JP2005332830A - Method for manufacturing connecting unit - Google Patents

Method for manufacturing connecting unit Download PDF

Info

Publication number
JP2005332830A
JP2005332830A JP2005213229A JP2005213229A JP2005332830A JP 2005332830 A JP2005332830 A JP 2005332830A JP 2005213229 A JP2005213229 A JP 2005213229A JP 2005213229 A JP2005213229 A JP 2005213229A JP 2005332830 A JP2005332830 A JP 2005332830A
Authority
JP
Japan
Prior art keywords
elastic member
auxiliary elastic
conductive member
spiral
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005213229A
Other languages
Japanese (ja)
Inventor
Shinichi Nagano
真一 長野
Makoto Yoshida
信 吉田
Koji Dono
浩司 堂野
Shuichi Chiba
秀一 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2005213229A priority Critical patent/JP2005332830A/en
Publication of JP2005332830A publication Critical patent/JP2005332830A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Leads Or Probes (AREA)
  • Connecting Device With Holders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connecting unit capable of improving both the electrical conductivity and the resilience of a contact contacting an external connection part such as, in particular, an IC, and to provide a method for manufacturing the same. <P>SOLUTION: For instance, the top face, the bottom face, and both side faces of a conductive member 40 are completely surrounded by an auxiliary resilient member 41 as shown in Fig. C. The conductive member 40 is composed of a material having specific resistance lower than that of the auxiliary resilient member 41. The auxiliary resilient member 41 is composed of a material having a yield point and an elastic modulus higher than those of the conductive member 40. Thereby, both the electrical conductivity and resilience of the spiral contact can be improved well. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えばIC(集積回路)等が装着されるICソケットである接続装置に係わり、特にIC等の外部接続部と接触する接触子の導電性とばね性の双方を良好にすることが可能な接続装置の製造方法に関する。   The present invention relates to a connection device that is an IC socket to which, for example, an IC (integrated circuit) or the like is mounted, and in particular, to improve both conductivity and springiness of a contact that contacts an external connection portion such as an IC. The present invention relates to a method for manufacturing a possible connection device.

特許文献1に記載されている半導体検査装置は、半導体を外部の回路基板などに電気的に仮接続させるものである。半導体の背面側には格子状またはマトリックス状に配置された多数の球状接触子が設けられており、これに対向する絶縁基板上には多数の凹部が設けられ、この凹部内にスパイラル接触子が対向配置されている。   The semiconductor inspection apparatus described in Patent Document 1 electrically temporarily connects a semiconductor to an external circuit board or the like. A large number of spherical contacts arranged in a lattice shape or a matrix shape are provided on the back side of the semiconductor, and a large number of concave portions are provided on an insulating substrate opposite to the spherical contacts, and spiral contacts are provided in the concave portions. Opposed.

前記半導体の背面側を前記絶縁基板に向けて押圧すると、前記球状接触子の外表面に前記スパイラル接触子が螺旋状に巻き付くように接触するため、個々の球状接触子と個々のスパイラル接触子との間の電気的接続が確実に行われるようになっている。
特開2002−175859号公報
When the back side of the semiconductor is pressed toward the insulating substrate, the spiral contact contacts the outer surface of the spherical contact so that the spiral contact wraps spirally. The electrical connection between the two is ensured.
JP 2002-175859 A

ところで従来、前記スパイラル接触子は、プレス加工などで形成されていた。しかし製品の小型化に伴い、半導体検査装置と、半導体間で微細な範囲での電気的接続を確実なものにするにはプレス加工では限界があり、今後、前記スパイラル接触子を小型化の促進のためにプレス加工に変わる新たな方法で形成する必要があった。   Conventionally, the spiral contact has been formed by pressing or the like. However, with the miniaturization of products, there is a limit in press working to ensure electrical connection in a fine range between semiconductor inspection equipment and semiconductors. Therefore, it was necessary to form by a new method that changed to press working.

またそのような小型化の促進とともに、スパイラル接触子には良好な導電性とばね性とが求められる。   In addition to the promotion of such miniaturization, the spiral contactor is required to have good conductivity and springiness.

そこでこのような観点から特許文献1を見てみると、特許文献1の図37から図39には、前記スパイラル接触子を形成する様々な方法が開示されている。   Therefore, when Patent Document 1 is viewed from such a viewpoint, FIGS. 37 to 39 of Patent Document 1 disclose various methods for forming the spiral contact.

しかしながら、例えば図37の製造方法では、主にニッケルがスパイラル接触子の主体としてメッキ形成されており、このようなスパイラル接触子を用いた微細接点では、導体抵抗が高すぎて、検査不良あるいは検査不能となりやすい。   However, in the manufacturing method of FIG. 37, for example, nickel is mainly plated as the main body of the spiral contact, and the fine contact using such a spiral contact has a too high conductor resistance, resulting in an inspection failure or inspection. It tends to be impossible.

また図38の製造方法では、スパイラル接触子を構成する部材としては銅箔4′等の他に基板63も含まれており、このような構成では前記スパイラル接触子のばね性が低下し、前記半導体の球状接触子の形状に合わせて前記スパイラル接触子が良好に弾性変形できず接触不良を起こしやすい。   Further, in the manufacturing method of FIG. 38, the member constituting the spiral contactor includes the substrate 63 in addition to the copper foil 4 ′ and the like. In such a structure, the spring property of the spiral contactor is lowered, The spiral contact cannot be elastically deformed satisfactorily according to the shape of the semiconductor spherical contact, and contact failure is likely to occur.

また特許文献1では、スパイラル接触子の導電性及びばね性の双方を適正に向上させることについて何ら言及がなされていない。   Further, Patent Document 1 makes no mention of appropriately improving both the electrical conductivity and the spring property of the spiral contactor.

そこで本発明は上記従来の課題を解決するためのものであり、特にIC等の外部接続部と接触する接触子の導電性とばね性の双方を良好にすることが可能な接続装置の製造方法を提供することを目的としている。   Accordingly, the present invention is for solving the above-described conventional problems, and in particular, a method for manufacturing a connection device capable of improving both the electrical conductivity and the spring property of a contact that contacts an external connection portion such as an IC. The purpose is to provide.

本発明は、基台と、前記基台に渦巻き状に形成された複数のスパイラル接触子とを有し、電子部品の複数の外部接続部が、前記各スパイラル接触子にそれぞれ接触する接続装置の製造方法において、
複数の前記スパイラル接触子を導電性部材と補助弾性部材とを重ねてメッキ形成し、このとき、前記導電性部材には前記補助弾性部材よりも比抵抗が低く、前記補助弾性部材には前記導電性部材よりも降伏点及び弾性係数が高い材料をそれぞれ選択することを特徴とするものである。
The present invention includes a base and a plurality of spiral contacts formed in a spiral on the base, and a plurality of external connection portions of an electronic component are in contact with the spiral contacts, respectively. In the manufacturing method,
The plurality of spiral contacts are plated by overlapping a conductive member and an auxiliary elastic member. At this time, the conductive member has a specific resistance lower than that of the auxiliary elastic member, and the auxiliary elastic member has the conductive material. A material having a higher yield point and higher elastic modulus than the elastic member is selected.

前記導電性部材と前記補助弾性部材の双方をメッキにより形成することで、前記スパイラル接触子の小型化を実現できるとともに前記スパイラル接触子の導電性とばね性の双方を良好に向上させることが可能である。   By forming both the conductive member and the auxiliary elastic member by plating, the spiral contact can be reduced in size, and both the conductivity and the spring property of the spiral contact can be improved satisfactorily. It is.

また本発明では、導電性部材あるいは補助弾性部材のどちらか一方を金属箔からスパイラル形状に形成した後、その上に補助弾性部材あるいは導電性部材を重ねてメッキ形成してもよい。   Moreover, in this invention, after forming either a conductive member or an auxiliary | assistant elastic member in spiral shape from metal foil, an auxiliary | assistant elastic member or an electroconductive member may be piled and formed on it.

また本発明では、導電性部材あるいは補助弾性部材のどちらか一方をスパイラル形状に形成した後、その周囲を補助弾性部材あるいは導電性部材で無電解メッキ法によりメッキして覆うことが好ましい。   In the present invention, it is preferable that either the conductive member or the auxiliary elastic member is formed in a spiral shape, and then the periphery thereof is plated and covered with the auxiliary elastic member or the conductive member by an electroless plating method.

本発明では、前記補助弾性部材を、NiあるいはNi−X(ただしXは、P、W、Mn、Ti、Beのうちいずれか1種以上)で形成することが好ましい。   In the present invention, the auxiliary elastic member is preferably formed of Ni or Ni-X (where X is one or more of P, W, Mn, Ti, and Be).

本発明において、前記補助弾性部材をNiPを用いて形成するときには、組成をNi100−x(ただし、xはat%で10≦x≦30)とすることが好ましい。 In the present invention, when the auxiliary elastic member is formed using NiP, the composition is preferably Ni 100-x P x (where x is at% and 10 ≦ x ≦ 30).

補助弾性部材に用いるNiP(ニッケルリン)合金中のリン濃度を10at%以上にすることによりニッケルの結晶析出を抑えて、ばね物性(機械強度)を向上させることができる。また、メッキ応力(特に圧縮応力)を抑えてメッキ欠陥の発生を抑制することができる。   By setting the phosphorus concentration in the NiP (nickel phosphorus) alloy used for the auxiliary elastic member to 10 at% or more, nickel crystal precipitation can be suppressed and spring physical properties (mechanical strength) can be improved. Moreover, it is possible to suppress the plating stress (particularly compressive stress) and suppress the occurrence of plating defects.

また、NiP(ニッケルリン)合金中のリン濃度が30at%より大きくなるとNiとPの各種金属間化合物が析出する。これらの金属間化合物は非常に硬く脆いためばね物性が劣化する。   Further, when the phosphorus concentration in the NiP (nickel phosphorus) alloy is higher than 30 at%, various intermetallic compounds of Ni and P are precipitated. Since these intermetallic compounds are very hard and brittle, the spring properties deteriorate.

NiP(ニッケルリン)合金中のリン濃度が10at%以上30at%以下であると非晶質の存在により、延性を保ちつつ目的のばね物性が得られる。目的のばね物性の具体例として引張り強度1000MPa以上という基準がある。
前記密着層の膜厚は0.01μmから0.1μmの範囲にすることが好ましい。
When the phosphorus concentration in the NiP (nickel phosphorus) alloy is 10 at% or more and 30 at% or less, the desired spring physical properties can be obtained while maintaining ductility due to the presence of amorphous. As a specific example of the desired spring physical property, there is a standard of a tensile strength of 1000 MPa or more.
The thickness of the adhesion layer is preferably in the range of 0.01 μm to 0.1 μm.

また、本発明では、前記導電性部材を、Cu、Au、Ag、またはPdあるいはCu合金のいずれかで形成することが好ましい。   In the present invention, it is preferable that the conductive member is made of Cu, Au, Ag, Pd, or a Cu alloy.

また、前記導電性部材を形成する前記Cu合金がCu、Si、Niを有するコルソン合金であることが好ましい。   The Cu alloy forming the conductive member is preferably a Corson alloy having Cu, Si, and Ni.

また本発明では、Cu合金で形成された前記導電性部材と、NiあるいはNi−X(ただしXは、P、W、Mn、Ti、Beのうちいずれか1種以上)で形成された補助弾性層の間に、Cu、Ag、Au、Ru、Rh、Pd、Os、Ir、またはPtの内から選択された金属材料からなる密着層を形成することが好ましい。   Moreover, in this invention, the auxiliary | assistant elasticity formed with the said electroconductive member formed with Cu alloy, and Ni or Ni-X (however, X is one or more types among P, W, Mn, Ti, and Be). It is preferable to form an adhesion layer made of a metal material selected from Cu, Ag, Au, Ru, Rh, Pd, Os, Ir, or Pt between the layers.

複数の元素が混在しているCu合金からなる導電性材料の表面に直接、NiあるいはNi−X(ただしXは、P、W、Mn、Ti、Beのうちいずれか1種以上)をメッキ、特に無電解メッキすると、前記補助弾性部材の膜厚が不均一になりやすくなる。   Directly plating Ni or Ni-X (where X is one or more of P, W, Mn, Ti, and Be) directly on the surface of a conductive material made of a Cu alloy in which a plurality of elements are mixed, In particular, when electroless plating is performed, the film thickness of the auxiliary elastic member tends to be non-uniform.

本発明のように、前記導電性部材の上に、Cu、Ag、Au、Ru、Rh、Pd、Os、Ir、またはPtの内から選択された金属材料からなる密着層を形成すると、NiあるいはNi−X(ただしXは、P、W、Mn、Ti、Beのうちいずれか1種以上)からなる前記補助弾性部材を均一に成膜することが容易になる。
前記密着層の膜厚を、0.01μmから0.1μmの範囲で形成することが好ましい。
When an adhesive layer made of a metal material selected from Cu, Ag, Au, Ru, Rh, Pd, Os, Ir, or Pt is formed on the conductive member as in the present invention, Ni or It becomes easy to uniformly form the auxiliary elastic member made of Ni-X (where X is one or more of P, W, Mn, Ti, and Be).
The thickness of the adhesion layer is preferably formed in the range of 0.01 μm to 0.1 μm.

以上のように本発明の製造方法によれば、簡単な方法で微細にしかも導電性及びばね性に優れたスパイラル接触子を製造できる。   As described above, according to the production method of the present invention, it is possible to produce a spiral contact that is fine and is excellent in conductivity and spring property by a simple method.

図1は電子部品の動作を確認するための試験に用いられる検査装置を示す斜視図、図2は図1の2−2線における断面図を示し、電子部品が装着された状態の断面図である。   1 is a perspective view showing an inspection apparatus used in a test for confirming the operation of an electronic component, and FIG. 2 is a sectional view taken along line 2-2 of FIG. is there.

図1に示すように、検査装置10は基台11と、この基台11の一方の縁部に設けられたひんじ部13を介して回動自在に支持された蓋体12とで構成されている。前記基台11および蓋体12は絶縁性の樹脂材料などで形成されており、前記基台11の中心部には図示Z2方向に凹となる装填領域(基台)11Aが形成されている。そして、前記装填領域11A内に半導体などの電子部品1が装着できるようになっている。また基台11の他方の縁部には、被ロック部14が形成されている。   As shown in FIG. 1, the inspection apparatus 10 includes a base 11 and a lid 12 that is rotatably supported via a hinge 13 provided on one edge of the base 11. ing. The base 11 and the lid 12 are formed of an insulating resin material or the like, and a loading region (base) 11A that is concave in the Z2 direction is formed at the center of the base 11. An electronic component 1 such as a semiconductor can be mounted in the loading area 11A. A locked portion 14 is formed on the other edge of the base 11.

図2に示すように、この検査装置10は、電子部品1の下面に多数の球状接触子(外部接続部)1aがマトリックス状(格子状または碁盤の目状)に配置されたものを検査対象とするものである。   As shown in FIG. 2, this inspection apparatus 10 is an inspection object in which a large number of spherical contacts (external connection parts) 1a are arranged in a matrix (lattice or grid) on the lower surface of the electronic component 1. It is what.

図2に示すように、前記装填領域(基台)11Aには所定の径寸法からなり、装填領域11Aの表面から基台11の裏面に貫通する複数の凹部(スルーホール)11aが、前記電子部品1の球状接触子1aに対応して設けられている。   As shown in FIG. 2, the loading area (base) 11A has a predetermined diameter, and a plurality of recesses (through holes) 11a penetrating from the front surface of the loading area 11A to the back surface of the base 11 are provided in the electronic area. It is provided corresponding to the spherical contact 1 a of the component 1.

前記凹部11aの上面(装填領域11Aの表面)には、接触子が渦巻き状に形成された複数のスパイラル接触子20が設けられている。   A plurality of spiral contacts 20 in which the contacts are formed in a spiral shape are provided on the upper surface of the recess 11a (the surface of the loading region 11A).

図3は前記スパイラル接触子20の斜視図である。図3に示すように、前記スパイラル接触子20は基台11に、図示X方向及びY方向に所定間隔を空けて複数形成されている。   FIG. 3 is a perspective view of the spiral contact 20. As shown in FIG. 3, a plurality of the spiral contacts 20 are formed on the base 11 with predetermined intervals in the X direction and the Y direction shown in the figure.

前記各スパイラル接触子20は、図3において例えば左上に図示されたスパイラル接触子20のように前記凹部11aの上方の開口端の縁部に固定された基部21を有し、スパイラル接触子20の巻き始端22が前記基部21側に設けられている。そして、この巻き始端22から渦巻き状に延びる巻き終端23が前記凹部11aの中心に位置するようになっている。   Each spiral contact 20 has a base 21 fixed to the edge of the upper open end of the recess 11a like the spiral contact 20 shown in the upper left in FIG. A winding start end 22 is provided on the base 21 side. A winding end 23 extending spirally from the winding start end 22 is positioned at the center of the recess 11a.

前記凹部11aの内壁面には図示しない導通部が形成されており、導通部の上端と前記スパイラル接触子20の前記基部21とが導電性接着材などで接続されている。また凹部11aの下方の開口端は前記導通部に接続された接続端子18で塞がれている。   A conductive portion (not shown) is formed on the inner wall surface of the concave portion 11a, and the upper end of the conductive portion and the base portion 21 of the spiral contactor 20 are connected by a conductive adhesive or the like. The opening end below the recess 11a is closed by a connection terminal 18 connected to the conducting portion.

図2に示すように、前記基台11の下方には複数の配線パターンやその他の回路部品を有するプリント基板30が設けられており、前記基台11はこのプリント基板30上に固定されている。前記プリント基板30の表面には前記基台11の底面に設けられた接続端子18に対向する対向電極31が設けられており、前記各接続端子18が各対向電極31にそれぞれ接触することにより、電子部品1とプリント基板30とが検査装置10を介して電気的に接続される。   As shown in FIG. 2, a printed board 30 having a plurality of wiring patterns and other circuit components is provided below the base 11, and the base 11 is fixed on the printed board 30. . The surface of the printed circuit board 30 is provided with a counter electrode 31 facing the connection terminal 18 provided on the bottom surface of the base 11, and the connection terminals 18 are in contact with the counter electrodes 31, respectively. The electronic component 1 and the printed circuit board 30 are electrically connected via the inspection apparatus 10.

一方、検査装置10の蓋体12の内面の中央の位置には、電子部品1を図示下方に押し付ける凸形状の押圧部12aが前記装填領域11Aに対向して設けられている。また前記ひんじ部13と逆側となる位置にはロック部15が形成されている。   On the other hand, at the center position of the inner surface of the lid 12 of the inspection apparatus 10, a convex pressing portion 12a that presses the electronic component 1 downward in the figure is provided so as to face the loading area 11A. Further, a lock portion 15 is formed at a position on the opposite side to the hinge portion 13.

前記蓋体12の内面と押圧部12aとの間には前記押圧部12aを蓋体12の内面から遠ざかる方向に付勢するコイルスプリングなどからなる付勢部材が設けられている(図示せず)。従って、電子部品1を前記凹部11a内に装着して蓋体12を閉じてロックすると、電子部品1を装填領域11Aの表面に接近する方向(Z2方向)に弾性的に押し付けることが可能となっている。   Between the inner surface of the lid body 12 and the pressing portion 12a, a biasing member made of a coil spring or the like that biases the pressing portion 12a away from the inner surface of the lid body 12 is provided (not shown). . Accordingly, when the electronic component 1 is mounted in the recess 11a and the lid 12 is closed and locked, the electronic component 1 can be elastically pressed in the direction approaching the surface of the loading region 11A (Z2 direction). ing.

前記基台11の装填領域11Aの大きさは、前記電子部品1の外形とほぼ同じ大きさであり、電子部品1を前記装填領域11Aに装着して蓋体12をロックすると、電子部品1側の各球状接触子1aと検査装置10側の各スパイラル接触子20とが正確に対応して位置決めできるようになっている。   The size of the loading area 11A of the base 11 is substantially the same as the outer shape of the electronic component 1, and when the electronic component 1 is mounted on the loading area 11A and the lid 12 is locked, the electronic component 1 side Each spherical contact 1a and each spiral contact 20 on the inspection apparatus 10 side can be positioned accurately in correspondence with each other.

蓋体12のロック部15が基台11の被ロック部14にロックされると、電子部品1が前記押圧部12aによって図示下方に押し付けられるため、前記各球状接触子1aが各スパイラル接触子20を凹部11aの内部方向(図示下方)に押し下げる。同時に、スパイラル接触子20の外形は、前記巻き終端23から巻き始端22方向(渦巻きの中心から外方向)に押し広げられるように変形し、前記球状接触子1aの外表面を抱き込むように巻き付き、各球状接触子1aと各スパイラル接触子20とが接続される。   When the lock part 15 of the lid 12 is locked to the locked part 14 of the base 11, the electronic component 1 is pressed downward in the figure by the pressing part 12 a, so that each spherical contact 1 a becomes each spiral contact 20. Is pushed downward in the recess 11a (downward in the figure). At the same time, the outer shape of the spiral contact 20 is deformed so as to be expanded from the winding end 23 toward the winding start end 22 (outward from the center of the spiral), and is wound so as to embrace the outer surface of the spherical contact 1a. Each spherical contact 1a and each spiral contact 20 are connected.

前記スパイラル接触子20を構成する各ターン毎の接触子片20aを幅方向と平行な方向である線4から膜厚方向に切断し、その切断面を矢印方向から見たとき、その切断面は図4のようになっている。   When the contact piece 20a for each turn constituting the spiral contactor 20 is cut in the film thickness direction from the line 4 which is a direction parallel to the width direction, and the cut surface is viewed from the arrow direction, the cut surface is It is as shown in FIG.

図4Aでは、導電性部材40の上に補助弾性部材41が重ねて形成されている。前記導電性部材40は前記補助弾性部材41よりも比抵抗が低い材料で形成され、前記補助弾性部材41は前記導電性部材40よりも降伏点及び弾性係数が高い材料で形成されている。   In FIG. 4A, the auxiliary elastic member 41 is formed on the conductive member 40 in an overlapping manner. The conductive member 40 is made of a material having a specific resistance lower than that of the auxiliary elastic member 41, and the auxiliary elastic member 41 is made of a material having a yield point and an elastic coefficient higher than those of the conductive member 40.

図4Aのように、導電性部材40と補助弾性部材41とを重ねて形成することで、前記スパイラル接触子20の良好な導電性は導電性部材40で担保され、前記スパイラル接触子の良好なばね性は前記補助弾性部材41で担保される。   As shown in FIG. 4A, by forming the conductive member 40 and the auxiliary elastic member 41 so as to overlap each other, good conductivity of the spiral contactor 20 is secured by the conductive member 40, and the spiral contactor is good. The spring property is secured by the auxiliary elastic member 41.

図4Aでは、補助弾性部材41の上に導電性部材40が重ねて形成されたものであってもよい。   In FIG. 4A, the conductive member 40 may be formed on the auxiliary elastic member 41 in an overlapping manner.

また図4Aにおいて、前記導電性部材40及び補助弾性部材41の双方がメッキで形成されたものであってもよいし、下層側である導電性部材40(あるいは下層側が補助弾性部材41であれば前記補助弾性部材41)が金属箔で形成されており、その上に上層側である補助弾性部材41(あるいは上層側が導電性部材40であれば前記導電性部材40)がメッキ形成されたものであってもよい。   4A, both of the conductive member 40 and the auxiliary elastic member 41 may be formed by plating, or the conductive member 40 on the lower layer side (or if the lower layer side is the auxiliary elastic member 41). The auxiliary elastic member 41) is formed of metal foil, and the auxiliary elastic member 41 on the upper layer side (or the conductive member 40 if the upper layer side is the conductive member 40) is plated. There may be.

図4Bでは、下から導電性部材40、補助弾性部材41及び被膜部材42の順に積層形成されたものである。ここで前記被膜部材42は、硬度や耐磨耗性を向上させるために設けられたものである。また前記被膜部材42は前記弾性部材41よりも低い比抵抗を有する材質で形成され、電子部品の接触子との接触抵抗を小さくする作用を有するものであることが好ましい。   In FIG. 4B, the conductive member 40, the auxiliary elastic member 41, and the coating member 42 are laminated in this order from the bottom. Here, the coating member 42 is provided to improve hardness and wear resistance. The coating member 42 is preferably formed of a material having a specific resistance lower than that of the elastic member 41 and has a function of reducing contact resistance with a contact of an electronic component.

図4Cでは、導電性部材40の上面、下面及び両側面が前記補助弾性部材41で完全に囲まれた構成になっている。このように補助弾性部材41によって前記導電性部材40の周囲を完全に囲む構成であると、スパイラル接触子20のばね性をより適切に向上させることができて好ましい。   4C, the upper surface, the lower surface, and both side surfaces of the conductive member 40 are completely surrounded by the auxiliary elastic member 41. Thus, it is preferable that the conductive member 40 be completely surrounded by the auxiliary elastic member 41 because the spring property of the spiral contact 20 can be improved more appropriately.

あるいは前記補助弾性部材41の上面、下面及び両側面が前記導電性部材40で完全に囲まれた構造であってもよい。かかる場合、特に高周波帯域での使用時に、渦電流損失をより効果的に低減できて好ましい。このように前記導電性部材40あるいは補助弾性部材41が軸となる金属部材の周囲を完全に覆うようにするには、例えば前記導電性部材40あるいは補助弾性部材41を無電解メッキ法を用いてメッキ形成すればよい。   Alternatively, a structure in which the upper surface, the lower surface, and both side surfaces of the auxiliary elastic member 41 are completely surrounded by the conductive member 40 may be used. In such a case, particularly when used in a high frequency band, eddy current loss can be more effectively reduced, which is preferable. In this way, in order to completely cover the periphery of the metal member serving as the shaft, the conductive member 40 or the auxiliary elastic member 41 is formed by using, for example, an electroless plating method. What is necessary is just to form plating.

図4Dは、図4Cの応用例であり、例えば前記導電性部材40の上面、下面及び両側面を完全に補助弾性部材41が囲っており、さらに前記補助弾性部材41の表面を前記被膜部材42が覆っている構成である。   4D is an application example of FIG. 4C. For example, the upper surface, the lower surface, and both side surfaces of the conductive member 40 are completely surrounded by the auxiliary elastic member 41, and the surface of the auxiliary elastic member 41 is covered with the coating member 42. It is the composition which covers.

図4Eでは、前記補助弾性部材41と前記導電性部材40の間に密着層70が形成されている。   In FIG. 4E, an adhesion layer 70 is formed between the auxiliary elastic member 41 and the conductive member 40.

図4Eに示される接触子片において、前記導電性部材40はCu合金で形成されており、前記補助弾性部材41の材料はNiあるいはNi−X(ただしXは、P、W、Mn、Ti、Beのうちいずれか1種以上)から選択されている。また、密着層70はCu、Ag、Au、Ru、Rh、Pd、Os、Ir、またはPtの内から選択された金属材料によって形成されている。   In the contact piece shown in FIG. 4E, the conductive member 40 is made of Cu alloy, and the auxiliary elastic member 41 is made of Ni or Ni-X (where X is P, W, Mn, Ti, Any one or more of Be). The adhesion layer 70 is made of a metal material selected from Cu, Ag, Au, Ru, Rh, Pd, Os, Ir, or Pt.

複数の元素が混在しているCu合金からなる導電性材料の表面にNiあるいはNi−X(ただしXは、P、W、Mn、Ti、Beのうちいずれか1種以上)を直接メッキ、特に無電解メッキすると、前記補助弾性部材41の膜厚が不均一になりやすくなる。   Directly plating Ni or Ni-X (where X is one or more of P, W, Mn, Ti, and Be) on the surface of a conductive material made of a Cu alloy in which a plurality of elements are mixed, especially When electroless plating is performed, the film thickness of the auxiliary elastic member 41 tends to be non-uniform.

図4Eに示されるように、前記導電性部材40と前記補助弾性部材41との間に前記密着層70が存在していると、NiあるいはNi−X(ただしXは、P、W、Mn、Ti、Beのうちいずれか1種以上)によって形成された前記補助弾性部材41の膜厚を均一に成膜することが容易になる。この結果、各スパイラル接触子のばね物性を安定化できる。また、前記補助弾性部材41のメッキ密着性も向上する。前記補助弾性部材41の膜厚は0.5μmから10μmである。   As shown in FIG. 4E, when the adhesion layer 70 exists between the conductive member 40 and the auxiliary elastic member 41, Ni or Ni-X (where X is P, W, Mn, It becomes easy to uniformly form the auxiliary elastic member 41 formed of Ti or Be). As a result, the spring physical property of each spiral contact can be stabilized. Also, the plating adhesion of the auxiliary elastic member 41 is improved. The auxiliary elastic member 41 has a film thickness of 0.5 μm to 10 μm.

前記密着層70の膜厚は0.01μmから0.1μmの範囲であることが好ましい。
また、前記導電性部材40を形成する前記Cu合金がCu、Si、Niを有するコルソン合金であることが好ましい。
The thickness of the adhesion layer 70 is preferably in the range of 0.01 μm to 0.1 μm.
The Cu alloy forming the conductive member 40 is preferably a Corson alloy having Cu, Si, and Ni.

Cu、Si、Niを有するコルソン合金は高い電気伝導度と高い強度を両立しうる材料であり、スパイラル接触子の材料に適している。   A Corson alloy containing Cu, Si, and Ni is a material that can achieve both high electrical conductivity and high strength, and is suitable as a material for spiral contacts.

本実施の形態では、組成式がCu−Ni−Si−Mgで表されるコルソン合金を用いた。組成比はCuが96.2質量%、Niが3.0質量%、Siが0.65質量%、Mgが0.15質量%である。   In this embodiment, a Corson alloy whose composition formula is represented by Cu—Ni—Si—Mg is used. The composition ratio is 96.2 mass% for Cu, 3.0 mass% for Ni, 0.65 mass% for Si, and 0.15 mass% for Mg.

この組成比を有するコルソン合金の20℃における電気伝導度は42から53%IACS、引張り強度は607から840N/mm、20℃における固有抵抗は38.3nΩ・m、熱伝導度は180W/mK、熱膨張係数は17.6×10−6/K(20℃から300℃)、弾性係数は131kN/mm、密度は8.82g/cmである。 A Corson alloy having this composition ratio has an electrical conductivity at 20 ° C. of 42 to 53% IACS, a tensile strength of 607 to 840 N / mm 2 , a specific resistance at 20 ° C. of 38.3 nΩ · m, and a thermal conductivity of 180 W / mK. The thermal expansion coefficient is 17.6 × 10 −6 / K (20 ° C. to 300 ° C.), the elastic coefficient is 131 kN / mm 2 , and the density is 8.82 g / cm 3 .

なお、前記補助弾性部材41の上面、下面及び両側面が密着層70を介して前記導電性部材40で完全に囲まれた構造であってもよい。   The auxiliary elastic member 41 may have a structure in which an upper surface, a lower surface, and both side surfaces of the auxiliary elastic member 41 are completely surrounded by the conductive member 40 with an adhesion layer 70 interposed therebetween.

図4Fは、図4Eの応用例であり、例えば前記導電性部材40の上面、下面及び両側面を密着層70を介して完全に補助弾性部材41が囲っており、さらに前記補助弾性部材41の表面を前記被膜部材42が覆っている構成である。前記被膜部材の膜厚は0.1μmから3μmの範囲である。   4F is an application example of FIG. 4E. For example, the auxiliary elastic member 41 completely surrounds the upper surface, the lower surface, and both side surfaces of the conductive member 40 with the adhesion layer 70 interposed therebetween. The surface is covered with the coating member 42. The film member has a film thickness in the range of 0.1 μm to 3 μm.

本発明では、前記導電性部材40は、Cu、Au、Ag又はPdあるいはCu合金から選択されることが好ましい。   In the present invention, the conductive member 40 is preferably selected from Cu, Au, Ag, Pd, or a Cu alloy.

また前記補助弾性部材41は、NiあるいはNi−X(ただしXは、P、W、Mn、Ti、Beのうちいずれか1種以上)から選択されることが好ましい。
また前記被膜部材42は、Au、Ag、Pd、Snから選択されることが好ましい。
The auxiliary elastic member 41 is preferably selected from Ni or Ni-X (where X is one or more of P, W, Mn, Ti, and Be).
The coating member 42 is preferably selected from Au, Ag, Pd, and Sn.

特に、前記補助弾性部材41をNiPを用いて形成するときには、組成をNi100−x(ただし、xはat%で10≦x≦30)とすることが好ましい。 In particular, when the auxiliary elastic member 41 is formed using NiP, the composition is preferably Ni 100-x P x (where x is at% and 10 ≦ x ≦ 30).

補助弾性部材41に用いるNiP(ニッケルリン)合金中のリン濃度を10at%以上にすることによりニッケルの結晶析出を抑えて、ばね物性(機械強度)を向上させることができる。また、メッキ応力(特に圧縮応力)を抑えてメッキ欠陥の発生を抑制することができる。   By setting the phosphorus concentration in the NiP (nickel phosphorus) alloy used for the auxiliary elastic member 41 to 10 at% or more, nickel crystal precipitation can be suppressed and the spring physical properties (mechanical strength) can be improved. Moreover, it is possible to suppress the plating stress (particularly compressive stress) and suppress the occurrence of plating defects.

また、NiP(ニッケルリン)合金中のリン濃度が30at%より大きくなるとNiとPの各種金属間化合物が析出する。これらの金属間化合物は非常に硬く脆いためばね物性が劣化する。   Further, when the phosphorus concentration in the NiP (nickel phosphorus) alloy is higher than 30 at%, various intermetallic compounds of Ni and P are precipitated. Since these intermetallic compounds are very hard and brittle, the spring properties deteriorate.

NiP(ニッケルリン)合金中のリン濃度が10at%以上30at%以下であると非晶質の存在により、延性を保ちつつ目的のばね物性が得られる。目的のばね物性の具体例として引張り強度1000MPa以上という基準がある。   When the phosphorus concentration in the NiP (nickel phosphorus) alloy is 10 at% or more and 30 at% or less, the desired spring physical properties can be obtained while maintaining ductility due to the presence of amorphous. As a specific example of the desired spring physical property, there is a standard of a tensile strength of 1000 MPa or more.

図5は、図2に示す検査装置10の変形例であり、前記検査装置10の基台11の一部を拡大して示した部分断面図である。なお図5において、図1ないし図3と同じ符号が付けられている部材は図1ないし図3と同じ部材を示している。   FIG. 5 is a modification of the inspection apparatus 10 shown in FIG. 2, and is a partial cross-sectional view showing an enlarged part of the base 11 of the inspection apparatus 10. In FIG. 5, members denoted by the same reference numerals as in FIGS. 1 to 3 are the same members as in FIGS. 1 to 3.

図5では、基台11の上下に複数のスパイラル接触子20が設けられている。図5に示すように基台11には、前記スパイラル接触子20が対向する位置に凹部11aが設けられ、その凹部11aの内周壁には導通部17が設けられている。前記導通部17は例えばCuなどでメッキ形成されたものである。   In FIG. 5, a plurality of spiral contacts 20 are provided above and below the base 11. As shown in FIG. 5, the base 11 is provided with a recess 11a at a position where the spiral contact 20 faces, and a conduction portion 17 is provided on the inner peripheral wall of the recess 11a. The conductive portion 17 is formed by plating with Cu or the like, for example.

図5に示すように前記基台11は、上下に分離形成されており、前記基台11どうしはその対向面に塗布された異方性導電接着剤19によって接着固定されている。   As shown in FIG. 5, the bases 11 are separated from each other in the vertical direction, and the bases 11 are bonded and fixed by an anisotropic conductive adhesive 19 applied to the opposing surfaces.

図5に示すように、平面方向に所定間隔で設けられたスパイラル接触子20の基部21どうしはポリイミド等で形成されたガイドフレーム45によって繋げられ、前記基部21及びガイドフレーム45は、前記基台11の表面に塗布された異方性導電接着剤46によって前記基台11に接着固定される。   As shown in FIG. 5, the base portions 21 of the spiral contacts 20 provided at predetermined intervals in the plane direction are connected to each other by a guide frame 45 formed of polyimide or the like, and the base portion 21 and the guide frame 45 are connected to the base plate. The base 11 is bonded and fixed by an anisotropic conductive adhesive 46 applied to the surface of the base 11.

図6及び図7を用いて主に本発明におけるスパイラル接触子20の製造方法について説明する。   A method for manufacturing the spiral contact 20 according to the present invention will be mainly described with reference to FIGS.

図6Aに示す符号50は、基板である。この基板50は絶縁性であってもよいが導電性であると後工程でメッキ下地層が必要なくなるので好ましい。例えば前記基板50はCuで形成され厚さは70μmである。   Reference numeral 50 shown in FIG. 6A is a substrate. The substrate 50 may be insulative, but it is preferable that the substrate 50 be conductive because a plating underlayer is not required in a later step. For example, the substrate 50 is made of Cu and has a thickness of 70 μm.

図6Bに示す工程では、前記基板50上にレジスト51を塗布し、さらにスパイラル接触子20の形状に露光現像し、前記レジスト51にスパイラル接触子20のパターン51aを形成する。なお図6Bに示す左側に、レジスト51に形成されたスパイラル接触子20のパターン51aの平面図を示す。図6Bの左図において斜線部分が露光現像後においてもレジスト51として残されている部分で、白色の部分が露光現像によってレジスト51が除去されて形成されたパターン51aである。前記レジスト51にパターン51aを露光現像で形成した後、熱処理を施して前記レジスト51を熱硬化させる。   In the step shown in FIG. 6B, a resist 51 is applied on the substrate 50, and further exposed and developed into the shape of the spiral contact 20, thereby forming a pattern 51 a of the spiral contact 20 on the resist 51. 6B shows a plan view of the pattern 51a of the spiral contact 20 formed on the resist 51 on the left side shown in FIG. 6B. In the left diagram of FIG. 6B, the hatched portion is the portion that remains as the resist 51 after exposure and development, and the white portion is the pattern 51a formed by removing the resist 51 by exposure and development. After the pattern 51a is formed on the resist 51 by exposure and development, the resist 51 is thermally cured by heat treatment.

図6Cでは、前記パターン51a内に露出した基板50表面に、下から導電性部材40、補助弾性部材41及び被膜部材42の順でメッキ形成する。メッキ方法は一般的な電解メッキ法である。これにより図4Bで示した断面形状のスパイラル接触子20が完成する。なお各部材をメッキ形成する度に、水洗してメッキ表面の汚れを除去した後、次の部材のメッキ工程に移行する。   In FIG. 6C, the conductive member 40, the auxiliary elastic member 41, and the coating member 42 are plated in this order on the surface of the substrate 50 exposed in the pattern 51a. The plating method is a general electrolytic plating method. Thereby, the spiral contactor 20 having the cross-sectional shape shown in FIG. 4B is completed. Each time each member is formed by plating, the substrate is washed with water to remove stains on the plating surface, and then the process proceeds to the plating process for the next member.

また、例えば図6Cにおいて、前記基板50上に、導電性部材40及び補助弾性部材41の2層構造をメッキ形成してもよい。かかる場合、図4Aで示した断面形状のスパイラル接触子20が完成する。   For example, in FIG. 6C, a two-layer structure of the conductive member 40 and the auxiliary elastic member 41 may be formed on the substrate 50 by plating. In this case, the spiral contact 20 having the cross-sectional shape shown in FIG. 4A is completed.

そして図6Dの工程で、前記レジスト51を除去する。前記レジスト51を除去した後、水洗工程、乾燥工程を施す。   6D, the resist 51 is removed. After removing the resist 51, a water washing process and a drying process are performed.

次に図6Eの工程では、例えばポリイミドなどの絶縁性材料からなるガイドフレーム45を、前記ガイドフレーム45に設けられた穴部45aがちょうど各スパイラル接触子20と対面し、且つ前記穴部45aの周縁部45a1が、各スパイラル接触子20の基部21上に重なるように位置決めした後、前記ガイドフレーム45を前記基部21上及び前記基部21間の基板50上に貼り付ける。図6Eの左図は、前記ガイドフレーム45の平面形状である。   Next, in the step of FIG. 6E, a guide frame 45 made of an insulating material such as polyimide, for example, has a hole 45a provided in the guide frame 45 just facing each spiral contact 20, and the hole 45a After positioning the peripheral edge portion 45 a 1 so as to overlap the base portion 21 of each spiral contact 20, the guide frame 45 is pasted on the base portion 21 and the substrate 50 between the base portions 21. The left figure of FIG. 6E is a planar shape of the guide frame 45.

図6Eの左図に示すように斜線部が前記ガイドフレーム45の部分であり、前記ガイドフレーム45には、各スパイラル接触子20と対面する位置に穴部45aが設けられている。   As shown in the left diagram of FIG. 6E, the shaded portion is a portion of the guide frame 45, and the guide frame 45 is provided with a hole 45 a at a position facing each spiral contact 20.

前記ガイドフレーム45の下面には例えばエポキシ系熱硬化樹脂が塗布されており、上記のように前記ガイドフレーム45を位置決め、貼り合わせした後、熱処理を施して前記熱硬化樹脂を熱硬化し、前記ガイドフレーム45を前記基部21上及び前記基部21間の基板50上に接着固定する。   For example, an epoxy-based thermosetting resin is applied to the lower surface of the guide frame 45, and after positioning and bonding the guide frame 45 as described above, a heat treatment is performed to thermoset the thermosetting resin, The guide frame 45 is bonded and fixed on the base 21 and the substrate 50 between the bases 21.

次に図6Fの工程では、前記基板50を例えばエッチングなどの方法を用いて除去する。その後、水洗工程、及び乾燥工程を施す。   Next, in the step of FIG. 6F, the substrate 50 is removed by using a method such as etching. Then, a water washing process and a drying process are performed.

図6E工程で示したように、隣り合うスパイラル接触子20の基部21どうしが前記ガイドフレーム45によって繋がっているので、図6F工程で基板50を除去しても各スパイラル接触子20がばらばらになることはない。   As shown in FIG. 6E, since the bases 21 of the adjacent spiral contacts 20 are connected by the guide frame 45, the spiral contacts 20 are separated even if the substrate 50 is removed in the step of FIG. 6F. There is nothing.

次に図7に示す製造方法について以下に説明する。
図7Aでは、例えばポリイミド等の絶縁性樹脂で形成された基板60上に、金属箔で形成された本発明における導電性部材40が貼り付けられている。前記金属箔は、本発明における補助弾性部材41であってもよい。なお前記基板60は絶縁性の部材でなくてもよいが、絶縁性樹脂などで形成された基板60を用いると、後工程で前記基板60を図6E工程で説明したガイドフレーム45として使用できるので好ましい。
Next, the manufacturing method shown in FIG. 7 will be described below.
In FIG. 7A, the conductive member 40 according to the present invention formed of a metal foil is attached on a substrate 60 formed of an insulating resin such as polyimide. The metal foil may be the auxiliary elastic member 41 in the present invention. The substrate 60 may not be an insulating member, but if the substrate 60 formed of an insulating resin or the like is used, the substrate 60 can be used as the guide frame 45 described in the step of FIG. preferable.

図7B工程では、前記導電性部材40上に、レジスト61を塗布し、このレジスト61を露光現像して、スパイラル接触子20の形状となるレジスト61の部分を残し、それ以外の部分のレジスト61を除去する。つまり前記レジスト61に形成されるパターン61aは、図6Bで説明したレジスト51とは逆で、図6Bの左図にある斜線部分が前記レジスト61に形成されたパターン61aの部分であり、白色の部分がレジスト61として残される。   In the step of FIG. 7B, a resist 61 is applied on the conductive member 40, and the resist 61 is exposed and developed to leave a portion of the resist 61 that has the shape of the spiral contact 20, and the resist 61 in other portions. Remove. That is, the pattern 61a formed on the resist 61 is opposite to the resist 51 described in FIG. 6B, and the hatched portion in the left diagram of FIG. 6B is the portion of the pattern 61a formed on the resist 61. A portion is left as the resist 61.

次に前記パターン61a内に露出する導電性部材40aを例えばエッチングで除去すると、前記導電性部材40は前記基板60上にスパイラル接触子20の形状として残される。   Next, when the conductive member 40a exposed in the pattern 61a is removed by, for example, etching, the conductive member 40 is left on the substrate 60 as the shape of the spiral contact 20.

次に図7C工程では、各スパイラル接触子20のちょうど基部21となる間に設けられた基板60a部分を残して、それ以外の基板60の部分を例えばレーザなどを用いて除去する(矢印で示したのがレーザを意味する)。   Next, in the step of FIG. 7C, the portion of the substrate 60a provided between the spiral contacts 20 that is exactly the base 21 is left, and the other portions of the substrate 60 are removed using, for example, a laser (indicated by arrows). Means a laser).

図7Dに示すように、各スパイラル接触子20の基部21間が前記基板60aで繋がっているため、各スパイラル接触子20はばらばらにならず、前記基板60aは図6Eで説明したガイドフレーム45と同じ機能をするものとなっている。   As shown in FIG. 7D, since the bases 21 of the spiral contacts 20 are connected by the substrate 60a, the spiral contacts 20 are not separated, and the substrate 60a is connected to the guide frame 45 described in FIG. 6E. It has the same function.

図7E工程では、無電解メッキ法を用いて、各スパイラル接触子の各ターン毎の接触子片20aや基部21の周辺に補助弾性部材41をメッキ形成する。無電解メッキ法は、別名、化学メッキ法とも呼ばれ、メッキ液の還元物質と金属イオンを反応させ、化学反応のみを利用して被メッキ物の表面に金属塩を析出してメッキする方法である。   In the step of FIG. 7E, the auxiliary elastic member 41 is plated around the contact piece 20a and the base 21 for each turn of each spiral contact using an electroless plating method. The electroless plating method, also called chemical plating method, is a method in which the reducing substance of the plating solution reacts with metal ions, and only the chemical reaction is used to deposit and deposit a metal salt on the surface of the object to be plated. is there.

この方法を用いれば、適切に前記導電性部材40の周囲を完全に補助弾性部材41によって覆うことが可能である。なお図7A工程で、補助弾性部材41の金属箔を用いてスパイラル接触子20を形成した場合、図7E工程では、導電性部材40を無電解メッキ法によって前記補助弾性部材41の周囲にメッキ形成する。   If this method is used, the periphery of the conductive member 40 can be appropriately covered with the auxiliary elastic member 41. 7A, when the spiral contact 20 is formed using the metal foil of the auxiliary elastic member 41, the conductive member 40 is plated around the auxiliary elastic member 41 by electroless plating in FIG. 7E. To do.

次に図8に示す製造方法について以下に説明する。
図8Aでは、例えばポリイミド等の絶縁性樹脂で形成された基板60上に、金属箔で形成された本発明における導電性部材40が貼り付けられている。
前記導電性部材40はCu、Si、Niを有するコルソン合金であることが好ましい。
Next, the manufacturing method shown in FIG. 8 will be described below.
In FIG. 8A, the conductive member 40 of the present invention formed of a metal foil is attached on a substrate 60 formed of an insulating resin such as polyimide.
The conductive member 40 is preferably a Corson alloy having Cu, Si, and Ni.

Cu、Si、Niを有するコルソン合金は高い電気伝導度と高い強度を両立しうる材料であり、スパイラル接触子の材料に適している。   A Corson alloy containing Cu, Si, and Ni is a material that can achieve both high electrical conductivity and high strength, and is suitable as a material for spiral contacts.

本実施の形態では、組成式がCu−Ni−Si−Mgで表されるコルソン合金を用いた。組成比はCuが96.2質量%、Niが3.0質量%、Siが0.65質量%、Mgが0.15質量%である。   In this embodiment, a Corson alloy whose composition formula is represented by Cu—Ni—Si—Mg is used. The composition ratio is 96.2 mass% for Cu, 3.0 mass% for Ni, 0.65 mass% for Si, and 0.15 mass% for Mg.

この組成比を有するコルソン合金の20℃における電気伝導度は42から53%IACS、引張り強度は607から840N/mm、20℃における固有抵抗は38.3nΩ・m、熱伝導度は180W/mK、熱膨張係数は17.6×10−6/K(20℃から300℃)、弾性係数は131kN/mm、密度は8.82g/cmである。 A Corson alloy having this composition ratio has an electrical conductivity at 20 ° C. of 42 to 53% IACS, a tensile strength of 607 to 840 N / mm 2 , a specific resistance at 20 ° C. of 38.3 nΩ · m, and a thermal conductivity of 180 W / mK. The thermal expansion coefficient is 17.6 × 10 −6 / K (20 ° C. to 300 ° C.), the elastic coefficient is 131 kN / mm 2 , and the density is 8.82 g / cm 3 .

なお前記基板60は絶縁性の部材でなくてもよいが、絶縁性樹脂などで形成された基板60を用いると、後工程で前記基板60を図6E工程で説明したガイドフレーム45として使用できるので好ましい。   The substrate 60 may not be an insulating member. However, if the substrate 60 formed of an insulating resin or the like is used, the substrate 60 can be used as the guide frame 45 described in the step of FIG. preferable.

図8B工程では、前記導電性部材40上に、レジスト61を塗布し、このレジスト61を露光現像して、スパイラル接触子20の形状となるレジスト61の部分を残し、それ以外の部分のレジスト61を除去する。つまり前記レジスト61に形成されるパターン61aは、図6Bで説明したレジスト51とは逆で、図6Bの左図にある斜線部分が前記レジスト61に形成されたパターン61aの部分であり、白色の部分がレジスト61として残される。   In the step of FIG. 8B, a resist 61 is applied on the conductive member 40, and the resist 61 is exposed and developed to leave a portion of the resist 61 that has the shape of the spiral contact 20 and the other portions of the resist 61. Remove. That is, the pattern 61a formed on the resist 61 is opposite to the resist 51 described in FIG. 6B, and the hatched portion in the left diagram of FIG. 6B is the portion of the pattern 61a formed on the resist 61. A portion is left as the resist 61.

次に前記パターン61a内に露出する導電性部材40aを例えばエッチングで除去すると、前記導電性部材40は前記基板60上にスパイラル接触子20の形状として残される。   Next, when the conductive member 40a exposed in the pattern 61a is removed by, for example, etching, the conductive member 40 is left on the substrate 60 as the shape of the spiral contact 20.

次に図8C工程では、各スパイラル接触子20のちょうど基部21となる間に設けられた基板60a部分を残して、それ以外の基板60の部分を例えばレーザなどを用いて除去する(矢印で示したのがレーザを意味する)。   Next, in the step of FIG. 8C, the portion of the substrate 60a provided between the spiral contacts 20 that is exactly the base 21 is left, and the other portions of the substrate 60 are removed using, for example, a laser (indicated by arrows). Means a laser).

図8Dに示すように、各スパイラル接触子20の基部21間が前記基板60aで繋がっているため、各スパイラル接触子20はばらばらにならず、前記基板60aは図6Eで説明したガイドフレーム45と同じ機能をするものとなっている。   As shown in FIG. 8D, since the bases 21 of the spiral contacts 20 are connected by the substrate 60a, the spiral contacts 20 are not separated, and the substrate 60a is connected to the guide frame 45 described in FIG. 6E. It has the same function.

図8E工程では、各スパイラル接触子の各ターン毎の接触子片20aや基部21の周辺に密着層70をメッキ形成する。スパイラル接触子20の周囲には電解メッキ法用のメッキ下地層を形成できないので、密着層70のメッキ形成には無電解メッキ法を用いる必要がある。無電解メッキ法は、別名、化学メッキ法とも呼ばれ、メッキ液の還元物質と金属イオンを反応させ、化学反応のみを利用して被メッキ物の表面に金属塩を析出してメッキする方法である。   In the step of FIG. 8E, the adhesion layer 70 is formed around the contact piece 20a and the base portion 21 for each turn of each spiral contact. Since the plating base layer for the electrolytic plating method cannot be formed around the spiral contact 20, it is necessary to use the electroless plating method for forming the adhesion layer 70. The electroless plating method, also called chemical plating method, is a method in which the reducing substance of the plating solution reacts with metal ions, and only the chemical reaction is used to deposit and deposit a metal salt on the surface of the object to be plated. is there.

無電解メッキのメッキ液組成を以下に示す。
NiSO・H0 0.1mol/l
NaHPO・6HO 0.2mol/l
Citric acid 0.5mol/l
(NHSO 0.5mol/l
The plating solution composition for electroless plating is shown below.
NiSO 4 · H 2 0 0.1 mol / l
NaH 2 PO 2 .6H 2 O 0.2 mol / l
Citric acid 0.5 mol / l
(NH 4 ) 2 SO 4 0.5 mol / l

なお、密着層70のメッキ成膜前に、無電解メッキの還元反応の触媒として働くPdを接触子片20aや基部21の周辺に付着させる。Pdの付着は、接触子片20aや基部21の周辺を塩化パラジウム水溶液または硫酸パラジウム水溶液に浸漬させて、Pdを析出させることによって行なう。Pdの付着工程の前に脱脂処理、エッチングによる表面処理などの前処理を行なうことが好ましい。   Note that Pd that acts as a catalyst for the electroless plating reduction reaction is adhered to the periphery of the contact piece 20a and the base 21 before the adhesion layer 70 is formed by plating. The adhesion of Pd is performed by immersing the periphery of the contact piece 20a and the base 21 in an aqueous palladium chloride solution or an aqueous palladium sulfate solution to precipitate Pd. It is preferable to perform a pretreatment such as a degreasing treatment or a surface treatment by etching before the Pd deposition step.

密着層70はCu、Ag、Au、Ru、Rh、Pd、Os、Ir、またはPtの内から選択された金属材料によって形成される。前記密着層70の膜厚は0.01μmから0.1μmの範囲であることが好ましい。   The adhesion layer 70 is formed of a metal material selected from Cu, Ag, Au, Ru, Rh, Pd, Os, Ir, or Pt. The thickness of the adhesion layer 70 is preferably in the range of 0.01 μm to 0.1 μm.

図8F工程では、無電解メッキ法を用いて、密着層70の上に補助弾性部材41をメッキ形成する。前記補助弾性部材41の膜厚は0.5μmから10μmである。   In the step of FIG. 8F, the auxiliary elastic member 41 is plated on the adhesion layer 70 using an electroless plating method. The auxiliary elastic member 41 has a film thickness of 0.5 μm to 10 μm.

コルソン合金のようにCu以外の元素Si、Niなどを含有しているCu合金を用いて、導電性部材40を形成すると導電性部材40の表面に元素SiやNiなどが現れて、導電性部材40表面の組成分布が不均一になる。この不均一な導電性部材40の表面に直接、NiあるいはNi−X(ただしXは、P、W、Mn、Ti、Beのうちいずれか1種以上)をメッキ、特に無電解メッキすると、前記補助弾性部材41の膜厚が不均一に形成されやすくなる。   When a conductive member 40 is formed using a Cu alloy containing elements Si, Ni, etc. other than Cu, such as a Corson alloy, element Si, Ni, etc. appear on the surface of the conductive member 40, and the conductive member 40 The composition distribution on the surface becomes non-uniform. When the surface of the non-uniform conductive member 40 is directly plated with Ni or Ni-X (where X is one or more of P, W, Mn, Ti, and Be), in particular, electroless plating, It becomes easy to form the film thickness of the auxiliary elastic member 41 non-uniformly.

図8Fに示されるように、補助弾性部材41を前記密着層70上にメッキ成膜すると、NiあるいはNi−X(ただしXは、P、W、Mn、Ti、Beのうちいずれか1種以上)によって形成される前記補助弾性部材41の膜厚を均一に成膜することが容易になる。この結果、各スパイラル接触子のばね物性を安定化できる。また、前記補助弾性部材41のメッキ密着性も向上する。   As shown in FIG. 8F, when the auxiliary elastic member 41 is plated on the adhesion layer 70, Ni or Ni-X (where X is one or more of P, W, Mn, Ti, and Be). ), It is easy to form the auxiliary elastic member 41 with a uniform film thickness. As a result, the spring physical property of each spiral contact can be stabilized. Also, the plating adhesion of the auxiliary elastic member 41 is improved.

この方法を用いれば、適切に前記導電性部材40の周囲を完全に補助弾性部材41によって覆うことが可能である。なお図8A工程で、補助弾性部材41の金属箔を用いてスパイラル接触子20を形成した場合、補助弾性部材41の表面に密着層70を無電解メッキ法によって成膜したのち、導電性部材40を無電解メッキ法によって密着層70上にメッキ形成する。   If this method is used, the periphery of the conductive member 40 can be appropriately covered with the auxiliary elastic member 41. 8A, when the spiral contact 20 is formed using the metal foil of the auxiliary elastic member 41, the conductive member 40 is formed after the adhesion layer 70 is formed on the surface of the auxiliary elastic member 41 by the electroless plating method. Is plated on the adhesion layer 70 by an electroless plating method.

特に、前記補助弾性部材41をNiPを用いて形成するときには、組成をNi100−x(ただし、xはat%で10≦x≦30)とすることが好ましい。 In particular, when the auxiliary elastic member 41 is formed using NiP, the composition is preferably Ni 100-x P x (where x is at% and 10 ≦ x ≦ 30).

補助弾性部材41に用いるNiP(ニッケルリン)合金中のリン濃度を10at%以上にすることによりニッケルの結晶析出を抑えて、ばね物性(機械強度)を向上させることができる。また、メッキ応力(特に圧縮応力)を抑えてメッキ欠陥の発生を抑制することができる。   By setting the phosphorus concentration in the NiP (nickel phosphorus) alloy used for the auxiliary elastic member 41 to 10 at% or more, nickel crystal precipitation can be suppressed and the spring physical properties (mechanical strength) can be improved. Moreover, it is possible to suppress the plating stress (particularly compressive stress) and suppress the occurrence of plating defects.

また、NiP(ニッケルリン)合金中のリン濃度が30at%より大きくなるとNiとPの各種金属間化合物が析出する。これらの金属間化合物は非常に硬く脆いためばね物性が劣化する。   Further, when the phosphorus concentration in the NiP (nickel phosphorus) alloy is higher than 30 at%, various intermetallic compounds of Ni and P are precipitated. Since these intermetallic compounds are very hard and brittle, the spring properties deteriorate.

NiP(ニッケルリン)合金中のリン濃度が10at%以上30at%以下であると非晶質の存在により、延性を保ちつつ目的のばね物性が得られる。目的のばね物性の具体例として引張り強度1000MPa以上という基準がある。   When the phosphorus concentration in the NiP (nickel phosphorus) alloy is 10 at% or more and 30 at% or less, the desired spring physical properties can be obtained while maintaining ductility due to the presence of amorphous. As a specific example of the desired spring physical property, there is a standard of tensile strength of 1000 MPa or more.

なお図9は、図6C工程で、例えば導電性部材40を電解メッキ法にてメッキ形成し、図6Dないし図6F工程を経た後、上記した無電解めっき法を用いて前記導電性部材40の周囲に密着層70及び前記補助弾性部材41をメッキ形成した場合である。   9C is a process of FIG. 6C. For example, the conductive member 40 is formed by electrolytic plating, and after the processes of FIGS. 6D to 6F, the conductive member 40 is formed by using the above-described electroless plating. This is a case where the adhesion layer 70 and the auxiliary elastic member 41 are formed around the periphery by plating.

なお図10は、図6C工程で、例えば導電性部材40を電解メッキ法にてメッキ形成し、図6Dないし図6F工程を経た後、上記した無電解めっき法を用いて前記導電性部材40の周囲に前記補助弾性部材41をメッキ形成した場合である。   Note that FIG. 10 is a process of FIG. 6C in which, for example, the conductive member 40 is formed by electrolytic plating, and after the processes of FIGS. 6D to 6F, the conductive member 40 is formed using the above-described electroless plating method. This is a case where the auxiliary elastic member 41 is plated around.

本発明では、上記のような製造方法を用いてスパイラル接触子20を形成した後、図11工程を施す。図11工程で用いられるスパイラル接触子20を接合するための基台11は図5で説明したものと同じものである。   In the present invention, the spiral contact 20 is formed using the manufacturing method as described above, and then the step of FIG. 11 is performed. The base 11 for joining the spiral contact 20 used in the step of FIG. 11 is the same as that described in FIG.

図11A工程では、ちょうどスパイラル接触子20と対面する位置に凹部11aが形成され、さらにその凹部11aの内壁面11a1が例えばメッキなどされ、且つ前記スパイラル接触子20の基部21が対向する、前記凹部11aの上方の周縁部、及び隣り合う周縁部間に異方性導電接着剤46が塗布された基台11を用い、この基台11に前記スパイラル接触子20の基部21を前記異方性導電接着剤46を介して接着固定する。   In the step of FIG. 11A, the concave portion 11a is formed just at the position facing the spiral contact 20, and the inner wall surface 11a1 of the concave portion 11a is plated, for example, and the base 21 of the spiral contact 20 faces the concave portion. The base 11 on which the anisotropic conductive adhesive 46 is applied between the peripheral edge above 11 a and the adjacent peripheral edge is used, and the base 21 of the spiral contact 20 is connected to the anisotropic conductive material on the base 11. Adhesion is fixed through an adhesive 46.

図11B工程では、ちょうど凹部11a内に下方から突出調整部材70を通し、各スパイラル接触子20の各ターン毎の接触子片20aを上方に突き出す。このとき、内側にある前記接触子片20aほど外側にある接触子片20aよりも上方に突き出すように調整する(なお図11Bや図11Cで示す点線は、複数ある各接触子片20aが前記点線に沿った並んでいることを示すものである)。   In the step of FIG. 11B, the protrusion adjusting member 70 is passed through the recess 11a from the bottom, and the contact piece 20a for each turn of each spiral contact 20 is protruded upward. At this time, the contact piece 20a on the inner side is adjusted so as to protrude above the contact piece 20a on the outer side (note that the dotted lines shown in FIG. 11B and FIG. Is lined up along the line).

図11B工程まで施された基台11を2つ作り、図11C工程で各基台11の底面11bどうしを前記異方性導電接着剤19を用いて貼り合わせ接着固定すると、図5に示す構造の接続装置が完成する。   When two bases 11 that have been subjected to the process of FIG. 11B are made, and the bottom surfaces 11b of the bases 11 are bonded and fixed together using the anisotropic conductive adhesive 19 in the process of FIG. 11C, the structure shown in FIG. The connecting device is completed.

本発明におけるスパイラル接触子20の製造方法を用いれば、接続装置の小型化においても、非常に簡単な方法で小型化とともに導電性及びばね性に優れたスパイラル接触子20を製造できる。   If the manufacturing method of the spiral contactor 20 in the present invention is used, the spiral contactor 20 excellent in conductivity and spring property can be manufactured in a very simple method even when the connecting device is downsized.

電子部品の動作を確認するための試験に用いられる検査装置を示す斜視図、The perspective view which shows the test | inspection apparatus used for the test for confirming operation | movement of an electronic component, 図1の2−2線における断面図を示し、電子部品が装着された状態の断面図、1 is a cross-sectional view taken along line 2-2 of FIG. 本発明におけるスパイラル接触子の形状を示す拡大斜視図、An enlarged perspective view showing the shape of the spiral contact in the present invention, 図4A、図4B、図4Cは、それぞれ本発明におけるスパイラル接触子を構成する各ターン毎の接触子片を幅方向と平行な方向から膜厚方向に切断したときの断面図、4A, 4B, and 4C are cross-sectional views when the contact piece for each turn constituting the spiral contact in the present invention is cut in the film thickness direction from the direction parallel to the width direction, 基台の上下面にスパイラル接触子が設けられた構造を示す部分断面図、Partial sectional view showing a structure in which spiral contacts are provided on the upper and lower surfaces of the base, 図6Aないし図6Eは、本発明における第1の製造方法を示すための各工程図、6A to 6E are process diagrams for illustrating a first manufacturing method according to the present invention, 図7Aないし図7Eは、本発明における第2の製造方法を示すための各工程図、7A to 7E are process diagrams for showing a second manufacturing method according to the present invention, 図8Aないし図8Fは、本発明における第3の製造方法を示すための各工程図、8A to 8F are process diagrams for showing a third manufacturing method according to the present invention, 図6Fの工程後、無電解メッキ法で密着層、補助弾性部材のメッキ形成を施した場合の工程図、FIG. 6F is a process diagram in the case where the adhesion layer and the auxiliary elastic member are plated by the electroless plating method after the process of FIG. 6F; 図6Fの工程後、無電解メッキ法で補助弾性部材のメッキ形成を施した場合の工程図、FIG. 6F is a process diagram when the auxiliary elastic member is plated by an electroless plating method after the process of FIG. 6F; 図11Aないし図11Cは、図6ないし図8に示す工程後に行われる工程図、11A to 11C are process diagrams performed after the processes shown in FIGS. 6 to 8;

符号の説明Explanation of symbols

1 電子部品
1a 球状接触子(外部接続部)
10 接続装置
11 基台
19、46 異方性導電接着剤
20 スパイラル接触子
20a 接触子片
21 基部
22 巻き始端
23 巻き終端
40 導電性部材
41 補助弾性部材
42 被膜部材
45 ガイドフレーム
50、60 基板
51、61 レジスト
1 Electronic component 1a Spherical contact (external connection)
DESCRIPTION OF SYMBOLS 10 Connection apparatus 11 Base 19, 46 Anisotropic conductive adhesive 20 Spiral contact 20a Contact piece 21 Base 22 Winding end 23 Winding end 40 Conductive member 41 Auxiliary elastic member 42 Coating member 45 Guide frame 50, 60 Substrate 51 61 resist

Claims (9)

基台と、前記基台に渦巻き状に形成された複数のスパイラル接触子とを有し、電子部品の複数の外部接続部が、前記各スパイラル接触子にそれぞれ接触する接続装置の製造方法において、
複数の前記スパイラル接触子を導電性部材と補助弾性部材とを重ねてメッキ形成し、このとき、前記導電性部材には前記補助弾性部材よりも比抵抗が低く、前記補助弾性部材には前記導電性部材よりも降伏点及び弾性係数が高い材料をそれぞれ選択することを特徴とする接続装置の製造方法。
In a manufacturing method of a connection device having a base and a plurality of spiral contacts formed in a spiral shape on the base, and a plurality of external connection portions of an electronic component contacting each of the spiral contacts,
The plurality of spiral contacts are plated by overlapping a conductive member and an auxiliary elastic member. At this time, the conductive member has a specific resistance lower than that of the auxiliary elastic member, and the auxiliary elastic member has the conductive material. A method for manufacturing a connection device, wherein a material having a yield point and an elastic modulus higher than that of the elastic member is selected.
導電性部材あるいは補助弾性部材のどちらか一方を金属箔からスパイラル形状に形成した後、補助弾性部材あるいは導電性部材を重ねてメッキ形成する請求項1記載の接続装置の製造方法。   2. The method of manufacturing a connection device according to claim 1, wherein either one of the conductive member and the auxiliary elastic member is formed in a spiral shape from a metal foil, and then the auxiliary elastic member or the conductive member is formed by plating. 導電性部材あるいは補助弾性部材のどちらか一方をスパイラル形状に形成した後、その周囲を補助弾性部材あるいは導電性部材で無電解メッキ法によりメッキして覆う請求項1記載の接続装置の製造方法。   2. The method of manufacturing a connection device according to claim 1, wherein after either one of the conductive member and the auxiliary elastic member is formed in a spiral shape, the periphery thereof is covered with an auxiliary elastic member or a conductive member by electroless plating. 前記補助弾性部材を、NiあるいはNi−X(ただしXは、P、W、Mn、Ti、Beのうちいずれか1種以上)で形成する請求項1ないし3のいずれかに記載の接続装置の製造方法。   4. The connection device according to claim 1, wherein the auxiliary elastic member is formed of Ni or Ni—X (where X is one or more of P, W, Mn, Ti, and Be). Production method. 前記補助弾性部材をNi100−xによって形成する請求項4記載の接続装置の製造方法、
ただし、xはat%で10≦x≦30である。
The method for manufacturing a connection device according to claim 4, wherein the auxiliary elastic member is formed of Ni 100-x P x .
However, x is at% and is 10 ≦ x ≦ 30.
前記導電性部材を、Cu、Au、Ag、またはPdあるいはCu合金のいずれかで形成する請求項1ないし5のいずれかに記載の接続装置の製造方法。   6. The method of manufacturing a connection device according to claim 1, wherein the conductive member is formed of Cu, Au, Ag, Pd, or a Cu alloy. Cu合金としてCu、Si、Niを有するコルソン合金を用いる請求項6に記載の接続装置の製造方法。   The manufacturing method of the connection apparatus of Claim 6 using the Corson alloy which has Cu, Si, and Ni as Cu alloy. Cu合金で形成された前記導電性部材と、NiあるいはNi−X(ただしXは、P、W、Mn、Ti、Beのうちいずれか1種以上)で形成された補助弾性層の間に、Cu、Ag、Au、Ru、Rh、Pd、Os、Ir、またはPtの内から選択された金属材料からなる密着層を形成する請求項1ないし7のいずれかに記載の接続装置の製造方法。   Between the conductive member formed of a Cu alloy and an auxiliary elastic layer formed of Ni or Ni-X (where X is one or more of P, W, Mn, Ti, and Be), The method for manufacturing a connection device according to claim 1, wherein an adhesion layer made of a metal material selected from Cu, Ag, Au, Ru, Rh, Pd, Os, Ir, or Pt is formed. 前記密着層の膜厚を、0.01μmから0.1μmの範囲で形成する請求項8記載の接続装置の製造方法。   The method for manufacturing a connection device according to claim 8, wherein the thickness of the adhesion layer is in the range of 0.01 μm to 0.1 μm.
JP2005213229A 2003-06-20 2005-07-22 Method for manufacturing connecting unit Withdrawn JP2005332830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213229A JP2005332830A (en) 2003-06-20 2005-07-22 Method for manufacturing connecting unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003175650 2003-06-20
JP2005213229A JP2005332830A (en) 2003-06-20 2005-07-22 Method for manufacturing connecting unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004149846A Division JP3795898B2 (en) 2003-06-20 2004-05-20 Connected device

Publications (1)

Publication Number Publication Date
JP2005332830A true JP2005332830A (en) 2005-12-02

Family

ID=35487287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213229A Withdrawn JP2005332830A (en) 2003-06-20 2005-07-22 Method for manufacturing connecting unit

Country Status (1)

Country Link
JP (1) JP2005332830A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039502A (en) * 2006-08-03 2008-02-21 Alps Electric Co Ltd Contact and its manufacturing method
EP3557266A4 (en) * 2016-12-16 2020-08-19 Nidec-Read Corporation Contact probe and electrical connection jig
US10782317B2 (en) 2017-05-25 2020-09-22 Nidec-Read Corporation Contact probe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039502A (en) * 2006-08-03 2008-02-21 Alps Electric Co Ltd Contact and its manufacturing method
EP3557266A4 (en) * 2016-12-16 2020-08-19 Nidec-Read Corporation Contact probe and electrical connection jig
US11415599B2 (en) 2016-12-16 2022-08-16 Nidec Read Corporation Contact probe and electrical connection jig
US10782317B2 (en) 2017-05-25 2020-09-22 Nidec-Read Corporation Contact probe

Similar Documents

Publication Publication Date Title
JP3795898B2 (en) Connected device
JP2005032708A5 (en)
US20040161626A1 (en) Tape substrate and method for fabricating the same
US20060118940A1 (en) Semiconductor device and method of fabricating the same
JP2009010268A (en) Planal coil and manufacturing method therefor
JP3837434B2 (en) Connected device
US8784118B2 (en) Connection terminal structure, method for manufacturing connection terminal structure, and connection terminal structure substrate
JP2005332830A (en) Method for manufacturing connecting unit
TWI312650B (en) Method for producing multilayer printed wiring board, multilayer printed wiring board, and electronic device
JP2021136308A (en) Inductor component, resin sealing body, and substrate structure
JP2000091048A (en) Continuity auxiliary material and manufacture thereof
TWI272044B (en) Electric contact structure body and method for preparing same
JP4286965B2 (en) Wiring member manufacturing method
JP2002198635A (en) Wiring board and its manufacturing method
JP2005187921A (en) Electromolding substrate, manufacturing method therefor and method for manufacturing plated layer
JP2009177071A (en) Polyimide film circuit board and method of manufacturing the same
JP4113091B2 (en) Manufacturing method of connection device
JP4184540B2 (en) Wiring board and manufacturing method thereof
TWI820939B (en) Circuit board and method of fabricating the same
KR100658974B1 (en) Pcb and manufacturing method thereof
CN110178181B (en) Wired circuit board and method for manufacturing same
JP2003023236A (en) Wiring board and its manufacturing method
JP2005163076A (en) Method of producing plated layer, and method of producing connection device using the method of producing plated layer
JP2005114522A (en) Manufacturing method of connection device
TWI231025B (en) Method for plating metal layer over pads on substrate for semiconductor package

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807