりもやや厚い膜厚H3の合金層33が最表面層に形成され、また、合金層33と芯部23との間に図4(a)の加熱処理前に比べて膜厚H4が薄い白金族金属層28が残される。   In addition, by this heat treatment, the platinum group element constituting the platinum group metal layer 28 and Au in the Au layer 29 are elementally diffused, and as shown in FIG. 4B, an alloy layer of the platinum group element and Au. 33 is formed. FIG. 4A is a cross-sectional view showing a state before the heat treatment. The thickness of the platinum group metal layer 28 is H1, and the thickness of the Au layer 29 is H2. When heat treatment is performed as shown in FIG. 4B, an alloy layer 33 having a film thickness H3 slightly thicker than the film thickness H2 of the Au layer 29 is formed on the outermost surface layer, and the alloy layer 33 and the core 23 are formed. In between, the platinum group metal layer 28 having a thin film thickness H4 is left as compared with that before the heat treatment in FIG.

本実施形態では、加熱温度を150℃〜300℃の範囲内で調整することが好適である。加熱温度が150℃を下回ると、白金族金属層28とAu層29との元素拡散が十分に起こらず合金層33を適切に形成できない。また、加熱温度が300℃を超えると、Ni−Xで形成された弾性部32が結晶化する。Ni−Xで形成された弾性部32はアモルファス状態を保っていることが高い弾性係数と高い引っ張り強度を得ることができ、ばね特性を向上できる。ここで「アモルファス状態」とは、全体がアモルファスである状態、支配的なアモルファスと、アモルファス中に結晶(結晶粒は3nm〜15nmであることが好ましい)が散在した状態、支配的なアルファスと、アモルファス中に、直径が1nm以下の超微細析出物(エンプリオ)が散在した状態、支配的なアモルファスと、アモルファス中に前記結晶及び前記超微細析出物が混在した状態のいずれかを指す。また「支配的なアモルファス」とは、膜中に60体積%以上含有することを指し、好ましくは80体積%以上、さらに好ましくは90体積%以上の含有率を指す。   In the present embodiment, it is preferable to adjust the heating temperature within a range of 150 ° C to 300 ° C. If the heating temperature is lower than 150 ° C., element diffusion between the platinum group metal layer 28 and the Au layer 29 does not occur sufficiently, and the alloy layer 33 cannot be formed properly. Moreover, when heating temperature exceeds 300 degreeC, the elastic part 32 formed with Ni-X will crystallize. The elastic part 32 formed of Ni-X can obtain a high elastic coefficient and high tensile strength by maintaining an amorphous state, and can improve spring characteristics. Here, the “amorphous state” means a state where the whole is amorphous, a dominant amorphous state, a state where crystals (crystal grains are preferably 3 nm to 15 nm) are scattered in the amorphous state, a dominant alphas state, In addition, it refers to either a state in which ultrafine precipitates (emprio) having a diameter of 1 nm or less are scattered in the amorphous, a dominant amorphous state, and a state in which the crystals and the ultrafine precipitates are mixed in the amorphous. Further, “dominant amorphous” refers to containing 60% by volume or more in the film, preferably 80% by volume or more, and more preferably 90% by volume or more.

以上により本実施形態では、加熱温度を150℃〜300℃の範囲内とした。また加熱時間は1分から1時間の範囲内が好ましい。一例を示すと、加熱温度を250℃、加熱時間を10分とすることで、弾性変形部22を適切に立体成形できるとともに、白金族元素とAu29との合金層33を適切に形成することが出来る。   As described above, in the present embodiment, the heating temperature is set in the range of 150 ° C to 300 ° C. The heating time is preferably in the range of 1 minute to 1 hour. As an example, by setting the heating temperature to 250 ° C. and the heating time to 10 minutes, the elastically deformable portion 22 can be appropriately three-dimensionally formed and the alloy layer 33 of the platinum group element and Au 29 can be appropriately formed. I can do it.

上記の各工程を経て形成された接触子シート25は、図6に示す接続装置1内に設置される。図6に示す接続装置1は、基台10を有している。基台10の平面形状は例えば四角形状であり、基台10の4辺のそれぞれにはほぼ垂直に立ち上がる側壁部10aが形成されている。4辺の側壁部10aで囲まれた領域は凹部であり、その底部10bの上面が固定面12である。そして固定面12の上に、前記接触子シート25が設置される。   The contactor sheet 25 formed through the above steps is installed in the connection device 1 shown in FIG. The connection device 1 shown in FIG. 6 has a base 10. The planar shape of the base 10 is, for example, a quadrangular shape, and side walls 10 a that rise substantially vertically are formed on each of the four sides of the base 10. The region surrounded by the four side wall portions 10a is a concave portion, and the upper surface of the bottom portion 10b is the fixed surface 12. Then, the contact sheet 25 is installed on the fixed surface 12.

図7に示すように、接触子シート25に配列された多数の接触子20は、その固定部21が、固定面12上に形成されたランド部13上に半田層14を介して接合されている。半田層14は、鉛を含まない半田で形成されており、例えばスズ・ビスマス合金や、スズ・銀合金である。   As shown in FIG. 7, a large number of contacts 20 arranged in the contact sheet 25 have their fixing portions 21 joined to the land portions 13 formed on the fixing surface 12 via the solder layers 14. Yes. The solder layer 14 is formed of solder containing no lead, and is, for example, a tin / bismuth alloy or a tin / silver alloy.

図6に示すように、接続装置1には、電子部品40が設置される。電子部品40は、ICパッケージなどであり、ICベアチップなどの各種電子素子が本体部41内に密閉されている。本体部41の底面41aには、複数の突出電極42が設けられており、それぞれの突出電極42が本体部41内の回路に導通している。この実施の形態の電子部品40は、突出電極42が球形状である。また、突出電極42は裁頭円錐形状などであってもよい。   As shown in FIG. 6, the electronic device 40 is installed in the connection device 1. The electronic component 40 is an IC package or the like, and various electronic elements such as an IC bare chip are sealed in the main body 41. A plurality of protruding electrodes 42 are provided on the bottom surface 41 a of the main body 41, and each protruding electrode 42 is electrically connected to a circuit in the main body 41. In the electronic component 40 of this embodiment, the protruding electrode 42 has a spherical shape. The protruding electrode 42 may have a truncated cone shape or the like.

突出電極42は、スズを含む導電性の合金で形成されている。すなわち、鉛を含まない半田で形成されており、例えばスズ・ビスマス合金や、スズ・銀合金である。   The protruding electrode 42 is formed of a conductive alloy containing tin. That is, it is formed of solder containing no lead, such as a tin / bismuth alloy or a tin / silver alloy.

本実施形態の接続装置1は、例えば、電子部品40の検査用であり、図6に示すように、被検査物である電子部品40が、基台10の凹部内に装着される。このとき、電子部品40は、本体部41の底面41aに設けられた個々の突出電極42が接触子20の上に設置されるように位置決めされる。基台10の上には図示しない押圧用の蓋体が設けられており、この蓋体を基台10上に被せると、この蓋体により電子部品40が矢印F方向へ押圧される。この押圧力により、それぞれの突出電極42が弾性変形部22に押し付けられ、立体形状の弾性変形部22が押しつぶされて、突出電極42と弾性変形部22とが個別に導通させられる。   The connection device 1 of the present embodiment is, for example, for inspecting an electronic component 40, and the electronic component 40 that is an object to be inspected is mounted in the recess of the base 10 as shown in FIG. At this time, the electronic component 40 is positioned such that each protruding electrode 42 provided on the bottom surface 41 a of the main body 41 is placed on the contact 20. A pressing lid (not shown) is provided on the base 10. When the lid is placed on the base 10, the electronic component 40 is pressed in the direction of arrow F by the lid. With this pressing force, each protruding electrode 42 is pressed against the elastic deformation portion 22, the three-dimensional elastic deformation portion 22 is crushed, and the protruding electrode 42 and the elastic deformation portion 22 are individually connected.

接続装置1がいわゆるバーン・イン検査に使用される場合には、所定の温度に設定された状態で、外部の検査用の回路から接触子20を経て突出電極42に電流が与えられて、電子部品40の本体部41内の回路が断線しているか否かの検査が行われる。あるいは、接触子20から突出電極42に所定の信号が与えられて、本体部41内の回路の動作試験が行われる。   When the connection device 1 is used for so-called burn-in inspection, an electric current is applied to the protruding electrode 42 from the external inspection circuit via the contact 20 in a state where the connection device 1 is set to a predetermined temperature. It is inspected whether the circuit in the main body 41 of the component 40 is disconnected. Alternatively, a predetermined signal is given from the contact 20 to the protruding electrode 42, and an operation test of the circuit in the main body 41 is performed.

検査が完了した電子部品40は、接続装置1から取り出され、次に検査すべき電子部品40が接続装置1内に設置されて、同様にして検査が行われる。この検査が繰り返される。そのため、接触子20の弾性変形部22には、新たな電子部品40の突出電極42が次々に接触することになる。   The electronic component 40 that has been inspected is taken out from the connection device 1, the electronic component 40 to be inspected next is installed in the connection device 1, and the inspection is performed in the same manner. This inspection is repeated. Therefore, the protruding electrodes 42 of new electronic components 40 come in contact with the elastically deforming portion 22 of the contact 20 one after another.

本実施形態の接触子20は図1に示す工程を経て形成されたものであり、製造工程後における弾性変形部22の最表面層には、図4(b)に示す白金族元素とAuとの合金層33が形成されている。白金族金属層28はPdであることが好ましく、よって合金層33はAu−Pdであることが好適である。   The contact 20 of the present embodiment is formed through the process shown in FIG. 1, and the platinum group element and Au shown in FIG. 4B are formed on the outermost surface layer of the elastically deformable portion 22 after the manufacturing process. The alloy layer 33 is formed. The platinum group metal layer 28 is preferably Pd, and therefore the alloy layer 33 is preferably Au—Pd.

本実施形態では、無電解メッキ法を用いて、前記合金層33を、適切且つ容易に形成できる。本実施形態では、図1(a)及び図2(b)に示すように各接触子20は個々、分離された状態である。よって、以後のメッキ工程は無電解メッキ法を用いなければならない。そこで本実施形態では、図1(b)に示す工程で、まず、無電解メッキ法を用いて白金族金属層28を芯部23の周囲にメッキ形成し、さらに、図1(c)に示す工程で、無電解メッキ法を用いてAu層29を白金族金属層28の周囲にメッキ形成し、最後に、図1(d)に示す工程で、加熱処理を施した。加熱処理により、白金族金属層28を構成する白金族元素とAu層29を構成するAuとが元素拡散を起こし、図4(b)に示すように、弾性変形部22の最表面層に、白金族元素とAuとの合金層33を形成することができる。   In the present embodiment, the alloy layer 33 can be appropriately and easily formed by using an electroless plating method. In this embodiment, as shown in FIG. 1A and FIG. 2B, each contact 20 is in an individual state. Therefore, the subsequent plating process must use an electroless plating method. Therefore, in the present embodiment, in the step shown in FIG. 1B, first, the platinum group metal layer 28 is plated around the core portion 23 by using an electroless plating method, and further shown in FIG. In the process, the Au layer 29 was plated around the platinum group metal layer 28 by using an electroless plating method, and finally, heat treatment was performed in the process shown in FIG. By the heat treatment, the platinum group element constituting the platinum group metal layer 28 and Au constituting the Au layer 29 cause element diffusion, and as shown in FIG. An alloy layer 33 of a platinum group element and Au can be formed.

このように、電解メッキ法でなく、無電解メッキ法を用いても、上記工程を経ることで、白金族元素とAuとの合金層33を形成できる。そして前記合金層33が弾性変形部22の最表面層に形成されることで、図6、図7に示すように、弾性変形部22が電子部品40の突出電極42と繰り返し接触し、このとき前記突出電極42が半田材で形成されていても、Au層29が最表面に露出する従来の形態に比べて半田転写を効果的に抑制できる。また、合金層33には、白金族元素のみならずAuも含まれることで、白金族金属層28が最表面に露出する従来の形態に比べて接触抵抗を低く且つ安定化できる。また、弾性変形部22の最表面での触媒作用は抑制され、酸化力が大きい原子状酸素の発生等を効果的に抑制できる。これにより、接触子20の長寿命化を図ることが出来る。   Thus, the alloy layer 33 of the platinum group element and Au can be formed through the above-described steps even when the electroless plating method is used instead of the electrolytic plating method. Then, the alloy layer 33 is formed on the outermost surface layer of the elastic deformation portion 22, so that the elastic deformation portion 22 repeatedly contacts the protruding electrode 42 of the electronic component 40, as shown in FIGS. 6 and 7. Even if the protruding electrode 42 is formed of a solder material, solder transfer can be effectively suppressed as compared with the conventional configuration in which the Au layer 29 is exposed on the outermost surface. In addition, since the alloy layer 33 contains not only the platinum group element but also Au, the contact resistance can be lowered and stabilized as compared with the conventional form in which the platinum group metal layer 28 is exposed on the outermost surface. Further, the catalytic action on the outermost surface of the elastically deformable portion 22 is suppressed, and generation of atomic oxygen having a large oxidizing power can be effectively suppressed. Thereby, lifetime improvement of the contactor 20 can be achieved.

本実施形態では、接触子20は弾性変形部22と固定部21とが一体に形成され、前記固定部21から弾性変形部22が延出した形態である(図2(c)参照)。よって図1(a)では、弾性変形部22と固定部21の一体形状に芯部23を形成し、図1(b)の無電解メッキ法による白金族金属層28の形成、図1(c)の無電解メッキ法によるAu層29の形成、図1(d)の加熱処理工程により、固定部21の最表面層にも白金族元素とAuとの合金層33を形成することが出来る。   In this embodiment, the contact 20 has a configuration in which an elastic deformation portion 22 and a fixing portion 21 are integrally formed, and the elastic deformation portion 22 extends from the fixing portion 21 (see FIG. 2C). Therefore, in FIG. 1A, the core portion 23 is formed in an integral shape of the elastically deformable portion 22 and the fixed portion 21, and the platinum group metal layer 28 is formed by the electroless plating method of FIG. The alloy layer 33 of platinum group element and Au can be formed on the outermost surface layer of the fixing portion 21 by the formation of the Au layer 29 by the electroless plating method of FIG.

これにより、図7に示すように、固定部21を基台10の固定面12に半田層14を介して接合するとき、最表面がAu層である場合に比べて、半田の吸い上がりを抑制でき、しかも最表面が白金族金属層である場合に比べて、良好な半田接合を確保することが出来る。   Accordingly, as shown in FIG. 7, when the fixing portion 21 is joined to the fixing surface 12 of the base 10 via the solder layer 14, the sucking up of the solder is suppressed compared to the case where the outermost surface is the Au layer. In addition, better solder joints can be ensured than when the outermost surface is a platinum group metal layer.

また本実施形態では、図1(d)の加熱処理工程を、弾性変形部22を突き上げた状態で行って、前記弾性変形部22を立体成形している。これにより、白金族元素とAuとの合金層33の形成とともに、弾性変形部22の立体成形を同時に行なうことが出来る。このとき、加熱温度は150℃〜300℃の範囲内で調整することが好ましい。なお、弾性変形部22を立体成形せず平面形態とする場合には、図1(c)の形態に対して、加熱処理を施せばよい。   In this embodiment, the heat treatment step of FIG. 1D is performed in a state where the elastic deformation portion 22 is pushed up, and the elastic deformation portion 22 is three-dimensionally formed. Thereby, the formation of the alloy layer 33 of the platinum group element and Au and the three-dimensional molding of the elastic deformation portion 22 can be performed simultaneously. At this time, the heating temperature is preferably adjusted within a range of 150 ° C to 300 ° C. In addition, what is necessary is just to heat-process with respect to the form of FIG.1 (c), when making the elastic deformation part 22 into a planar form without solid-molding.

また本実施形態では、図3(a)に示すようにAu層29の膜厚H2を白金族金属層28の膜厚H1よりも薄く形成している。Au層29の膜厚H2を、0.01〜0.6μm程度で形成し、白金族金属層28の膜厚H1を、0.1〜1μm程度で形成することが好ましい。Au層29は、フラッシュAuメッキ程度の薄い膜厚で足りる。また、芯部23の膜厚及び幅寸法を共に10μm以上で100μm以下とする。   In the present embodiment, as shown in FIG. 3A, the film thickness H2 of the Au layer 29 is formed thinner than the film thickness H1 of the platinum group metal layer 28. It is preferable that the film thickness H2 of the Au layer 29 is formed to be about 0.01 to 0.6 [mu] m, and the film thickness H1 of the platinum group metal layer 28 is formed to be about 0.1 to 1 [mu] m. The Au layer 29 may be as thin as a flash Au plating. Moreover, both the film thickness and width dimension of the core part 23 shall be 10 micrometers or more and 100 micrometers or less.

Au層29の膜厚を白金族金属層28の膜厚より厚くすると加熱処理を施しても最表面にAu層29が残りやすく、半田転写を効果的に抑制できないため好ましくない。   If the thickness of the Au layer 29 is made larger than that of the platinum group metal layer 28, the Au layer 29 tends to remain on the outermost surface even if heat treatment is performed, and solder transfer cannot be effectively suppressed.

これに対して、Au層29の膜厚H2を白金族金属層28の膜厚H1よりも薄く形成することで、白金族元素とAuとの合金層33を最表面に適切に形成できる。また、白金族元素がリッチな合金層33に形成でき、合金層33中に占める白金族元素の含有量を50体積%より大きく99体積%以下に調整できる。これにより半田転写をより効果的に改善できる。   On the other hand, by forming the film thickness H2 of the Au layer 29 to be smaller than the film thickness H1 of the platinum group metal layer 28, the alloy layer 33 of the platinum group element and Au can be appropriately formed on the outermost surface. Moreover, it can form in the alloy layer 33 rich in the platinum group element, and the content of the platinum group element in the alloy layer 33 can be adjusted to more than 50 volume% and 99 volume% or less. Thereby, solder transfer can be improved more effectively.

また図4(a)のように、Au層29を白金族金属層28より薄く形成することで、図4(b)に示すように、加熱処理後、芯部23と合金層33の間に白金族金属層28が残りやすくなるが、このように一部の白金族金属層28を残すことで弾性変形部22の機械的強度を向上させることができる。   Further, as shown in FIG. 4A, by forming the Au layer 29 thinner than the platinum group metal layer 28, as shown in FIG. 4B, between the core portion 23 and the alloy layer 33 after the heat treatment, as shown in FIG. Although the platinum group metal layer 28 tends to remain, the mechanical strength of the elastically deformable portion 22 can be improved by leaving a part of the platinum group metal layer 28 in this way.

なお、白金族金属層28の膜厚H1とAu層29の膜厚H2とが同等であってもよく、加熱処理後、芯部23表面に直接、合金層33が形成された形態、すなわち図4(b)と異なって加熱処理により白金族金属層28が残らない形態にしてもよい。   In addition, the film thickness H1 of the platinum group metal layer 28 and the film thickness H2 of the Au layer 29 may be the same, and the form in which the alloy layer 33 is formed directly on the surface of the core portion 23 after the heat treatment, that is, FIG. Unlike 4 (b), the platinum group metal layer 28 may not be left by heat treatment.

図3に示す芯部23の形態は一例であって他の形態であってもよい。ただし、図3のように、芯部23を、導電部31の周囲の全周が弾性部32で覆われた形態とすることが好ましい。このとき、弾性部32を、導電性であり且つ高い機械的強度と高い曲げ弾性係数を発揮する金属材料として、Ni−X合金(ただしXは、P、W、Mn、Ti、Be,Bのいずれか一種以上)で形成することが好適である。このとき、弾性部32を、Ni−P合金で形成することが好適である。Ni−P合金では、リン(P)の濃度を10at%以上で30at%以下(より好ましくは17〜25at%)とすることにより、弾性部32をアモルファス状態に適切に保つことができ、高い弾性係数と高い引っ張り強度を得ることができる。あるいは、弾性部32をNi−W合金で形成してもよい。この場合もタングステン(W)の濃度を10at%以上で30at%以下とすることにより、弾性部32をアモルファス状態に適切に保つことができ、高い弾性係数と高い引っ張り強度を得ることができる。   The form of the core part 23 shown in FIG. 3 is an example, and another form may be sufficient as it. However, as shown in FIG. 3, it is preferable that the core portion 23 has a configuration in which the entire circumference around the conductive portion 31 is covered with the elastic portion 32. At this time, the elastic part 32 is made of a Ni-X alloy (where X is P, W, Mn, Ti, Be, B) as a metal material that is conductive and exhibits high mechanical strength and high bending elastic modulus. Any one or more of them is preferable. At this time, it is preferable to form the elastic part 32 with a Ni-P alloy. In the Ni-P alloy, by setting the concentration of phosphorus (P) to 10 at% or more and 30 at% or less (more preferably 17 to 25 at%), the elastic portion 32 can be appropriately maintained in an amorphous state, and high elasticity is achieved. Coefficient and high tensile strength can be obtained. Or you may form the elastic part 32 with a Ni-W alloy. Also in this case, by setting the concentration of tungsten (W) to 10 at% or more and 30 at% or less, the elastic portion 32 can be appropriately maintained in an amorphous state, and a high elastic coefficient and high tensile strength can be obtained.

図3において、弾性部32の断面積は、芯部23の断面積の20%以上で80%以下であることが好ましい。この範囲であると、芯部23が導電性とばね性の双方の機能を発揮できる。   In FIG. 3, the cross-sectional area of the elastic part 32 is preferably 20% or more and 80% or less of the cross-sectional area of the core part 23. Within this range, the core 23 can exhibit both functions of conductivity and springiness.

あるいは図5(加熱処理後の状態を示している)に示すように、芯部23をNi−Xにて電鋳形成した単層構造としてもよい。これにより接触子20全体の更なる小型化と弾性変形部22のばね性とを適切に保つことが出来る。   Alternatively, as shown in FIG. 5 (showing the state after the heat treatment), the core portion 23 may have a single layer structure in which Ni-X is formed by electroforming. Thereby, the further miniaturization of the whole contact 20 and the spring property of the elastic deformation part 22 can be maintained appropriately.

なお上記のように電鋳で芯部23を形成し、このとき、弾性変形部22を立体成形する場合には、表面に立体形状(例えば円錐状)に突出した突出部を備える基板を用い、前記突出部の表面に弾性変形部22を電鋳形成すれば、前記弾性変形部22を立体成形できる。そして、このように弾性変形部22を立体成形した状態で、図1(d)で説明した加熱処理を施す。   In addition, when the core part 23 is formed by electroforming as described above, and the elastically deforming part 22 is three-dimensionally formed, a substrate having a protruding part protruding in a three-dimensional shape (for example, a conical shape) on the surface is used. If the elastic deformation portion 22 is electroformed on the surface of the protruding portion, the elastic deformation portion 22 can be three-dimensionally formed. And the heat processing demonstrated in FIG.1 (d) are given in the state which solid-molded the elastic deformation part 22 in this way.

なお、接触子20の配列ピッチは、例えば2mm以下であり、あるいは1mm以下である。接触子20の外形寸法の最大値も2mm以下であり、あるいは1mm以下である(図2(b)(c)参照)。   Note that the arrangement pitch of the contacts 20 is, for example, 2 mm or less, or 1 mm or less. The maximum outer dimension of the contact 20 is also 2 mm or less, or 1 mm or less (see FIGS. 2B and 2C).

このように接触子20の大きさは非常に小さく、また、各接触子20は電気的に接続しておらず、個々分離した状態である。よって、各接触子に均一且つ安定してメッキを施すことは比較的大きなリード部の表面にメッキを施す場合等と異なって非常に難しい。本実施形態では、無電解メッキ法を用いて、白金族金属層28及びAu層29のメッキ形成を行い、続いて加熱処理にて、白金族元素とAuとを元素拡散させて、合金層33を形成するので、各接触子20に対して均一且つ安定して合金層33の形成を行うことが出来る。   As described above, the size of the contact 20 is very small, and each contact 20 is not electrically connected but is in an individual state. Therefore, it is very difficult to uniformly and stably plate each contact, unlike the case where the surface of a relatively large lead portion is plated. In this embodiment, the platinum group metal layer 28 and the Au layer 29 are formed by plating using an electroless plating method, followed by elemental diffusion of the platinum group element and Au by heat treatment, and the alloy layer 33. Therefore, the alloy layer 33 can be formed uniformly and stably on each contact 20.

本実施形態における多数の接続子を備えた接触子シートの製造方法を示す工程図(断面図)、Process drawing (sectional drawing) which shows the manufacturing method of the contactor sheet | seat provided with many connectors in this embodiment, 図2(a)は、多数の接触子シートを配列したワークシートの平面図、図2(b)は、図2(a)の丸Aで囲んだ一つの接触子シートの拡大平面図、図2(c)は、図2(b)の丸Bで囲んだ一つの接触子の拡大平面図、2A is a plan view of a worksheet in which a large number of contact sheets are arranged, and FIG. 2B is an enlarged plan view of one contact sheet surrounded by a circle A in FIG. 2A. 2 (c) is an enlarged plan view of one contactor surrounded by a circle B in FIG. 2 (b); 図2(c)のC−C線に沿って切断し矢印方向から見た弾性変形部の拡大断面図(加熱処理前の状態を示す)、The expanded sectional view of the elastic deformation part cut along the CC line of Drawing 2 (c) and seen from the direction of an arrow (showing the state before heat processing), 図4(a)は、加熱処理前における弾性変形部の部分拡大断面図、図4(b)は、加熱処理後における弾性変形部の部分拡大断面図、4A is a partially enlarged cross-sectional view of the elastically deformable portion before the heat treatment, FIG. 4B is a partially enlarged cross-sectional view of the elastically deformable portion after the heat treatment, 他の実施形態の弾性変形部の拡大断面図(加熱処理後の状態を示す)、The expanded sectional view of the elastic deformation part of other embodiments (showing the state after heat processing), 本実施形態である接続装置の部分断面図、The fragmentary sectional view of the connecting device which is this embodiment, 図6に示す接続装置の接触子付近を示す拡大断面図(接触子は側面図で示す)、FIG. 6 is an enlarged cross-sectional view showing the vicinity of the contact of the connecting device shown in FIG.

符号の説明Explanation of symbols

1 接続装置
10 基台
12 固定面
14 半田層
20 接触子
21 固定部
22 弾性変形部
23 芯部
24 樹脂シート
25 接触子シート
27 ワークシート
28 白金族金属層
29 Au層
30 治具
31 導電部
32 弾性部
33 合金層
40 電子部品
42 突出電極
DESCRIPTION OF SYMBOLS 1 Connection apparatus 10 Base 12 Fixed surface 14 Solder layer 20 Contactor 21 Fixed part 22 Elastic deformation part 23 Core part 24 Resin sheet 25 Contactor sheet 27 Worksheet 28 Platinum group metal layer 29 Au layer 30 Jig 31 Conductive part 32 Elastic part 33 Alloy layer 40 Electronic component 42 Projecting electrode

Claims (8)

弾性変形部を備える接触子の製造方法において、
固定部と、前記固定部から延出形成された前記弾性変形部とを有する芯部を形成する工程、
少なくとも前記弾性変形部を構成する前記芯部の表面に、無電解メッキ法にて、白金族金属層をメッキ形成する工程、
前記白金族金属層の表面に、無電解メッキ法にて、Au層をメッキ形成する工程、
加熱処理を施して、最表面層に、白金族元素とAuとの合金層を形成する工程、
を有することを特徴とする接触子の製造方法。
In the method of manufacturing a contact provided with an elastically deformable portion,
Forming a core having a fixed portion and the elastically deformable portion extending from the fixed portion;
A step of plating a platinum group metal layer on the surface of the core part constituting at least the elastic deformation part by an electroless plating method;
Plating the Au layer on the surface of the platinum group metal layer by electroless plating,
Applying heat treatment to form an alloy layer of a platinum group element and Au on the outermost surface layer;
A method for producing a contact, comprising:
前記固定部にも、無電解メッキ法による前記白金族金属層及び前記Au層のメッキ形成、及び加熱処理を施して、前記合金層を形成する請求項1記載の接触子の製造方法。   The contactor manufacturing method according to claim 1, wherein the alloy part is formed by performing plating on the platinum group metal layer and the Au layer by an electroless plating method and a heat treatment also on the fixing portion. 個々に分離された複数の前記芯部を形成し、支持シートに支持された全ての前記芯部に対して、前記無電解メッキ工程及び加熱処理工程を施して、前記合金層を備える複数の前記接触子を形成する請求項1又は2に記載の接触子の製造方法。   A plurality of the core parts that are individually separated are formed, and the electroless plating process and the heat treatment process are performed on all the core parts supported by the support sheet, and the plurality of the alloy layers are provided. The manufacturing method of the contact of Claim 1 or 2 which forms a contact. 前記加熱処理工程を、前記弾性変形部を立体成形した状態で行う請求項1ないし3のいずれか1項に記載の接触子の製造方法。   The manufacturing method of the contactor of any one of Claim 1 thru | or 3 which performs the said heat processing process in the state which shape | molded the said elastic deformation part three-dimensionally. 前記Au層を、前記白金族金属層よりも薄く形成するか、あるいは同等の膜厚で形成する請求項1ないし4のいずれか1項に記載の接触子の製造方法。   5. The method of manufacturing a contact according to claim 1, wherein the Au layer is formed thinner than the platinum group metal layer or has an equivalent film thickness. 前記芯部を、銅又は銅合金で形成された導電部の表面に、無電解メッキ法にて、Ni−X(ただしXは、P、W、Mn、Ti、Be,Bのいずれか一種以上)からなる弾性部をメッキした積層構造で形成する請求項1ないし5のいずれか1項に記載の接触子の製造方法。   Ni-X (where X is P, W, Mn, Ti, Be, B or more of one or more of the core portion on the surface of a conductive portion formed of copper or a copper alloy by electroless plating) The method for manufacturing a contact according to any one of claims 1 to 5, wherein the elastic portion is formed of a laminated structure plated. 前記芯部を、Ni−X(ただしXは、P、W、Mn、Ti、Be,Bのいずれか一種以上)にて電鋳形成する請求項1ないし5のいずれか1項に記載の接触子の製造方法。   The contact according to any one of claims 1 to 5, wherein the core portion is electroformed by Ni-X (where X is any one or more of P, W, Mn, Ti, Be, and B). Child manufacturing method. 前記加熱温度を、150℃〜300℃の範囲内で調整する請求項1ないし7のいずれか1項に記載の接触子の製造方法。   The manufacturing method of the contactor of any one of Claim 1 thru | or 7 which adjusts the said heating temperature within the range of 150 to 300 degreeC.
JP2008330901A 2008-12-25 2008-12-25 Method of manufacturing contactor equipped with elastically deforming part Withdrawn JP2010153236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008330901A JP2010153236A (en) 2008-12-25 2008-12-25 Method of manufacturing contactor equipped with elastically deforming part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008330901A JP2010153236A (en) 2008-12-25 2008-12-25 Method of manufacturing contactor equipped with elastically deforming part

Publications (1)

Publication Number Publication Date
JP2010153236A true JP2010153236A (en) 2010-07-08

Family

ID=42572106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008330901A Withdrawn JP2010153236A (en) 2008-12-25 2008-12-25 Method of manufacturing contactor equipped with elastically deforming part

Country Status (1)

Country Link
JP (1) JP2010153236A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232493A (en) * 1995-12-20 1997-09-05 Seiichi Serizawa Lead frame
JPH11260981A (en) * 1998-03-13 1999-09-24 Matsushita Electric Works Ltd Manufacture of lead frame
JP2005032708A (en) * 2003-06-20 2005-02-03 Alps Electric Co Ltd Connecting device and its manufacture method
JP2005085616A (en) * 2003-09-09 2005-03-31 Alps Electric Co Ltd Manufacturing method of connection device
JP2008078032A (en) * 2006-09-22 2008-04-03 Alps Electric Co Ltd Connecting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232493A (en) * 1995-12-20 1997-09-05 Seiichi Serizawa Lead frame
JPH11260981A (en) * 1998-03-13 1999-09-24 Matsushita Electric Works Ltd Manufacture of lead frame
JP2005032708A (en) * 2003-06-20 2005-02-03 Alps Electric Co Ltd Connecting device and its manufacture method
JP2005085616A (en) * 2003-09-09 2005-03-31 Alps Electric Co Ltd Manufacturing method of connection device
JP2008078032A (en) * 2006-09-22 2008-04-03 Alps Electric Co Ltd Connecting device

Similar Documents

Publication Publication Date Title
JP6667765B2 (en) Electrode connection method and electrode connection structure
US20020001712A1 (en) Electronic component, method for producing electronic component, and circuit board
TWI322493B (en) Leadframe strip, semiconductor device, and the method of fabricating a leadframe
JP6502667B2 (en) Electrical contacts and sockets for electrical components
JP2010202900A (en) Method of producing electrical contact
US20170141068A1 (en) Method of manufacturing semiconductor device
JP2008078032A (en) Connecting device
WO2014148365A1 (en) Electrical connector, and socket for electric component
JP2010044983A (en) Contact and its manufacturing method, and connector equipped with the same, and its manufacturing method
CN104205508B (en) Electrical contact and plug seat for electrical component part
JP4421550B2 (en) Probes and probe cards
JP4904810B2 (en) Plating film, method for forming the same, and electronic component
JP2015130268A (en) Terminal connection structure, and semiconductor device
JP5591475B2 (en) Elastic contact and manufacturing method thereof, and contact substrate and manufacturing method thereof
CN105702432A (en) electronic component and board having the same
US10763184B2 (en) Power module substrate, power module, and method for manufacturing power module substrate
JP2010153236A (en) Method of manufacturing contactor equipped with elastically deforming part
JP4637009B2 (en) Manufacturing method of semiconductor device
JP2008311017A (en) Connecting device
JP2009094080A (en) Method for manufacturing contact and method for manufacturing connection device using the contact
CN111682008A (en) Method for manufacturing an integrated device comprising a die fixed to a lead frame
KR101951732B1 (en) Conductive contactor for substrate surface mount and preparing method for the same
JP4428572B2 (en) Elastic contact
JP2010116603A (en) Sn OR Sn ALLOY PLATING FILM AND METHOD FOR PRODUCING THE SAME
JP4621147B2 (en) Contact and connection device using the contact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120926