JP2009094080A - Method for manufacturing contact and method for manufacturing connection device using the contact - Google Patents

Method for manufacturing contact and method for manufacturing connection device using the contact Download PDF

Info

Publication number
JP2009094080A
JP2009094080A JP2008326990A JP2008326990A JP2009094080A JP 2009094080 A JP2009094080 A JP 2009094080A JP 2008326990 A JP2008326990 A JP 2008326990A JP 2008326990 A JP2008326990 A JP 2008326990A JP 2009094080 A JP2009094080 A JP 2009094080A
Authority
JP
Japan
Prior art keywords
contact
alloy
elastic deformation
manufacturing
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008326990A
Other languages
Japanese (ja)
Inventor
Shinichi Nagano
真一 長野
Makoto Yoshida
信 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2008326990A priority Critical patent/JP2009094080A/en
Publication of JP2009094080A publication Critical patent/JP2009094080A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a contact formed in an amorphous state having better spring properties as compared to conventional one, a method for manufacturing the contact, a connection device using the contact, and a method for manufacturing the connection device. <P>SOLUTION: The present invention provides a contact comprising an elastic deforming portion that includes at least one amorphous part. The elastic deforming portion includes an auxiliary elastic member 41 made of, for example, NiP (a P content of 15 atomic percentage). In this case, an amorphous phase 50 is predominant in the auxiliary elastic member 41. This enhances spring properties such as a yield stress more than conventionally. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えばIC(集積回路)等が装着される接触子を有する接続装置(例えばICソケットなど)に係わり、特に、前記接触子をアモルファス状態で形成してばね特性を向上させた接触子の製造方法、ならびに前記接触子を用いた接続装置の製造方法に関する。   The present invention relates to a connection device (for example, an IC socket) having a contact to which, for example, an IC (integrated circuit) or the like is mounted. In particular, the contact is formed in an amorphous state to improve spring characteristics. And a method of manufacturing a connecting device using the contact.

特許文献1に記載されている半導体検査装置は、半導体を外部の回路基板などに電気的に仮接続させるものである。半導体の背面側には格子状またはマトリックス状に配置された多数の球状接触子が設けられており、これに対向する絶縁基板上には多数の凹部が設けられ、この凹部内にスパイラル接触子が対向配置されている。   The semiconductor inspection apparatus described in Patent Document 1 electrically temporarily connects a semiconductor to an external circuit board or the like. A large number of spherical contacts arranged in a lattice shape or a matrix shape are provided on the back side of the semiconductor, and a large number of recesses are provided on an insulating substrate facing the contact, and spiral contacts are provided in the recesses. Opposed.

前記半導体の背面側を前記絶縁基板に向けて押圧すると、前記球状接触子の外表面に前記スパイラル接触子が螺旋状に巻き付くように接触するため、個々の球状接触子と個々のスパイラル接触子との間の電気的接続が確実に行われるようになっている。
特開2002−175859号公報
When the back side of the semiconductor is pressed toward the insulating substrate, the spiral contact comes into contact with the outer surface of the spherical contact so that the spiral contact is spirally wound. The electrical connection between the two is ensured.
JP 2002-175859 A

例えば上記特許文献1では、前記スパイラル接触子を、銅箔と、ニッケルメッキとを有して形成している。特許文献1には特に記載されていないが、前記半導体の球状接触子と、前記スパイラル接触子との接触を確実なものにすべく、前記スパイラル接触子に対し熱処理を施しながら、前記スパイラル接触子を立体成形すること等が行なわれる。   For example, in the said patent document 1, the said spiral contactor is formed including copper foil and nickel plating. Although not specifically described in Patent Document 1, the spiral contact is performed while heat-treating the spiral contact in order to ensure contact between the semiconductor spherical contact and the spiral contact. Is three-dimensionally molded.

しかしながら、前記立体成形の際の熱処理によって、前記スパイラル接触子が結晶化し、降伏応力が低下するなど、ばね特性が劣化するために、弾性接点として適切に機能しなくなるといった問題があった。   However, due to the heat treatment during the three-dimensional molding, the spiral contact is crystallized, yield stress is reduced, and the spring characteristics are deteriorated, so that there is a problem that the elastic contact does not function properly.

特許文献1では、ニッケルメッキを、スパイラル接触子の一部に設けている。銅箔だけでなくニッケルメッキを施してスパイラル接触子を形成することで、前記スパイラル接触子が適切に弾性変形しやすくなると期待されるが、前記ニッケルは、熱処理等の原因により結晶化が急激に促進することで脆い性質になるため、スパイラル接触子が折れる等の破損が多発しやすくなっていた。   In patent document 1, nickel plating is provided in a part of spiral contactor. It is expected that not only copper foil but also nickel plating will form a spiral contact so that the spiral contact will be easily elastically deformed appropriately, but the nickel will rapidly crystallize due to heat treatment and other causes. Since it becomes brittle when promoted, damage such as breaking of the spiral contact tends to occur frequently.

スパイラル接触子に対し特に立体成形のための熱処理を施さない場合であっても、前記スパイラル接触子をバーンイン試験装置等に用いた場合には、必然的に前記スパイラル接触子が加熱下に置かれるため、加熱の環境下における、スパイラル接触子のばね特性の向上が必要であった。   Even when the spiral contact is not particularly subjected to heat treatment for three-dimensional molding, when the spiral contact is used in a burn-in test apparatus or the like, the spiral contact is necessarily placed under heating. Therefore, it is necessary to improve the spring characteristics of the spiral contactor under the heating environment.

そこで本発明は上記従来の課題を解決するためのものであり、特に、接触子をアモルファス状態で形成し、従来に比べてバネ特性の向上を可能とした接触子の製造方法、ならびに前記接触子を用いた接続装置の製造方法を提供することを目的としている。   Therefore, the present invention is for solving the above-described conventional problems, and in particular, a method for manufacturing a contact in which the contact is formed in an amorphous state, and the spring characteristics can be improved as compared with the prior art, and the contact An object of the present invention is to provide a method of manufacturing a connection device using the above.

本発明は、弾性変形部を有する接触子の製造方法において、
前記弾性変形部を、Ni−PあるいはNi−BのNi合金で形成する工程、
前記弾性変形部を立体成形した状態で加熱する工程、
を含み、加熱温度を200℃〜300℃の範囲内で行ない、前記Ni合金のアモルファス状態を維持することを特徴とするものである。
本発明では、Pの組成比を15原子%以上で30原子%以下にすることが好ましい。
The present invention relates to a method of manufacturing a contact having an elastically deformable portion,
Forming the elastic deformation portion with Ni-P or Ni-B Ni alloy;
Heating the elastically deformed portion in a three-dimensionally formed state;
The heating temperature is within a range of 200 ° C. to 300 ° C., and the amorphous state of the Ni alloy is maintained.
In the present invention, the composition ratio of P is preferably 15 atomic% or more and 30 atomic% or less.

また本発明は、弾性変形部を有する接触子の製造方法において、
前記弾性変形部を、Ni−WのNi合金で形成する工程、
前記弾性変形部を立体成形した状態で加熱する工程、
を含み、加熱温度を200℃〜700℃の範囲内で行ない、前記Ni合金のアモルファス状態を維持することを特徴とするものである。
Further, the present invention provides a method for manufacturing a contact having an elastically deformable portion,
Forming the elastically deformable portion with a Ni-W Ni alloy;
Heating the elastically deformed portion in a three-dimensionally formed state;
The heating temperature is in the range of 200 ° C. to 700 ° C., and the amorphous state of the Ni alloy is maintained.

本発明では、Wの組成比を14.5原子%以上で36原子%以下にすることが好ましい。また、Wの組成比を20原子%以上にすることがより好ましい。   In the present invention, the W composition ratio is preferably 14.5 atomic% or more and 36 atomic% or less. More preferably, the W composition ratio is 20 atomic% or more.

Ni合金(Ni−X(X=P,B,W))はNiに比べて結晶化温度が高く、従来と同じ条件下での加熱によっても前記Ni合金はアモルファス状態を保ち得る。本発明では、前記弾性変形部を構成するNi合金をアモルファス状態にでき、ばね特性に優れた前記接触子を簡単且つ適切に形成することが出来る。   The Ni alloy (Ni-X (X = P, B, W)) has a higher crystallization temperature than Ni, and the Ni alloy can maintain an amorphous state even when heated under the same conditions as in the prior art. In the present invention, the Ni alloy constituting the elastically deformable portion can be made into an amorphous state, and the contact having excellent spring characteristics can be formed easily and appropriately.

本発明では、前記加熱工程を、前記Ni合金の結晶化温度よりも低い温度で行うことが好ましい。これにより、前記Ni合金を適切にアモルファス状態に出来る。   In the present invention, the heating step is preferably performed at a temperature lower than the crystallization temperature of the Ni alloy. Thereby, the Ni alloy can be appropriately brought into an amorphous state.

また本発明では、前記Ni合金の塑性域での応力を前記弾性変形部にかけて、前記弾性変形部を立体成形した状態で加熱することが好ましい。これにより、特に加熱時間の短縮を図ることが出来る。   Moreover, in this invention, it is preferable to apply the stress in the plastic region of the said Ni alloy to the said elastic deformation part, and to heat the said elastic deformation part in the state shape | molded three-dimensionally. Thereby, especially shortening of heating time can be aimed at.

また加熱時間を36分から1時間の間とすることが好ましい。
また本発明では、前記弾性変形部を、前記Ni合金のみで形成することが出来る。
The heating time is preferably between 36 minutes and 1 hour.
In the present invention, the elastically deformable portion can be formed only of the Ni alloy.

また本発明では、膜厚方向から切断した前記弾性変形部の断面の一部に、前記Ni合金から成る弾性領域を形成することができる。例えば、前記弾性変形部を、導電性部材と、補助弾性部材とを有して形成し、このとき、前記導電性部材を前記補助弾性部材よりも比抵抗が低い材料で形成し、前記補助弾性部材を前記導電性部材よりも降伏点及び弾性係数が高い前記Ni合金で形成することが出来る。   In the present invention, an elastic region made of the Ni alloy can be formed in a part of the cross section of the elastically deforming portion cut from the film thickness direction. For example, the elastic deformation part is formed to include a conductive member and an auxiliary elastic member. At this time, the conductive member is formed of a material having a specific resistance lower than that of the auxiliary elastic member, and the auxiliary elastic member is formed. The member can be formed of the Ni alloy having a higher yield point and elastic modulus than the conductive member.

さらに、本発明は、基台と、前記基台に設けられた接触子とを有し、電子部品の外部接続部が、前記接触子の弾性変形部に接触する接続装置の製造方法において、
前記接触子の前記弾性変形部を上記のいずれかに記載された製造方法にて形成することを特徴とするものである。これにより前記弾性変形部をアモルファス状態で形成でき、従来よりもばね特性に優れた前記接触子を有する接続装置を適切且つ簡単に製造することが可能になる。
Furthermore, the present invention includes a base and a contact provided on the base, wherein the external connection portion of the electronic component contacts the elastically deforming portion of the contact.
The elastic deformation portion of the contact is formed by any one of the manufacturing methods described above. As a result, the elastically deformable portion can be formed in an amorphous state, and it becomes possible to appropriately and easily manufacture a connection device having the contact that has better spring characteristics than the conventional one.

本発明は、弾性変形部を有する接触子の製造方法によれば、前記弾性変形部を構成するNi−Xをアモルファス状態にでき、ばね特性に優れた前記接触子を簡単且つ適切に形成することが出来る。   According to the present invention, according to the method for manufacturing a contact having an elastically deformable portion, Ni-X constituting the elastically deformable portion can be in an amorphous state, and the contactor having excellent spring characteristics can be formed easily and appropriately. I can do it.

図1は電子部品の動作を確認するための試験に用いられる検査装置を示す斜視図、図2は図1の2−2線における断面図を示し、電子部品が装着された状態の断面図である。   1 is a perspective view showing an inspection apparatus used in a test for confirming the operation of an electronic component, and FIG. 2 is a sectional view taken along line 2-2 of FIG. is there.

図1に示すように、検査装置10は基台11と、この基台11の一方の縁部に設けられたひんじ部13を介して回動自在に支持された蓋体12とで構成されている。前記基台11および蓋体12は絶縁性の樹脂材料などで形成されており、前記基台11の中心部には図示Z2方向に凹となる装填領域11Aが形成されている。そして、前記装填領域11A内に半導体などの電子部品1が装着できるようになっている。また基台11の他方の縁部には、被ロック部14が形成されている。   As shown in FIG. 1, the inspection apparatus 10 includes a base 11 and a lid 12 that is rotatably supported via a hinge 13 provided on one edge of the base 11. ing. The base 11 and the lid body 12 are formed of an insulating resin material or the like, and a loading region 11A that is concave in the Z2 direction is formed at the center of the base 11. An electronic component 1 such as a semiconductor can be mounted in the loading area 11A. A locked portion 14 is formed on the other edge of the base 11.

図2に示すように、この検査装置10は、電子部品1の下面に多数の接続端子(例えば図2に示す球状の接続端子)1aがマトリックス状(格子状または碁盤の目状)に配置されたものを検査対象とするものである。   As shown in FIG. 2, in this inspection apparatus 10, a large number of connection terminals (for example, spherical connection terminals shown in FIG. 2) 1 a are arranged on the lower surface of the electronic component 1 in a matrix (lattice or grid). This is intended for inspection.

図2に示すように、前記基台11には所定の径寸法からなり、装填領域11Aの表面から基台11の裏面に貫通する複数の貫通孔(スルーホール)11aが、前記電子部品1の接続端子1aに対応して設けられている。   As shown in FIG. 2, the base 11 has a predetermined diameter, and a plurality of through holes (through holes) 11 a penetrating from the front surface of the loading area 11 </ b> A to the back surface of the base 11 are formed on the electronic component 1. It is provided corresponding to the connection terminal 1a.

前記貫通孔11aの上面(装填領域11Aの表面)には、接触子が渦巻き状に形成された複数のスパイラル接触子20が設けられている。   On the upper surface of the through hole 11a (the surface of the loading region 11A), a plurality of spiral contacts 20 in which the contacts are formed in a spiral shape are provided.

図3は前記スパイラル接触子20の斜視図である。図3に示すように、前記スパイラル接触子20は基台11に、図示X方向及びY方向に所定間隔を空けて複数形成されている。   FIG. 3 is a perspective view of the spiral contact 20. As shown in FIG. 3, a plurality of the spiral contacts 20 are formed on the base 11 with predetermined intervals in the X direction and the Y direction shown in the figure.

前記各スパイラル接触子20は、図3において例えば左上に図示されたスパイラル接触子20のように前記貫通孔11aの上方の開口端の縁部に固定された基部21を有し、スパイラル接触子20の巻き始端22が前記基部21側に設けられている。そして、この巻き始端22から渦巻き状に延び、巻き終端23が前記貫通孔11aのほぼ中心に位置するようになっている。前記スパイラル接触子20は、ちょうど前記貫通孔11aと高さ方向にて対向する位置にある渦巻き状の部分が、弾性変形部20aとして機能している。   Each spiral contact 20 has a base portion 21 fixed to the edge of the upper open end of the through hole 11a like the spiral contact 20 shown in the upper left in FIG. The winding start end 22 is provided on the base 21 side. And it extends in a spiral shape from the winding start end 22, and the winding end 23 is positioned substantially at the center of the through hole 11a. In the spiral contact 20, a spiral portion at a position facing the through hole 11 a in the height direction functions as an elastic deformation portion 20 a.

前記貫通孔11aの内壁面には図示しない導通部が形成されており、導通部の上端と前記スパイラル接触子20の前記基部21とが導電性接着材などで接続されている。また貫通孔11aの下方の開口端は前記導通部に接続された接続端子18で塞がれている。   A conductive portion (not shown) is formed on the inner wall surface of the through hole 11a, and the upper end of the conductive portion and the base portion 21 of the spiral contactor 20 are connected by a conductive adhesive or the like. The opening end below the through hole 11a is closed by a connection terminal 18 connected to the conducting portion.

図2に示すように、前記基台11の下方には複数の配線パターンやその他の回路部品を有するプリント基板30が設けられており、前記基台11はこのプリント基板30上に固定されている。前記プリント基板30の表面には前記基台11の底面に設けられた接続端子18に対向する対向電極31が設けられており、前記各接続端子18が各対向電極31にそれぞれ接触することにより、電子部品1とプリント基板30とが検査装置10を介して電気的に接続される。   As shown in FIG. 2, a printed board 30 having a plurality of wiring patterns and other circuit components is provided below the base 11, and the base 11 is fixed on the printed board 30. . The surface of the printed circuit board 30 is provided with a counter electrode 31 facing the connection terminal 18 provided on the bottom surface of the base 11, and the connection terminals 18 are in contact with the counter electrodes 31, respectively. The electronic component 1 and the printed circuit board 30 are electrically connected via the inspection apparatus 10.

一方、検査装置10の蓋体12の内面の中央の位置には、電子部品1を図示下方に押し付ける凸形状の押圧部12aが前記装填領域11Aに対向して設けられている。また前記ひんじ部13と逆側となる位置にはロック部15が形成されている。   On the other hand, at the center position of the inner surface of the lid 12 of the inspection apparatus 10, a convex pressing portion 12a that presses the electronic component 1 downward in the figure is provided so as to face the loading area 11A. Further, a lock portion 15 is formed at a position on the opposite side to the hinge portion 13.

前記蓋体12の内面と押圧部12aとの間には前記押圧部12aを蓋体12の内面から遠ざかる方向に付勢するコイルスプリングなどからなる付勢部材が設けられている(図示せず)。従って、電子部品1を前記貫通孔11a内に装着して蓋体12を閉じてロックすると、電子部品1を装填領域11Aの表面に接近する方向(Z2方向)に弾性的に押し付けることが可能となっている。   Between the inner surface of the lid body 12 and the pressing portion 12a, a biasing member made of a coil spring or the like that biases the pressing portion 12a away from the inner surface of the lid body 12 is provided (not shown). . Therefore, when the electronic component 1 is mounted in the through hole 11a and the lid 12 is closed and locked, the electronic component 1 can be elastically pressed in the direction approaching the surface of the loading region 11A (Z2 direction). It has become.

前記基台11の装填領域11Aの大きさは、前記電子部品1の外形とほぼ同じ大きさであり、電子部品1を前記装填領域11Aに装着して蓋体12をロックすると、電子部品1側の各接続端子1aと検査装置10側の各スパイラル接触子20とが正確に対応して位置決めできるようになっている。   The size of the loading area 11A of the base 11 is substantially the same as the outer shape of the electronic component 1, and when the electronic component 1 is mounted on the loading area 11A and the lid 12 is locked, the electronic component 1 side Each of the connection terminals 1a and each of the spiral contacts 20 on the inspection apparatus 10 side can be accurately positioned correspondingly.

蓋体12のロック部15が基台11の被ロック部14にロックされると、電子部品1が前記押圧部12aによって図示下方に押し付けられるため、前記各接続端子1aが各スパイラル接触子20を貫通孔11aの内部方向(図示下方)に押し下げる。同時に、スパイラル接触子20の前記弾性変形部20aは、前記巻き終端23から巻き始端22方向(渦巻きの中心から外方向)に押し広げられるように変形し、前記接続端子1aの外表面を抱き込むように巻き付き、各接続端子1aと各スパイラル接触子20とが接続される。   When the lock portion 15 of the lid 12 is locked to the locked portion 14 of the base 11, the electronic component 1 is pressed downward in the figure by the pressing portion 12a, so that each connection terminal 1a holds each spiral contact 20. Push down in the through hole 11a (downward in the figure). At the same time, the elastic deformation portion 20a of the spiral contactor 20 is deformed so as to be expanded from the winding end 23 toward the winding start end 22 (outward from the center of the spiral) and embraces the outer surface of the connection terminal 1a. Thus, the connection terminals 1a and the spiral contacts 20 are connected.

前記スパイラル接触子20の弾性変形部20aを幅方向と平行な方向である線4から膜厚方向に切断し、その切断面を矢印方向から見たとき、その切断面は図4のようになっている。   When the elastically deforming portion 20a of the spiral contactor 20 is cut in the film thickness direction from the line 4 which is parallel to the width direction, and the cut surface is viewed from the direction of the arrow, the cut surface is as shown in FIG. ing.

図4Aでは、導電性部材40の上に補助弾性部材41が重ねて形成されている。前記導電性部材40は前記補助弾性部材41よりも比抵抗が低い材料で形成され、前記補助弾性部材41は前記導電性部材40よりも降伏点及び弾性係数が高い材料で形成されている。   In FIG. 4A, the auxiliary elastic member 41 is formed on the conductive member 40 in an overlapping manner. The conductive member 40 is made of a material having a specific resistance lower than that of the auxiliary elastic member 41, and the auxiliary elastic member 41 is made of a material having a yield point and an elastic coefficient higher than those of the conductive member 40.

図4Aのように、導電性部材40と補助弾性部材41とを重ねて形成することで、前記スパイラル接触子20の良好な導電性は導電性部材40で担保され、前記スパイラル接触子の良好なばね性は前記補助弾性部材41で担保される。   As shown in FIG. 4A, by forming the conductive member 40 and the auxiliary elastic member 41 so as to overlap each other, good conductivity of the spiral contactor 20 is secured by the conductive member 40, and the spiral contactor is good. The spring property is secured by the auxiliary elastic member 41.

図4Aでは、補助弾性部材41の上に導電性部材40が重ねて形成されたものであってもよい。   In FIG. 4A, the conductive member 40 may be formed on the auxiliary elastic member 41 in an overlapping manner.

また図4Aにおいて、前記導電性部材40及び補助弾性部材41の双方がメッキで形成されたものであってもよいし、導電性部材40が金属箔で形成されており、前記補助弾性部材41がメッキ形成されたものであってもよい。   4A, both the conductive member 40 and the auxiliary elastic member 41 may be formed by plating, or the conductive member 40 may be formed of a metal foil, and the auxiliary elastic member 41 may be It may be plated.

図4Bでは、下から導電性部材40、補助弾性部材41及び被膜部材42の順に積層形成されたものである。ここで前記被膜部材42は、硬度や耐磨耗性を向上させるために設けられたものである。また前記被膜部材42は前記弾性部材41よりも低い比抵抗を有する材質で形成され、電子部品の接触子との接触抵抗を小さくする作用を有するものであることが好ましい。   In FIG. 4B, the conductive member 40, the auxiliary elastic member 41, and the coating member 42 are laminated in this order from the bottom. Here, the coating member 42 is provided to improve hardness and wear resistance. The coating member 42 is preferably formed of a material having a specific resistance lower than that of the elastic member 41 and has a function of reducing contact resistance with a contact of an electronic component.

図4Cでは、導電性部材40の上面、下面及び両側面が前記補助弾性部材41で完全に囲まれた構成になっている。このように補助弾性部材41によって前記導電性部材40の周囲を完全に囲む構成であると、スパイラル接触子20のばね性をより適切に向上させることができて好ましい。   4C, the upper surface, the lower surface, and both side surfaces of the conductive member 40 are completely surrounded by the auxiliary elastic member 41. Thus, it is preferable that the conductive member 40 be completely surrounded by the auxiliary elastic member 41 because the spring property of the spiral contact 20 can be improved more appropriately.

図4Dは、図4Cの応用例であり、例えば前記導電性部材40の上面、下面及び両側面を完全に補助弾性部材41が囲っており、さらに前記補助弾性部材41の表面を前記被膜部材42が覆っている構成である。   FIG. 4D is an application example of FIG. 4C. For example, the auxiliary elastic member 41 completely surrounds the upper surface, the lower surface, and both side surfaces of the conductive member 40, and the surface of the auxiliary elastic member 41 is covered with the coating member 42. It is the composition which covers.

前記導電性部材40は、CuあるいはCu合金で形成されている。また前記導電性部材40を形成する前記Cu合金には、例えば、Cu、Si、Niを有するコルソン合金が選択される。前記補助弾性部材41は、Ni−X(ただしXは、P、W、Bのうちいずれか1種以上)で形成されることが好ましい。前記導電性部材40をCuやCu合金(コルソン合金を除く)で形成すると、スパイラル接触子20を安価に形成でき、また良好な導電性を確保できる。ただしばね性はほとんど期待できないため、前記補助弾性部材41にはばね性に優れるNi−Xを選択して、前記弾性変形部20aのばね特性を適切に向上させることが必要である。すなわち例えば前記補助弾性部材41としてNiを選択した場合は、効果的なばね特性の向上を期待できず、へたり率等が大きくなってしまう。具体的には、例えばCu/Niという組み合わせは、Cu/Ni−Xに比べて良好なばね特性を期待できないのである。したがって本実施形態では、前記補助弾性部材41は、Ni−X(ただしXは、P、W、Bのうちいずれか1種以上)で形成されることが好ましい。また前記被膜部材42は、Au、Ag、Pd、Snから選択される。   The conductive member 40 is made of Cu or Cu alloy. For example, a Corson alloy containing Cu, Si, and Ni is selected as the Cu alloy forming the conductive member 40. The auxiliary elastic member 41 is preferably formed of Ni-X (where X is one or more of P, W, and B). When the conductive member 40 is formed of Cu or Cu alloy (excluding Corson alloy), the spiral contact 20 can be formed at low cost and good conductivity can be ensured. However, since the spring property can hardly be expected, it is necessary to select Ni-X having excellent spring property for the auxiliary elastic member 41 and appropriately improve the spring characteristic of the elastic deformation portion 20a. That is, for example, when Ni is selected as the auxiliary elastic member 41, an effective improvement in spring characteristics cannot be expected, and the sag rate or the like becomes large. Specifically, for example, the combination of Cu / Ni cannot be expected to have good spring characteristics compared to Cu / Ni-X. Therefore, in this embodiment, the auxiliary elastic member 41 is preferably formed of Ni-X (where X is one or more of P, W, and B). The coating member 42 is selected from Au, Ag, Pd, and Sn.

前記補助弾性部材41は、上記したようにメッキ形成されたものである。メッキは電解メッキ法でも無電解メッキ法でもどちらであってもよい。例えば図4C,図4Dのように導電性部材40の周囲を覆うように前記補助弾性部材41を形成する場合は、前記補助弾性部材41を無電解メッキ法で形成する。   The auxiliary elastic member 41 is formed by plating as described above. The plating may be either electrolytic plating or electroless plating. For example, when the auxiliary elastic member 41 is formed so as to cover the periphery of the conductive member 40 as shown in FIGS. 4C and 4D, the auxiliary elastic member 41 is formed by an electroless plating method.

本実施形態における特徴的な部分は前記補助弾性部材41がアモルファス状態で形成されている点である。前記補助弾性部材41は上記したようにNi−X合金で形成される。Ni−X合金はNiに比べて結晶化温度が高く、前記Niが結晶化する温度であってもNi−X合金は結晶化せずアモルファス状態を保っている。前記補助弾性部材41は、例えばNiP合金でメッキ形成されたものであり、Pの組成比は15原子%以上であることが好ましい。Pの組成比を15原子%以上にすると、Pの組成比を15原子%よりも小さくした場合に比べて、Ni結晶の析出を適切に抑制できる。Ni結晶の析出により、前記補助弾性部材41が脆くなり降伏点等に代表されるばね特性の著しい低下を招くため好ましくない。なお前記Pの組成比は30原子%以下であることが好ましい。30原子%よりも大きいと脆い金属間化合物であるNiP、Ni5P2、Ni2P5等を生じるためである。なお元素XにWを選択した場合、Wの組成比は14.5原子%〜36原子%の範囲内であることが好ましい。より好ましくはWの組成比は20原子%以上である。これによりNiWをアモルファス状態で形成できる。また、元素XにBを選択した場合、Bの組成比は15原子%〜30原子%の範囲内であることが好ましい。これにより、NiBをアモルファス状態で形成できる。   The characteristic part in the present embodiment is that the auxiliary elastic member 41 is formed in an amorphous state. The auxiliary elastic member 41 is made of a Ni-X alloy as described above. The Ni-X alloy has a higher crystallization temperature than Ni, and the Ni-X alloy does not crystallize and maintains an amorphous state even at the temperature at which the Ni crystallizes. The auxiliary elastic member 41 is, for example, formed by plating with a NiP alloy, and the composition ratio of P is preferably 15 atomic% or more. When the composition ratio of P is 15 atomic% or more, the precipitation of Ni crystals can be appropriately suppressed as compared with the case where the composition ratio of P is smaller than 15 atomic%. The auxiliary elastic member 41 becomes brittle due to the precipitation of Ni crystals, which causes a significant decrease in spring characteristics represented by the yield point and the like. The composition ratio of P is preferably 30 atomic% or less. This is because if it exceeds 30 atomic%, brittle intermetallic compounds such as NiP, Ni5P2, and Ni2P5 are generated. When W is selected as the element X, the composition ratio of W is preferably in the range of 14.5 atomic% to 36 atomic%. More preferably, the composition ratio of W is 20 atomic% or more. Thereby, NiW can be formed in an amorphous state. When B is selected as the element X, the composition ratio of B is preferably in the range of 15 atomic% to 30 atomic%. Thereby, NiB can be formed in an amorphous state.

前記補助弾性部材41は全体が完全なアモルファス(非晶質相)であることが最も好ましいが、例えば直径が1nm以下の超微細析出物(エンプリオ)が析出していてもよい。前記超微細析出物の組成は、例えばNiであってもよいし、あるいは元素X、Ni−Xであってもよい。なお、超微細析出物は数粒子程度の大きさでしかなく、結晶ではない。このため前記超微細析出物が析出していてもアモルファスとしての性質が適切に保たれている。また、本実施形態では一部に結晶が析出している状態を除外するものではない。例えば図5に示す物質状態では、アモルファス50が支配的となっているが、一部、前記エンプリオ51や結晶52が見られる。前記結晶52の直径(最大径)は、3nm〜15nm程度である。このとき、前記結晶52は、Niでなく、Ni−Xで形成された金属間化合物結晶であることが好ましい。例えば前記補助弾性部材41がNiP合金で形成されるとき、前記結晶52の組成はNi3Pである。Ni結晶は膜を非常に脆い材質に変えるが、前記金属間化合物結晶が析出してもNi結晶の析出に比べて、ばね特性の低下を抑制できる。図5に示すように前記金属間化合物結晶52が析出しても、その周囲は前記アモルファス50で覆われており、アモルファス50が支配的な状態となっている。前記アモルファス50は、前記補助弾性部材41中に60体積%〜100体積%占めていることが好ましい。すなわち本実施形態では、前記弾性補助部材41の全体がアモルファスで形成されている状態、アモルファスと超微細析出物とが混在する状態、アモルファス以外に結晶(金属間化合物結晶であることが好ましい)や超微細析出物を有するが膜中に前記アモルファスが60体積%以上占める状態を全て含んでいる。なおアモルファスは80体積%以上であることがより好ましく、90体積%以上であることがさらに好ましい。そして本願明細書ではこれらの状態を全てあわせて「アモルファス状態」と呼ぶ。上記3つの状態のうち、最も好ましいのは、全体がアモルファスとなっている状態、次に好ましいのは、前記アモルファスと超微細析出物とが混在する状態、である。   The auxiliary elastic member 41 is most preferably completely amorphous (amorphous phase) as a whole. For example, ultrafine precipitates (emprio) having a diameter of 1 nm or less may be precipitated. The composition of the ultrafine precipitate may be Ni, for example, or may be the element X or Ni-X. Note that the ultrafine precipitate is only a few particles in size and is not a crystal. For this reason, even if the ultrafine precipitates are deposited, the properties as amorphous are appropriately maintained. Further, in the present embodiment, the state where crystals are partially precipitated is not excluded. For example, in the material state shown in FIG. 5, the amorphous 50 is dominant, but the emprio 51 and the crystal 52 are partially seen. The diameter (maximum diameter) of the crystal 52 is about 3 nm to 15 nm. At this time, the crystal 52 is preferably an intermetallic compound crystal formed of Ni—X instead of Ni. For example, when the auxiliary elastic member 41 is formed of a NiP alloy, the composition of the crystal 52 is Ni3P. Ni crystals change the film into a very brittle material, but even if the intermetallic compound crystals are precipitated, the deterioration of the spring characteristics can be suppressed as compared with the precipitation of Ni crystals. As shown in FIG. 5, even if the intermetallic compound crystal 52 is deposited, the periphery thereof is covered with the amorphous 50, and the amorphous 50 is in a dominant state. The amorphous 50 preferably occupies 60% by volume to 100% by volume in the auxiliary elastic member 41. That is, in this embodiment, the elastic auxiliary member 41 is entirely formed in an amorphous state, a state in which amorphous and ultrafine precipitates are mixed, a crystal other than amorphous (preferably an intermetallic compound crystal), Although it has ultrafine precipitates, it includes all the states in which the amorphous occupies 60% by volume or more in the film. The amorphous content is more preferably 80% by volume or more, and still more preferably 90% by volume or more. In the present specification, all of these states are collectively referred to as an “amorphous state”. Of the above three states, the most preferable is a state in which the whole is amorphous, and the next preferable is a state in which the amorphous and ultrafine precipitates are mixed.

前記スパイラル接触子20の弾性変形部20aに前記補助弾性部材41を含み前記補助弾性部材41をアモルファス状態で形成することで、前記弾性変形部20aの降伏点を従来よりも向上させることが出来る。具体的には、荷重が19.6mN以上で変位が0.1mm以上となる降伏点を有することが出来る。また前記補助弾性部材41をアモルファス状態で形成することで耐クラック性(折れにくさ)を向上させることができ、さらに前記スパイラル接触子20を所定高さの立体形状に適切に形成できるとともに、前記接続装置10の繰返しの使用によっても、前記スパイラル接触子20のへたり率を従来よりも適切に減少させることが出来る。   By including the auxiliary elastic member 41 in the elastic deformation portion 20a of the spiral contactor 20 and forming the auxiliary elastic member 41 in an amorphous state, the yield point of the elastic deformation portion 20a can be improved as compared with the conventional case. Specifically, it can have a yield point where the load is 19.6 mN or more and the displacement is 0.1 mm or more. Further, by forming the auxiliary elastic member 41 in an amorphous state, crack resistance (hardness to break) can be improved, and the spiral contact 20 can be appropriately formed into a three-dimensional shape with a predetermined height, Even when the connecting device 10 is repeatedly used, the sag rate of the spiral contact 20 can be appropriately reduced as compared with the conventional case.

前記スパイラル接触子20の弾性変形部20aは図3に示すように上方に向けて螺旋状に立体成形されたものである。前記立体成形は加熱下で行なわれる。従来、弾性変形部20の補助弾性部材41としてNiを使用したものでは立体成形時の加熱下において前記Niが結晶化することでバネ特性が劣化するといった問題があったが本実施形態では前記補助弾性部材41としてNi−X合金を用いることで、前記補助弾性部材41をアモルファス状態に維持でき上記した降伏点に代表されるばね特性を従来よりも向上させることが可能になる。   As shown in FIG. 3, the elastic deformation portion 20a of the spiral contact 20 is three-dimensionally formed in a spiral shape upward. The three-dimensional molding is performed under heating. Conventionally, in the case where Ni is used as the auxiliary elastic member 41 of the elastically deforming portion 20, there is a problem that the spring characteristics are deteriorated due to crystallization of Ni under heating during three-dimensional molding. By using a Ni-X alloy as the elastic member 41, the auxiliary elastic member 41 can be maintained in an amorphous state, and the spring characteristics represented by the above-described yield point can be improved as compared with the conventional case.

また、図4に示す断面中に占める前記補助弾性部材41の断面積比{(補助弾性部材41の断面積/全体の断面積)×100(%)}は、30%以上であることが好ましく、50%以上であることがより好ましい。これによりばね定数を向上させることができ、へたり率を適切に低減できる。   Further, the cross-sectional area ratio {(the cross-sectional area of the auxiliary elastic member 41 / the overall cross-sectional area of the auxiliary elastic member 41) × 100 (%)} of the auxiliary elastic member 41 in the cross section shown in FIG. 4 is preferably 30% or more. 50% or more is more preferable. Thereby, a spring constant can be improved and a sag rate can be reduced appropriately.

本実施形態では、前記弾性変形部20aは上方に向けて立体成形(略円錐形)されている。立体成形は加熱下で行われる。これにより、前記弾性変形部20aは繰り返しの使用等によっても所定の立体状態を保ち、前記接続端子1aとの接触を良好に出来る。また本実施形態では、このような弾性変形部20aの形成時の加熱処理、あるいはバーンイン試験等で行われる熱処理等によっても前記弾性変形部20aは適切にアモルファス状態を保つ。   In the present embodiment, the elastic deformation portion 20a is three-dimensionally shaped (substantially conical) upward. Solid molding is performed under heating. Thereby, the elastic deformation part 20a can maintain a predetermined three-dimensional state even by repeated use and the like, and can make good contact with the connection terminal 1a. In the present embodiment, the elastic deformation portion 20a is appropriately maintained in an amorphous state also by heat treatment when the elastic deformation portion 20a is formed, heat treatment performed in a burn-in test, or the like.

前記導電性部材40は、前記補助弾性部材41のようにアモルファス状態でなくてもよく、すなわち結晶が支配的な状態となっていてもよい。むしろ前記導電性部材40は良好な導電性を確保するために結晶であることがよい。   The conductive member 40 may not be in an amorphous state like the auxiliary elastic member 41, that is, a crystal may be dominant. Rather, the conductive member 40 is preferably a crystal in order to ensure good conductivity.

前記スパイラル接触子20の製造方法について説明する。図6ないし図8は、前記基台11上に前記スパイラル接触子20を取付け、前記スパイラル接触子20の弾性変形部20aを上方に向けて立体成形するまでの前記スパイラル接触子20の製造方法を示す一工程図である。   A method for manufacturing the spiral contact 20 will be described. 6 to 8 show a method of manufacturing the spiral contact 20 until the spiral contact 20 is mounted on the base 11 and the elastic deformation portion 20a of the spiral contact 20 is three-dimensionally formed upward. FIG.

図6に示すように前記基台11には貫通孔11aが形成されており、前記貫通孔11aの周囲には、スパッタ等により導電性材料からなる導通部60が形成されている。上記したように前記スパイラル接触子20は、基部21と前記基部21から延出形成された弾性変形部20aとを有して構成されている。前記スパイラル接触子20は、例えば銅箔からなる導電性部材40の周囲に無電解メッキによってNiP合金からなる補助弾性部材41が形成された構成である(図4(C))。前記弾性変形部20aは螺旋状に形成されている。前記スパイラル接触子20の基部21は多数のスパイラル接触子20がばらばらにならないように保持するためのポリイミド樹脂等の樹脂シート71に保持されている。前記樹脂シート71にも前記基台11と同様に前記弾性変形部20aと高さ方向にて対向する位置に貫通孔が形成されている。   As shown in FIG. 6, a through hole 11a is formed in the base 11, and a conductive portion 60 made of a conductive material is formed around the through hole 11a by sputtering or the like. As described above, the spiral contact 20 includes the base portion 21 and the elastically deformable portion 20a formed to extend from the base portion 21. The spiral contactor 20 has a configuration in which an auxiliary elastic member 41 made of a NiP alloy is formed by electroless plating around a conductive member 40 made of, for example, copper foil (FIG. 4C). The elastic deformation portion 20a is formed in a spiral shape. The base portion 21 of the spiral contact 20 is held by a resin sheet 71 such as a polyimide resin for holding the spiral contacts 20 so as not to be separated. Similarly to the base 11, the resin sheet 71 has a through hole at a position facing the elastic deformation portion 20 a in the height direction.

前記樹脂シート71に保持された前記スパイラル接触子20を、前記基台11上に置き、このとき、ちょうど前記スパイラル接触子20の弾性変形部20aが前記基台11の貫通孔11aと高さ方向にて一致するように、前記弾性変形部20aと貫通孔11aとを位置合わせし、前記スパイラル接触子20の基部21を前記基台11の前記貫通孔11a上の周囲に前記導電性接着剤61を用いて貼り付ける。このとき前記基部21は前記導通部60と前記導電性接着剤61を介して導通した状態となる。   The spiral contact 20 held by the resin sheet 71 is placed on the base 11, and at this time, the elastic deformation portion 20 a of the spiral contact 20 is exactly in the height direction with the through hole 11 a of the base 11. The elastic deformable portion 20a and the through hole 11a are aligned so that the conductive adhesive 61 is placed around the base hole 21 of the base 11 on the through hole 11a. Paste using At this time, the base portion 21 is electrically connected to the conductive portion 60 via the conductive adhesive 61.

図6に示すように、スパイラル接触子20の下方から前記貫通孔11a内に突出調整部材70を介入させ、前記突出調整部材70を上方へ押し上げる。   As shown in FIG. 6, the protrusion adjusting member 70 is inserted into the through hole 11 a from below the spiral contact 20, and the protrusion adjusting member 70 is pushed upward.

図7に示すように前記突出調整部材70の押し上げによって前記スパイラル接触子20の弾性変形部20aは上方へ押し上げられる。このとき熱処理を施しながら前記突出調整部材70の押し上げを行い、所定時間が経過した後、前記突出調整部材70を取り除く(図8)。   As shown in FIG. 7, the elastic deformation portion 20 a of the spiral contact 20 is pushed upward by pushing up the protrusion adjusting member 70. At this time, the protrusion adjusting member 70 is pushed up while performing heat treatment, and after the predetermined time has elapsed, the protrusion adjusting member 70 is removed (FIG. 8).

上記のように前記弾性変形部20aに対する立体成形を、熱処理を施しながら行なうことで、前記突出調整部材70を取り除いても前記弾性変形部20aは上方に突出した状態で維持される。   As described above, the three-dimensional molding of the elastic deformation portion 20a is performed while performing heat treatment, so that the elastic deformation portion 20a is maintained in a state of protruding upward even when the protrusion adjusting member 70 is removed.

図7に示すように前記スパイラル接触子20の基部21上面21aから、前記弾性変形部20aの最も高い位置にある頂点Aまでの高さ寸法がH1となるまで、前記突出調整部材70を上方へ押し上げ、加熱下で図7の状態をキープする。図8に示すように前記突出調整部材70を取り除くと、若干のスプリングバックによって、前記スパイラル接触子20の基部21の上面21aを基準としてみたときの前記弾性変形部20aの高さ寸法はH1からH2に若干低くなる。このため、前記スプリングバックを見越して前記突出調整部材70を上方へ押し上げた段階での前記弾性変形部20aの高さ寸法H1を、実際に必要な前記弾性変形部20aの高さ寸法H2よりも高く設定しておくことが必要である。   As shown in FIG. 7, the protrusion adjusting member 70 is moved upward until the height dimension from the upper surface 21a of the base portion 21 of the spiral contactor 20 to the apex A at the highest position of the elastic deformation portion 20a becomes H1. Push up and keep the state of FIG. 7 under heating. As shown in FIG. 8, when the protrusion adjusting member 70 is removed, the height of the elastically deforming portion 20a when viewed from the upper surface 21a of the base portion 21 of the spiral contactor 20 as a reference due to a slight springback is from H1. Slightly lower to H2. For this reason, the height dimension H1 of the elastic deformation part 20a at the stage where the protrusion adjusting member 70 is pushed upward in anticipation of the spring back is larger than the actually required height dimension H2 of the elastic deformation part 20a. It is necessary to set it high.

上記のように弾性変形部20aの立体成形工程は加熱下で行なわれるが、本実施形態では前記弾性変形部20aの補助弾性部材41をNi−X合金で形成したことで前記補助弾性部材41をNiで形成したときよりも結晶化温度が上がり、従来、前記立体成形のときの加熱温度であった200℃〜300℃程度の加熱下でも結晶化温度を下回り、前記補助弾性部材41は結晶化せずアモルファス状態を適切に保つ。   As described above, the three-dimensional molding process of the elastic deformation portion 20a is performed under heating. In the present embodiment, the auxiliary elastic member 41 is formed of a Ni-X alloy as the auxiliary elastic member 41 of the elastic deformation portion 20a. The crystallization temperature is higher than that of Ni, and the auxiliary elastic member 41 is crystallized under the heating temperature of about 200 ° C. to 300 ° C., which is the heating temperature in the conventional three-dimensional molding. Without maintaining the amorphous state properly.

また本実施形態では、上記した加熱下での立体成形によっても前記補助弾性部材41をアモルファス状態に適切に保つことが出来るため、立体成形のときに、前記補助弾性部材41の塑性域での応力を前記弾性変形部20aにかけて、前記弾性変形部20aを立体変形させることが出来る。前記補助弾性部材41の塑性域で変形させることで、前記補助弾性部材41を固着転位化でき、それに必要なエネルギーは、前記補助弾性部材41の弾性域で変形させるときに可動転位から固着転位にするのに必要なエネルギーに比べて小さい。よって本実施形態では、加熱時間を短く出来る。従来では例えば1時間程度必要であった加熱時間を数分から数十分程度に短縮でき、このように加熱時間を従来より短くしても、へたり率の小さいスパイラル接触子20を製造することが出来る。従来のように、Niで補助弾性部材41を形成した場合、加熱下で前記Niが結晶化するため、塑性域での応力をかけて立体成形すると、ばね性の非常に悪い弾性変形部20aしか製造できず、よって、弾性域での応力をかけながら上記の立体成形をする必要があったが、かかる場合では可動転位から固着転位に要するエネルギーが非常に大きいために加熱時間を長く設定する必要があったのに対し、本実施形態では上記のように加熱時間を短く出来るから製造工程も容易化する。   In the present embodiment, the auxiliary elastic member 41 can be appropriately maintained in an amorphous state even by the above-described three-dimensional molding under heating. Therefore, the stress in the plastic region of the auxiliary elastic member 41 is three-dimensionally formed. The elastic deformation portion 20a can be three-dimensionally deformed by applying to the elastic deformation portion 20a. By deforming in the plastic region of the auxiliary elastic member 41, the auxiliary elastic member 41 can be fixedly dislocated, and the energy required for it is changed from the movable dislocation to the fixed dislocation when deforming in the elastic region of the auxiliary elastic member 41. It is smaller than the energy required to do it. Therefore, in this embodiment, the heating time can be shortened. Conventionally, for example, the heating time required for about 1 hour can be shortened from several minutes to several tens of minutes. Thus, even when the heating time is shortened as compared with the prior art, the spiral contact 20 having a small sag rate can be manufactured. I can do it. When the auxiliary elastic member 41 is formed of Ni as in the prior art, the Ni crystallizes under heating. Therefore, when three-dimensional molding is performed by applying stress in the plastic region, only the elastic deformation portion 20a having very poor spring properties is obtained. Therefore, it was necessary to perform the above three-dimensional molding while applying stress in the elastic region. In such a case, it is necessary to set the heating time longer because the energy required from the movable dislocation to the fixed dislocation is very large. On the other hand, in the present embodiment, the heating time can be shortened as described above, so that the manufacturing process is facilitated.

また、上記のように仮に前記スパイラル接触子20の弾性変形部20aを立体成形せず平面的な形状(図6の状態)で前記スパイラル接触子20を使用する場合でも、例えばバーンイン試験装置等に図1に示す接続装置10を使用するときには、必然的に前記スパイラル接触子20が加熱下に置かれることになる。しかし本実施形態では、前記スパイラル接触子20の弾性変形部20aを構成する補助弾性部材41を適切にアモルファス状態に維持できるので、前記弾性変形部20aのばね特性を良好に維持でき、耐久性に優れた接続装置10を提供することが出来る。   Further, even when the spiral contact 20 is used in a planar shape (state shown in FIG. 6) without three-dimensionally forming the elastic deformation portion 20a of the spiral contact 20 as described above, for example, in a burn-in test apparatus or the like. When the connecting device 10 shown in FIG. 1 is used, the spiral contact 20 is inevitably placed under heating. However, in this embodiment, since the auxiliary elastic member 41 constituting the elastic deformation portion 20a of the spiral contactor 20 can be appropriately maintained in an amorphous state, the spring characteristics of the elastic deformation portion 20a can be maintained well, and the durability can be improved. An excellent connection device 10 can be provided.

前記スパイラル接触子20の弾性変形部20aは螺旋形状以外の形状であってもかまわない。ただし前記弾性変形部20aが螺旋形状であると、前記電子部品1の接続端子1aがどのような形状であっても、前記弾性変形部20aは、前記接続端子1aの周囲を囲むように変形しやすく、前記弾性変形部20aと前記接続端子1aとの接触面積が広がり前記接続端子1aとの接触性を確実なものにできるため好ましい。   The elastic deformation portion 20a of the spiral contact 20 may have a shape other than the spiral shape. However, if the elastic deformation portion 20a has a spiral shape, the elastic deformation portion 20a is deformed so as to surround the connection terminal 1a regardless of the shape of the connection terminal 1a of the electronic component 1. This is preferable because the contact area between the elastic deformation portion 20a and the connection terminal 1a is widened and the contact property with the connection terminal 1a can be ensured.

本実施形態では、前記補助弾性部材41を、Ni−X(ただしXは、P、W、Bのうちいずれか1種以上)で形成することが好ましい。前記元素XをPで形成するとき、Pの組成比を15原子%以上で30原子%以下にすることが好ましい。また前記元素XをWで形成するとき、Wの組成比を14.5原子%以上で36原子%以下にすることが好ましく、20原子%以上にすることがより好ましい。また、元素XをBで形成するとき、Bの組成比を15原子%〜30原子%の範囲内で形成することが好ましい。   In the present embodiment, the auxiliary elastic member 41 is preferably formed of Ni-X (where X is any one or more of P, W, and B). When the element X is formed of P, the composition ratio of P is preferably 15 atomic% or more and 30 atomic% or less. When the element X is formed of W, the W composition ratio is preferably 14.5 at% or more and 36 at% or less, more preferably 20 at% or more. Further, when the element X is formed of B, it is preferable to form the B within a composition ratio of 15 atomic% to 30 atomic%.

上記したように補助弾性部材41としてNiを用いる場合に比べて前記補助弾性部材41の結晶化温度を高くでき、立体成形の際の200℃〜300℃程度の加熱温度は、前記結晶化温度より低く、したがって前記補助弾性部材41を加熱して立体成形しても前記補助弾性部材41を適切にアモルファス状態に保つことが出来る。特に補助弾性部材41をNiWで形成した場合、700℃程度まで加熱温度を高くしても、加熱温度が結晶化温度を下回り、前記補助弾性部材41を適切にアモルファス状態に保つことが出来る。このように加熱温度の許容範囲を広げることが出来るので、立体成形処理を適切且つ簡単に行うことが可能である。   As described above, the crystallization temperature of the auxiliary elastic member 41 can be made higher than when Ni is used as the auxiliary elastic member 41, and the heating temperature of about 200 ° C. to 300 ° C. during three-dimensional molding is higher than the crystallization temperature. Therefore, even if the auxiliary elastic member 41 is heated and three-dimensionally molded, the auxiliary elastic member 41 can be appropriately maintained in an amorphous state. In particular, when the auxiliary elastic member 41 is formed of NiW, even if the heating temperature is increased to about 700 ° C., the heating temperature falls below the crystallization temperature, and the auxiliary elastic member 41 can be appropriately maintained in an amorphous state. Since the allowable range of the heating temperature can be expanded in this way, the three-dimensional molding process can be performed appropriately and easily.

また立体成形の手法としては図6に示す突出調整部材70によって前記弾性変形部20aを上方に突き上げた状態で熱処理する手法によらず、例えば円錐状の土台上に渦巻き状の弾性変形部20aを形成し、前記土台を取り除いた後に上記した加熱処理、あるいは加熱処理を施した後、前記土台を除去する手法により、前記弾性変形部20aを立体成形してもよい。   Further, as a method of three-dimensional molding, a spiral elastic deformation portion 20a is formed on a conical base, for example, without depending on a method of heat treatment in a state where the elastic deformation portion 20a is pushed upward by the protrusion adjusting member 70 shown in FIG. After the formation and removal of the base, the elastic deformation portion 20a may be three-dimensionally formed by the heat treatment described above or after the heat treatment, and then removing the base.

また本実施形態では前記スパイラル接触子20の弾性変形部20aが図4に示した積層構造でなく、例えば前記弾性変形部20aは前記補助弾性部材41のみで構成されていてもよい。かかる場合、前記弾性変形部20aの全体がアモルファス状態であることが好ましい。   Further, in the present embodiment, the elastic deformation portion 20a of the spiral contactor 20 does not have the laminated structure shown in FIG. 4. For example, the elastic deformation portion 20a may be composed of only the auxiliary elastic member 41. In such a case, it is preferable that the entire elastic deformation portion 20a is in an amorphous state.

また前記補助弾性部材41の材質として挙げたNi−X合金は一例であり、他の材質であってもかまわない。   The Ni—X alloy mentioned as the material of the auxiliary elastic member 41 is an example, and other materials may be used.

図9(比較例)及び図10(比較例)は、Pを12.5原子%含むNiP合金のTEM写真である。図9では、NiP合金をメッキ形成し特に加熱を行なわなかった状態でのTEM写真、図10は、前記NiP合金をメッキ形成した後、250℃で1時間加熱した後の前記NiP合金のTEM写真である。   FIG. 9 (comparative example) and FIG. 10 (comparative example) are TEM photographs of a NiP alloy containing 12.5 atomic% of P. FIG. 9 is a TEM photograph in which NiP alloy is formed by plating and no heating is performed. FIG. 10 is a TEM photograph of the NiP alloy after the NiP alloy is plated and heated at 250 ° C. for 1 hour. It is.

図9に示すTEM写真から物質状態を分析したところNi3Pの金属間化合物結晶が大部分を占めており、また、前記金属間化合物結晶どうしの間にNiの微結晶が存在することも確認できた。   When the material state was analyzed from the TEM photograph shown in FIG. 9, it was confirmed that Ni3P intermetallic compound crystals accounted for the majority, and that Ni microcrystals existed between the intermetallic compound crystals. .

また図10に示すTEM写真から物質状態を分析したところ、Ni3Pの金属間化合物結晶が大部分を占めており、また、前記金属間化合物結晶どうしの間にNiの微結晶や単結晶が存在することも確認できた。   Further, when the material state was analyzed from the TEM photograph shown in FIG. 10, most of the Ni3P intermetallic compound crystals occupy and there were Ni microcrystals and single crystals between the intermetallic compound crystals. I was able to confirm that.

図11(実施例),図12(実施例)及び図13(実施例)は、Pを19原子%含むNiP合金のTEM写真である。図11では、NiP合金をメッキ形成し特に加熱を行なわなかった状態でのTEM写真、図12は、前記NiP合金をメッキ形成した後、250℃で36分加熱した後の前記NiP合金のTEM写真、図13は、前記NiP合金をメッキ形成した後、250℃で1時間加熱した後の前記NiP合金のTEM写真、である。   FIG. 11 (Example), FIG. 12 (Example) and FIG. 13 (Example) are TEM photographs of a NiP alloy containing 19 atomic% P. FIG. 11 shows a TEM photograph in a state where the NiP alloy is plated and no particular heating is performed. FIG. 12 shows a TEM photograph of the NiP alloy after the NiP alloy is plated and heated at 250 ° C. for 36 minutes. FIG. 13 is a TEM photograph of the NiP alloy after the NiP alloy is plated and heated at 250 ° C. for 1 hour.

図11に示すTEM写真から物質状態を分析したところ、結晶は見られずアモルファスであることがわかった。   When the substance state was analyzed from the TEM photograph shown in FIG. 11, it was found that crystals were not seen and were amorphous.

次に、図12に示すTEM写真から物質状態を分析したところ、図11の状態とあまり変化は見られなかったが、1nm以下の超微細析出物(エンプリオ)が存在することが確認できた。   Next, when the material state was analyzed from the TEM photograph shown in FIG. 12, it was confirmed that ultrafine precipitates (emprio) of 1 nm or less existed although there was not much change from the state of FIG.

次に、図13に示すTEM写真から物質状態を分析したところ、一部に金属間化合物の析出が見られた。前記金属間化合物はNi3Pであり、Niの結晶物は見られなかった。また図13に示すように、前記金属間化合物の周囲はアモルファスで囲まれており、アモルファス状態を維持していることがわかった。   Next, when the substance state was analyzed from the TEM photograph shown in FIG. 13, precipitation of intermetallic compounds was observed in part. The intermetallic compound was Ni3P, and no Ni crystal was observed. Further, as shown in FIG. 13, it was found that the periphery of the intermetallic compound was surrounded by an amorphous state and maintained in an amorphous state.

図14(実施例)は、銅基板の上に、Pを15原子%含有したNiP合金を無電解メッキ法にてメッキ形成し、この複合部材を250℃で1時間熱処理を施した後の前記複合部材のTEM写真である。図14に示すように、銅基板は結晶化しているが、NiP合金の部分には結晶化したときに見られる塊状物は見られず前記NiP合金の部分は、アモルファスであることが確認できた。   FIG. 14 (Example) shows that the NiP alloy containing 15 atomic% of P was plated on a copper substrate by an electroless plating method, and this composite member was heat treated at 250 ° C. for 1 hour. It is a TEM photograph of a composite member. As shown in FIG. 14, although the copper substrate was crystallized, the NiP alloy part was not found to have a lump when it was crystallized, and the NiP alloy part was confirmed to be amorphous. .

図15は、複数のCu基板を用意し、各Cu基板上にそれぞれPの組成比が異なるNiPをメッキ形成し、Cu基板とNiP合金からなる複数の複合部材(a)〜(j)をそれぞれ250℃で1時間加熱したあとのX線回折図である。   FIG. 15 shows a case where a plurality of Cu substrates are prepared, NiPs having different P composition ratios are plated on each Cu substrate, and a plurality of composite members (a) to (j) each made of a Cu substrate and a NiP alloy are formed. It is an X-ray diffraction diagram after heating at 250 ° C. for 1 hour.

図15に示すように、Pの組成比を7.9原子%〜14.7原子%まで変化させた複合部材(a)〜(d)には、Ni{111}面の結晶ピークが見られることが確認できた。一方、Pの組成比を16.1原子%とした場合でも、若干、Ni{111}面の結晶ピークが見られるものの、これは1nmの超微結晶析出物(エンプリオ)であると考えられ、結晶化はしていない。以上のように、図9ないし図15に示す実験結果から、NiP合金をアモルファス状態に維持するためにはPの濃度を15原子%以上にすればよいことがわかった。   As shown in FIG. 15, a crystal peak of the Ni {111} plane is observed in the composite members (a) to (d) in which the composition ratio of P is changed from 7.9 atomic% to 14.7 atomic%. I was able to confirm. On the other hand, even when the composition ratio of P is 16.1 atomic%, a slight crystal peak of the Ni {111} plane is observed, which is considered to be a 1 nm ultrafine crystal precipitate (emprio). There is no crystallization. As described above, the experimental results shown in FIGS. 9 to 15 show that the P concentration should be 15 atomic% or more in order to maintain the NiP alloy in an amorphous state.

次に、スパイラル接触子形状の銅箔の周囲に無電解メッキ法にてNiP合金をメッキ形成した。このときのPの組成比は19原子%であった。前記スパイラル接触子の螺旋状に形成された弾性変形部に応力をかけ、図7工程と同じように前記弾性変形部20aを突出調整部材70を用いて上方に変形させて加熱処理を行なった(立体成形)。加熱条件は温度が250℃で時間が1時間であった。   Next, a NiP alloy was plated around the spiral contact copper foil by electroless plating. At this time, the composition ratio of P was 19 atomic%. Stress was applied to the spirally formed elastic deformation portion of the spiral contactor, and the elastic deformation portion 20a was deformed upward using the protrusion adjusting member 70 in the same manner as in the step of FIG. Solid molding). The heating conditions were a temperature of 250 ° C. and a time of 1 hour.

実験では、図16に示すように、前記スパイラル接触子の弾性変形部に加える応力を種々変化させ、弾性変形部の高さ寸法を変化させた。図16のグラフ上にある「突出調整部材の高さ」とは、図1に示すスパイラル接触子20の基部21の上面21aから前記突出調整部材70の先端までの高さH3を指す。前記高さ寸法H3が大きくなるほど前記弾性変形部にかかる応力が高くなる。図16のグラフ上にある「フォーミング後高さ」とは、図8工程図に示すように、前記突出調整部材70を取り除いた後、前記スパイラル接触子20の基部21の上面21aから前記弾性変形部20aの最も上方に突き出した頂点Aまでの高さH2を意味する。   In the experiment, as shown in FIG. 16, the stress applied to the elastically deforming portion of the spiral contactor was changed variously, and the height dimension of the elastically deforming portion was changed. The “height of the protrusion adjustment member” on the graph of FIG. 16 refers to the height H3 from the upper surface 21a of the base 21 of the spiral contactor 20 shown in FIG. 1 to the tip of the protrusion adjustment member 70. As the height dimension H3 increases, the stress applied to the elastically deformable portion increases. The “post-forming height” on the graph of FIG. 16 is the elastic deformation from the upper surface 21a of the base 21 of the spiral contactor 20 after the protrusion adjusting member 70 is removed, as shown in the process diagram of FIG. It means the height H2 up to the vertex A protruding to the uppermost part of the portion 20a.

前記フォーミング後(立体成形後)、さらに前記弾性変形部20aに対し、今度は、下方向(すなわち図8の状態から図6の状態に戻る方向)へ応力をかけながら、図6のようにスパイラル接触子20の弾性変形部20aの上面が基部21の上面21aと同一の高さになる(スパイラル接触子20が平面的な形状になるまで)図6の状態にまで戻し、その状態を48時間、150℃の加熱下(バーンイン;BI)で維持した。その後、前記弾性変形部20aにかかっていた応力を取り除くと、前記弾性変形部20aは上方に向けて再び変形する。そのときの、前記弾性変形部20aの高さ寸法を「BI後高さ」として図16のグラフ上に示した。「BI後高さ」も、前記「フォーミング高さ」と同様、前記スパイラル接触子20の基部21の上面21aから前記弾性変形部20aの最も上方に突き出した頂点Aまでの高さを意味する。   After the forming (after the three-dimensional molding), the elastic deformation portion 20a is spiraled as shown in FIG. 6 while applying stress downward (that is, the direction returning from the state of FIG. 8 to the state of FIG. 6). The upper surface of the elastically deforming portion 20a of the contact 20 becomes the same height as the upper surface 21a of the base 21 (until the spiral contact 20 has a planar shape), and the state is returned to the state shown in FIG. And maintained under heating at 150 ° C. (burn-in; BI). Thereafter, when the stress applied to the elastic deformation portion 20a is removed, the elastic deformation portion 20a is deformed again upward. The height dimension of the elastic deformation portion 20a at that time is shown as "post-BI height" on the graph of FIG. Similarly to the “forming height”, “post-BI height” means a height from the upper surface 21a of the base 21 of the spiral contactor 20 to the apex A protruding to the uppermost side of the elastic deformation portion 20a.

{(「フォーミング後高さ」−「BI後高さ」)/「フォーミング後高さ」}×100をへたり率(%)と定義すると、図17に示すように、弾性変形部20aの立体成形時にかけた応力が種々変化しても前記へたり率を30%以下に押えることが出来るとわかった。前記へたり率が大きくなるということは前記弾性変形部20aが徐々に塑性変形していることの証であるから出来る限り前記へたり率を低く押えたい。   When {(“post-forming height” − “post-BI height”) / “post-forming height”} × 100 is defined as a sag ratio (%), as shown in FIG. It has been found that the sag rate can be suppressed to 30% or less even if the stress applied during molding changes variously. The increase in the sag rate is a proof that the elastically deforming portion 20a is gradually plastically deformed, so it is desirable to keep the sag rate as low as possible.

ところで、図16に示すように、ほぼ1440MPaを境にして、1440MPaよりも高い応力をかけた場合、前記NiP合金は塑性域で立体成形されることになり、一方、1440MPaよりも低い応力をかけた場合、前記NiP合金は弾性域で立体成形されることになる。へたりについて考察してみるとへたりは可動転位を介して行なわれると考えられる。このためへたりの小さい弾性変形部20aを形成するには立体成形のときに、前記可動転位を少なくし固着転位化する加工を施すことが必要であると考えられる。   Incidentally, as shown in FIG. 16, when a stress higher than 1440 MPa is applied at about 1440 MPa as a boundary, the NiP alloy is three-dimensionally formed in the plastic region, while a stress lower than 1440 MPa is applied. In this case, the NiP alloy is three-dimensionally formed in the elastic region. Considering the sag, it is considered that the sag is performed via a movable dislocation. For this reason, in order to form the elastically deformable portion 20a having a small amount of slack, it is considered that it is necessary to perform a process for reducing the movable dislocations and forming the fixed dislocations during three-dimensional molding.

前記NiP合金を弾性域で立体成形したとき、可動転位から前記固着転位にするためには大きなエネルギーが必要である。このため1440MPa以下の応力をかけて前記弾性変形部20aを立体成形するには固着転位化するために加熱時間を長くしなければならない。一方、前記NiP合金を塑性域で立体成形したときは、前記弾性変形部20aに塑性変形を与えているため内在する可動転位を低いエネルギーで固着変位化できる。従って、前記NiP合金を塑性域で立体成形したときの加熱時間を、弾性域で立体成形したときよりも短い時間で、へたりの小さい弾性変形部20aを形成できる。   When the NiP alloy is three-dimensionally formed in the elastic region, a large amount of energy is required to change the movable dislocation to the fixed dislocation. For this reason, in order to form the elastically deformable portion 20a by applying a stress of 1440 MPa or less, it is necessary to lengthen the heating time in order to form a fixed dislocation. On the other hand, when the NiP alloy is three-dimensionally formed in the plastic region, since the elastic deformation portion 20a is plastically deformed, the internal dislocations can be fixed and displaced with low energy. Therefore, it is possible to form the elastically deformable portion 20a having a small sag in a heating time when the NiP alloy is three-dimensionally formed in the plastic region and in a shorter time than when three-dimensionally forming the elastic region.

図16は、アモルファスのNiP合金を弾性変形部20aに使用したときの特性図であり、アモルファスのNiP合金を用いることで、加熱時間を従来より短縮させることが出来る。   FIG. 16 is a characteristic diagram when an amorphous NiP alloy is used for the elastically deformable portion 20a. By using an amorphous NiP alloy, the heating time can be shortened as compared with the prior art.

次に、図16の実験で使用したスパイラル接触子と同じ構成のもの(すなわち銅箔の周囲にPが15原子%含まれたNiPを無電解メッキしたもの)を用い、前記スパイラル接触子の弾性変形部に対し、2500MPaの応力をかけながら、図18の実験では、図7,図8に示す立体成形を、200℃の加熱下で72時間行ない、図19の実験では、図7,図8に示す立体成形を250℃の加熱下で36分間行ない、図20の実験では、図7,図8に示す立体成形を250℃の加熱下で9分間行ない、その後、それぞれのスパイラル接触子の弾性変形部の「フォーミング後高さ」(立体成形後高さ)を測定し、さらに、図18〜図20の実験全てにおいて、弾性変形部20aを図6の状態に戻す応力をかけながら150℃の加熱下で24時間加熱し(バーンイン1)、前記応力を除去して再び図8のように変形した弾性変形部20aの高さ寸法を「BI後高さ1」として測定し、再び、弾性変形部20aを図6の状態に戻す応力をかけながら150℃の加熱下で48時間加熱し(バーンイン2)、前記応力を除去して再び図8のように変形した弾性変形部20aの高さ寸法を「BI後高さ2」として測定した。「フォーミング後高さ」「BI後高さ1」「BI後高さ2」は全て、前記スパイラル接触子20の基部21の上面21aから前記弾性変形部20aの最も上方に突き出した頂点Aまでの高さで測定された。   Next, the spiral contact having the same structure as that used in the experiment of FIG. 16 (that is, the electroless plating of NiP containing 15 atomic% of P around the copper foil) is used. In the experiment of FIG. 18, the three-dimensional molding shown in FIGS. 7 and 8 is performed for 72 hours under heating at 200 ° C. while applying a stress of 2500 MPa to the deformed portion, and in the experiment of FIG. 19, FIGS. 20 is performed for 36 minutes under heating at 250 ° C., and in the experiment of FIG. 20, the solid molding shown in FIGS. 7 and 8 is performed for 9 minutes under heating at 250 ° C., and then the elasticity of each spiral contactor is performed. The “height after forming” (height after three-dimensional molding) of the deformed portion was measured, and in all the experiments of FIGS. 18 to 20, while applying the stress to return the elastic deformable portion 20 a to the state of FIG. 24 hours under heating When heated (burn-in 1), the height of the elastic deformation part 20a deformed again as shown in FIG. 8 after removing the stress is measured as “post-BI height 1”, and the elastic deformation part 20a is again measured as shown in FIG. Heating at 150 ° C. for 48 hours while applying stress to return to the state (burn-in 2), removing the stress and deforming again as shown in FIG. 2 ". The “post-forming height”, “post-BI height 1”, and “post-BI height 2” all extend from the upper surface 21a of the base 21 of the spiral contactor 20 to the apex A protruding to the uppermost side of the elastic deformation portion 20a. Measured at height.

また、へたり率を、{(「フォーミング後高さ」−「BI後高さ1または、BI後高さ2」)/「フォーミング後高さ」}×100として求めた。その実験結果を図18〜図20に示す。   Further, the sag rate was determined as {(“post-forming height” − “post-BI height 1 or post-BI height 2”) / “post-forming height”} × 100. The experimental results are shown in FIGS.

図18〜図20に示すように、全ての実験において、へたり率を30%以下に抑えることが出来た。しかも図20の実験では、立体成形時の加熱時間はたった9分であるのに、へたり率が30%以下であり、従来のように1時間程度行なっていた加熱時間を数分〜数十分に短縮しても、へたり率が30%以下となるスパイラル接触子を製造できることが確認できた。   As shown in FIGS. 18 to 20, in all experiments, the sag rate could be suppressed to 30% or less. In addition, in the experiment of FIG. 20, the heating time at the time of three-dimensional molding is only 9 minutes, but the sag rate is 30% or less, and the heating time that is performed for about 1 hour as in the conventional case is several minutes to several tens. It was confirmed that a spiral contact with a sag rate of 30% or less could be produced even when shortened to a minute.

次に、図21,図22に示す実験では、銅箔の周囲に無電解メッキ法でNiP合金を、比較例では、Pの組成比を12.5原子%とし、実施例ではPの組成比を19原子%として、メッキ形成したスパイラル接触子を形成し、比較例及び実施例とも、250℃で1時間の加熱下にて立体成形を行った後、前記スパイラル接触子の弾性変形部に対し荷重をかけ、前記スパイラル接触子が折れるまでの変位量を測定した。「変位量」とは、図8の状態(上記荷重がかかっていない状態)のときのスパイラル接触子の弾性変形部の頂点Aから、上記荷重を下方向へかけることで下降する前記弾性変形部の頂点A′までの下降量H4である(図8を参照)。   Next, in the experiments shown in FIGS. 21 and 22, the NiP alloy is formed around the copper foil by electroless plating, the composition ratio of P is 12.5 atomic% in the comparative example, and the composition ratio of P in the examples. 19 atomic%, a plated spiral contact is formed, and in both the comparative example and the example, after three-dimensional molding is performed at 250 ° C. for 1 hour, the elastic contact portion of the spiral contact is formed. A load was applied and the amount of displacement until the spiral contact was broken was measured. The “displacement amount” is the elastic deformation portion that descends by applying the load downward from the vertex A of the elastic deformation portion of the spiral contact in the state of FIG. 8 (the state in which the load is not applied). Is a descending amount H4 to the vertex A ′ (see FIG. 8).

図21は比較例であり図22は実施例である。図21の実験に使用したNiP合金はPの組成比が12.5原子%であるため、加熱下における立体成形によって結晶化しており、一方、図22の実験に使用したNiP合金はPの組成比が15原子%であるため、加熱下における立体成形によってもアモルファス状態を維持している。図21の比較例では、だいたい250μmの変位量で前記スパイラル接触子の弾性変形部は折れたが、図22の実施例では、500μm以上変位しても前記スパイラル接触子の弾性変形部は折れないことがわかった。   FIG. 21 is a comparative example, and FIG. 22 is an example. Since the NiP alloy used in the experiment of FIG. 21 has a P composition ratio of 12.5 atomic%, it is crystallized by three-dimensional molding under heating. On the other hand, the NiP alloy used in the experiment of FIG. Since the ratio is 15 atomic%, the amorphous state is maintained even by three-dimensional molding under heating. In the comparative example of FIG. 21, the elastically deformed portion of the spiral contactor broke with a displacement of about 250 μm. However, in the embodiment of FIG. 22, the elastically deformable portion of the spiral contactor does not break even when displaced by 500 μm or more. I understood it.

図23は、銅箔の周囲に無電解メッキ法でNiP合金を、Pの組成比を12.5原子%としてメッキ形成したスパイラル接触子を多数、形成し、各スパイラル接触子を、250℃で1時間の加熱下で立体成形した後、各スパイラル接触子の弾性変形部の上方に試験用の突起部材を対向させ、前記突起部材を下降させて、前記弾性変形部に対し、1000MPaから1500MPaの範囲内の応力がかかるまで押し込み、その後、前記突起部材を元の位置まで上昇させ、このような前記突起部材の昇降を3000回行い、前記スパイラル接触子の弾性変形部が折れる割合(寿命試験)を前記突起部材の昇降回数が1000回のときと3000回のときの双方で調べた。図23に示すように、前記スパイラル接触子の弾性変形部にかかる応力が小さいと、前記スパイラル接触子の弾性変形部が折れる割合が小さくなるものの、1500MPa程度の応力を3000回かけると、80%近くのスパイラル接触子の弾性変形部が折れてしまうことがわかった。また前記突起部材の昇降の回数を1000回にしても、スパイラル接触子の弾性変形部の折れが生じており、弾性変形部が折れる割合を0%にすることはできず、結晶化したNiP合金を有する弾性変形部では耐久性に優れた前記スパイラル接触子を製造できないことがわかった。   FIG. 23 shows the formation of a large number of spiral contacts in which a NiP alloy is plated around the copper foil by electroless plating and the composition ratio of P is 12.5 atomic%. Each spiral contact is formed at 250 ° C. After three-dimensional molding under heating for 1 hour, a test projection member is made to oppose the elastic deformation portion of each spiral contact, and the projection member is lowered to 1000 MPa to 1500 MPa with respect to the elastic deformation portion. Pushing until stress within the range is applied, then raising the protruding member to the original position, raising and lowering the protruding member 3000 times, and bending the elastic deformation part of the spiral contact (life test) Was examined both when the protrusions were raised and lowered 1000 times. As shown in FIG. 23, when the stress applied to the elastically deformed portion of the spiral contactor is small, the rate at which the elastically deformed portion of the spiral contactor is broken is reduced, but when the stress of about 1500 MPa is applied 3000 times, 80% It was found that the elastic deformation part of a nearby spiral contact breaks. Further, even when the protrusion member is moved up and down 1000 times, the elastic deformation portion of the spiral contactor is bent, and the elastic deformation portion cannot be broken to 0%. It was found that the spiral contactor having excellent durability could not be produced with an elastically deformable portion having the above.

一方、図16,図17に示す応力をかけて立体成形した実施例のスパイラル接触子、すなわち、銅箔の周囲に、アモルファス状態のNiP合金(Pは15原子%)を無電解メッキ法にてメッキ形成して成るスパイラル接触子では、図23の実験と同様の方法を用いて2000MPaの応力を4000回までかけても折れるスパイラル接触子は無かった。このことから、弾性変形部にアモルファスのNiP合金を用いると非常に耐久性が向上することがわかった。   On the other hand, an amorphous NiP alloy (P is 15 atomic%) is formed by electroless plating around the spiral contact of the embodiment formed by applying the stress shown in FIGS. In the spiral contact formed by plating, there was no spiral contact that could be broken even when a stress of 2000 MPa was applied up to 4000 times using the same method as the experiment of FIG. From this, it was found that the durability is greatly improved when an amorphous NiP alloy is used for the elastically deformable portion.

次に図18の実験に使用した、Pの組成比が15原子%のNiP合金からなる補助弾性部材を有するスパイラル接触子(立体成形を、200℃の加熱下で72時間行なったもの、実施例1)、図19の実験に使用した、Pの組成比が15原子%のNiP合金からなる補助弾性部材を有するスパイラル接触子(立体成形を、250℃の加熱下で36分間行なったもの、実施例2)、Pの組成比が15原子%のNiP合金からなる補助弾性部材を有し、250℃で18分間の立体成形を行なって形成したスパイラル接触子(実施例3)、図20の実験に使用した、Pの組成比が15原子%のNiP合金からなる補助弾性部材を有するスパイラル接触子(立体成形を、250℃の加熱下で9分間行なったもの、実施例4)、のそれぞれを用いて各スパイラル接触子の降伏点を調べてみた。   Next, a spiral contact having an auxiliary elastic member made of a NiP alloy having a P composition ratio of 15 atomic% used in the experiment of FIG. 18 (three-dimensional molding was performed for 72 hours under heating at 200 ° C., Example 1) A spiral contact having an auxiliary elastic member made of a NiP alloy having a composition ratio of P of 15 atomic% used in the experiment of FIG. 19 (three-dimensional molding was performed for 36 minutes under heating at 250 ° C., implementation Example 2), a spiral contact (Example 3) formed by performing three-dimensional molding at 250 ° C. for 18 minutes having an auxiliary elastic member made of a NiP alloy having a P composition ratio of 15 atomic%, experiment of FIG. Each of the spiral contacts having auxiliary elastic members made of a NiP alloy having a P composition ratio of 15 atomic% (three-dimensional molding performed under heating at 250 ° C. for 9 minutes, Example 4) Use each It was examined the yield point of Iraru contacts.

実験では、立体成形された各スパイラル接触子の弾性変形部を下方向へ押圧し、降伏点に至ったときの荷重と、そのときの前記弾性変形部の頂点Aの下降量H4(変位量)を調べた(図8を参照)。その実験結果を以下の表1に示す。   In the experiment, the elastic deformation part of each three-dimensionally shaped spiral contactor is pressed downward, the load when reaching the yield point, and the descending amount H4 (displacement amount) of the vertex A of the elastic deformation part at that time (See FIG. 8). The experimental results are shown in Table 1 below.

Figure 2009094080
Figure 2009094080

降伏点における荷重と変位量は、各実施例のスパイラル接触子においてさほど大きな変化はないことがわかった。表1に示すように、各スパイラル接触子において荷重が2gf(19mN)以上、変位が0.1mm以上の降伏点を得られることがわかった。好ましくは、荷重が4gf(38mN)以上、変位が0.2mm以上の降伏点を得られることがわかった。   It was found that the load and the amount of displacement at the yield point did not change much in the spiral contact of each example. As shown in Table 1, it was found that a yield point with a load of 2 gf (19 mN) or more and a displacement of 0.1 mm or more can be obtained in each spiral contact. Preferably, it was found that a yield point with a load of 4 gf (38 mN) or more and a displacement of 0.2 mm or more can be obtained.

図24は、複数のCu基板を用意し、各Cu基板上にそれぞれWの組成比が異なるNiWをメッキ形成し、Cu基板とNiW合金からなる複数の複合部材(k)〜(p)をそれぞれ250℃で1時間加熱したあとのX線回折図である。   In FIG. 24, a plurality of Cu substrates are prepared, NiWs having different W composition ratios are plated on each Cu substrate, and a plurality of composite members (k) to (p) each made of a Cu substrate and a NiW alloy are formed. It is an X-ray diffraction diagram after heating at 250 ° C. for 1 hour.

図24に示すように、Wの組成比を12.5原子%とすると、Ni{111}面の結晶ピークが見られることが確認できた。一方、Wの組成比を14.9原子%、19.7原子%とした場合でも、若干、Ni{111}面の結晶ピークが見られるが、後で説明するTEM写真によればアモルファスが支配的であった。Wの組成比が24.4原子%,27.7原子%,35.1原子%となると、Ni{111}面の結晶ピークは見られなかった。   As shown in FIG. 24, it was confirmed that when the W composition ratio was 12.5 atomic%, a crystal peak of the Ni {111} plane was observed. On the other hand, even when the composition ratio of W is 14.9 atomic% and 19.7 atomic%, a crystal peak of the Ni {111} plane is slightly observed. However, according to a TEM photograph described later, amorphous is dominant. It was the target. When the W composition ratio was 24.4 atomic%, 27.7 atomic%, or 35.1 atomic%, no crystal peak of the Ni {111} plane was observed.

図25は、Wを12.5原子%含むNiW合金を250℃で1時間加熱した後のTEM写真及び透過電子線回折像、図26は、Wを14.9原子%含むNiW合金を250℃で1時間加熱した後のTEM写真及び透過電子線回折像、図27は、Wを19.7原子%含むNiW合金を250℃で1時間加熱した後のTEM写真及び透過電子線回折像、図28は、Wを24.4原子%含むNiW合金を250℃で1時間加熱した後のTEM写真及び透過電子線回折像、である。透過電子線回折像は、NiW合金を膜厚と平行な方向から切断し、その切断面に対して垂直方向から電子線を入射させて得たものである。   FIG. 25 shows a TEM photograph and a transmission electron diffraction image after heating an NiW alloy containing 12.5 atomic% of W at 250 ° C. for 1 hour. FIG. 26 shows an NiW alloy containing 14.9 atomic% of W at 250 ° C. FIG. 27 shows a TEM photograph and a transmission electron diffraction image after heating a NiW alloy containing 19.7 atomic% of W at 250 ° C. for 1 hour. 28 is a TEM photograph and a transmission electron diffraction image after heating an NiW alloy containing 24.4 atomic% of W at 250 ° C. for 1 hour. The transmission electron beam diffraction image was obtained by cutting the NiW alloy from a direction parallel to the film thickness and allowing the electron beam to enter from a direction perpendicular to the cut surface.

図25のTEM写真に示すようにアモルファスの部分は見られず、同じ方向に向く格子縞がきれいに見えており、また透過電子線回折像には逆格子面の回折斑点が現れており、結晶化していることがわかった。また前記逆格子面に指数付けを行った結果、結晶はNi結晶が支配的であることがわかった。   As shown in the TEM photograph of FIG. 25, the amorphous portion is not seen, the lattice stripes facing in the same direction are clearly seen, and diffraction diffraction spots on the reciprocal lattice plane appear in the transmission electron beam diffraction image. I found out. Further, as a result of indexing the reciprocal lattice plane, it was found that the crystal was predominantly Ni crystal.

次に図26に示すTEM写真には、5〜10nm程度の格子縞が現れていることがわかった。前記格子縞の方向はランダムな方向に向いており、これはアモルファスから結晶(あるいは超微結晶析出物)が析出しているためであると考えられる。また、透過電子線回折像には、アモルファスの存在を示すハローリングが現れており、よって図26のNiWはアモルファスが支配的になっていることがわかった。   Next, it was found that lattice stripes of about 5 to 10 nm appeared in the TEM photograph shown in FIG. The direction of the lattice fringes is in a random direction, which is considered to be because crystals (or ultrafine crystal precipitates) are precipitated from amorphous. Further, in the transmission electron beam diffraction image, halo ring indicating the presence of amorphous appeared, and thus it was found that the NiW in FIG. 26 is predominantly amorphous.

次に図27に示すTEM写真には、4〜6nm程度の格子縞が現れていることがわかった。前記格子縞の方向はランダムな方向に向いており、これはアモルファスから結晶(あるいは超微結晶析出物)が析出しているためであると考えられる。また、透過電子線回折像には、アモルファスの存在を示すハローリングが現れている。ハローリングは図27のほうが図26よりも明確に現れている。よって図27のNiWは図26のNiWよりアモルファスが多くなっていることがわかった。   Next, it was found that lattice stripes of about 4 to 6 nm appeared in the TEM photograph shown in FIG. The direction of the lattice fringes is in a random direction, which is considered to be because crystals (or ultrafine crystal precipitates) are precipitated from amorphous. Further, halo ring indicating the presence of amorphous appears in the transmission electron beam diffraction image. The halo ring appears more clearly in FIG. 27 than in FIG. Therefore, it was found that the NiW in FIG. 27 is more amorphous than the NiW in FIG.

次に図28に示すTEM写真には、5nm以下の格子縞が所々に見えるが、図26,図27の場合に比べて格子縞の存在は小さくなり、また透過電子線回折像には、非常に明確なハローリングが現れていることから、図28のNiWは図26のNiWや図27のNiWよりアモルファスが多くなっていることがわかった。   Next, in the TEM photograph shown in FIG. 28, lattice fringes of 5 nm or less can be seen in some places, but the presence of the lattice fringes is smaller than in the case of FIGS. 26 and 27, and the transmission electron beam diffraction image is very clear. Since halo ringing appeared, it was found that the NiW in FIG. 28 is more amorphous than the NiW in FIG. 26 and the NiW in FIG.

以上、図24ないし図28の実験結果からNiWのWの組成比は、14.5原子%〜36原子%の範囲内にすることが好ましく、20原子%以上にすることがより好ましいことがわかった。さらに好ましくは24.4原子%以上である。これにより適切にNiWをアモルファス状態にすることが出来る。   As described above, the experimental results of FIGS. 24 to 28 show that the W composition ratio of NiW is preferably in the range of 14.5 atomic% to 36 atomic%, more preferably 20 atomic% or more. It was. More preferably, it is 24.4 atomic% or more. Thereby, NiW can be appropriately made into an amorphous state.

次に、図29は、Cu基板上に19.7原子%のWを有するNiPをメッキ形成した複合部材を複数用意し、各複合部材に対して異なる温度にて加熱処理した後のX線回折図である。   Next, FIG. 29 shows X-ray diffraction after preparing a plurality of composite members obtained by plating NiP having 19.7 atomic% W on a Cu substrate, and subjecting each composite member to heat treatment at different temperatures. FIG.

また図30は、Cu基板上に27.7原子%のWを有するNiPをメッキ形成した複合部材を複数用意し、各複合部材に対して異なる温度にて加熱処理した後のX線回折図である。   FIG. 30 is an X-ray diffraction pattern after preparing a plurality of composite members obtained by plating NiP having 27.7 atomic% W on a Cu substrate and heat-treating each composite member at different temperatures. is there.

図29に示すようにWを19.7原子%とした場合、熱処理温度を600℃程度にすると、Ni{111}面の結晶ピークが見られることが確認できた。また図30に示すようにWを27.7原子%とした場合、熱処理温度を700℃程度にすると、Ni{111}面の結晶ピークが見られることが確認できた。   As shown in FIG. 29, when W was 19.7 atomic%, it was confirmed that when the heat treatment temperature was about 600 ° C., a crystal peak of the Ni {111} plane was observed. Further, as shown in FIG. 30, when W was 27.7 atomic%, it was confirmed that when the heat treatment temperature was about 700 ° C., a crystal peak of the Ni {111} plane was observed.

このように、W組成比を大きくするほど熱処理温度を上昇させても結晶化を抑制できることがわかった。特にNiWの場合、W組成比によっては700℃程度まで熱処理温度を上昇させても結晶化を抑制できることから、熱処理温度の許容範囲を非常に広くでき、効果的にアモルファス状態を維持できることがわかった。   Thus, it was found that crystallization can be suppressed even when the heat treatment temperature is increased as the W composition ratio is increased. In particular, in the case of NiW, depending on the W composition ratio, crystallization can be suppressed even if the heat treatment temperature is increased to about 700 ° C. Therefore, it was found that the allowable range of the heat treatment temperature can be greatly widened and the amorphous state can be effectively maintained. .

電子部品の動作を確認するための試験に用いられる検査装置を示す斜視図、The perspective view which shows the test | inspection apparatus used for the test for confirming operation | movement of an electronic component, 図1の2−2線における断面図を示し、電子部品が装着された状態の断面図、1 is a cross-sectional view taken along line 2-2 of FIG. 本実施形態におけるスパイラル接触子の形状を示す拡大斜視図、An enlarged perspective view showing the shape of the spiral contact in this embodiment, 図4A、図4B、図4C、図4Dは、それぞれ本実施形態におけるスパイラル接触子を構成する各ターン毎の接触子片を幅方向と平行な方向から膜厚方向に切断したときの断面図、4A, FIG. 4B, FIG. 4C, and FIG. 4D are cross-sectional views when the contact pieces for each turn constituting the spiral contact in this embodiment are cut in the film thickness direction from the direction parallel to the width direction, 本実施形態における補助弾性部材の物質状態を示す模式図、The schematic diagram which shows the substance state of the auxiliary | assistant elastic member in this embodiment, 基台11上に前記スパイラル接触子を取付け、前記スパイラル接触子の弾性変形部を上方に向けて立体成形するまでの前記スパイラル接触子の製造方法を示す一工程図(部分断面図)、1 process drawing (partial sectional view) showing the manufacturing method of the spiral contact until the spiral contact is mounted on the base 11 and the elastically deforming portion of the spiral contact is directed upward. 図6の次に行なわれる一工程図(部分断面図)、One process diagram (partial cross-sectional view) performed next to FIG. 図7の次に行なわれる一工程図(部分断面図)、One process diagram (partial cross-sectional view) performed after FIG. Pを12.5原子%含むNiP合金に対し、特に加熱を行なわなかった状態でのTEM写真、TEM photograph of NiP alloy containing 12.5 atomic% of P without any particular heating, Pを12.5原子%含むNiP合金に対し、250℃で1時間加熱した後の前記NiP合金のTEM写真、A TEM photograph of the NiP alloy after heating at 250 ° C. for 1 hour with respect to a NiP alloy containing 12.5 atomic% of P, Pを19原子%含むNiP合金に対し、特に加熱を行なわなかった状態でのTEM写真、TEM photograph of NiP alloy containing 19 atomic% of P without any heating, Pを19原子%含むNiP合金に対し、250℃で36分加熱した後の前記NiP合金のTEM写真、A TEM photograph of the NiP alloy after heating at 250 ° C. for 36 minutes against a NiP alloy containing 19 atomic% of P, Pを19原子%含むNiP合金に対し、250℃で1時間加熱した後の前記NiP合金のTEM写真、TEM photograph of NiP alloy after heating at 250 ° C. for 1 hour against NiP alloy containing 19 atomic% of P, 銅基板の上に、Pを15原子%含有したNiP合金を無電解メッキ法にてメッキ形成し、この複合部材を250℃で1時間熱処理を施した後の前記複合部材のTEM写真、A NiP alloy containing 15 atomic% of P on a copper substrate is formed by electroless plating, and this composite member is heat-treated at 250 ° C. for 1 hour. 複数のCu基板を用意し、各Cu基板上にそれぞれPの組成比が異なるNiPをメッキ形成し、Cu基板とNiP合金からなる複数の複合部材(a)〜(j)をそれぞれ250℃で1時間加熱したあとのX線回折図、A plurality of Cu substrates are prepared, NiPs having different P composition ratios are formed on each Cu substrate by plating, and a plurality of composite members (a) to (j) made of a Cu substrate and a NiP alloy are each set to 1 at 250 ° C. X-ray diffraction diagram after heating for a while, スパイラル接触子形状の銅箔の周囲に無電解メッキ法にてNiP合金(Pは19原子%をメッキ形成し、前記スパイラル接触子の弾性変形部に異なる応力をかけて、所定条件で立体成形した後、前記弾性変形部の高さ寸法(フォーミング後高さ)を測定し、さらに、その後、所定条件で加熱処理して、前記弾性変形部の高さ寸法(BI後高さ)を測定したときの、前記スパイラル接触子の弾性変形部に加えた応力と、フォーミング後高さ及びBI後高さとの関係を示すグラフ、A NiP alloy (P is plated by 19 atomic% by electroless plating around the copper foil in the shape of a spiral contact, and three-dimensionally molded under predetermined conditions by applying different stresses to the elastically deformed portion of the spiral contact. Then, when the height dimension (post-forming height) of the elastic deformation part is measured, and then the heat dimension is measured under a predetermined condition to measure the height dimension (post-BI height) of the elastic deformation part. A graph showing the relationship between the stress applied to the elastically deformed portion of the spiral contactor and the height after forming and the height after BI; 図16の実験結果に基づいてへたり率を求めたときの、前記スパイラル接触子の弾性変形部に加えた応力と前記へたり率との関係を示すグラフ、The graph which shows the relationship between the stress applied to the elastic deformation part of the spiral contact and the sag rate when the sag rate is obtained based on the experimental result of FIG. 図16の実験で使用したスパイラル接触子と同じ構成のスパイラル接触子を用いて、所定条件下で、立体成形をして前記弾性変形部の高さ寸法(フォーミング後高さ)を測定し、その後、所定条件下で、前記スパイラル接触子を加熱して前記弾性変形部の高さ寸法(BI後高さ1)を測定し、さらに、所定条件下で、前記スパイラル接触子を加熱して前記弾性変形部の高さ寸法(BI後高さ2)を測定したときの、前記フォーミング後高さ、BI後高さ1、BI後高さ2の値と、へたり率との関係を示すグラフ、Using the spiral contact having the same configuration as the spiral contact used in the experiment of FIG. 16, three-dimensional molding is performed under a predetermined condition to measure the height dimension (post-forming height) of the elastic deformation portion, and then The spiral contact is heated under a predetermined condition to measure the height dimension (post-BI height 1) of the elastic deformation portion, and the spiral contact is heated under a predetermined condition to measure the elasticity. A graph showing the relationship between the post-forming height, the post-BI height 1, the post-BI height 2 value, and the sag rate when the height dimension of the deformed portion (post-BI height 2) is measured; 図16の実験で使用したスパイラル接触子と同じ構成のスパイラル接触子を用いて、所定条件下で、立体成形をして前記弾性変形部の高さ寸法(フォーミング後高さ)を測定し、その後、所定条件下で、前記スパイラル接触子を加熱して前記弾性変形部の高さ寸法(BI後高さ1)を測定し、さらに、所定条件下で、前記スパイラル接触子を加熱して前記弾性変形部の高さ寸法(BI後高さ2)を測定したときの、前記フォーミング後高さ、BI後高さ1、BI後高さ2の値と、へたり率との関係を示すグラフ、Using the spiral contact having the same configuration as the spiral contact used in the experiment of FIG. 16, three-dimensional molding is performed under a predetermined condition to measure the height dimension (post-forming height) of the elastic deformation portion, and then The spiral contact is heated under a predetermined condition to measure the height dimension (post-BI height 1) of the elastic deformation portion, and the spiral contact is heated under a predetermined condition to measure the elasticity. A graph showing the relationship between the post-forming height, the post-BI height 1, the post-BI height 2 value, and the sag rate when the height dimension of the deformed portion (post-BI height 2) is measured; 図16の実験で使用したスパイラル接触子と同じ構成のスパイラル接触子を用いて、所定条件下で、立体成形をして前記弾性変形部の高さ寸法(フォーミング後高さ)を測定し、その後、所定条件下で、前記スパイラル接触子を加熱して前記弾性変形部の高さ寸法(BI後高さ1)を測定し、さらに、所定条件下で、前記スパイラル接触子を加熱して前記弾性変形部の高さ寸法(BI後高さ2)を測定したときの、前記フォーミング後高さ、BI後高さ1、BI後高さ2の値と、へたり率との関係を示すグラフ、Using the spiral contact having the same configuration as the spiral contact used in the experiment of FIG. 16, three-dimensional molding is performed under a predetermined condition to measure the height dimension (post-forming height) of the elastic deformation portion, and then The spiral contact is heated under a predetermined condition to measure the height dimension (post-BI height 1) of the elastic deformation portion, and the spiral contact is heated under a predetermined condition to measure the elasticity. A graph showing the relationship between the post-forming height, the post-BI height 1, the post-BI height 2 value, and the sag rate when the height dimension of the deformed portion (post-BI height 2) is measured; 銅箔の周囲に無電解メッキ法でNiP合金を、Pの組成比を12.5原子%として、メッキ形成したスパイラル接触子を形成し、所定条件下で立体成形を行った後、前記スパイラル接触子の弾性変形部に対し荷重をかけ、前記スパイラル接触子が折れるまでの変位量を測定したときの、前記変位量と荷重との関係を示すグラフ、A spiral contact is formed by plating a NiP alloy around the copper foil by electroless plating, setting the P composition ratio to 12.5 atomic%, and performing three-dimensional molding under predetermined conditions. A graph showing a relationship between the displacement and the load when a load is applied to the elastic deformation portion of the child and the displacement until the spiral contact is broken is measured; 銅箔の周囲に無電解メッキ法でNiP合金を、Pの組成比を19原子%として、メッキ形成したスパイラル接触子を形成し、所定条件下で立体成形を行った後、前記スパイラル接触子の弾性変形部に対し荷重をかけ、前記スパイラル接触子が折れるまでの変位量を測定したときの、前記変位量と荷重との関係を示すグラフ、After forming a NiP alloy around the copper foil by electroless plating, plating a spiral contact with a P composition ratio of 19 atomic%, and performing three-dimensional molding under predetermined conditions, the spiral contact A graph showing a relationship between the displacement amount and the load when a load is applied to the elastically deformed portion and the displacement amount until the spiral contactor breaks is measured; 銅箔の周囲に無電解メッキ法でNiP合金を、Pの組成比を12.5原子%としてメッキ形成したスパイラル接触子を多数形成し、各スパイラル接触子を、所定条件下で立体成形した後、試験用の突起部材を前記スパイラル接触子の弾性変形部に対して所定の応力で押し込み、その後、前記突起部材を前記弾性変形部から離し、このような前記突起部材の昇降動作を3000回まで行なったときの、前記突起部材の押し込み時に前記弾性変形部にかかる応力と、前記スパイラル接触子の弾性変形部が折れる割合(寿命試験)との関係を、前記突起部材を1000回及び3000回昇降させた時の、それぞれにおいて求めたグラフ、After forming a large number of spiral contacts formed by plating an NiP alloy around the copper foil by electroless plating with a P composition ratio of 12.5 atomic%, each spiral contact is three-dimensionally molded under predetermined conditions Then, the test projection member is pushed into the elastic deformation portion of the spiral contact with a predetermined stress, and then the projection member is separated from the elastic deformation portion, and the elevation operation of the projection member is performed up to 3000 times. The relationship between the stress applied to the elastically deforming portion when the protruding member is pushed and the rate at which the elastically deforming portion of the spiral contactor breaks (life test) is raised and lowered 1000 times and 3000 times. Graphs obtained in each case, 複数のCu基板を用意し、各Cu基板上にそれぞれWの組成比が異なるNiWをメッキ形成し、Cu基板とNiW合金からなる複数の複合部材(k)〜(p)をそれぞれ250℃で1時間加熱したあとのX線回折図、A plurality of Cu substrates are prepared, NiWs having different W composition ratios are formed on the respective Cu substrates by plating, and a plurality of composite members (k) to (p) made of a Cu substrate and a NiW alloy are each set at 250 ° C. X-ray diffraction diagram after heating for a while, Wを12.5原子%含むNiW合金を250℃で1時間加熱した後のTEM写真及び透過電子線回折像、TEM photograph and transmission electron diffraction image after heating NiW alloy containing 12.5 atomic% W at 250 ° C. for 1 hour, Wを14.9原子%含むNiW合金を250℃で1時間加熱した後のTEM写真及び透過電子線回折像、A TEM photograph and a transmission electron diffraction image after heating a NiW alloy containing 14.9 atomic% of W at 250 ° C. for 1 hour, Wを19.7原子%含むNiW合金を250℃で1時間加熱した後のTEM写真及び透過電子線回折像、A TEM photograph and a transmission electron diffraction image after heating a NiW alloy containing 19.7 atomic% of W at 250 ° C. for 1 hour, Wを24.4原子%含むNiW合金を250℃で1時間加熱した後のTEM写真及び透過電子線回折像、A TEM photograph and a transmission electron diffraction image after heating an NiW alloy containing 24.4 atomic% of W at 250 ° C. for 1 hour, Cu基板上に19.7原子%のWを有するNiPをメッキ形成した複合部材を複数用意し、各複合部材に対して異なる温度にて加熱処理した後のX線回折図、X-ray diffraction patterns after preparing a plurality of composite members obtained by plating NiP having 19.7 atomic% W on a Cu substrate, and heat-treating each composite member at different temperatures; Cu基板上に27.7原子%のWを有するNiPをメッキ形成した複合部材を複数用意し、各複合部材に対して異なる温度にて加熱処理した後のX線回折図、X-ray diffractograms after preparing a plurality of composite members formed by plating NiP having 27.7 atomic% W on a Cu substrate and heat-treating each composite member at different temperatures;

符号の説明Explanation of symbols

1 電子部品
1a 球状接触子(接続端子)
10 接続装置
11 基台
20 スパイラル接触子
20a 弾性変形部
21 基部
40 導電性部材
41 補助弾性部材
42 被膜部材
50 アモルファス
51 超微細析出物(エンプリオ)
52 金属間化合物結晶
70 突出調整部材
1 Electronic component 1a Spherical contact (connection terminal)
DESCRIPTION OF SYMBOLS 10 Connection apparatus 11 Base 20 Spiral contact 20a Elastic deformation part 21 Base 40 Conductive member 41 Auxiliary elastic member 42 Coating member 50 Amorphous 51 Ultra fine precipitate (Emprio)
52 Intermetallic Compound Crystal 70 Projection Adjustment Member

Claims (12)

弾性変形部を有する接触子の製造方法において、
前記弾性変形部を、Ni−PあるいはNi−BのNi合金で形成する工程、
前記弾性変形部を立体成形した状態で加熱する工程、
を含み、加熱温度を200℃〜300℃の範囲内で行ない、前記Ni合金のアモルファス状態を維持することを特徴とする接触子の製造方法。
In the method of manufacturing a contact having an elastically deformable portion,
Forming the elastic deformation portion with Ni-P or Ni-B Ni alloy;
Heating the elastically deformed portion in a three-dimensionally formed state;
And a heating temperature within a range of 200 ° C. to 300 ° C., and maintaining the amorphous state of the Ni alloy.
Pの組成比を15原子%以上で30原子%以下にする請求項1記載の接触子の製造方法。   The method for producing a contact according to claim 1, wherein the composition ratio of P is 15 atomic% or more and 30 atomic% or less. 弾性変形部を有する接触子の製造方法において、
前記弾性変形部を、Ni−WのNi合金で形成する工程、
前記弾性変形部を立体成形した状態で加熱する工程、
を含み、加熱温度を200℃〜700℃の範囲内で行ない、前記Ni合金のアモルファス状態を維持することを特徴とする接触子の製造方法。
In the method of manufacturing a contact having an elastically deformable portion,
Forming the elastically deformable portion with a Ni-W Ni alloy;
Heating the elastically deformed portion in a three-dimensionally formed state;
And a heating temperature within a range of 200 ° C. to 700 ° C. to maintain the amorphous state of the Ni alloy.
Wの組成比を14.5原子%以上で36原子%以下にする請求項3記載の接触子の製造方法。   The method for producing a contact according to claim 3, wherein the W composition ratio is 14.5 at% or more and 36 at% or less. Wの組成比を20原子%以上にする請求項4記載の接触子の製造方法。   The method for producing a contact according to claim 4, wherein the composition ratio of W is 20 atomic% or more. 前記加熱工程を、前記Ni合金の結晶化温度よりも低い温度で行う請求項1ないし5のいずれか1項に記載の接触子の製造方法。   The method for manufacturing a contact according to claim 1, wherein the heating step is performed at a temperature lower than a crystallization temperature of the Ni alloy. 前記Ni合金の塑性域での応力を前記弾性変形部にかけて、前記弾性変形部を立体成形した状態で加熱する請求項1ないし6のいずれか1項に記載の接触子の製造方法。   The manufacturing method of the contactor of any one of Claim 1 thru | or 6 which applies the stress in the plastic area of the said Ni alloy to the said elastic deformation part, and heats the said elastic deformation part in the state shape | molded three-dimensionally. 加熱時間を36分から1時間の間とする請求項1ないし7のいずれか1項に記載の接触子の製造方法。   The method for manufacturing a contact according to any one of claims 1 to 7, wherein the heating time is between 36 minutes and 1 hour. 前記弾性変形部を、前記Ni合金のみで形成する請求項1ないし8のいずれか1項に記載の接触子の製造方法。   The method for manufacturing a contact according to any one of claims 1 to 8, wherein the elastically deforming portion is formed of only the Ni alloy. 膜厚方向から切断した前記弾性変形部の断面の一部に、前記Ni合金から成る弾性領域を形成する請求項1ないし8のいずれか1項に記載の接触子の製造方法。   The method for manufacturing a contact according to any one of claims 1 to 8, wherein an elastic region made of the Ni alloy is formed in a part of a cross section of the elastic deformation portion cut from a film thickness direction. 前記弾性変形部を、導電性部材と、補助弾性部材とを有して形成し、このとき、前記導電性部材を前記補助弾性部材よりも比抵抗が低い材料で形成し、前記補助弾性部材を前記導電性部材よりも降伏点及び弾性係数が高い前記Ni合金で形成する請求項10記載の接触子の製造方法。   The elastic deformation portion is formed to include a conductive member and an auxiliary elastic member. At this time, the conductive member is formed of a material having a specific resistance lower than that of the auxiliary elastic member, and the auxiliary elastic member is formed. The method for manufacturing a contact according to claim 10, wherein the contact point is formed of the Ni alloy having a higher yield point and elastic modulus than the conductive member. 基台と、前記基台に設けられた接触子とを有し、電子部品の外部接続部が、前記接触子の弾性変形部に接触する接続装置の製造方法において、
前記接触子の前記弾性変形部を請求項1ないし11のいずれか1項に記載された製造方法にて形成することを特徴とする接続装置の製造方法。
In a manufacturing method of a connection device having a base and a contact provided on the base, wherein an external connection portion of an electronic component contacts an elastic deformation portion of the contact,
The method for manufacturing a connection device, wherein the elastic deformation portion of the contact is formed by the manufacturing method according to claim 1.
JP2008326990A 2005-03-16 2008-12-24 Method for manufacturing contact and method for manufacturing connection device using the contact Withdrawn JP2009094080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008326990A JP2009094080A (en) 2005-03-16 2008-12-24 Method for manufacturing contact and method for manufacturing connection device using the contact

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005074522 2005-03-16
JP2008326990A JP2009094080A (en) 2005-03-16 2008-12-24 Method for manufacturing contact and method for manufacturing connection device using the contact

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006017030A Division JP4621147B2 (en) 2005-03-16 2006-01-26 Contact and connection device using the contact

Publications (1)

Publication Number Publication Date
JP2009094080A true JP2009094080A (en) 2009-04-30

Family

ID=40665830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008326990A Withdrawn JP2009094080A (en) 2005-03-16 2008-12-24 Method for manufacturing contact and method for manufacturing connection device using the contact

Country Status (1)

Country Link
JP (1) JP2009094080A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107023A (en) * 2009-11-19 2011-06-02 Micronics Japan Co Ltd Probe for electrical test, electrical connecting device using the same, and method for manufacturing the probe
CN103575939A (en) * 2012-07-25 2014-02-12 日本电产理德株式会社 Inspection jig and contactor
EP3557266A4 (en) * 2016-12-16 2020-08-19 Nidec-Read Corporation Contact probe and electrical connection jig
US10782317B2 (en) 2017-05-25 2020-09-22 Nidec-Read Corporation Contact probe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357170A (en) * 1976-11-05 1978-05-24 Tohoku Daigaku Kinzoku Zairyo Method of processing amorphous alloy
JPS63219553A (en) * 1987-03-09 1988-09-13 Unitika Ltd Bending method for amorphous fine metallic wire
JP2005032708A (en) * 2003-06-20 2005-02-03 Alps Electric Co Ltd Connecting device and its manufacture method
JP2005050598A (en) * 2003-07-31 2005-02-24 Alps Electric Co Ltd Manufacturing method of connecting device
JP2006508495A (en) * 2002-03-18 2006-03-09 ナノネクサス インク Miniaturized contact spring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357170A (en) * 1976-11-05 1978-05-24 Tohoku Daigaku Kinzoku Zairyo Method of processing amorphous alloy
JPS63219553A (en) * 1987-03-09 1988-09-13 Unitika Ltd Bending method for amorphous fine metallic wire
JP2006508495A (en) * 2002-03-18 2006-03-09 ナノネクサス インク Miniaturized contact spring
JP2005032708A (en) * 2003-06-20 2005-02-03 Alps Electric Co Ltd Connecting device and its manufacture method
JP2005050598A (en) * 2003-07-31 2005-02-24 Alps Electric Co Ltd Manufacturing method of connecting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107023A (en) * 2009-11-19 2011-06-02 Micronics Japan Co Ltd Probe for electrical test, electrical connecting device using the same, and method for manufacturing the probe
US8671567B2 (en) 2009-11-19 2014-03-18 Kabushiki Kaisha Nihon Micronics Method for manufacturing a probe for an electrical test
CN103575939A (en) * 2012-07-25 2014-02-12 日本电产理德株式会社 Inspection jig and contactor
EP2690447A3 (en) * 2012-07-25 2015-08-19 Nidec-Read Corporation Inspection jig and contact
EP3557266A4 (en) * 2016-12-16 2020-08-19 Nidec-Read Corporation Contact probe and electrical connection jig
US11415599B2 (en) 2016-12-16 2022-08-16 Nidec Read Corporation Contact probe and electrical connection jig
US10782317B2 (en) 2017-05-25 2020-09-22 Nidec-Read Corporation Contact probe

Similar Documents

Publication Publication Date Title
US7527505B2 (en) Semiconductor device contact resistant to deterioration due to heat and method for manufacturing contact
KR101736592B1 (en) Inductance element and electronic device
US20050146414A1 (en) Connecting unit including contactor having superior electrical conductivity and resilience, and method for producing the same
JP2009094080A (en) Method for manufacturing contact and method for manufacturing connection device using the contact
TWI616542B (en) Copper alloy plate with excellent conductivity, formability, and stress relaxation properties
JP4621147B2 (en) Contact and connection device using the contact
US8052810B2 (en) Metal structure and fabrication method thereof
JP3837434B2 (en) Connected device
JP7121232B2 (en) Copper terminal material, copper terminal, and method for producing copper terminal material
JP5966506B2 (en) Manufacturing method of electrical contacts
JP2008078061A (en) Elastic contactor and its manufacturing method, and connecting device and its manufacturing method using the above-elastic contactor
TWI476301B (en) Fine crystalline and amorphous coexisting gold alloy, plating film, plating solution, and plating method for said film
WO2010061259A1 (en) Plating substrate having sn plating layer, and fabrication method therefor
JP4079857B2 (en) Manufacturing method of connection device
JPH0681189A (en) Production of plated copper sheet or plated copper alloy sheet for producing electric connector
TWI461549B (en) Carbene alloy and its manufacturing method
CN105696034A (en) Electrolyte, method of forming a copper layer and method of forming a chip
JP2010174322A (en) Elastic contact and method of manufacturing the same, and contact substrate and method of manufacturing the same
JP2021046595A (en) Pin terminal, connector, wire harness having connector and control unit
JP2008311017A (en) Connecting device
JP2005332830A (en) Method for manufacturing connecting unit
JP2017150028A (en) Copper terminal material with plating and terminal
JP2021048093A (en) Pin terminal, connector, wire harness with connector, and control unit
JP2005203240A (en) Electrocast spring, connection device using it and manufacturing method of electrocast spring
JP2021048094A (en) Pin terminal, connector, wire harness with connector, and control unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110218