JP4637009B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4637009B2
JP4637009B2 JP2005348930A JP2005348930A JP4637009B2 JP 4637009 B2 JP4637009 B2 JP 4637009B2 JP 2005348930 A JP2005348930 A JP 2005348930A JP 2005348930 A JP2005348930 A JP 2005348930A JP 4637009 B2 JP4637009 B2 JP 4637009B2
Authority
JP
Japan
Prior art keywords
layer
gaas substrate
film
manufacturing
nigaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005348930A
Other languages
Japanese (ja)
Other versions
JP2007157883A (en
Inventor
弘一郎 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005348930A priority Critical patent/JP4637009B2/en
Publication of JP2007157883A publication Critical patent/JP2007157883A/en
Application granted granted Critical
Publication of JP4637009B2 publication Critical patent/JP4637009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は半導体装置およびその製造方法に関し、特に、GaAs基板に金属メッキ層を形成する半導体装置、およびその製造方法に関するものである。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device in which a metal plating layer is formed on a GaAs substrate and a manufacturing method thereof.

GaAs基板を用いた半導体装置において、ビアホールを用いた配線構造、すなわち基板を貫通するビアホールを形成し、基板の表面側と裏面側とを導通させる配線構造が広く用いられている。ビアホールの内面にAu層などの金属メッキ層を形成する工程では、NiP膜をメッキ給電層として用いる方法が用いられている。この方法により形成した金属メッキ層は、Ti膜などをメッキ給電層として形成した場合と比較して、ビアホール内へのカバレッジが優れている(例えば、特許文献1参照)。   In a semiconductor device using a GaAs substrate, a wiring structure using a via hole, that is, a wiring structure in which a via hole penetrating the substrate is formed and the front surface side and the back surface side of the substrate are electrically connected is widely used. In the step of forming a metal plating layer such as an Au layer on the inner surface of the via hole, a method using a NiP film as a plating power feeding layer is used. The metal plating layer formed by this method has excellent coverage in the via hole as compared with the case where a Ti film or the like is formed as a plating power feeding layer (see, for example, Patent Document 1).

特開平7−193214号公報JP-A-7-193214

上記従来の半導体装置の製造方法において、NiP膜をメッキ給電層として用いた場合、NiP膜のGaAs基板への付着力は十分ではなかった。このため、GaAs基板上に、膜厚ばらつきの小さい金属メッキ層を形成することが困難であった。   In the conventional method for manufacturing a semiconductor device, when a NiP film is used as a plating power feeding layer, the adhesion force of the NiP film to the GaAs substrate is not sufficient. For this reason, it has been difficult to form a metal plating layer with small film thickness variation on the GaAs substrate.

本発明は上記課題を解決するためになされたもので、メッキ給電層のGaAs基板への付着力を高くすることにより、GaAs基板上に、膜厚ばらつきの小さい金属メッキ層を形成できる半導体装置、およびその製造方法を提供することを目的とする。   The present invention has been made to solve the above problems, and by increasing the adhesion of the plating power feeding layer to the GaAs substrate, a semiconductor device capable of forming a metal plating layer with a small variation in film thickness on the GaAs substrate, And it aims at providing the manufacturing method.

また、本発明に係る半導体装置の製造方法は、GaAs基板を貫通するビアホール内にNiを含む層を形成する工程と、前記Niを前記GaAs基板に拡散させ、前記GaAs基板と前記メッキ給電層との間にNiGaAs層を形成する工程と、前記NiGaAs層を形成した後に、前記Niを含む層を給電層として用いて、前記ビアホール内に前記Niを含む層を覆うように金属メッキ層を形成する工程と、を有することを特徴とする。その他の特徴については、以下において詳細に説明する。 The method of manufacturing a semiconductor device according to the present invention includes a step of forming a layer containing Ni in a via hole penetrating a GaAs substrate, diffusing the Ni into the GaAs substrate, and the GaAs substrate, the plated power supply layer, A step of forming a NiGaAs layer, and after forming the NiGaAs layer, a metal plating layer is formed so as to cover the Ni-containing layer in the via hole using the Ni-containing layer as a power feeding layer And a process . Other features will be described in detail below.

本発明によれば、メッキ給電層のGaAs基板への付着力を高くすることにより、GaAs基板上に、膜厚ばらつきの小さい金属メッキ層を形成できる半導体装置、およびその製造方法を得ることができる。   According to the present invention, it is possible to obtain a semiconductor device capable of forming a metal plating layer having a small film thickness variation on a GaAs substrate by increasing the adhesion of the plating power feeding layer to the GaAs substrate, and a method for manufacturing the same. .

以下、図面を参照しながら本発明の実施の形態について説明する。なお、各図において同一または相当する部分には同一符号を付して、その説明を簡略化ないし省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is simplified or omitted.

実施の形態
本発明に係る半導体装置は、GaAs基板を用いて形成される。以下、この半導体装置の製造方法について説明する。まず、図示しないが、GaAs基板の主面(表面)に、トランジスタなどの素子を形成する。次に、図1に示すように、GaAs基板1の表面側(以下の製造方法の説明図では、GaAs基板1の表面側を下向きに示す)に、ビアホール受けメタル2を形成する。
Embodiment A semiconductor device according to the present invention is formed using a GaAs substrate. Hereinafter, a method for manufacturing this semiconductor device will be described. First, although not shown, an element such as a transistor is formed on the main surface (front surface) of the GaAs substrate. Next, as shown in FIG. 1, a via hole receiving metal 2 is formed on the surface side of the GaAs substrate 1 (in the following explanation of the manufacturing method, the surface side of the GaAs substrate 1 is shown downward).

次に、GaAs基板1の裏面側を削り、基板の厚さを50〜200μm程度にする。次に、ビアホール受けメタル2をストッパーとして、GaAs基板1の裏面側を選択的にエッチングする。この結果、図2に示すように、GaAs基板1を貫通するビアホール3が形成される。ビアホールの3のホール径は30〜100μm程度である。上記エッチングは、例えば、ICP−RIE(Inductively Coupled Plasma-Reacitve Ion Etching)装置などを用いて行う。   Next, the back side of the GaAs substrate 1 is shaved so that the thickness of the substrate is about 50 to 200 μm. Next, the back side of the GaAs substrate 1 is selectively etched using the via hole receiving metal 2 as a stopper. As a result, as shown in FIG. 2, a via hole 3 penetrating the GaAs substrate 1 is formed. The diameter of the via hole 3 is about 30 to 100 μm. The etching is performed using, for example, an ICP-RIE (Inductively Coupled Plasma-Reacitve Ion Etching) apparatus.

次に、無電解メッキ法を用いて、GaAs基板1の裏面側に、全面にNiP膜を300nm程度の厚さで形成する。この結果、図3に示すように、ビアホール3の内面およびGaAs基板1の裏面側に、NiP膜4が形成される。この膜は、後の工程で、ビアホール3の内部およびGaAs基板1の裏面に金属メッキ層を形成する際に、メッキ給電層として用いられる膜である。また、NiP膜4に含まれるP(リン)の濃度は、6〜15wt%(重量%)程度である。このPの濃度が低いと、この後形成されるNiGaAs層が厚くなり、基板の反り量が大きくなる。Pの濃度が高いと、NiP膜の付着力が悪くなる。   Next, a NiP film having a thickness of about 300 nm is formed on the entire back surface of the GaAs substrate 1 by using an electroless plating method. As a result, a NiP film 4 is formed on the inner surface of the via hole 3 and the back surface side of the GaAs substrate 1 as shown in FIG. This film is a film used as a plating power supply layer when a metal plating layer is formed in the inside of the via hole 3 and the back surface of the GaAs substrate 1 in a later step. Further, the concentration of P (phosphorus) contained in the NiP film 4 is about 6 to 15 wt% (weight%). If the concentration of P is low, the NiGaAs layer to be formed later becomes thick and the amount of warpage of the substrate increases. When the concentration of P is high, the adhesion of the NiP film is deteriorated.

次に、NiP膜4を窒素などの雰囲気中で、200〜300℃の温度で10分間熱処理する。この結果、図4に示すように、NiP膜4に含まれるNiがGaAs基板1側に拡散し、GaAs基板1とNiP膜4との界面に、NiGaAs層5が形成される。上記熱処理でNiGaAs層5が形成されたことにより、NiP膜4のGaAs基板1への付着力を飛躍的に向上させることができる。また、上記熱処理を行う前は、NiP膜4の全体または一部は非晶質である。上記熱処理後は、NiP膜4の非晶質部分が結晶化され、安定した膜とすることができる。   Next, the NiP film 4 is heat-treated at a temperature of 200 to 300 ° C. for 10 minutes in an atmosphere such as nitrogen. As a result, as shown in FIG. 4, Ni contained in the NiP film 4 diffuses toward the GaAs substrate 1, and a NiGaAs layer 5 is formed at the interface between the GaAs substrate 1 and the NiP film 4. Since the NiGaAs layer 5 is formed by the heat treatment, the adhesion of the NiP film 4 to the GaAs substrate 1 can be dramatically improved. In addition, before or after the above heat treatment, the whole or part of the NiP film 4 is amorphous. After the heat treatment, the amorphous part of the NiP film 4 is crystallized, and a stable film can be obtained.

次に、GaAs基板1の裏面側に、置換金メッキ法により、全面にAu膜を50nm程度形成する。さらに、電解メッキ法により、Au膜を必要な膜厚だけ形成する。このとき、NiP膜4は、Au膜を形成する際のメッキ給電層となっている。この結果、図5に示すように、ビアホール3の内面およびGaAs基板1の裏面側に、NiP膜4を覆うように、Auメッキ層6が形成される。   Next, an Au film having a thickness of about 50 nm is formed on the entire surface of the back surface of the GaAs substrate 1 by substitution gold plating. Further, an Au film is formed in a required thickness by electrolytic plating. At this time, the NiP film 4 serves as a plating power supply layer when forming the Au film. As a result, as shown in FIG. 5, an Au plating layer 6 is formed on the inner surface of the via hole 3 and the back surface side of the GaAs substrate 1 so as to cover the NiP film 4.

以上のようにして、図5に示すように、GaAs基板1にビアホール3が形成され、その内面およびGaAs基板1の裏面にNiGaAs層5、NiP層4、Auメッキ層6を積層した構造を得ることができる。なお、上述した製造方法では、GaAs基板1の裏面側にビアホール3を形成するようにしたが、ビアホール3を形成しない構造であっても良い。また、上記積層構造は、GaAs基板1の表面側に形成されたものであっても良い。すなわち、GaAs基板基板1の表面または裏面のいずれかの面にNiGaAs層5、NiP層4、Auメッキ層6を順次形成した構造であっても良い。   As described above, a via hole 3 is formed in the GaAs substrate 1 as shown in FIG. 5, and a structure in which the NiGaAs layer 5, NiP layer 4, and Au plating layer 6 are laminated on the inner surface and the back surface of the GaAs substrate 1 is obtained. be able to. In the manufacturing method described above, the via hole 3 is formed on the back surface side of the GaAs substrate 1, but a structure in which the via hole 3 is not formed may be used. Further, the laminated structure may be formed on the surface side of the GaAs substrate 1. That is, a structure in which the NiGaAs layer 5, the NiP layer 4, and the Au plating layer 6 are sequentially formed on either the front surface or the back surface of the GaAs substrate substrate 1 may be employed.

上記製造方法では、GaAs基板1上にNiP膜4を形成し、熱処理を行うことにより、GaAs基板1とNiP膜4との界面にNiGaAs層5が形成される(図4参照)。ここで、NiGaAs層5の膜厚と、上記熱処理の熱処理温度との関係について説明する。図6は、GaAs基板上に無電解メッキ法により250nm程度のNiP膜を形成し、熱処理を行った後の、NiP膜とNiGaAs層の膜厚を示したものである。熱処理温度が150〜250℃のとき、NiP膜の膜厚は150〜200nm程度まで減少し、NiGaAs層の厚さは、150〜200nmとなっている。従って、上記温度の熱処理を行うことにより、NiP膜に含まれるNiがGaAs基板側に拡散し、GaAs基板とNiP膜との界面に、150〜200nm程度のNiGaAs層が形成されると考えられる。   In the above manufacturing method, the NiP film 4 is formed on the GaAs substrate 1 and subjected to heat treatment, whereby the NiGaAs layer 5 is formed at the interface between the GaAs substrate 1 and the NiP film 4 (see FIG. 4). Here, the relationship between the film thickness of the NiGaAs layer 5 and the heat treatment temperature of the heat treatment will be described. FIG. 6 shows the thickness of the NiP film and the NiGaAs layer after forming a NiP film of about 250 nm on the GaAs substrate by electroless plating and performing heat treatment. When the heat treatment temperature is 150 to 250 ° C., the thickness of the NiP film is reduced to about 150 to 200 nm, and the thickness of the NiGaAs layer is 150 to 200 nm. Therefore, by performing the heat treatment at the above temperature, Ni contained in the NiP film is diffused to the GaAs substrate side, and a NiGaAs layer of about 150 to 200 nm is formed at the interface between the GaAs substrate and the NiP film.

上述したNiGaAs層がGaAs基板とNiP膜との間に形成されたことにより、NiGaAs層を形成しない場合と比較して、NiP膜のGaAs基板への付着力を飛躍的に向上させることができる。従って、NiP膜をメッキ給電層としてAuメッキ層を形成する場合、GaAs基板上に、膜厚ばらつきが小さく強度の安定した金属メッキ層を形成することができる。   Since the above-described NiGaAs layer is formed between the GaAs substrate and the NiP film, the adhesion of the NiP film to the GaAs substrate can be dramatically improved as compared with the case where the NiGaAs layer is not formed. Therefore, when an Au plating layer is formed using a NiP film as a plating power supply layer, a metal plating layer having a small thickness variation and a stable strength can be formed on the GaAs substrate.

次に、NiP膜の膜厚に対するNiGaAs層の膜厚比と、GaAs基板の反り量との関係を図7に示す。GaAs基板の反り量は、上記膜厚比を大きくすると大きくなる。これは、上記膜厚比を大きくするとGaAs基板に与えられるストレスが大きくなるためと考えられる。GaAs基板の反り量が大きくなると、電気測定やアセンブリ工程に支障をきたす。このため、GaAs基板の反り量は、所定量以下とする必要がある。   Next, FIG. 7 shows the relationship between the thickness ratio of the NiGaAs layer to the thickness of the NiP film and the amount of warpage of the GaAs substrate. The amount of warpage of the GaAs substrate increases as the film thickness ratio is increased. This is presumably because an increase in the film thickness ratio increases the stress applied to the GaAs substrate. If the amount of warpage of the GaAs substrate increases, it will hinder electrical measurement and assembly processes. For this reason, the amount of warpage of the GaAs substrate needs to be a predetermined amount or less.

電気測定やアセンブリ工程に影響しないGaAs基板の反り量が3.0以下のとき、上記膜厚比は1.5未満とすることが必要である。つまり、上述した製造方法において、NiP膜に対するNiGaAs層の膜厚比を1.5未満とすることにより、NiP膜のGaAs基板への付着力を向上させ、かつ、電気測定やアセンブリ工程に支障をきたさないメッキ給電層(NiP膜)を形成することができる。   When the amount of warpage of the GaAs substrate that does not affect the electrical measurement or assembly process is 3.0 or less, the film thickness ratio needs to be less than 1.5. In other words, in the manufacturing method described above, by setting the thickness ratio of the NiGaAs layer to the NiP film to be less than 1.5, the adhesion force of the NiP film to the GaAs substrate is improved, and the electrical measurement and assembly processes are hindered. A plating power feeding layer (NiP film) that does not come into contact can be formed.

次に、GaAs基板上に形成するNiP膜のリン濃度(重量%)をパラメータとして、NiP膜を250℃で熱処理した後の、NiP膜の膜厚に対するNiGaAs層の膜厚比を図8に示す。リン濃度の増加に伴い膜厚比は減少し、リン濃度が6%(重量%)以上のとき、膜厚比は1.5未満となる。従って、上述した製造方法において、NiP膜に含まれるリン濃度(重量%)を6%以上とすることにより、NiP膜のGaAs基板への付着力を向上させ、かつ、電気測定やアセンブリ工程に支障をきたさないメッキ給電層(NiP膜)を形成することができる。   Next, FIG. 8 shows the thickness ratio of the NiGaAs layer to the thickness of the NiP film after heat-treating the NiP film at 250 ° C. using the phosphorus concentration (% by weight) of the NiP film formed on the GaAs substrate as a parameter. . As the phosphorus concentration increases, the film thickness ratio decreases. When the phosphorus concentration is 6% (weight%) or more, the film thickness ratio is less than 1.5. Therefore, in the manufacturing method described above, by setting the phosphorus concentration (wt%) in the NiP film to 6% or more, the adhesion of the NiP film to the GaAs substrate is improved, and the electrical measurement and assembly processes are hindered. It is possible to form a plated power feeding layer (NiP film) that does not cause damage.

上述した半導体装置の構造および製造方法では、Auメッキ層のメッキ給電層として、NiP膜を形成する例を示した。しかし、NiP膜に置き換えて、NiB膜などのNi系の無電解メッキ層を形成しても、同様の効果を得ることができる。   In the structure and the manufacturing method of the semiconductor device described above, the example in which the NiP film is formed as the plating power feeding layer of the Au plating layer has been shown. However, the same effect can be obtained by replacing the NiP film with a Ni-based electroless plating layer such as a NiB film.

半導体装置の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of a semiconductor device. 半導体装置の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of a semiconductor device. 半導体装置の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of a semiconductor device. 半導体装置の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of a semiconductor device. 半導体装置の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of a semiconductor device. NiP膜の熱処理後のNiP膜、NiGaAs層の膜厚を示す図。The figure which shows the film thickness of the NiP film | membrane and NiGaAs layer after heat processing of a NiP film | membrane. GaAs基板の反り量とNiGaAs層/NiP膜の膜厚比との関係を示す図。The figure which shows the relationship between the curvature amount of a GaAs substrate, and the film thickness ratio of a NiGaAs layer / NiP film | membrane. NiGaAs層/NiP膜の膜厚比とNiP膜のリン濃度との関係を示す図。The figure which shows the relationship between the film thickness ratio of a NiGaAs layer / NiP film | membrane, and the phosphorus concentration of a NiP film | membrane.

符号の説明Explanation of symbols

1 GaAs基板、2 ビアホール受けメタル、3 ビアホール、4 NiP膜、5 NiGaAs層、6 Auメッキ層。   1 GaAs substrate, 2 via hole receiving metal, 3 via hole, 4 NiP film, 5 NiGaAs layer, 6 Au plating layer.

Claims (4)

GaAs基板を貫通するビアホール内にNiを含む層を形成する工程と、  Forming a layer containing Ni in a via hole penetrating the GaAs substrate;
前記Niを前記GaAs基板に拡散させ、前記GaAs基板と前記Niを含む層との間にNiGaAs層を形成する工程と、  Diffusing the Ni into the GaAs substrate and forming a NiGaAs layer between the GaAs substrate and the Ni-containing layer;
前記NiGaAs層を形成した後に、前記Niを含む層を給電層として用いて、前記ビアホール内に前記Niを含む層を覆うように金属メッキ層を形成する工程と、  Forming a metal plating layer so as to cover the Ni-containing layer in the via hole using the Ni-containing layer as a power feeding layer after forming the NiGaAs layer;
を有することを特徴とする半導体装置の製造方法。A method for manufacturing a semiconductor device, comprising:
前記NiGaAs層を形成する際に、150〜250℃の熱処理を行うことを特徴とする請求項1に記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, wherein a heat treatment at 150 to 250 [deg.] C. is performed when forming the NiGaAs layer. 前記Niを含む層に対する前記NiGaAs層の膜厚比は、1.5未満であることを特徴とする請求項1又は2に記載の半導体装置の製造方法。  The method of manufacturing a semiconductor device according to claim 1, wherein a film thickness ratio of the NiGaAs layer to the Ni-containing layer is less than 1.5. 前記Niを含む層はNiP膜であり、この膜に含まれるリンの含有率は、6wt%以上であることを特徴とする請求項1〜3の何れか1項に記載の半導体装置の製造方法。  4. The method of manufacturing a semiconductor device according to claim 1, wherein the Ni-containing layer is a NiP film, and a phosphorus content in the film is 6 wt% or more. 5. .
JP2005348930A 2005-12-02 2005-12-02 Manufacturing method of semiconductor device Active JP4637009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005348930A JP4637009B2 (en) 2005-12-02 2005-12-02 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005348930A JP4637009B2 (en) 2005-12-02 2005-12-02 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2007157883A JP2007157883A (en) 2007-06-21
JP4637009B2 true JP4637009B2 (en) 2011-02-23

Family

ID=38241878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005348930A Active JP4637009B2 (en) 2005-12-02 2005-12-02 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4637009B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5532743B2 (en) 2009-08-20 2014-06-25 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP5725073B2 (en) 2012-10-30 2015-05-27 三菱電機株式会社 Semiconductor device manufacturing method, semiconductor device
WO2023079631A1 (en) * 2021-11-04 2023-05-11 三菱電機株式会社 Semiconductor device, and manufacturing method for same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361274A (en) * 1976-11-12 1978-06-01 Mitsubishi Electric Corp Production of high frequency semiconductor devce
JPH02341A (en) * 1987-02-02 1990-01-05 Seiko Epson Corp Semiconductor device
JPH0399470A (en) * 1989-09-12 1991-04-24 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH07193214A (en) * 1993-12-27 1995-07-28 Mitsubishi Electric Corp Via-hole and its formation
JPH0897236A (en) * 1994-09-27 1996-04-12 Mitsubishi Electric Corp Electrode of semiconductor device and its manufacture
JP2002190477A (en) * 2000-12-22 2002-07-05 Matsushita Electric Ind Co Ltd Semiconductor device and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361274A (en) * 1976-11-12 1978-06-01 Mitsubishi Electric Corp Production of high frequency semiconductor devce
JPH02341A (en) * 1987-02-02 1990-01-05 Seiko Epson Corp Semiconductor device
JPH0399470A (en) * 1989-09-12 1991-04-24 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH07193214A (en) * 1993-12-27 1995-07-28 Mitsubishi Electric Corp Via-hole and its formation
JPH0897236A (en) * 1994-09-27 1996-04-12 Mitsubishi Electric Corp Electrode of semiconductor device and its manufacture
JP2002190477A (en) * 2000-12-22 2002-07-05 Matsushita Electric Ind Co Ltd Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2007157883A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
KR101641993B1 (en) Metal bump structure for use in driver ic and method for forming the same
KR100237940B1 (en) A semiconductor device, a method for manufacturing thereof, and a lead made of copper
TW200525669A (en) Semiconductor device and method of fabricating the same
JPH10200161A (en) Contact electrode on n-type gallium arsenide semiconductor and fabrication thereof
WO2006004929A3 (en) Electrochemical deposition method utilizing microdroplets of solution
KR20160025568A (en) Formation of metal structures in solar cells
US20100219535A1 (en) Method for producing a semiconductor component
JP4637009B2 (en) Manufacturing method of semiconductor device
US10304730B2 (en) Semiconductor device having a Pd-containing adhesion layer
JP2005311353A (en) Lead frame and manufacturing method therefor
JP5663886B2 (en) Manufacturing method of semiconductor device
US20090108474A1 (en) Junction structure and method of manufacturing the same
US7078329B2 (en) Method of manufacturing silicon carbide semiconductor device
JP2015130268A (en) Terminal connection structure, and semiconductor device
US20100224994A1 (en) Low Temperature Metal to Silicon Diffusion and Silicide Wafer Bonding
JP2005033130A (en) Semiconductor device
CN211879377U (en) Device with a metal layer
TW201108362A (en) Semiconductor device and method for manufacturing the same
EP0127089A1 (en) Semiconductor device having first and second electrodes and method of producing the same
JP2013012727A (en) Printed circuit board and method for manufacturing the same
US10658272B2 (en) Method for manufacturing semiconductor device
EP2913846A1 (en) Electrode provided with UBM structure and method for producing same
US7329589B2 (en) Method for manufacturing silicon-on-insulator wafer
JPH10302865A (en) Manufacture of connection terminal of fitting type
EP2485250A1 (en) Semiconductor device, and process for production of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4637009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250