JP2007027093A - Connecting member and its manufacturing method as well as connecting member mounting structure having connecting member and its manufacturing method - Google Patents

Connecting member and its manufacturing method as well as connecting member mounting structure having connecting member and its manufacturing method Download PDF

Info

Publication number
JP2007027093A
JP2007027093A JP2006144958A JP2006144958A JP2007027093A JP 2007027093 A JP2007027093 A JP 2007027093A JP 2006144958 A JP2006144958 A JP 2006144958A JP 2006144958 A JP2006144958 A JP 2006144958A JP 2007027093 A JP2007027093 A JP 2007027093A
Authority
JP
Japan
Prior art keywords
elastic arm
hole
support member
connector
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006144958A
Other languages
Japanese (ja)
Inventor
Daisuke Takai
大輔 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Publication of JP2007027093A publication Critical patent/JP2007027093A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connecting member and its manufacturing method as well as a connecting member mounting structure having the connecting member and its manufacturing method capable of finely forming a connecting material with an elastic arm in a simple mode, maintaining excellent conductive connection between electronic members and preventing electric short circuiting or the like at points other than contact points. <P>SOLUTION: A mounting part 5a of a connector 5 is formed directly on a support member, an elastic arm 5b extended from the mounting part 5a is deformed downward through a through-hole 10 formed on the support member 6, and a top face of the mounting part 5a is jointed to an electrode part 2a of an electronic component 2. Then, the elastic arm 5b is put on and made in contact with a circuit board. With this, the connecting member with the elastic arm can be finely formed in a simple mode, and that, distortion caused by a difference of heat expansion coefficients of the electronic part 2 and the circuit board 1 can be appropriately absorbed to ascertain conductive connection between the electronic component 2 and the circuit board 1 and prevent electric short circuiting or the like at points other than the contact points. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばIC等の電子部材に取り付けられる接続部材に係り、特に、弾性腕を有する接続部材をシンプルな形態にて微細に形成でき、しかも電子部材間の導通接続性を良好に保つことができ、また接点以外の箇所での電気的な短絡等を防止することが可能な接続部材及びその製造方法、ならびに前記接続部材を有する接続部材実装構造及びその製造方法に関する。   The present invention relates to a connection member attached to an electronic member such as an IC, and in particular, a connection member having an elastic arm can be finely formed in a simple form, and the electrical connection between the electronic members is kept good. In addition, the present invention relates to a connecting member that can prevent an electrical short circuit at a place other than a contact, a manufacturing method thereof, a connecting member mounting structure having the connecting member, and a manufacturing method thereof.

基板上にIC等を導通接続させるときに、両電子部材の熱膨張係数に大きな差がある場合、前記熱膨張係数差に起因する歪みを適切に吸収すべく、例えばICの電極部下にスプリング形状等のバネ部材を設ける構造が考えられている。   When there is a large difference in the thermal expansion coefficient between the two electronic members when an IC or the like is conductively connected on the substrate, for example, a spring shape is formed under the electrode portion of the IC in order to appropriately absorb the distortion caused by the difference in the thermal expansion coefficient. The structure which provides spring members, such as these, is considered.

ところで、前記バネ部材を電子部材の大きさにあわせ、特に電子部材が超微細になるほどそれにあわせて前記バネ部材自体の大きさも非常に小さくしていかなければならない。このとき前記バネ部材をスプリング形状等の立体的な形状にフォーミングすることは前記バネ部材が小さくなればなるほど困難となるし、また前記バネ部材にはある程度の弾性力を持たせておかないと前記バネ部材によって前記熱膨張係数差に起因する歪みを適切に吸収することができない。   By the way, the size of the spring member itself must be made very small according to the size of the electronic member, especially as the electronic member becomes ultrafine. At this time, forming the spring member into a three-dimensional shape such as a spring shape becomes more difficult as the spring member becomes smaller, and unless the spring member has a certain amount of elastic force, The strain caused by the difference in thermal expansion coefficient cannot be properly absorbed by the spring member.

下記特許文献1(特許第3099066号の特許公報)には、薄膜構造体の製造方法に関する発明が開示されている。いくつか提示されている製造方法のうち、例えば内部応力を利用して薄膜を湾曲させる薄膜構造体が開示されている(請求項5や図17ないし図22における説明箇所等)。
特許第3099066号の特許公報 特許第3366405号の特許公報
The following Patent Document 1 (Patent Publication of Japanese Patent No. 3099066) discloses an invention relating to a method for manufacturing a thin film structure. Among several manufacturing methods that have been presented, for example, a thin film structure that bends the thin film using internal stress is disclosed (claim 5 and the description in FIGS. 17 to 22).
Japanese Patent No. 3099066 Patent Publication No. 3366405

しかし特許文献1には、前記薄膜構造体を電子部材間の接続部材として用いることは何ら記載も示唆もされていない。また特許文献2には、金属で形成される超微細構造体の製造方法に関する記載があるが、前記超微細構造体を接続部材として用いるとの記載はないし、また前記超微細構造体をスプリング形状等のように立体的にフォーミングすることもない。   However, Patent Document 1 does not describe or suggest any use of the thin film structure as a connection member between electronic members. In addition, Patent Document 2 describes a method for manufacturing an ultrafine structure formed of metal, but does not describe that the ultrafine structure is used as a connection member, and the ultrafine structure is formed in a spring shape. The three-dimensional forming is not performed.

また微細化が進むと、位置決め精度等が若干ずれるだけで、前記接続部材と電子部材との間の接点箇所以外での電気的な短絡が生じやすくなる。したがって、良好な電気接続性とともに、接点箇所以外での電気的な短絡を適切に防止できる構造が望まれる。   Further, as the miniaturization progresses, an electrical short circuit is likely to occur other than at the contact point between the connection member and the electronic member, with only a slight shift in positioning accuracy and the like. Therefore, a structure that can appropriately prevent electrical short-circuiting at locations other than the contact points is desired with good electrical connectivity.

また歩留まりの向上、生産コストの低減等の観点からすれば、前記接続部材をシンプルな構造で、簡単な製造方法で形成できるようにすることが望まれる。   Further, from the viewpoint of improving the yield and reducing the production cost, it is desired that the connecting member can be formed with a simple structure and a simple manufacturing method.

そこで本発明は上記従来の課題を解決するためのものであり、特に、弾性腕を有する接続部材をシンプルな形態にて微細に形成でき、しかも電子部材間の導通接続性を良好に保つことができ、また接点以外の箇所での電気的な短絡等を防止することが可能な接続部材及びその製造方法、ならびに前記接続部材を有する接続部材実装構造及びその製造方法を提供することを目的としている。   Therefore, the present invention is for solving the above-described conventional problems, and in particular, a connection member having an elastic arm can be finely formed in a simple form, and the electrical connection between electronic members can be kept good. An object of the present invention is to provide a connection member capable of preventing an electrical short circuit at a location other than a contact, a manufacturing method thereof, a connecting member mounting structure having the connection member, and a manufacturing method thereof. .

本発明における接続部材は、支持部材と、接続子とを有し、
前記接続子は前記支持部材に直接接合されるマウント部と、前記マウント部から延出する弾性腕とを有し、
前記支持部材には前記弾性腕と対向する位置に第1の貫通孔が形成され、
前記弾性腕は、前記第1の貫通孔から離れる方向に変形しているか、あるいは前記第1の貫通孔内を貫通する方向に変形していることを特徴とするものである。
The connection member in the present invention has a support member and a connector,
The connector has a mount part directly joined to the support member, and an elastic arm extending from the mount part,
The support member is formed with a first through hole at a position facing the elastic arm,
The elastic arm is deformed in a direction away from the first through hole, or is deformed in a direction penetrating through the first through hole.

これにより、弾性腕を有する接続部材をシンプルな形態にて微細に形成でき、しかも電子部材の熱膨張係数の差に起因する歪みを適切に吸収でき、前記電子部材間の導通接続を確実なものに出来、また接点以外の箇所での電気的な短絡等を防止することが可能である。   As a result, the connection member having the elastic arm can be finely formed in a simple form, and the distortion caused by the difference in the thermal expansion coefficient of the electronic member can be appropriately absorbed, and the conductive connection between the electronic members is ensured. In addition, it is possible to prevent an electrical short circuit at a place other than the contact.

また本発明では、前記支持部材は有機絶縁材料で形成されることが好ましい。
また、前記マウント部の一部と対向する位置の前記支持部材には第2の貫通孔が形成され、前記第2の貫通孔から露出する前記マウント部が接点として機能する構成であってもよい。
In the present invention, the support member is preferably formed of an organic insulating material.
The support member at a position facing a part of the mount part may be formed with a second through hole, and the mount part exposed from the second through hole may function as a contact point. .

また、前記接続子は薄膜形成されたものであることが好ましい。これにより接続部材の微細化を促進させることが出来る。   The connector is preferably formed as a thin film. Thereby, refinement | miniaturization of a connection member can be promoted.

また、本発明における接続部材実装構造は、上記のいずれかに記載された接続部材が、電子部材に取り付けられたことを特徴とするものである。本発明では、前記電子部材の微細化においても、前記電子部材に前記接続部材を適切に取り付けることができる。そして、前記電子部材間の導通接続を確実なものに出来、また接点以外の箇所での電気的な短絡等を防止することが可能である。   Moreover, the connection member mounting structure in the present invention is characterized in that any of the connection members described above is attached to an electronic member. In the present invention, the connection member can be appropriately attached to the electronic member even in the miniaturization of the electronic member. In addition, it is possible to ensure the conductive connection between the electronic members, and it is possible to prevent an electrical short circuit at a place other than the contacts.

また本発明では、例えば、前記弾性腕は前記第1の貫通孔内を貫通する方向に変形しており、前記マウント部は前記支持部材との接合面と逆側の面で前記電子部材の電極部と接合されている構造である。これにより、前記電子部材に前記接続部材を適切に導通接続させることができるとともに、前記弾性腕を前記電子部材間の弾性接点として用いることが出来る。   In the present invention, for example, the elastic arm is deformed in a direction penetrating the first through hole, and the mount portion is an electrode of the electronic member on a surface opposite to the joint surface with the support member. It is the structure joined to the part. Accordingly, the connection member can be appropriately connected to the electronic member, and the elastic arm can be used as an elastic contact between the electronic members.

また、前記弾性腕は前記第1の貫通孔から離れる方向に変形しており、前記マウント部は前記支持部材との接合面と逆側の面で前記電子部材の電極部と接合されている構造であってもよい。かかる場合、前記電子部材には、前記弾性腕と対向する位置に収納部が形成されており、前記弾性腕が前記収納部内に入り込んでいる構造であることが好ましい。これにより前記弾性腕が相手側の電子部品の電極部に当接して押し込められても、前記弾性腕は前記収納部内で弾性変形でき、前記電極部と弾性腕との導通接続を確実なものにできる。   The elastic arm is deformed in a direction away from the first through hole, and the mount portion is joined to the electrode portion of the electronic member on a surface opposite to the joint surface with the support member. It may be. In this case, the electronic member preferably has a structure in which a storage portion is formed at a position facing the elastic arm, and the elastic arm enters the storage portion. As a result, even if the elastic arm is pressed into contact with the electrode part of the electronic component on the other side, the elastic arm can be elastically deformed in the storage part, and the conductive connection between the electrode part and the elastic arm is ensured. it can.

また本発明では、前記第2の貫通孔から露出する前記マウント部と、前記電子部材の電極部とが前記第2の貫通孔を介して接合されている構造であってもよい。   Moreover, in this invention, the structure where the said mount part exposed from the said 2nd through-hole and the electrode part of the said electronic member are joined via the said 2nd through-hole may be sufficient.

本発明における接続部材の製造方法は、以下の工程を有することを特徴とするものである。   The manufacturing method of the connection member in this invention has the following processes, It is characterized by the above-mentioned.

(a) 支持部材上にマウント部と弾性腕とを有する接続子を平面的な形状で直接形成する工程と、
(b) 前記弾性腕と対向する位置にある前記支持部材を除去して第1の貫通孔を形成する工程と、
(c) 前記弾性腕を、前記第1の貫通孔から離れる方向に変形させるか、あるいは前記第1の貫通孔内を貫通する方向に変形させる工程。
(A) directly forming a connector having a mount portion and an elastic arm on a support member in a planar shape;
(B) removing the support member at a position facing the elastic arm to form a first through hole;
(C) The step of deforming the elastic arm in a direction away from the first through-hole or in a direction penetrating through the first through-hole.

本発明では、前記支持部材と接続子との間に犠牲層を設ける必要がない。前記犠牲層は、(a)工程で前記マウント部と弾性腕との双方を支持部材上に抑える機能を有している。前記弾性腕と支持部材間にある犠牲層は前記(b)工程で除去され、これにより前記弾性腕が開放された状態になる。一方、前記マウント部と前記支持部材間にある犠牲層は前記(b)工程で除去されず、前記マウント部が前記支持部材上で支持された状態が保たれる。このような犠牲層を本発明で設ける必要がない。それは(b)工程で前記弾性腕と対向する位置にある支持部材を除去して貫通孔を設けるからであり、前記支持部材の除去により前記弾性腕が開放された状態になり、前記(c)工程のように前記弾性腕を変形させることができる。   In the present invention, it is not necessary to provide a sacrificial layer between the support member and the connector. The sacrificial layer has a function of suppressing both the mount portion and the elastic arm on the support member in the step (a). The sacrificial layer between the elastic arm and the supporting member is removed in the step (b), and the elastic arm is thereby opened. On the other hand, the sacrificial layer between the mount part and the support member is not removed in the step (b), and the state where the mount part is supported on the support member is maintained. There is no need to provide such a sacrificial layer in the present invention. This is because, in the step (b), the support member located at the position facing the elastic arm is removed and a through hole is provided, and the elastic arm is opened by the removal of the support member. The elastic arm can be deformed as in the process.

以上により本発明では従来に比べて、非常に簡単な手法により、支持部材と弾性腕とを有する接続子から成る接続部材を形成できる。   As described above, in the present invention, it is possible to form a connection member composed of a connector having a support member and an elastic arm by a very simple method as compared with the prior art.

本発明では、前記(a)工程時、前記接続子の下面側と上面側とで異なる内部応力を付与し、
前記(c)工程時、前記弾性腕は自らの内部応力の差により所定方向に変形させられる。
In the present invention, during the step (a), different internal stresses are applied to the lower surface side and the upper surface side of the connector,
In the step (c), the elastic arm is deformed in a predetermined direction due to a difference in its internal stress.

上記の各工程を経ることで、電子部材の微細化にあわせて前記接続子を微細化しても前記接続子の弾性腕を容易に変形させることが出来る。特に、前記弾性腕に対する内部応力差の付与と、弾性腕と対向する位置の支持部材の除去といった簡単な工程を経ることで、前記弾性腕を所定方向に変形させることができる。   Through the above steps, the elastic arm of the connector can be easily deformed even if the connector is miniaturized in accordance with the miniaturization of the electronic member. In particular, the elastic arm can be deformed in a predetermined direction through a simple process of applying an internal stress difference to the elastic arm and removing a support member at a position facing the elastic arm.

本発明では、前記(a)工程時、前記接続子をスパッタ蒸着法を用いて形成し、このとき真空ガス圧を変化させることで前記接続子の内部応力を制御することが好ましい。これにより簡単な手法で、前記接続子の内部応力を制御することが出来る。   In the present invention, it is preferable to control the internal stress of the connector by changing the vacuum gas pressure at the time of the step (a) by using the sputter deposition method. Thereby, the internal stress of the connector can be controlled by a simple method.

また本発明における接続部材実装構造の製造方法は、上記のいずれかに記載された接続部材のマウント部を前記電子部材の電極部に接合したことを特徴とするものである。かかる場合、前記マウント部を、前記支持部材との接合面と逆側の面から前記電子部材の電極部に接合させることが適切且つ簡単に前記電子部材の電極部と前記マウント部とを導通接続させることができて好ましい。また、かかる場合、前記弾性腕を前記第1の貫通孔内を貫通する方向に変形させることが、前記電子部材の表面から相手側の電子部材の方向へ突出する弾性腕を形成でき、適切且つ簡単に電子部材間を前記弾性腕を介して導通接続させることができる。   The manufacturing method of the connection member mounting structure according to the present invention is characterized in that the mount portion of the connection member described in any of the above is joined to the electrode portion of the electronic member. In such a case, it is appropriate and simple to connect the mount part to the electrode part of the electronic member from the surface opposite to the joint surface with the support member. This is preferable. In such a case, deforming the elastic arm in the direction penetrating through the first through hole can form an elastic arm that protrudes from the surface of the electronic member toward the electronic member on the other side. The electronic members can be easily connected to each other via the elastic arm.

あるいは前記弾性腕を前記第1の貫通孔から離れる方向に変形させてもよく、かかる場合、前記電子部材の前記弾性腕と対向する位置に収納部を形成し、前記マウント部と前記電子部材の電極部とを接合するとき、前記弾性腕を前記収納部内に入り込ませることが好ましい。   Alternatively, the elastic arm may be deformed in a direction away from the first through hole. In such a case, a storage portion is formed at a position facing the elastic arm of the electronic member, and the mount portion and the electronic member are When joining with an electrode part, it is preferable to make the said elastic arm enter in the said accommodating part.

また、前記マウント部と対向する位置の前記支持部材の一部に第2の貫通孔を形成し、前記第2の貫通孔から露出する前記マウント部と、前記電子部材の電極部とを前記第2の貫通孔を介して接合してもよい。   In addition, a second through hole is formed in a part of the support member at a position facing the mount portion, and the mount portion exposed from the second through hole and the electrode portion of the electronic member are connected to the first portion. You may join through two through-holes.

本発明では、接続子は支持部材に直接接合されるマウント部と、前記マウント部から延出する弾性腕とを有して形成され、前記支持部材には前記弾性腕と対向する位置に第1の貫通孔が形成され、前記弾性腕は、前記第1の貫通孔から離れる方向に変形しているか、あるいは前記第1の貫通孔内を貫通する方向に変形している。これにより、前記弾性腕を有する接続部材をシンプルな形態にて微細に形成でき、しかも電子部材の熱膨張係数の差に起因する歪みを適切に吸収でき、前記電子部材間の導通接続を確実なものに出来、また接点以外の箇所での電気的な短絡等を防止することが可能である。   In the present invention, the connector is formed to have a mount portion directly joined to the support member and an elastic arm extending from the mount portion, and the support member has a first position at a position facing the elastic arm. Through-holes are formed, and the elastic arm is deformed in a direction away from the first through-hole, or deformed in a direction penetrating through the first through-hole. As a result, the connection member having the elastic arm can be finely formed in a simple form, and the distortion caused by the difference in the thermal expansion coefficient of the electronic member can be appropriately absorbed, so that the conductive connection between the electronic members is ensured. It is possible to prevent the occurrence of an electrical short circuit at a place other than the contact.

また本発明における接続部材の製造方法では、前記支持部材と接続子との間に犠牲層を形成する必要性がない。そのため本発明では従来に比べて、非常に簡単な手法により、支持部材と弾性腕とを有する接続子から成る接続部材を形成できる。   In the connection member manufacturing method of the present invention, there is no need to form a sacrificial layer between the support member and the connector. Therefore, in the present invention, a connecting member comprising a connector having a support member and an elastic arm can be formed by a very simple method as compared with the prior art.

図1,図3、図4、図6は、本実施形態を示す基板、電子部品、及び接続部材を示す部分断面図、図2,図5は図1とは異なる実施形態の接続部材の部分断面図、である。   1, 3, 4, and 6 are partial cross-sectional views illustrating a substrate, an electronic component, and a connection member according to the present embodiment, and FIGS. 2 and 5 are portions of the connection member according to an embodiment different from FIG. 1. FIG.

なお以下では、接続部材の弾性腕に対して「変形」という文言を多用する。この明細書において「変形」とは、前記接続部材のマウント部と同じ平面的な形態ではなく、前記マウント部から見て上方向あるいは下方向に向けて歪められた状態を指す。また、本実施形態の「接続部材」を介して電気的に接続される部材は、この明細書において、「電子部材」に該当する。前記電子部材は、IC等の電子部品や、回路基板等である。   In the following, the term “deformation” is frequently used for the elastic arm of the connection member. In this specification, the term “deformation” refers to a state in which the deformation is not in the same planar form as the mount portion of the connection member, but is distorted upward or downward as viewed from the mount portion. In addition, a member that is electrically connected via the “connecting member” of the present embodiment corresponds to an “electronic member” in this specification. The electronic member is an electronic component such as an IC, a circuit board, or the like.

図1に示すように絶縁材料製の回路基板1上には電子部品2が取り付けられている。前記電子部品2は、IC,コンデンサ,トランジスタ等である。前記電子部品2はベアチップであってもよいしパッケージ化されていてもよい。   As shown in FIG. 1, an electronic component 2 is attached on a circuit board 1 made of an insulating material. The electronic component 2 is an IC, a capacitor, a transistor, or the like. The electronic component 2 may be a bare chip or may be packaged.

図1に示すように前記電子部品2の下面には例えばAl等で形成された電極部2aが形成されている。   As shown in FIG. 1, an electrode portion 2 a made of, for example, Al is formed on the lower surface of the electronic component 2.

前記電極部2aは、次に説明する接続部材3を介して回路基板1上に形成された電極パターン(図示しない)に導通接続されている。   The electrode portion 2a is conductively connected to an electrode pattern (not shown) formed on the circuit board 1 through a connection member 3 described below.

図1に示すように前記電極部2aの下側には接続部材3が設けられている。前記接続部材3は、接続子5と、ポリイミド等で形成された絶縁性の支持部材6とで構成される。前記支持部材6は、シート状で形成される。   As shown in FIG. 1, a connection member 3 is provided below the electrode portion 2a. The connecting member 3 includes a connector 5 and an insulating support member 6 made of polyimide or the like. The support member 6 is formed in a sheet shape.

前記接続子5はマウント部5aと弾性腕5bとを有して構成され、前記接続子5の表面は、前記マウント部5aの下面を除いて、Au等で形成された金属被膜7によって覆われている。前記金属被膜7は後で説明するように例えばメッキ形成されたものであり、前記マウント部5a上に形成された金属被膜7は前記電子部品2の電極部2aとの接合層として機能し、例えば超音波溶接等によって前記接続子5のマウント部5aの上面が前記電極部2aに前記金属被膜7を介して強固に接合される。   The connector 5 includes a mount portion 5a and an elastic arm 5b, and the surface of the connector 5 is covered with a metal film 7 made of Au or the like except for the lower surface of the mount portion 5a. ing. The metal coating 7 is, for example, plated as will be described later, and the metal coating 7 formed on the mount portion 5a functions as a bonding layer with the electrode portion 2a of the electronic component 2, The upper surface of the mount portion 5a of the connector 5 is firmly joined to the electrode portion 2a via the metal film 7 by ultrasonic welding or the like.

図1に示すように前記接続子5のマウント部5aは、前記支持部材6上に直接接合されている。後述するように前記接続子5は前記支持部材6上にスパッタ法等で成膜されたものである。   As shown in FIG. 1, the mount 5 a of the connector 5 is directly joined on the support member 6. As will be described later, the connector 5 is formed on the support member 6 by sputtering or the like.

図1に示すように、各接続子5はマウント部5aから一方向に延びる弾性腕5bを有し、前記弾性腕5bは、前記マウント部5aの高さ位置よりも下方向へ向けて撓んでいる。   As shown in FIG. 1, each connector 5 has an elastic arm 5b extending in one direction from the mount portion 5a, and the elastic arm 5b bends downward from a height position of the mount portion 5a. Yes.

前記弾性腕5bは、前記弾性腕5bの上面側と下面側に、異なる大きさで付与された内部応力差に基づいて図1のような湾曲状に変形したものである。具体的には、前記弾性腕5bの下面側には、圧縮応力を付与しており、一方、前記弾性腕5bの上面側には引張り応力を付与している。この結果、前記弾性腕5bは、下方向へ向けて変形される。   The elastic arm 5b is deformed into a curved shape as shown in FIG. 1 on the upper surface side and the lower surface side of the elastic arm 5b based on the internal stress difference given in different sizes. Specifically, compressive stress is applied to the lower surface side of the elastic arm 5b, while tensile stress is applied to the upper surface side of the elastic arm 5b. As a result, the elastic arm 5b is deformed downward.

図1に示すように前記支持部材6には前記弾性腕5bと高さ方向にて対向する位置に貫通孔(第1の貫通孔)10が形成されており前記弾性腕5bは前記貫通孔10を通り、前記弾性腕5bの先端5b1が、前記支持部材6の下面から下方向に突出している。前記先端5b1が前記回路基板1上に設けられた所定の電極パターン上に電気的に接続される。すなわち図1の形態では前記先端5b1が接点として機能している。   As shown in FIG. 1, a through hole (first through hole) 10 is formed in the support member 6 at a position facing the elastic arm 5 b in the height direction, and the elastic arm 5 b is formed in the through hole 10. The tip 5b1 of the elastic arm 5b protrudes downward from the lower surface of the support member 6. The tip 5b1 is electrically connected to a predetermined electrode pattern provided on the circuit board 1. That is, in the embodiment of FIG. 1, the tip 5b1 functions as a contact.

図1に示す形態により電子部品2の前記電極部2aは前記接続子5の弾性腕5bを介して前記回路基板1と導通接続される。このような接続部材3を前記電極部2aの下側に設けることで、前記回路基板1と電子部品2間の電気的接続性を確実なものに出来る。   In the form shown in FIG. 1, the electrode part 2 a of the electronic component 2 is conductively connected to the circuit board 1 through the elastic arm 5 b of the connector 5. By providing such a connection member 3 below the electrode portion 2a, electrical connection between the circuit board 1 and the electronic component 2 can be ensured.

また電子部品2を回路基板1上に導通接続させる際に、各電極部2aと回路基板1間の高さ寸法が多少異なっていても、下方向へ向けて変形された接続子5には、弾性力があるので、前記接続子5の先端5b1を前記回路基板1の所定の電極パターン上に当接させたときに、前記弾性力によって前記接続子5の弾性腕5bが弾性変形し、前記各接続子5を確実に前記回路基板1の電極パターン上に電気的に接続させることが出来る。   Further, when the electronic component 2 is conductively connected to the circuit board 1, even if the height dimension between each electrode portion 2a and the circuit board 1 is slightly different, the connector 5 deformed downward is Due to the elastic force, when the tip 5b1 of the connector 5 is brought into contact with a predetermined electrode pattern of the circuit board 1, the elastic arm 5b of the connector 5 is elastically deformed by the elastic force, Each connector 5 can be reliably electrically connected to the electrode pattern of the circuit board 1.

また、前記電子部品2と回路基板1との熱膨張係数に大きな差があっても、弾性力を有する前記接続子5の弾性腕5bによって前記熱膨張係数差に起因する歪みを吸収でき、より確実に前記電子部品2と前記回路基板1間を導通接続させることが出来る。   Moreover, even if there is a large difference in the thermal expansion coefficient between the electronic component 2 and the circuit board 1, the elastic arm 5b of the connector 5 having elasticity can absorb the distortion caused by the thermal expansion coefficient difference, The electronic component 2 and the circuit board 1 can be reliably connected to each other.

また、前記支持部材6に前記電子部品2の電極部2aの数に対応した接続子5が取付けられており、複数の前記接続子5のマウント部5aを同時に前記電子部品2の電極部2a下に接合させることが出来る。従来では、個々のバネ部材をそれぞれ個別に前記電子部品2の電極部2a下に接合させていたが、本実施形態では、支持部材6には前記電子部品2の電極部2aの数に対応した接続子5が取付けられているから前記支持部材6を前記電子部品2の電極部2a下に配置し、超音波溶接等によって複数の接続子5を同時に前記電極部2a下に接合させることが可能である。   In addition, connectors 5 corresponding to the number of electrode portions 2a of the electronic component 2 are attached to the support member 6, and a plurality of mount portions 5a of the connectors 5 are simultaneously attached under the electrode portions 2a of the electronic component 2. Can be bonded. Conventionally, the individual spring members are individually joined under the electrode portions 2a of the electronic component 2, but in the present embodiment, the support member 6 corresponds to the number of electrode portions 2a of the electronic component 2. Since the connector 5 is attached, the support member 6 can be arranged under the electrode portion 2a of the electronic component 2 and a plurality of connectors 5 can be simultaneously joined under the electrode portion 2a by ultrasonic welding or the like. It is.

また、前記接続子5を回路基板1側から見ると、弾性腕5bの一部だけが見え、他の箇所は前記支持部材6で覆われた状態になっている。このため衝撃等を受けて前記弾性腕5bが弾性変形し、前記電子部品2と回路基板1間の距離H1が近づいても、前記マウント部5aが前記回路基板1と接触することはなく、接点箇所以外での電気的な短絡を適切に防止できる。また前記支持部材6は有機絶縁シートで形成されているから、前記した接点箇所以外での電気的な短絡を適切に防止できるとともに、後述する製造方法によれば、特に前記支持部材6と接続子5との間に、前記マウント部5aが自らの内部応力に基づいて変形するのを防止するための犠牲層を設ける必要がなく、簡単な構造にて前記弾性腕5bを所定の方向に変形させた接続部材3を形成することができる。また前記支持部材6を設けることで前記支持部材6と電子部品2との間の隙間に例えば接着剤等を介在させ、より強固に前記接続部材3を前記電子部品2に接合することが簡単にできる。   Further, when the connector 5 is viewed from the circuit board 1 side, only a part of the elastic arm 5 b is visible, and the other part is covered with the support member 6. Therefore, even if the elastic arm 5b is elastically deformed by an impact or the like, and the distance H1 between the electronic component 2 and the circuit board 1 approaches, the mount portion 5a does not come into contact with the circuit board 1, It is possible to appropriately prevent an electrical short circuit other than at a location. Moreover, since the said supporting member 6 is formed with the organic insulating sheet, while being able to prevent appropriately an electrical short circuit other than the above-mentioned contact location, according to the manufacturing method mentioned later, especially the said supporting member 6 and a connector 5, there is no need to provide a sacrificial layer for preventing the mount 5 a from being deformed based on its own internal stress, and the elastic arm 5 b is deformed in a predetermined direction with a simple structure. The connecting member 3 can be formed. Further, by providing the support member 6, for example, an adhesive or the like is interposed in the gap between the support member 6 and the electronic component 2, and it is easy to more firmly join the connection member 3 to the electronic component 2. it can.

また前記接続子5の弾性腕5bの一部が少なくとも前記貫通孔10上にまで延び、回路基板1側から見て前記弾性腕5bの一部が前記貫通孔10から見えれば、前記弾性腕5bが前記貫通孔10を通って、前記支持部材6の下面から下方へ突出していなくても、導電性接着剤等を用いて前記回路基板1の電極パターンと前記弾性腕5bとを導通接続させることが出来るが、前記接続子5の先端5b1が支持部材6の下面から下方向へ突出していたほうが、後述するように、前記弾性腕5bと電極パターンとを接合する前に電気的試験等を行なうことが出来るし前記電子部品2と回路基板1間の導通接続を確実なものにできて好ましい。   If a part of the elastic arm 5b of the connector 5 extends at least onto the through hole 10 and a part of the elastic arm 5b is seen from the through hole 10 when viewed from the circuit board 1 side, the elastic arm 5b. Even though the through hole 10 does not protrude downward from the lower surface of the support member 6, the electrode pattern of the circuit board 1 and the elastic arm 5b are electrically connected using a conductive adhesive or the like. However, when the tip 5b1 of the connector 5 protrudes downward from the lower surface of the support member 6, an electrical test or the like is performed before joining the elastic arm 5b and the electrode pattern, as will be described later. It is preferable that the electrical connection between the electronic component 2 and the circuit board 1 can be ensured.

次に前記接続部材3の寸法について説明する。前記接続子5の膜厚は、6μm〜100μmの範囲内で形成される。また各接続子5間のピッチT1(図1を参照)は、20〜100μm程度である。また前記接続子5の前記支持部材6からの突出量σ(図1を参照)は、10〜100μm程度である。   Next, the dimensions of the connecting member 3 will be described. The thickness of the connector 5 is formed in the range of 6 μm to 100 μm. Moreover, the pitch T1 (refer FIG. 1) between each connector 5 is about 20-100 micrometers. Further, the protrusion amount σ (see FIG. 1) of the connector 5 from the support member 6 is about 10 to 100 μm.

前記接続子5の前記突出量σは、前記弾性腕5bの先端5b1を前記支持部材6の下面{前記接続子5のマウント部5aが固定されている電子部品2(一方の電子部材)と対向する他方の電子部材(回路基板1)側に向く前記支持部材6の面}6bと同一面まで歪ませるのに必要な応力が降伏点よりも小さくなるように設定されている。この結果、例えば衝撃等によって前記弾性腕5bの先端5b1が、前記支持部材6の下面6bと同一面まで撓んでも、前記衝撃が除去されて、前記支持部材6と回路基板1間に再び間隔が空くと、前記弾性腕5bは図1のように回路基板1上に当接した状態を保ちながら下方向へ弾性変形し(図1の状態に復元し)、前記弾性腕5bが弾性接点として適切に作用する。   The protrusion amount σ of the connector 5 is such that the tip 5b1 of the elastic arm 5b faces the lower surface of the support member 6 (the electronic component 2 (one electronic member) to which the mount portion 5a of the connector 5 is fixed). The stress required to distort the same surface as the surface 6b of the support member 6 facing the other electronic member (circuit board 1) is set to be smaller than the yield point. As a result, even if the tip 5b1 of the elastic arm 5b is bent to the same plane as the lower surface 6b of the support member 6 due to an impact or the like, the impact is removed and the space between the support member 6 and the circuit board 1 is again separated. 1, the elastic arm 5b is elastically deformed downward (restored to the state shown in FIG. 1) while maintaining the state of being in contact with the circuit board 1 as shown in FIG. 1, and the elastic arm 5b serves as an elastic contact. Acts properly.

また、前記電子部品2に取り付けられた接続部材3の接続子5の先端5b1と回路基板1の電極パターンとは例えば、導電性接着剤や半田付け、溶接等によって接合されるが、前記接合を行なう前に例えば、図1のように電子部品2と回路基板1とを接続部材3を介して電気的に仮接続させた状態で所望の電気的試験を行い、前記電気的試験にパスしたら上記した導電性接着剤等によって前記弾性腕5bと回路基板1間を接合させることが出来る。また特に図示していないが、例えば電子部品2の上面を回路基板1方向に抑え付ける固定部材を前記回路基板1上等に設けても良く、かかる場合、特に、前記先端5b1と回路基板1の電極パターンとを、導電性接着剤や半田付け、溶接等によって接合せず、単に前記先端5b1を前記電極パターン上に当接させておくだけでもよい。   Further, the tip 5b1 of the connector 5 of the connection member 3 attached to the electronic component 2 and the electrode pattern of the circuit board 1 are joined by, for example, conductive adhesive, soldering, welding, etc. Before performing, for example, a desired electrical test is performed in a state where the electronic component 2 and the circuit board 1 are electrically temporarily connected via the connection member 3 as shown in FIG. The elastic arm 5b and the circuit board 1 can be joined by the conductive adhesive or the like. Although not particularly shown, for example, a fixing member that holds the upper surface of the electronic component 2 in the direction of the circuit board 1 may be provided on the circuit board 1 or the like. In such a case, in particular, the tip 5b1 and the circuit board 1 The tip 5b1 may simply be brought into contact with the electrode pattern without joining the electrode pattern by a conductive adhesive, soldering, welding or the like.

また前記接続子5の表面に形成された金属被膜7は上記したように前記電子部品2の電極部2aとの接合層として機能し、超音波溶接等によって前記接続子5のマウント部5aと電極部2aとを前記金属被膜7を介して強固に接合することが出来る。また前記金属被膜7は、電気伝導性に優れたAu等の貴金属やNiの被膜で形成されるので、前記電子部品2と回路基板1間の電気的接続性を良好なものにできるとともに、錆び等による導電性劣化を抑制することも出来る。   Further, the metal coating 7 formed on the surface of the connector 5 functions as a bonding layer with the electrode portion 2a of the electronic component 2 as described above, and the mount portion 5a and the electrode of the connector 5 are formed by ultrasonic welding or the like. The part 2 a can be firmly bonded to the metal film 7 via the metal film 7. Further, since the metal film 7 is formed of a noble metal such as Au having excellent electrical conductivity or a film of Ni, the electrical connectivity between the electronic component 2 and the circuit board 1 can be improved, and rusting can be achieved. It is also possible to suppress the deterioration of conductivity due to the like.

図2の接続部材15は図1の接続部材3と一部で構造が異なる。図2では前記接続部材15は、支持部材6と接続子16とで構成される。前記支持部材6には図1と同様に貫通孔10が形成されている。前記接続子16は前記支持部材6の上面に形成され、前記接続子16のマウント部16aは前記支持部材6上に直接接合されている。前記マウント部16aは平面的な形状で形成され、前記マウント部16aから前記マウント部16aと一体となって延びる弾性腕16bは、上方に向けて変形している。すなわち前記弾性腕16bは前記貫通孔10から離れる方向に向けて変形している。また前記接続子16の表面は、図1と同様に、前記マウント部16aの下面を除いて、Au等で形成された金属被膜7によって覆われている。   The connection member 15 in FIG. 2 is partially different in structure from the connection member 3 in FIG. In FIG. 2, the connection member 15 includes a support member 6 and a connector 16. A through hole 10 is formed in the support member 6 as in FIG. The connector 16 is formed on the upper surface of the support member 6, and the mount portion 16 a of the connector 16 is directly joined to the support member 6. The mount portion 16a is formed in a planar shape, and the elastic arm 16b extending integrally with the mount portion 16a from the mount portion 16a is deformed upward. In other words, the elastic arm 16 b is deformed in a direction away from the through hole 10. Similarly to FIG. 1, the surface of the connector 16 is covered with a metal film 7 made of Au or the like except for the lower surface of the mount portion 16a.

図2に示す接続部材15では、前記弾性腕16bは前記支持部材6に形成された貫通孔10から離れる方向に向けて変形しており、この点で図1に示す接続部材3と異なっている。図2に示すように前記弾性腕16bを上方に変形させるには前記弾性腕16bの下面側に引張り応力を、上面側に圧縮応力を付与すればよい。   In the connecting member 15 shown in FIG. 2, the elastic arm 16b is deformed in a direction away from the through hole 10 formed in the support member 6, and this point is different from the connecting member 3 shown in FIG. . As shown in FIG. 2, in order to deform the elastic arm 16b upward, a tensile stress may be applied to the lower surface side of the elastic arm 16b, and a compressive stress may be applied to the upper surface side.

図2に示す接続部材15は例えば図3に示すような状態で使用される。符号19は、IC,コンデンサ,トランジスタ等の電子部品である。前記電子部品19の下面には電極部19aが形成されている。図3では前記電極部19aはBGA形状であるが、LGA、CGA等、特に前記電極部19aの形状は限定されない。   The connecting member 15 shown in FIG. 2 is used in a state as shown in FIG. 3, for example. Reference numeral 19 denotes an electronic component such as an IC, a capacitor, or a transistor. An electrode portion 19 a is formed on the lower surface of the electronic component 19. In FIG. 3, the electrode portion 19a has a BGA shape, but the shape of the electrode portion 19a, such as LGA or CGA, is not particularly limited.

符号20はマザー基板(回路基板)である。前記マザー基板20上には電極部20aが形成されている。前記マザー基板20上に前記接続部材15を取り付けるための取付基板21が設けられる。前記取付基板21には図3に示すように貫通孔22が形成されている。前記貫通孔22の内壁面22aには導電性材料で形成された導通部23がスパッタ法等で形成されている。前記取付基板21の上面には上側接続部24がスパッタ法等で形成され、前記取付基板21の下面には下側接続部25が形成され、前記上側接続部24及び下側接続部25がともに前記導通部23と導通接続されている。   Reference numeral 20 denotes a mother board (circuit board). An electrode portion 20 a is formed on the mother substrate 20. An attachment substrate 21 for attaching the connection member 15 is provided on the mother substrate 20. A through hole 22 is formed in the mounting substrate 21 as shown in FIG. A conductive portion 23 made of a conductive material is formed on the inner wall surface 22a of the through hole 22 by a sputtering method or the like. An upper connection portion 24 is formed on the upper surface of the mounting substrate 21 by sputtering or the like, a lower connection portion 25 is formed on the lower surface of the mounting substrate 21, and both the upper connection portion 24 and the lower connection portion 25 are provided. The conductive part 23 is electrically connected.

前記接続部材15は図2の状態から裏返しにした状態で、すなわち前記支持部材6の下面側に前記接続子16が設けられ、前記弾性腕16bが下方向に変形した状態で、前記マウント部16aの下面が前記取付基板21の上側接続部24に例えば導電性接着剤26を介して導通接続させられる。あるいは、前記マウント部16aに形成された金属皮膜7と前記取付基板21の上側接続部24とが超音波溶接、半田等によって接合されてもよい。図3に示すように前記弾性腕16bは、前記取付基板21に形成された貫通孔22内に入り込み、変形した状態を保ったまま前記取付基板21に支持される。前記電子部品19が図示下方向に向けて移動し、前記電子部品19の電極部19aが前記支持部材6に形成された貫通孔10を通り前記弾性腕16bに当接する。さらに前記電子部品19が下方向に移動すると、前記電極部19aは前記弾性腕16bに当接した状態を保ちながら前記弾性腕16bを下方向に弾性変形させる。このように前記弾性腕16bが取付基板21方向に変形していても、前記取付基板21に貫通孔22を形成することで、前記貫通孔22内に前記弾性腕16bを、前記弾性腕16bの変形が阻害されることなく収納でき、前記弾性腕16bと前記電子部品19の電極部19aとを適切に導通接続させることができる。前記取付基板21には貫通孔22でなく凹部が形成されてもよい。前記弾性腕16bの変形が阻害されることなく、前記弾性腕16bを収納することが可能な収納部が形成されていれば前記収納部の形態は特に限定されない。また例えば前記弾性腕16bと前記電子部品19の電極部19aとは導電性接着剤等により接合されてもよいし、接合されなくてもよい。接合しない場合、例えば図3に示すマザー基板20、取付基板21及び接続部材15は、バーンイン試験に用いられるバーンインボードとして用いることができる。なお図3に示す実施の形態では、前記弾性腕16bが上方向に変形していても当然よい。かかる場合、前記弾性腕16bは前記支持部材6に形成された貫通孔10を通り、前記支持部材6の上面から上方に向けて突出する。そして前記弾性腕16bが前記電極部19aによって下方向に押圧されると前記弾性腕16bは下方向に弾性変形し、このとき、前記弾性腕16bは、前記貫通孔22の内部にまで変形可能となっている。   In the state where the connection member 15 is turned upside down from the state of FIG. 2, that is, in the state where the connector 16 is provided on the lower surface side of the support member 6 and the elastic arm 16b is deformed downward, the mount portion 16a. Is connected to the upper connection portion 24 of the mounting substrate 21 through, for example, a conductive adhesive 26. Alternatively, the metal film 7 formed on the mount portion 16a and the upper connection portion 24 of the mounting substrate 21 may be joined by ultrasonic welding, solder, or the like. As shown in FIG. 3, the elastic arm 16b enters the through hole 22 formed in the mounting substrate 21, and is supported by the mounting substrate 21 while maintaining a deformed state. The electronic component 19 moves downward in the figure, and the electrode portion 19a of the electronic component 19 passes through the through hole 10 formed in the support member 6 and contacts the elastic arm 16b. Further, when the electronic component 19 moves downward, the electrode portion 19a elastically deforms the elastic arm 16b downward while maintaining a state in contact with the elastic arm 16b. Thus, even if the elastic arm 16b is deformed in the direction of the mounting substrate 21, by forming the through hole 22 in the mounting substrate 21, the elastic arm 16b can be placed in the through hole 22 and the elastic arm 16b. The elastic arm 16b and the electrode part 19a of the electronic component 19 can be appropriately conductively connected without being hindered from being deformed. The mounting substrate 21 may be formed with a recess instead of the through hole 22. The shape of the storage portion is not particularly limited as long as a storage portion capable of storing the elastic arm 16b is formed without inhibiting the deformation of the elastic arm 16b. Further, for example, the elastic arm 16b and the electrode portion 19a of the electronic component 19 may or may not be joined by a conductive adhesive or the like. When not joining, for example, the mother board 20, the mounting board 21, and the connection member 15 shown in FIG. 3 can be used as a burn-in board used in the burn-in test. In the embodiment shown in FIG. 3, the elastic arm 16b may naturally be deformed upward. In this case, the elastic arm 16 b passes through the through hole 10 formed in the support member 6 and protrudes upward from the upper surface of the support member 6. When the elastic arm 16b is pressed downward by the electrode portion 19a, the elastic arm 16b is elastically deformed downward. At this time, the elastic arm 16b can be deformed to the inside of the through hole 22. It has become.

図4に示す回路基板1上に取り付けられた接続部材30は、図2に示す接続部材15とほぼ同様の形態である。前記接続部材30は、接続子16と支持部材6とで構成され、前記接続子16の弾性腕16bは図2と同様に上方に向けて変形している。前記支持部材6には前記弾性腕16bと高さ方向にて対向する位置に第1の貫通孔10が形成されている。また前記支持部材6には前記接続子16のマウント部16aと高さ方向にて対向する前記支持部材6の一部に第2の貫通孔31が形成されている。図4に示す接続部材30には、前記第2の貫通孔31が形成されている点で図2に示す接続部材15と異なる。   The connection member 30 attached on the circuit board 1 shown in FIG. 4 has substantially the same form as the connection member 15 shown in FIG. The connecting member 30 includes a connector 16 and a support member 6, and the elastic arm 16b of the connector 16 is deformed upward as in FIG. A first through hole 10 is formed in the support member 6 at a position facing the elastic arm 16b in the height direction. The support member 6 is formed with a second through hole 31 in a part of the support member 6 facing the mount 16a of the connector 16 in the height direction. The connection member 30 shown in FIG. 4 is different from the connection member 15 shown in FIG. 2 in that the second through hole 31 is formed.

図4に示すように前記第2の貫通孔31からは前記マウント部16aの下面が露出した状態になっている。そして前記露出したマウント部16aの下面が接点として機能する。図4に示すように、前記回路基板1上には電極部33が形成され、前記電極部33が前記第2の貫通孔31に入り込み前記電極部33とマウント部16aとが導通接続した状態になる。前記支持部材6と回路基板1間には例えば導電性接着剤32が介在し前記支持部材5と前記回路基板1とが接合される。また前記電極部33が例えば半田バンプであって前記回路基板1とマウント部16aとが半田接合された状態であってもよい。あるいは前記マウント部16aと前記電極部33とが超音波溶接等によって接合されてもよい。前記回路基板1上に取り付けられた前記接続部材30の接続子16の弾性腕16bは上方に変形しており、前記電子部品19の電極部19aとの接点として機能する。前記電子部品19が下方向へ移動すると前記電極部19aと前記弾性腕16bとが当接した状態となるとともに前記弾性腕16bが下方向に向けて弾性変形する。   As shown in FIG. 4, the lower surface of the mount portion 16 a is exposed from the second through hole 31. The exposed lower surface of the mount portion 16a functions as a contact point. As shown in FIG. 4, an electrode portion 33 is formed on the circuit board 1, and the electrode portion 33 enters the second through hole 31 so that the electrode portion 33 and the mount portion 16a are electrically connected. Become. For example, a conductive adhesive 32 is interposed between the support member 6 and the circuit board 1, and the support member 5 and the circuit board 1 are joined. The electrode portion 33 may be, for example, a solder bump, and the circuit board 1 and the mount portion 16a may be in a soldered state. Alternatively, the mount portion 16a and the electrode portion 33 may be joined by ultrasonic welding or the like. The elastic arm 16b of the connector 16 of the connecting member 30 mounted on the circuit board 1 is deformed upward and functions as a contact point with the electrode portion 19a of the electronic component 19. When the electronic component 19 moves downward, the electrode portion 19a and the elastic arm 16b come into contact with each other, and the elastic arm 16b is elastically deformed downward.

図4に示す実施の形態では、前記弾性腕16bを、電子部品19との接点として使用するとともに、前記マウント部16aの下面を前記回路基板1との接点として使用する。この結果、前記弾性腕16bは前記支持部材6に形成された第1の貫通孔10から離れる方向に変形しているが、回路基板1から離れる方向にも変形しているため、図3と違って、前記接続部材30が取り付けられる回路基板1に前記弾性腕16bを入り込ませるための凹部等で形成された収納部を設けなくても前記電極部19aと前記弾性腕16bとの電気的接続を得ることが出来る(なお図4の形態において収納部を設けても当然よい)。なお、図4の弾性腕16bを前記回路基板1方向へ、すなわち下方向に変形させてもよい。かかる場合、前記回路基板1には前記弾性腕16bを入り込ませる収納部を形成することが必要となる。   In the embodiment shown in FIG. 4, the elastic arm 16 b is used as a contact point with the electronic component 19, and the lower surface of the mount portion 16 a is used as a contact point with the circuit board 1. As a result, the elastic arm 16b is deformed in the direction away from the first through hole 10 formed in the support member 6, but is also deformed in the direction away from the circuit board 1. Thus, the electrode portion 19a and the elastic arm 16b can be electrically connected without providing a storage portion formed by a recess or the like for allowing the elastic arm 16b to enter the circuit board 1 to which the connection member 30 is attached. (It is also possible to provide a storage portion in the embodiment shown in FIG. 4). Note that the elastic arm 16b of FIG. 4 may be deformed toward the circuit board 1, that is, downward. In such a case, the circuit board 1 needs to be formed with a storage portion into which the elastic arm 16b is inserted.

図5に示す実施の形態では、前記接続子40は、下層41と上層42の二層構造にて形成される。前記下層41と上層42はともに導電性材料で形成されるが材質が異なる。前記接続子40の下層41は圧縮応力を有し、上層42は引張り応力を有している。これにより前記接続子40の弾性腕40bは前記支持部材6の貫通孔10を通り下方向に変形している。前記接続子40は、図5のように材質が異なり内部応力に差がある下層41と上層42とで構成されてもよいし、あるいは後述するように、前記接続部材をスパッタ蒸着法を用いて形成し、このとき真空ガス圧を変化させることで前記接続部材の内部応力を制御してもよい。   In the embodiment shown in FIG. 5, the connector 40 is formed by a two-layer structure of a lower layer 41 and an upper layer 42. The lower layer 41 and the upper layer 42 are both formed of a conductive material, but are different in material. The lower layer 41 of the connector 40 has a compressive stress, and the upper layer 42 has a tensile stress. Thereby, the elastic arm 40 b of the connector 40 is deformed downward through the through hole 10 of the support member 6. The connector 40 may be composed of a lower layer 41 and an upper layer 42 having different materials and different internal stresses as shown in FIG. 5, or, as will be described later, the connecting member is formed using a sputter deposition method. In this case, the internal stress of the connection member may be controlled by changing the vacuum gas pressure.

なお各実施の形態において、前記接続子5,16,40は、スパッタ蒸着法や、電子ビーム蒸着法、分子線エピタキシャル成長法、化学蒸着法、電解メッキ法等で薄膜形成されたものであることが好ましい。前記接続子5,16,40を薄膜により形成することで前記接続子5,16,40の小型化及び薄型化を実現できるから前記回路基板1と電子部品2間の接続構造を適切に微細化することが出来る。前記接続子5は前記電子部材間(例えば図1でいえば電子部品2と回路基板1間)の電気的接続性を確保するため導電性材料で形成され、例えばNiZr合金を例示できる。   In each embodiment, the connectors 5, 16, and 40 are formed by a thin film by sputtering deposition, electron beam deposition, molecular beam epitaxial growth, chemical vapor deposition, electrolytic plating, or the like. preferable. Since the connectors 5, 16, and 40 are formed of thin films, the connectors 5, 16, and 40 can be reduced in size and thickness, so that the connection structure between the circuit board 1 and the electronic component 2 is appropriately miniaturized. I can do it. The connector 5 is formed of a conductive material to ensure electrical connectivity between the electronic members (for example, between the electronic component 2 and the circuit board 1 in FIG. 1), and can be exemplified by a NiZr alloy, for example.

ところで前記接続子5,16,40は、図1ないし図5の形状のものに限らず、例えば前記接続子5を真上から見たときの平面形状が螺旋形状等であってもよい。その形態について図6を用いて説明する。   Incidentally, the connectors 5, 16, and 40 are not limited to the shapes shown in FIGS. 1 to 5, and for example, the planar shape when the connector 5 is viewed from directly above may be a spiral shape or the like. The form will be described with reference to FIG.

図6では、接続部材60を構成する支持部材6の上面に接続子50のマウント部50aが直接形成され、前記マウント部50aと一体形成された弾性腕50bが巻き始端50b1から巻き終端(先端)50b2にかけて螺旋階段状に、前記支持部材6に形成された貫通孔10を通って下方向へ向けて突出形成されている。   In FIG. 6, the mount part 50a of the connector 50 is directly formed on the upper surface of the support member 6 constituting the connection member 60, and the elastic arm 50b integrally formed with the mount part 50a extends from the winding start end 50b1 to the winding end (tip). 50b2 is formed so as to protrude downward through a through hole 10 formed in the support member 6 in a spiral staircase shape.

図6に示すように、前記接続子50の弾性腕50bの先端50b2は、回路基板1の電極パターン上に導通接続されている。   As shown in FIG. 6, the tip 50 b 2 of the elastic arm 50 b of the connector 50 is conductively connected on the electrode pattern of the circuit board 1.

図6に示す実施形態では、前記接続子50の弾性腕50bが螺旋階段状に突出形成されており、弾性接点として機能する弾性腕50bが上下方向に弾性変形することで、回路基板1と電子部品2間の導通接続を確実なものに出来る。   In the embodiment shown in FIG. 6, the elastic arm 50b of the connector 50 is formed so as to project in a spiral staircase shape, and the elastic arm 50b functioning as an elastic contact is elastically deformed in the vertical direction. The conductive connection between the components 2 can be ensured.

前記接続子50の弾性腕50bは下面側と上面側とで内部応力に差があり、前記内部応力の差を利用して螺旋階段状に立体成形されたものである。   The elastic arm 50b of the connector 50 has a difference in internal stress between the lower surface side and the upper surface side, and is three-dimensionally formed in a spiral step shape using the difference in the internal stress.

上記した前記接続子5,16,40,50はいずれも上面側と下面側とで内部応力に差があり、前記内部応力の差を利用して前記弾性腕が変形させられた形態となっているが、このように内部応力の差による自らの力で変形する形態以外に、例えば治具を用いて機械的に前記弾性腕を変形させる形態であってもよい。例えばばね性を有するNiを主体とした接続子を形成し、弾性腕に該当する箇所を治具によって立体的に変形させる。   Each of the connectors 5, 16, 40, 50 described above has a difference in internal stress between the upper surface side and the lower surface side, and the elastic arm is deformed using the difference in the internal stress. However, in addition to the form in which it is deformed by its own force due to the difference in internal stress, a form in which the elastic arm is mechanically deformed using, for example, a jig may be used. For example, a connector mainly made of Ni having springiness is formed, and a portion corresponding to the elastic arm is three-dimensionally deformed by a jig.

次に、前記接続部材3の製造方法について説明する。
図7ないし図13を用いて図1に示す接続部材3の製造方法について説明する。各図は製造工程中における接続部材3の部分断面図である。
Next, a method for manufacturing the connection member 3 will be described.
A method for manufacturing the connecting member 3 shown in FIG. 1 will be described with reference to FIGS. Each figure is a partial cross-sectional view of the connecting member 3 during the manufacturing process.

図7では作業台11の表面11aに支持部材6を貼り付ける。前記作業台11は、例えば銅箔などで形成されている。前記作業台11には予め貫通孔12が形成されている。前記貫通孔12は、支持部材6に対し図1に示す貫通孔10を形成するためのものであり、前記作業台11には、支持部材6に設けたい貫通孔10の位置及び数にあわせた貫通孔12が形成されている。   In FIG. 7, the support member 6 is attached to the surface 11 a of the work table 11. The work table 11 is formed of, for example, copper foil. A through hole 12 is formed in the work table 11 in advance. The through hole 12 is for forming the through hole 10 shown in FIG. 1 with respect to the support member 6, and the work table 11 is matched to the position and number of the through holes 10 to be provided in the support member 6. A through hole 12 is formed.

前記支持部材6は例えばポリイミド等で形成された有機絶縁樹脂シートである。なお図示しないが前記作業台11の表面11aには例えば熱可塑性樹脂等で形成された剥離層が形成されていてもよい。   The support member 6 is an organic insulating resin sheet formed of, for example, polyimide. Although not shown, a release layer made of, for example, a thermoplastic resin may be formed on the surface 11a of the work table 11.

図8に示す工程では、前記支持部材6の表面6aの全面に直接、後に接続子5となる導電層13を例えばスパッタ蒸着法にて形成する。前記導電層13を具体的にはNiZr合金(Niを1at%添加)、MoCr等で形成する。   In the step shown in FIG. 8, a conductive layer 13 that will later become the connector 5 is formed directly on the entire surface 6a of the support member 6 by, for example, a sputter deposition method. Specifically, the conductive layer 13 is formed of a NiZr alloy (Ni added at 1 at%), MoCr, or the like.

前記導電層13をスパッタ蒸着法で形成するとき、真空ガス圧(例えばArガスを使用する)を徐々に変化させながら前記導電層13をスパッタ成膜していき、前記導電層13の下面側に圧縮応力を、上面側に引張り応力を付与する。   When the conductive layer 13 is formed by the sputter deposition method, the conductive layer 13 is formed by sputtering while gradually changing the vacuum gas pressure (for example, using Ar gas), and the conductive layer 13 is formed on the lower surface side of the conductive layer 13. A compressive stress is applied to the upper surface side as a tensile stress.

図9に示す工程では、前記導電層13の上にレジストなどのマスク層14を形成する。前記マスク層14は最初、前記導電層13上の全面にスピンコートなどで塗布され、露光現像によって前記接続子5と同形状にパターニングされる。   In the step shown in FIG. 9, a mask layer 14 such as a resist is formed on the conductive layer 13. The mask layer 14 is first applied to the entire surface of the conductive layer 13 by spin coating or the like, and is patterned in the same shape as the connector 5 by exposure and development.

図9に示す工程では前記マスク層14に覆われていない前記導電層13をエッチング法にて除去する。前記エッチングにはイオンミリング、反応性イオンエッチング、プラズマエッチング等を使用できる。このエッチング工程により前記導電層13は接続子5と同形状にて残される。なお以下の工程では図1と名称及び符号をあわせるために図9工程にて残された導電層13を接続子5と称する。   In the step shown in FIG. 9, the conductive layer 13 not covered with the mask layer 14 is removed by an etching method. For the etching, ion milling, reactive ion etching, plasma etching, or the like can be used. By this etching process, the conductive layer 13 remains in the same shape as the connector 5. In the following process, the conductive layer 13 left in the process of FIG. 9 is referred to as a connector 5 in order to match the name and symbol with those of FIG.

図10に示す工程では、前記レジストなどで形成されたマスク層14を溶解液に浸すなどして除去する。   In the step shown in FIG. 10, the mask layer 14 formed of the resist or the like is removed by immersing it in a solution.

図11に示す工程では、前記作業台11に形成された貫通孔12からエッチング法やレーザ加工等により前記支持部材6に貫通孔10を形成する。図11に示すように、ちょうど前記貫通孔10と高さ方向にて対向する位置の前記接続子5は弾性腕5bであり、前記接続子5のマウント部5aは前記貫通孔10が形成されない支持部材6上に形成されている。前記エッチングでは選択的エッチングが用いられ前記支持部材6のみが選択的にエッチングされ前記貫通孔10が形成される。上記のように前記貫通孔10の形成をエッチングやレーザ加工によって行なうことで、前記貫通孔10の幅を十数μm程度まで微細に高精度良く形成できる。   In the step shown in FIG. 11, the through hole 10 is formed in the support member 6 from the through hole 12 formed in the work table 11 by an etching method, laser processing, or the like. As shown in FIG. 11, the connector 5 at a position facing the through hole 10 in the height direction is an elastic arm 5b, and the mount 5a of the connector 5 is a support in which the through hole 10 is not formed. It is formed on the member 6. In the etching, selective etching is used, and only the support member 6 is selectively etched to form the through hole 10. By forming the through hole 10 by etching or laser processing as described above, the width of the through hole 10 can be finely and accurately formed to about a dozen μm.

図11に示す工程では、前記支持部材6に貫通孔10を形成することで、開放された前記弾性腕5bが内部応力の差に基づいて弾性変形を起こす(図12の状態)。上記したように前記導電層13を成膜する図8の工程では、下面側と上面側とで内部応力に差を持たせながら前記導電層13を前記支持部材6上に成膜していた。このとき、前記支持部材6上に形成された前記導電層13は前記支持部材6上に接合されているため拘束状態にあり、したがって変形できずに平面的な形状を保つが、図11工程にて、支持部材6の一部が除去されて貫通孔10が形成されると、前記弾性腕5bに対する支持部材6からの拘束力が無くなり、前記弾性腕5bは、上下に何の抑えも無い自由状態となる。このとき、前記接続子5には下面側に圧縮応力が、上面側に引張り応力が付与されているため、前記弾性腕5bが、下方向へ湾曲状に変形する。図12に示すように、前記弾性腕5bは前記支持部材6及び作業台11に設けられた貫通孔10,12内へ入り込むので、前記弾性腕5bの内部応力差に基づく変形は阻害されない。   In the process shown in FIG. 11, by forming the through hole 10 in the support member 6, the opened elastic arm 5b undergoes elastic deformation based on the difference in internal stress (state of FIG. 12). As described above, in the step of forming the conductive layer 13 in FIG. 8, the conductive layer 13 is formed on the support member 6 while making a difference in internal stress between the lower surface side and the upper surface side. At this time, since the conductive layer 13 formed on the support member 6 is bonded to the support member 6 and is in a restrained state, it is not deformable and maintains a planar shape. Then, when part of the support member 6 is removed and the through hole 10 is formed, the restraining force from the support member 6 to the elastic arm 5b is lost, and the elastic arm 5b is free to move up and down without any restraint. It becomes a state. At this time, since the compressive stress is applied to the lower surface side of the connector 5 and the tensile stress is applied to the upper surface side, the elastic arm 5b is deformed downward in a curved shape. As shown in FIG. 12, since the elastic arm 5b enters the through holes 10 and 12 provided in the support member 6 and the work table 11, the deformation based on the internal stress difference of the elastic arm 5b is not hindered.

また前記接続子5のマウント部5aは前記支持部材6の上面に接合された平面形態を保ち、前記マウント部5aは変形しない。   Further, the mount portion 5a of the connector 5 maintains a planar form joined to the upper surface of the support member 6, and the mount portion 5a is not deformed.

図13に示す工程では、前記接続子5の露出する全表面にAu等の貴金属やNiの金属被膜7を電解メッキ法等でメッキ形成する。前記接続子5は、前記マウント部5aの下面が支持部材6に接合されているので、前記マウント部5aの下面は露出しておらず前記マウント部5aの下面を除く前記接続子5の全表面に前記金属被膜7が形成される。前記金属被膜7は、形成されなくてもよいが形成されたほうが、前記接続子5の錆び等による導電性劣化を抑制でき、また回路基板1と電子部品2間の導通接続を良好なものにできて好ましい。また、電子部品2の電極部2aとの接合を良好なものに出来る。   In the step shown in FIG. 13, a precious metal such as Au or a metal film 7 of Ni is plated on the entire exposed surface of the connector 5 by an electrolytic plating method or the like. Since the lower surface of the mount portion 5a is joined to the support member 6 in the connector 5, the lower surface of the mount portion 5a is not exposed and the entire surface of the connector 5 except the lower surface of the mount portion 5a. Then, the metal film 7 is formed. The metal coating 7 may not be formed. However, if the metal coating 7 is formed, the conductive deterioration due to the rust of the connector 5 can be suppressed, and the conductive connection between the circuit board 1 and the electronic component 2 can be improved. This is preferable. In addition, the bonding of the electronic component 2 with the electrode portion 2a can be improved.

次に、図1に示すIC等の電子部品2に形成された電極部2aを前記接続子5のマウント部5aの支持部材6が取り付けられている面と逆側の面(図1では上面)に当接させ、例えば超音波溶接等によって前記接続子5のマウント部5aを前記電極部2aに接合する。   Next, the electrode portion 2a formed on the electronic component 2 such as an IC shown in FIG. 1 is a surface opposite to the surface on which the support member 6 of the mount portion 5a of the connector 5 is attached (upper surface in FIG. 1). The mounting portion 5a of the connector 5 is joined to the electrode portion 2a by, for example, ultrasonic welding.

このように金属被膜7を接合層として機能させることができ、例えば超音波溶接によって前記接続子5のマウント部5aを前記電極部2aに接合させることが可能である。すなわち導電性接着剤等を用いなくても前記接続子5のマウント部5aを簡単に前記電極部2aに接合させることが出来るから製造工程の簡略化を図ることが出来る。   In this way, the metal coating 7 can function as a bonding layer. For example, the mount 5a of the connector 5 can be bonded to the electrode 2a by ultrasonic welding. That is, since the mount 5a of the connector 5 can be easily joined to the electrode 2a without using a conductive adhesive or the like, the manufacturing process can be simplified.

また前記接続子5を前記電極部2a下に接合させた後、前記作業台11を除去する。除去する方法としてエッチング法などを用いてもよいが、図7工程で予め前記作業台11と支持部材6間に剥離層を設けておけば、前記剥離層から容易に前記作業台11を取り外すことができ、しかも剥離された作業台11を再び使用することができるので製造費の上昇を抑制することも出来る。   Further, after the connector 5 is joined under the electrode portion 2a, the work table 11 is removed. An etching method or the like may be used as a removal method. However, if a release layer is previously provided between the work table 11 and the support member 6 in the step of FIG. 7, the work table 11 can be easily removed from the release layer. In addition, since the detached work table 11 can be used again, an increase in manufacturing cost can be suppressed.

なお例えば図12工程から図13工程の間で、すなわち電子部品2を取り付ける前に、前記接続部材3に対し熱処理を施してもよい。この熱処理によって前記接続子5の弾性腕5b内の内部応力をより増大させ、さらに湾曲状に変形しやくできる。   For example, the connecting member 3 may be heat-treated between the step of FIG. 12 and the step of FIG. 13, that is, before the electronic component 2 is attached. By this heat treatment, the internal stress in the elastic arm 5b of the connector 5 can be further increased and can be easily deformed into a curved shape.

本実施形態では、図8工程で、前記接続子5(導電層13)の下面側と上面側とで異なる内部応力を付与する点、前記接続子5(導電層13)を直接、前記支持部材6上に成膜する点(すなわち接着剤等を使用しない)、等に特徴的な部分がある。すなわち、前記接続子5を支持部材6上に成膜するときに、前記接続子5と支持部材6との間に犠牲層を設ける必要がない。例えば、前記接続子5を直接、回路基板1上に形成しようとするとき(すなわち支持部材6がない)、まず回路基板1上に前記犠牲層を形成し、その上に接続子5を形成する。そして、その後、前記接続子5のマウント部5a下にある犠牲層はそのままで弾性腕下にある前記犠牲層を除去すると、前記犠牲層による抑えが無くなった前記弾性腕が自らの内部応力の差に基づき変形する。あるいは前記支持部材6上でも前記支持部材6に貫通孔10を形成しない場合は前記犠牲層が必ず必要になる。   In the present embodiment, in FIG. 8, in the step of applying different internal stresses on the lower surface side and the upper surface side of the connector 5 (conductive layer 13), the connector 5 (conductive layer 13) is directly attached to the support member. 6 is characterized in that a film is formed on 6 (that is, no adhesive or the like is used). That is, when the connector 5 is formed on the support member 6, it is not necessary to provide a sacrificial layer between the connector 5 and the support member 6. For example, when the connector 5 is directly formed on the circuit board 1 (that is, there is no support member 6), the sacrificial layer is first formed on the circuit board 1, and the connector 5 is formed thereon. . After that, when the sacrificial layer under the mount 5a of the connector 5 is left as it is and the sacrificial layer under the elastic arm is removed, the elastic arm that is no longer restrained by the sacrificial layer has its own internal stress difference. Deforms based on Alternatively, even when the support member 6 is not formed with the through hole 10, the sacrificial layer is necessarily required.

しかし図7ないし図13に示す製造方法では、前記弾性腕5bと高さ方向にて対向する位置にある前記支持部材6に貫通孔10を形成するため、前記貫通孔10の形成により前記弾性腕5bを、上下に何の抑えもない開放状態にでき、特に前記犠牲層の形成は必要なく、簡単な製造工程で前記接続部材3を形成することが可能になる。   However, in the manufacturing method shown in FIGS. 7 to 13, since the through hole 10 is formed in the support member 6 at a position facing the elastic arm 5 b in the height direction, the elastic arm is formed by forming the through hole 10. 5b can be in an open state without any restriction on the upper and lower sides, the formation of the sacrificial layer is not particularly required, and the connection member 3 can be formed by a simple manufacturing process.

また前記支持部材6は有機絶縁シートであることが好ましい。前記支持部材6を有機絶縁シートで形成すると、図9工程で、選択的エッチングにより、前記支持部材6に影響を与えることなく前記接続子5を所定形状に形成でき、また図11工程で、選択的エッチングにより、前記接続子5に影響を与えることなく前記支持部材6に適切且つ簡単に貫通孔10を形成できる。   The support member 6 is preferably an organic insulating sheet. When the support member 6 is formed of an organic insulating sheet, the connector 5 can be formed into a predetermined shape without affecting the support member 6 by selective etching in the step of FIG. 9, and selected in the step of FIG. Through the etching, the through hole 10 can be appropriately and easily formed in the support member 6 without affecting the connector 5.

また電子部品2の電極部2aの数及び電極部2a間の間隔に応じて形成された複数の接続子5を支持部材6に固定支持できるので、複数の接続子5のマウント部5aを同時に前記電子部品2の電極部2a下に接合することができ製造工程の簡略化を図ることができて好ましい。またシート状の支持部材6に複数の接続子5が取り付けられているので、電子部品2への接合前に各接続子5がばらばらになることは無く、前記接続部材3の輸送等も簡単に行なうことが出来る。   In addition, since the plurality of connectors 5 formed according to the number of electrode portions 2a of the electronic component 2 and the interval between the electrode portions 2a can be fixedly supported on the support member 6, the mount portions 5a of the plurality of connectors 5 can be simultaneously attached to the support member 6. This is preferable because it can be joined under the electrode portion 2a of the electronic component 2 and the manufacturing process can be simplified. In addition, since the plurality of connectors 5 are attached to the sheet-like support member 6, the connectors 5 are not separated before joining to the electronic component 2, and transportation of the connection members 3 is easy. Can be done.

図7工程での作業台11は用いられなくてもよいが、用いたほうが製造工程を容易にできて好ましい。前記支持部材6には図11工程の段階で貫通孔10が形成されるが、作業台11に形成された貫通孔12を利用して前記支持部材6に簡単且つ確実に貫通孔10を形成できるし、また軟質な支持部材6を前記支持部材6よりも硬質な作業台11上に載置することで前記支持部材6上に導電層13を形成しやすくなる。なお前記作業台11には最初から貫通孔12が形成されているが前記貫通孔12は、図11工程までのいずれかの段階(すなわち前記支持部材6に貫通孔10を形成する前段階)で形成すればよい。   The work table 11 in the step of FIG. 7 may not be used, but it is preferable to use it because the manufacturing process can be facilitated. A through hole 10 is formed in the support member 6 in the step of FIG. 11, but the through hole 10 can be easily and reliably formed in the support member 6 using the through hole 12 formed in the work table 11. In addition, the conductive layer 13 can be easily formed on the support member 6 by placing the soft support member 6 on the work table 11 that is harder than the support member 6. The work table 11 has a through hole 12 formed from the beginning, but the through hole 12 is in any stage up to the step of FIG. 11 (that is, before the through hole 10 is formed in the support member 6). What is necessary is just to form.

なお図8の工程で導電層13を形成するときに、下面側に引っ張り応力を上面側に圧縮応力を付与すれば、図12工程で前記弾性腕5bは上方に向けて、すなわち前記貫通孔10から離れる方向に向けて変形する。図2に示す接続部材15を図3に示す取付基板21に導電性接着剤26を用いて貼り付けたり、あるいは図4に示すように前記マウント部16a下の支持部材6に第2の貫通孔31を形成し、前記第2の貫通孔31を介して前記マウント部16aと回路基板1の電極部33とを接合してもよい。   When the conductive layer 13 is formed in the step of FIG. 8, if the tensile stress is applied to the lower surface side and the compressive stress is applied to the upper surface side, the elastic arm 5b is directed upward in FIG. Deforms toward the direction away from The connection member 15 shown in FIG. 2 is attached to the mounting substrate 21 shown in FIG. 3 using a conductive adhesive 26, or the second through hole is formed in the support member 6 below the mount portion 16a as shown in FIG. 31 may be formed, and the mount portion 16 a and the electrode portion 33 of the circuit board 1 may be joined via the second through hole 31.

また上記では前記接続子5を内部応力に差を持たせて形成し、図11工程で前記支持部材6に貫通孔10を形成することで、開放された前記弾性腕5bを自らの力により変形させるものであったが、前記接続子5の内部応力に差を持たせず、図11のように貫通孔10を形成した後、前記貫通孔10を通して、あるいは前記貫通孔10の上側から治具を用いて前記弾性腕5bを機械的に上方向あるいは下方向に変形させるものであってもよい。   Further, in the above, the connector 5 is formed with a difference in internal stress, and the open elastic arm 5b is deformed by its own force by forming the through hole 10 in the support member 6 in the step of FIG. Although there is no difference in the internal stress of the connector 5 after forming the through hole 10 as shown in FIG. 11, the jig is inserted through the through hole 10 or from the upper side of the through hole 10. May be used to mechanically deform the elastic arm 5b upward or downward.

上記ではIC等の電子部品と回路基板間に用いられる接続部材について説明したが、前記接続部材は、電子部品間等に用いられてもよい。   Although the connection member used between electronic components, such as IC, and a circuit board was demonstrated above, the said connection member may be used between electronic components.

本発明における実施形態を示す基板、電子部品、及び接続部材を示す部分断面図、The board | substrate which shows embodiment in this invention, the electronic component, and the fragmentary sectional view which shows a connection member, 図1とは異なる実施形態の接続部材の部分断面図、The fragmentary sectional view of the connection member of embodiment different from FIG. 図1とは異なる形態の本発明における実施形態を示す基板、電子部品、及び接続部材を示す部分断面図、FIG. 1 is a partial cross-sectional view showing a substrate, an electronic component, and a connection member according to an embodiment of the present invention different from FIG. 図1とは異なる形態の本発明における実施形態を示す基板、電子部品、及び接続部材を示す部分断面図、FIG. 1 is a partial cross-sectional view showing a substrate, an electronic component, and a connection member according to an embodiment of the present invention different from FIG. 図1とは異なる実施形態の接続部材の部分断面図、The fragmentary sectional view of the connection member of embodiment different from FIG. 図1とは異なる形態の本発明における実施形態を示す基板、電子部品、及び接続部材を示す部分断面図、FIG. 1 is a partial cross-sectional view showing a substrate, an electronic component, and a connection member according to an embodiment of the present invention different from FIG. 図1に示す接続部材の製造方法を説明するための一工程図(部分拡大断面図)、1 process drawing (partial expanded sectional view) for demonstrating the manufacturing method of the connection member shown in FIG. 図7の次に行なわれる一工程図(部分拡大断面図)、FIG. 7 is a process diagram (partial enlarged cross-sectional view) performed next to FIG. 図8の次に行なわれる一工程図(部分拡大断面図)、FIG. 8 is a process diagram (partially enlarged sectional view) performed next to FIG. 図9の次に行なわれる一工程図(部分拡大断面図)、FIG. 9 is a process diagram (partial enlarged cross-sectional view) performed next to FIG. 図10の次に行なわれる一工程図(部分拡大断面図)、FIG. 10 is a process diagram (partially enlarged sectional view) performed next to FIG. 図11の次に行なわれる一工程図(部分拡大断面図)、FIG. 11 is a process diagram (partial enlarged cross-sectional view) performed next to FIG. 図12の次に行なわれる一工程図(部分拡大断面図)、FIG. 12 is a process diagram (partially enlarged sectional view) performed next to FIG.

符号の説明Explanation of symbols

1 基板
2 電子部品
3、15、30、60 接続部材
5、16、40、50 接続子
5a、16a、40a、50a マウント部
5b、16b、40b、50b 弾性腕
6 支持部材
7 金属被膜
10、12、22、31 貫通孔
11 台
13 導電層
20 マスク層
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Electronic component 3, 15, 30, 60 Connection member 5, 16, 40, 50 Connector 5a, 16a, 40a, 50a Mount part 5b, 16b, 40b, 50b Elastic arm 6 Support member 7 Metal coatings 10, 12 , 22, 31 Through-hole 11 Base 13 Conductive layer 20 Mask layer

Claims (18)

支持部材と、接続子とを有し、
前記接続子は前記支持部材に直接接合されるマウント部と、前記マウント部から延出する弾性腕とを有し、
前記支持部材には前記弾性腕と対向する位置に第1の貫通孔が形成され、
前記弾性腕は、前記第1の貫通孔から離れる方向に変形しているか、あるいは前記第1の貫通孔内を貫通する方向に変形していることを特徴とする接続部材。
A support member and a connector;
The connector has a mount part directly joined to the support member, and an elastic arm extending from the mount part,
The support member is formed with a first through hole at a position facing the elastic arm,
The connection member, wherein the elastic arm is deformed in a direction away from the first through hole or deformed in a direction penetrating the first through hole.
前記支持部材は有機絶縁材料で形成される請求項1記載の接続部材。   The connection member according to claim 1, wherein the support member is formed of an organic insulating material. 前記マウント部の一部と対向する位置の前記支持部材には第2の貫通孔が形成され、前記第2の貫通孔から露出する前記マウント部が接点として機能する請求項1または2に記載の接続部材。   The support member at a position facing a part of the mount portion is formed with a second through hole, and the mount portion exposed from the second through hole functions as a contact point. Connection member. 前記接続子は薄膜形成されたものである請求項1ないし3のいずれかに記載の接続部材。   The connecting member according to claim 1, wherein the connector is formed as a thin film. 請求項1ないし4のいずれかに記載された接続部材が、電子部材に取り付けられていることを特徴とする接続部材実装構造。   5. A connection member mounting structure, wherein the connection member according to claim 1 is attached to an electronic member. 前記弾性腕は前記第1の貫通孔内を貫通する方向に変形しており、前記マウント部は前記支持部材との接合面と逆側の面で前記電子部材の電極部と接合されている請求項5記載の接続部材実装構造。   The elastic arm is deformed in a direction penetrating through the first through hole, and the mount portion is joined to an electrode portion of the electronic member on a surface opposite to a joint surface with the support member. Item 6. The connecting member mounting structure according to Item 5. 前記弾性腕は前記第1の貫通孔から離れる方向に変形しており、前記マウント部は前記支持部材との接合面と逆側の面で前記電子部材の電極部と接合されている請求項5記載の接続部材実装構造。   The elastic arm is deformed in a direction away from the first through hole, and the mount portion is joined to the electrode portion of the electronic member on a surface opposite to the joint surface with the support member. The connecting member mounting structure described. 前記電子部材には、前記弾性腕と対向する位置に収納部が形成されており、前記弾性腕が前記収納部内に入り込んでいる請求項7記載の接続部材実装構造。   The connecting member mounting structure according to claim 7, wherein a storage portion is formed in the electronic member at a position facing the elastic arm, and the elastic arm enters the storage portion. 前記第2の貫通孔から露出する前記マウント部と、前記電子部材の電極部とが前記第2の貫通孔を介して接合されている請求項5記載の接続部材実装構造。   The connection member mounting structure according to claim 5, wherein the mount portion exposed from the second through hole and the electrode portion of the electronic member are joined via the second through hole. 以下の工程を有することを特徴とする接続部材の製造方法。
(a) 支持部材上にマウント部と弾性腕とを有する接続子を平面的な形状で直接形成する工程と、
(b) 前記弾性腕と対向する位置にある前記支持部材を除去して第1の貫通孔を形成する工程と、
(c) 前記弾性腕を、前記第1の貫通孔から離れる方向に変形させるか、あるいは前記第1の貫通孔内を貫通する方向に変形させる工程。
The manufacturing method of the connection member characterized by having the following processes.
(A) directly forming a connector having a mount portion and an elastic arm on a support member in a planar shape;
(B) removing the support member at a position facing the elastic arm to form a first through hole;
(C) The step of deforming the elastic arm in a direction away from the first through-hole or in a direction penetrating through the first through-hole.
前記(a)工程時、前記接続子の下面側と上面側とで異なる内部応力を付与し、
前記(c)工程時、前記弾性腕は自らの内部応力の差により所定方向に変形させられる請求項10記載の接続部材の製造方法。
During the step (a), different internal stresses are applied on the lower surface side and the upper surface side of the connector,
The method for manufacturing a connection member according to claim 10, wherein, in the step (c), the elastic arm is deformed in a predetermined direction by a difference in its internal stress.
前記(a)工程時、前記接続子をスパッタ蒸着法を用いて形成し、このとき真空ガス圧を変化させることで前記接続子の内部応力を制御する請求項11記載の接続部材の製造方法。   12. The method for manufacturing a connection member according to claim 11, wherein in the step (a), the connector is formed using a sputter deposition method, and the internal stress of the connector is controlled by changing the vacuum gas pressure. 請求項10ないし12のいずれかに記載された接続部材のマウント部を電子部材の電極部に接合したことを特徴とする接続部材実装構造の製造方法。   A method for manufacturing a connecting member mounting structure, wherein the mounting portion of the connecting member according to any one of claims 10 to 12 is joined to an electrode portion of an electronic member. 前記マウント部を、前記支持部材との接合面と逆側の面から前記電子部材の電極部に接合させる請求項13記載の接続部材実装構造の製造方法。   The method for manufacturing a connection member mounting structure according to claim 13, wherein the mount portion is joined to the electrode portion of the electronic member from a surface opposite to the joint surface with the support member. 前記弾性腕を前記第1の貫通孔内に貫通する方向に変形させる請求項14記載の接続部材実装構造の製造方法。   The manufacturing method of the connection member mounting structure according to claim 14, wherein the elastic arm is deformed in a direction penetrating into the first through hole. 前記弾性腕を前記第1の貫通孔から離れる方向に変形させる請求項14記載の接続部材実装構造の製造方法。   The method for manufacturing a connection member mounting structure according to claim 14, wherein the elastic arm is deformed in a direction away from the first through hole. 前記電子部材の前記弾性腕と対向する位置に収納部を形成し、前記マウント部と前記電子部材の電極部とを接合するとき、前記弾性腕を前記収納部内に入り込ませる請求項16記載の接続部材実装構造の製造方法。   The connection according to claim 16, wherein a storage portion is formed at a position facing the elastic arm of the electronic member, and the elastic arm is inserted into the storage portion when the mount portion and the electrode portion of the electronic member are joined. Manufacturing method of member mounting structure. 前記マウント部と対向する位置の前記支持部材の一部に第2の貫通孔を形成し、前記第2の貫通孔から露出する前記マウント部と、前記電子部材の電極部とを前記第2の貫通孔を介して接合する請求項13記載の接続部材実装構造の製造方法。   A second through hole is formed in a part of the support member at a position facing the mount portion, and the mount portion exposed from the second through hole and the electrode portion of the electronic member are connected to the second portion. The manufacturing method of the connection member mounting structure of Claim 13 joined through a through-hole.
JP2006144958A 2005-07-12 2006-05-25 Connecting member and its manufacturing method as well as connecting member mounting structure having connecting member and its manufacturing method Withdrawn JP2007027093A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17947005A 2005-07-12 2005-07-12

Publications (1)

Publication Number Publication Date
JP2007027093A true JP2007027093A (en) 2007-02-01

Family

ID=37787563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144958A Withdrawn JP2007027093A (en) 2005-07-12 2006-05-25 Connecting member and its manufacturing method as well as connecting member mounting structure having connecting member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007027093A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027773A (en) * 2006-07-21 2008-02-07 Fujikura Ltd Ic socket and its manufacturing method
EP2063139A1 (en) 2007-10-29 2009-05-27 Grundfos Management A/S Pump power unit
JP2016076580A (en) * 2014-10-06 2016-05-12 富士通株式会社 Interposer, printed circuit board unit, and information processing apparatus
JP2017517863A (en) * 2015-04-17 2017-06-29 イノー インコーポレイテッドINNO Inc. Bidirectional conductive socket for high-frequency device test, bidirectional conductive module for high-frequency device test, and manufacturing method thereof
JP2018058643A (en) * 2016-09-30 2018-04-12 株式会社吉野工業所 Double container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027773A (en) * 2006-07-21 2008-02-07 Fujikura Ltd Ic socket and its manufacturing method
EP2063139A1 (en) 2007-10-29 2009-05-27 Grundfos Management A/S Pump power unit
JP2016076580A (en) * 2014-10-06 2016-05-12 富士通株式会社 Interposer, printed circuit board unit, and information processing apparatus
JP2017517863A (en) * 2015-04-17 2017-06-29 イノー インコーポレイテッドINNO Inc. Bidirectional conductive socket for high-frequency device test, bidirectional conductive module for high-frequency device test, and manufacturing method thereof
JP2018058643A (en) * 2016-09-30 2018-04-12 株式会社吉野工業所 Double container

Similar Documents

Publication Publication Date Title
JP2002509639A (en) Interconnection elements for microelectronic devices
JP2008021751A (en) Electrode, semiconductor chip, substrate, connecting structure of electrode for semiconductor chip, and semiconductor module and its manufacturing method
JP2007027093A (en) Connecting member and its manufacturing method as well as connecting member mounting structure having connecting member and its manufacturing method
JP5297200B2 (en) Probe bonding method and probe card manufacturing method using the same
JP2000077477A (en) Semiconductor device, its manufacture, and metallic substrate used therefor
JP4659604B2 (en) Positioning device for conveying jig for component mounting of flexible printed wiring board
US20090175022A1 (en) Multi-layer package structure and fabrication method thereof
JP5083300B2 (en) Wiring substrate for semiconductor device and semiconductor device using the same
JP2006229191A (en) Contact member and its production process, electronic member fixed with contact member and its production process
JP4930566B2 (en) Relay board, printed circuit board unit, and relay board manufacturing method
JP2005340177A (en) Connection structure between substrate and component and its manufacturing method
JP2006229192A (en) Contact member and its production process
JP2007220873A (en) Semiconductor device and its manufacturing method
JP3904564B2 (en) Electronic component inspection probe and electronic component inspection socket including the probe
US10707172B2 (en) Component-embedded substrate, method of manufacturing the same, and high-frequency module
JP4383843B2 (en) Electrical contact structure and manufacturing method thereof
JPH0685425A (en) Board for mounting electronic part thereon
JP2006208062A (en) Contact member, contact sheet using contact member, contact substrate, and electronic equipment unit
JP4605031B2 (en) Board-to-board connector and insulating board used therefor
JP2006229193A (en) Contact member and its production process
JP2009087793A (en) Convex spiral contactor and its manufacturing method
JP4293030B2 (en) Electronic device mounting structure and manufacturing method thereof
JP2008084928A (en) Method of manufacturing tab tape for semiconductor device
JP2010019616A (en) Contact probe complex, manufacturing method therefor, and manufacturing method of probe card
JP2010107319A (en) Manufacturing method of contact probe

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804