JP4078743B2 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
JP4078743B2
JP4078743B2 JP00966299A JP966299A JP4078743B2 JP 4078743 B2 JP4078743 B2 JP 4078743B2 JP 00966299 A JP00966299 A JP 00966299A JP 966299 A JP966299 A JP 966299A JP 4078743 B2 JP4078743 B2 JP 4078743B2
Authority
JP
Japan
Prior art keywords
hot water
opening
air
cold air
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00966299A
Other languages
English (en)
Other versions
JP2000001117A (ja
Inventor
貴博 鈴木
裕己 俵原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP00966299A priority Critical patent/JP4078743B2/ja
Publication of JP2000001117A publication Critical patent/JP2000001117A/ja
Application granted granted Critical
Publication of JP4078743B2 publication Critical patent/JP4078743B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、暖房用熱交換器に循環する温水の流量を制御する温水弁を備え、この温水弁により車室内への吹出空気温度を調整するとともに、暖房用熱交換器として、温水入口側から温水出口側に向かって全部のチューブを一方向のみに温水が流れる一方向流れタイプを用いる車両用空調装置に関する。
【0002】
【従来の技術】
従来、車両用空調装置においては、暖房用熱交換器として前後(もしくは左右)Uターン方式の暖房用熱交換器が吹出空気温度分布の均一化のために使用されてきた。しかし、近年は、Uターン方式に比して、構成の簡略化によるコスト低減、温水流路の低圧損等の面で優れている一方向流れタイプの暖房用熱交換器が主流になってきている。
【0003】
【発明が解決しようとする課題】
しかし、一方向流れタイプの暖房用熱交換器では、熱交換用コア部全体を温水が入口側から出口側へ向かって一方向のみに流れるので、温水入口側と温水出口側とで、温水温度低下により吹出空気温度に差が発生する。特に、温度制御のために、温水流量が低流量に絞られているときは、温水入口側と温水出口側との吹出空気温度差が顕著となり、空調フィーリング悪化の大きな要因となっている。
【0004】
この不具合を解消するために、一方向流れタイプの暖房用熱交換器の温水入口側で発生する高温の温風と、温水出口側で発生する低温の温風とを混合するエアガイドを暖房用熱交換器の空気下流側の通路内に設置することが考えられるが、この対策では、温水流量による温度制御方式の本来の利点(すなわち、空気通路の小スペース化、空気通路の低圧損化等の利点)がエアガイドの追加設置により失われることになり、実用的とは言えない。
【0005】
本発明は上記点に鑑みてなされたもので、温水入口側から温水出口側に向かって全部のチューブを一方向のみに温水が流れる一方向流れタイプの暖房用熱交換器を用いる車両用空調装置において、エアガイドの追加設置なしで、暖房用熱交換器の温水入口側と温水出口側との間の吹出空気温度差による空調フィーリングの悪化を解消することを目的とする。
【0006】
【課題を解決するための手段】
本発明は以下の点に着眼して上記目的を達成するための技術的手段を案出したものである。
すなわち、温水流量による温度制御方式を採用している車両用空調装置においては、冷風量を増加して最大冷房能力を向上するために、暖房用熱交換器をバイパスして冷風を流す冷風バイパス通路、およびこの冷風バイパス通路を開閉する冷風バイパスドアを設け、最大冷房時には、冷風バイパスドアにより冷風バイパス通路を開くようにしている。
【0007】
本発明では、上記の冷風バイパス通路による最大冷房能力向上効果を維持しつつ、冷風バイパス作用をうまく活用して、暖房用熱交換器の温水入口側と温水出口側との間の吹出空気温度差による空調フィーリングの悪化を解消するものである。すなわち、請求項1記載の発明では、一方向流れタイプの暖房用熱交換器(23)の空気流れ下流側には、暖房用熱交換器(23)と並列に設けられ、暖房用熱交換器(23)をバイパスして空調空気が流れる冷風バイパス通路(32)を暖房用熱交換器(23)の温水入口側に配置し、空調ケース(21)内において、暖房用熱交換器(23)の温水入口側の部位をフェイス開口部(27)側に近接するように配置するとともに、空調ケース(21)内において、暖房用熱交換器(23)の温水出口側の部位をフット開口部(26)側に配置し、フェイス開口部(27)は、冷風バイパス通路(32)に近接するように配置され、さらに、冷風バイパス通路(32)内に設けられ、冷風バイパス通路(32)を開閉する冷風バイパスドア(33)を具備し、フット開口部(26)およびデフロスタ開口部(28)の両方から空調空気を吹き出す吹出モードにおいて、温水弁(25)が最大暖房状態にあるとき、冷風バイパスドア(33)は全閉位置に操作され、温水弁(25)が最大暖房状態から温度制御領域に操作されると、冷風バイパスドア(33)が冷風バイパス通路(32)を所定量開く中間開度位置に操作されるようになっており、フェイス開口部(27)から空調空気を吹き出すフェイス吹出モードにおいて、温水弁(25)が最大冷房状態にあるとき、冷風バイパスドア(33)は全開位置に操作され、温水弁(25)が最大冷房状態から温度制御領域に操作されると、冷風バイパスドア(33)が冷風バイパス通路(32)を所定量開く中間開度位置に操作されるようになっており、フット開口部(26)およびフェイス開口部(27)の両方から空調空気を吹き出すバイレベル吹出モードにおいて、温水弁(25)が最大暖房状態と最大冷房状態との間の温度制御領域に操作されるとともに、冷風バイパスドア(33)が冷風バイパス通路(32)を所定量開く中間開度位置に操作されることを特徴としている。
【0008】
これによると、冷風バイパス通路(32)およびフェイス開口部(27)がいずれも暖房用熱交換器(23)の温水入口側に配置され、近接しているので、フェイス吹出モードの最大冷房時には、冷風バイパス通路(32)を冷風バイパスドア(33)により全開することにより、冷風バイパス通路(32)の冷風をその直後のフェイス開口部(27)に小さい通風抵抗で導入でき、冷風量を効果的に増加し、最大冷房能力を向上できる。
【0009】
また、フット吹出モードの最大暖房時には、冷風バイパスドア(18)を冷風バイパス通路(17)の全閉位置に操作することにより最大暖房能力を支障なく発揮できる。さらに、温水弁(25)が中間開度位置に操作される温度制御領域では、冷風バイパスドア(33)により冷風バイパス通路(32)を所定開度開
くことにより、暖房用熱交換器(23)の温水入口側部位を通過した高温の温風(1)に冷風バイパス通路(32)を通過した冷風(3)を混合できる。また、暖房用熱交換器(23)の温水入口側を通過した高温の温風(1)と暖房用熱交換器(23)の温水出口側を通過した低温の温風(2)とを混合できる。
また、フット開口部(26)およびデフロスタ開口部(28)の両方から空調空気を吹き出す吹出モードにおいて、温水弁(25)が最大暖房状態にあるとき、冷風バイパスドア(33)を全閉位置に操作し、温水弁(25)が最大暖房状態から温度制御領域に操作されると、冷風バイパスドア(33)を冷風バイパス通路(32)の中間開度位置に操作することで、フット開口部(26)およびデフロスタ開口部(28)の両方から空調空気を吹き出す吹出モード(フットモード、フットデフロスタモード)において、温度制御領域におけるフット開口部(26)とデフロスタ開口部(28)との上下吹出温度差を冷風バイパスドア(33)の開度調整により良好に設定できる。
さらに、フェイス開口部(27)から空調空気を吹き出すフェイス吹出モードにおいて、温水弁(25)が最大冷房状態にあるとき、冷風バイパスドア(33)を全開位置に操作し、温水弁(25)が最大冷房状態から温度制御領域に操作されると、冷風バイパスドア(33)を冷風バイパス通路(32)の中間開度位置に操作することで、フェイス吹出モードにおいて、温度制御領域におけるフェイス開口部(27)からの吹出温度のばらつきを冷風バイパスドア(33)の開度調整により効果的に低減できる。
さらにまた、フット開口部(26)およびフェイス開口部(27)の両方から空調空気を吹き出すバイレベル吹出モードにおいて、温水弁(25)を最大暖房状態と最大冷房状態との間の温度制御領域に操作するとともに、冷風バイパスドア(33)を冷風バイパス通路(32)の中間開度位置に操作することで、バイレベル吹出モードにおいて、フット開口部(26)とフェイス開口部(27)との上下吹出温度差を冷風バイパスドア(33)の開度調整により良好に設定できる。
【0010】
このため、温水出口側で温水温度が大きく低下する温度制御領域でも、高温の温風▲1▼と冷風▲3▼との混合、および高温の温風▲1▼と低温の温風▲2▼との混合を行うことにより、暖房用熱交換器(23)の温水入口側部位からの吹出空気温度と温水出口側部位からの吹出空気温度とを適切な温度差に設定することが可能となり、空調フィーリングを快適に維持できる。
【0011】
しかも、冷風バイパス作用をうまく活用して、暖房用熱交換器(23)の温水入口側と温水出口側との間の吹出空気温度差を低減することができるから、エアガイドのような特別の部品を追加設置する必要がない。そのため、温水流量による温度制御方式の本来の利点である、空気通路の小スペース化、空気通路の低圧損化を何ら損なうことがない。また、エアガイドを設けない簡素な構成によりコスト低減を図ることができる。
【0012】
また、請求項2記載の発明では、空調ケース(21)内であって暖房用熱交換器(23)の空気流れ上流側に配置され、空調空気を冷却する冷房用熱交換器(22)を備えることを特徴としている。
また、請求項記載の発明では、デフロスタ開口部(28)を暖房用熱交換器(23)の温水入口側に配置したことを特徴としている。これによると、デフロスタ吹出モードの最大暖房時には、冷風バイパスドア(18)を冷風バイパス通路(17)の全閉位置に操作することにより最大暖房能力を支障なく発揮できる。
【0013】
さらに、デフロスタ吹出モードの温度制御領域でも、冷風バイパスドア(18)の開度調整により、暖房用熱交換器(23)の温水入口側部位からの吹出空気温度と温水出口側部位からの吹出空気温度とを適切な温度差に設定することが可能となり、空調フィーリングを快適に維持できる。また、請求項記載の発明では、暖房用熱交換器(23)の温水出口側およびフット開口部(26)を空調ケース(21)の下方側に配置し、暖房用熱交換器(23)の温水入口側、フェイス開口部(27)および冷風バイパス通路(32)を空調ケース(21)の上方側に配置したことを特徴としている。
【0014】
これによると、空調ケース(21)の下方側に位置するフット開口部(26)からの吹出空気温度と、空調ケース(21)の上方側に位置するフェイス開口部(27)からの吹出空気温度との差(上下吹出温度差)を冷風バイパスドア(33)の開度調整により良好に設定できる。
【0018】
また、請求項記載の発明では、空調ケース(21)内において、暖房用熱交換器(23)を車両前方側に配置すると共に、冷風バイパス通路(32)を車両後方側に配置し、フェイス開口部(27)を、フット開口部(26)よりも車両後方側で、かつ冷風バイパス通路(32)の上方に配置したことを特徴としている。
【0019】
これによると、冷風バイパス通路(32)の冷風がその上方のフェイス開口部(27)に向けて直線的に流れるため、冷風バイパス通路(32)からフェイス開口部(27)に至る間の通風抵抗が著しく小さくなる。従って、冷風バイパス通路(32)が全開となるフェイス吹出モードの最大冷房時に、冷風の風量がより一層増加し、最大冷房能力をさらに増加できる。
【0020】
なお、上記各手段に付した括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示す。
【0021】
【発明の実施の形態】
以下本発明を図に示す実施形態について説明する。
図1は本発明の第1実施形態における空調装置通風系の概要を示しており、通風系は、大別して、送風機ユニット10と空調ユニット20の2つの部分に分かれている。空調ユニット20部は、車室内の計器盤下方部のうち、車両左右方向の略中央部に配置されるものである。一方、送風機ユニット10は図1の図示形態では、空調ユニット20の車両前方側に配置する状態を図示しているが、送風機ユニット10を車室内において空調ユニット20の側方(助手席側)にオフセット配置するレイアウトとしてもよいことはいうまでもない。
【0022】
送風機ユニット10の吸入口11には内気(車室内空気)と外気(車室外空気)を切替導入する内外気切替箱(図示せず)が接続される。そして、吸入口11から導入された内気または外気をファン12により送風するようになっている。ファン12は周知の遠心多翼ファン(シロッコファン)からなるものであって、図示しない電動モータにて回転駆動される。
【0023】
次に、空調ユニット20部は空調ケース21内に蒸発器(冷房用熱交換器)22とヒータコア(暖房用熱交換器)23とを両方とも一体的に内蔵するタイプのものである。空調ケース21はポリプロピレンのような、ある程度の弾性を有し、強度的にも優れた樹脂の成形品からなり、複数に分割された分割ケースからなる。この複数の分割ケース内に、上記熱交換器22、23、後述するドア等の機器を収納した後に、この複数の分割ケースを金属バネクリップ、ネジ等の締結手段により一体に結合することにより、空調ユニット20部が組み立てられる。
【0024】
空調ケース21内において車両下方側の部位に蒸発器22が水平面より微小角度傾斜して配置されている。ここで、蒸発器22は空調ケース21内の空気通路の全域にわたって配置されている。また、蒸発器22の下方空間には送風機ユニット10の吹出側が接続ダクト13により接続されている。
蒸発器22は周知のごとく冷凍サイクルの冷媒の蒸発潜熱を空調空気から吸熱して、空調空気を冷却するものである。なお、蒸発器22は周知の積層型のものであって、アルミニュウム等の金属薄板を最中状に2枚張り合わせて構成した偏平チューブをコルゲートフィンを介在して多数積層配置し、一体ろう付けしたものである。この偏平チューブとコルゲートフィンの積層方向を図1の紙面垂直方向に設定することにより、空調空気は蒸発器22を下方から上方へ通過する。
【0025】
また、ヒータコア23は、蒸発器22の空気流れ下流側(車両上方側)に隣接配置されており、このヒータコア23は、蒸発器22を通過した冷風を再加熱するものであって、その内部に高温の温水(エンジン冷却水)が流れ、この温水を熱源として空気を加熱するものである。
このヒータコア23も蒸発器22と同様に、水平面より微小角度傾斜して配置されている。より具体的に述べると、ヒータコア23は、温水入口側タンク23aと温水出口側タンク23bとの間に熱交換用コア部23cを構成し、このコア部23cは図2に示すように、アルミニュウム等の金属薄板を断面偏平状に形成した偏平チューブ23dとコルゲートフィン23eとを多数積層配置している。ヒータコア23全体は、組付後に一体ろう付けにより接合される。
【0026】
図2の温水回路に示すように、水冷式の車両エンジン24により直接駆動される温水ポンプ24aを有し、車両エンジン24で加熱された温水は温水ポンプ24aにより図2の温水回路を循環する。車両エンジン24から温水は温水弁25を介してヒータコア23の温水入口側タンク23aに流入する。その後に、温水はコア部23cの各チューブ23dに分配され、この全部のチューブ23dを温水は温水出口側タンク23bへ向かって一方向に流れる。すなわち、、ヒータコア23は温水入口側タンク23aからの温水が熱交換コア部23cの全部の偏平チューブ23dを一方向に流れる一方向流れタイプ(全パスタイプ)として構成されている。
【0027】
そして、温水弁25は、ヒータコア23に流入する温水の流量を調整することによりヒータコア23の吹出空気温度(車室内への吹出空気温度)を調整する温度調整手段をなすものであって、この温水弁25は周知の構成のものでよく、例えば、弁ハウジング内に弁体を回動可能に収納し、この弁体の回動量を連続的に可変することにより、弁ハウジング内の温水流路の開口面積を連続的に可変して、温水流量を調整するものである。
【0028】
次に、ヒータコア23の空調ケース21内での配置形態をより具体的に説明すると、ヒータコア23の温水出口側タンク23bが下方側に位置し、また、温水入口側タンク23aが上方側に位置するようにして、ヒータコア23を傾斜配置している。その場合、ヒータコア23の温水出口側タンク23bがフット開口部26側に位置し、また、温水入口側タンク23aがフェイス開口部27およびデフロスタ開口部28側に位置するように、ヒータコア23の配置を設定している。
【0029】
ここで、フット開口部26は、空調ケース21の下方側で、車両後方側の部位に開口しており、このフット開口部26は車室内の乗員足元に温風を吹き出すためのものである。このフット開口部26は、回転軸29aにより回動自在な平板状のフットドア29により開閉される。
また、フェイス開口部27は空調ケース21の上面部において車両前方側の部位に開口しており、このフェイス開口部27は図示しないフェイスダクトを介して車両計器盤上方部のフェイス吹出口より乗員頭部に向けて風を吹き出すためのものである。このフェイス開口部27は、回転軸30aにより回動自在な平板状のフェイスドア30により開閉される。
【0030】
また、デフロスタ開口部28は空調ケース21の上面部において車両前方側の部位に開口しており、このデフロスタ開口部28は図示しないデフロスタダクトおよびデフロスタ吹出口を介して、車両窓ガラス内面に向けて風を吹き出すためのものである。このデフロスタ開口部28は、回転軸31aにより回動自在な平板状のデフロスタドア31により開閉される。
【0031】
さらに、空調ケース21内において、ヒータコア23は蒸発器22に比して図1の車両前後方向の寸法が小さくなっており、これにより、ヒータコア23の温水入口側タンク23aを空調ケース21の車両前方側の内壁面より所定間隔だけ開けて配置して、温水入口側タンク23aと空調ケース21の内壁面との間に、ヒータコア23をバイパスして空気(冷風)が流れる冷風バイパス通路32を形成している。この冷風バイパス通路32は冷風バイパスドア33により開閉される。冷風バイパスドア33は回転軸33aにより回動自在な平板状のドアからなる。
【0032】
なお、フットドア29、フェイスドア30、およびデフロスタドア31は吹出モード切替用のドア手段であって、図示しないリンク機構等を介してサーボモータを用いたモード切替用アクチュエータ機構により操作される。
また、温水弁25は温度調整手段であって、図示しないリンク機構等を介してサーボモータを用いた温度調整用アクチュエータ機構により操作される。同様に、冷風バイパスドア33も図示しないリンク機構等を介してサーボモータを用いたアクチュエータ機構により独立に操作される。
【0033】
上記アクチュエータ機構の各サーボモータ等の機器は図示しない制御装置により作動が制御されるようになっている。この制御装置は周知のごとくマイクロコンピュータとその周辺回路とから構成されるものであって、空調操作パネルに設けられた各種操作部材からの操作信号および内外気温度、日射量、蒸発器吹出温度、温水温度等の各種センサの検出信号が入力される。そして、制御装置は予め設定された所定のプログラムに基づいて、上記の操作信号および検出信号に対する演算処理を行って、アクチュエータ機構の各サーボモータ等の機器の作動を制御するようになっている。
【0034】
次に、上記構成において本実施形態の作動を吹出モード別に説明する。
(1)フット吹出モード
冬期の暖房時にフット吹出モードが選択されると、フットドア29がフット開口部26を全開し、フェイスドア30がフェイス開口部27を全閉する。デフロスタドア31はデフロスタ開口部28を少量開放する。そして、暖房始動時等において、最大暖房状態にあるときは、温水弁25が全開状態となり、ヒータコア23に最大流量の温水が循環する。また、冷風バイパスドア33は冷風バイパス通路32の全閉位置に操作される。
【0035】
これにより、送風機ユニット10からの送風空気が全量ヒータコア23のコア部23cを通過するとともに、温水流量が最大となることにより、温水からの放熱量が最大となり、最大暖房能力が発揮される。そして、ヒータコア23で加熱された温風の大部分はフット開口部26から乗員足元部に吹き出し、残余の一部の温風がデフロスタ開口部28から吹き出す。
【0036】
ここで、ヒータコア23の温水入口側がデフロスタ開口部28側に位置し、温水出口側がフット開口部26側に位置しているが、温水弁25の全開によりヒータコア23に最大流量の温水が循環しているので、ヒータコア23の温水入口側から温水出口側に温水が流れる間での温水温度の低下度合いが僅少になる。そのため、フット開口部26からの吹出温度に比してデフロスタ開口部28からの吹出温度が僅かに高くなるだけであり、実用上問題とならない。
【0037】
次に、車室内温度(内気温度)が上昇して、暖房負荷が減少すると、吹出空気温度制御のため、最大暖房状態から温度制御領域に移行する。すると、温水弁25は車室内への目標吹出空気温度に対応した所定の中間開度位置に操作される。また、冷風バイパスドア33も温水弁25の中間開度位置に対応した中間開度位置に操作される。これにより、送風機ユニット10からの送風空気がヒータコア23を通過して加熱されると同時に、冷風バイパス通路32を通過して流れる。
【0038】
温水弁25が中間開度位置に操作される温度制御領域では、ヒータコア23への循環温水流量が少流量に制限されるため、ヒータコア23において温水入口側部位に比して温水出口側部位の温水温度が大幅に低下する。そのため、ヒータコア23の吹出空気温度も温水入口側部位に比して温水出口側部位では大幅に低下する。
【0039】
しかし、本実施形態によると、温度制御領域では、冷風バイパスドア33により冷風バイパス通路32を所定開度開くから、ヒータコア23の温水入口側部位を通過した高温の温風▲1▼に冷風バイパス通路32を通過した冷風▲3▼が混合される。そのため、デフロスタ開口部28には、ヒータコア23の温水入口側を通過した高温の温風▲1▼と冷風バイパス通路32を通過した冷風▲3▼とを混合した温風が流れる。一方、フット開口部26には、ヒータコア23の温水入口側を通過した高温の温風▲1▼と、ヒータコア23の温水出口側を通過した低温の温風▲2▼とを混合した温風が流れる。
【0040】
このとき、冷風バイパスドア33による冷風バイパス通路32の開度、温風▲1▼のデフロスタ開口部28への流入割合等を適切に設定することにより、フット開口部26からの吹出温度に比してデフロスタ開口部28からの吹出温度を低くすることができる。
なお、フット吹出モードでは、通常、フット開口部26からの吹出風量が略80%程度で、デフロスタ開口部28からの吹出風量が略20%程度である。
【0041】
(2)フットデフロスタ吹出モード
フットデフロスタ吹出モードでは、フット開口部26からの吹出風量と、デフロスタ開口部28からの吹出風量とを略同等(50%づつ)とするため、フットドア26によりフット開口部26を全開するとともに、デフロスタドア31によりデフロスタ開口部28を全開する。
【0042】
フットデフロスタ吹出モードでは上記風量割合の点でフット吹出モードと相違しているだけであり、最大暖房時および温度制御領域の双方において作動は同じであるので、詳細説明を省略する。
(3)デフロスタ吹出モード
デフロスタ吹出モードにおいては、フェイスドア30がフェイス開口部27を、また、フットドア29がフット開口部26をそれぞれ全閉する。また、デフロスタドア31がデフロスタ開口部28を全開する。また、冷風バイパスドア33は、最大暖房時には冷風バイパス通路32の全閉位置に操作される。
【0043】
従って、最大暖房時には、送風機ユニット10からの送風空気が全量ヒータコア23のコア部23cを通過して加熱され、温風となる。この温風は、デフロスタ開口部28を通して窓ガラス内面のみに吹き出して、窓ガラスの曇り止めを行う。
これに対し、温度制御領域では、冷風バイパスドア33を中間開度位置または全開位置に操作する。なお、デフロスタ開口部28に接続されるデフロスタダクトの長さが長いので、このデフロスタダクト内部で冷風、温風が十分混合されるので、デフロスタ吹出モードではヒータコア23の吹出空気の温度ばらつきが問題となることはない。
(4)フェイス吹出モード
フェイス吹出モードにおいては、フェイスドア30がフェイス開口部27を全開し、デフロスタドア31がデフロスタ開口部28を、またフットドア29がフット開口部26をそれぞれ全閉する。そして、空調装置の冷凍サイクルを運転すると、送風機ユニット10からの送風空気は蒸発器22により冷却、除湿されて冷風となる。
【0044】
ここで、冷房始動時のごとく最大冷房状態が設定されているときは、温水弁25が全閉されてヒータコア23への温水循環が遮断され、ヒータコア23の加熱作用を停止する。これと同時に、冷風バイパスドア33は、冷風バイパス通路32の全開位置に操作される。従って、蒸発器22により冷却された冷風はヒータコア23と冷風バイパス通路32の両方を通過した後に、フェイス開口部27を経て車室内乗員の頭部側へ吹き出す。
【0045】
最大冷房時には、冷風バイパス通路32の全開により空調ケース21内の通風抵抗(圧損)が低下して冷風の風量を増加できるので、最大冷房能力を増加できる。
次に、車室内温度の低下により冷房負荷が低下すると、吹出空気温度制御のため、最大冷房状態から温度制御領域に移行する。すると、温水弁25は車室内への目標吹出空気温度に対応した所定の中間開度位置に操作される。また、冷風バイパスドア33も温水弁25の中間開度位置に対応した中間開度位置に操作される。これにより、蒸発器22からの冷風がヒータコア23を通過して加熱されると同時に、冷風バイパス通路32を通過して流れる。
【0046】
温水弁25が中間開度位置に操作される温度制御領域では、ヒータコア23への循環温水流量が少流量に制限されるため、ヒータコア23において温水入口側部位に比して温水出口側部位の温水温度が大幅に低下する。そのため、ヒータコア23の吹出空気温度も温水入口側部位に比して温水出口側部位では大幅に低下する。
【0047】
しかし、前述のフット吹出モード時と同様に、温度制御領域では、冷風バイパスドア33により冷風バイパス通路32を所定開度開くから、ヒータコア23の温水入口側部位を通過した高温の温風▲1▼に冷風バイパス通路32を通過した冷風▲3▼が混合される。従って、前述したように高温の温風▲1▼と低温の温風▲2▼との混合、および、高温の温風▲1▼と冷風▲3▼との混合を2箇所で行うことにより、冷温風の混合性を向上して、フェイス開口部27からの吹出空気温度分布の均一化を図ることができる。
(5)バイレベル吹出モード
バイレベル吹出モードにおいては、フェイスドア30がフェイス開口部27を全開するとともに、フットドア29がフット開口部26を全開する。デフロスタドア31はデフロスタ開口部28を全閉する。従って、フェイス開口部27とフット開口部26を通して、車室の上下両方から同時に風を吹き出すことができる。
【0048】
バイレベル吹出モードは通常、春秋の中間シーズンで使用されるので、温水弁25は車室内への目標吹出空気温度に対応した所定の中間開度位置に操作される。また、冷風バイパスドア33も温水弁25の中間開度位置に対応した中間開度位置に操作される。これにより、蒸発器22からの冷風がヒータコア23を通過して加熱されると同時に、冷風バイパス通路32を通過して流れる。
【0049】
そのため、ヒータコア23の温水入口側部位を通過した高温の温風▲1▼に冷風バイパス通路32を通過した冷風▲3▼が混合される。その結果、フェイス開口部27には、高温の温風▲1▼と冷風バイパス通路32を通過した冷風▲3▼とを混合した風が流れ、フット開口部26には、ヒータコア23の温水入口側を通過した高温の温風▲1▼と、ヒータコア23の温水出口側を通過した低温の温風▲2▼とを混合した風が流れる。
【0050】
このとき、冷風バイパスドア33による冷風バイパス通路32の開度、温風▲1▼のフェイス開口部27への流入割合等を適切に設定することにより、フット開口部26からの吹出温度に比してフェイス開口部27からの吹出温度を低くすることができる。
ここで、バイレベル吹出モードにおいて、冷風バイパスドア33の開度を乗員の設定信号に基づいて調整することにより、フェイス開口部27への冷風▲3▼の流入割合を調整して、上下の吹出空気温度を独立に調整することができる。
【0051】
次に、本発明による効果を実験データに基づいて説明すると、実験条件はヒータコア23の温水入口温度=88°C、吸込空気温度=5°C、送風機ユニット10の風速=中速(Me設定)である。
図3は図1の空調装置のフット吹出モードにおいて、冷風バイパスドア33を冷風バイパス通路32の全閉位置に維持した場合における、フット開口部26およびデフロスタ開口部28からの吹出温度と、温水弁開度との関係を示す実験データであり、この場合はフット吹出温度よりもデフロスタ吹出温度の方が高くなり、頭寒足熱と逆の温度分布となり、空調フィーリングが悪い。
【0052】
これに対し、図4は図1の空調装置のフット吹出モードにおいて、温水弁開度=100(%)の最大暖房時以外では、冷風バイパスドア33を中間開度位置に開くようにした本発明の効果を示すものである。冷風バイパスドア33を図4中のAで示す中間開度位置に開くことにより、温水弁開度=20〜80%の広範囲にわたって、8°程度の適切な上下温度差(フット吹出温度>デフロスタ吹出温度)を得ることができる。
【0053】
次に、図5は図1の空調装置のフェイス吹出モードにおいて、冷風バイパスドア33を冷風バイパス通路32の全閉位置に維持した場合における、フェイス吹出温度と、温水弁開度との関係を示す実験データである。ここで、フェイス吹出温度は、複数のセンターフェイス吹出口および複数のサイドフェイス吹出口から吹き出す空気温度のうち、最低温度と最高温度を示しているので、各温水弁開度におけるフェイス吹出温度の温度ばらつきを示していることにもなる。
【0054】
例えば、図5の実験データによると、温水弁開度=20%の温度制御領域において、9°Cの比較的大きな温度ばらつきが発生している。
これに対し、図6は本発明によるもので、図1の空調装置のフェイス吹出モードにおいて、温水弁開度=0%の最大冷房時に冷風バイパスドア33を全開(開度=100%)し、温水弁開度=50%で冷風バイパスドア33を全閉(開度=0%)し、そして、この温水弁開度=0〜50%の間の中間温度制御領域で、冷風バイパスドア33を図6中のBで示す中間開度位置に開くことにより、フェイス吹出温度の温度ばらつきを良好に低減できる。具体的には、温水弁開度=20%の温度制御領域において、温度ばらつきを6.5°Cに低減できる。
【0055】
次に、図7、図8はバイレベル吹出モードにおける上下の吹出温度と冷風バイパスドア開度との関係を示す実験データであり、いずれも、温水弁開度=50%に固定している。図7は本発明の比較例として、図1の空調装置においてヒータコア23の温水出入口を逆転させた場合(すなわち、フット開口部26側に温水入口側タンク23aを配置し、冷風バイパス通路32側に温水出口側タンク23bを配置した場合)における上下の吹出温度を示している。
【0056】
図7から分かるように、比較例の場合には、上下の吹出温度差が19〜34°Cという過大な温度差(フェイス吹出温度の過剰低下)が発生して、空調フィーリングが悪化する。
これに対し、図8は本発明によるもので、冷風バイパスドア33の開度=30〜100%の範囲において、7°C〜22°C程度の上下温度差を設定でき、実用上、空調フィーリングの点から好ましい温度差を得ることができる。
【0057】
また、図8の実験データから理解されるように、冷風バイパスドア33の開度調整によりバイレベル吹出モードにおける上下の吹出温度を独立に調整することができる。
(第2実施形態)
図9は本発明の第2実施形態における空調装置通風系の概要を示すもので、第1実施形態との主な相違点は、送風機ユニット10、空調ユニット20、各開口部26、27、28、ヒータコア23等の位置関係と、吹出モード切替用のドア手段をフィルムドア方式に変更した点である。
【0058】
まず、空調ユニット20は、第1実施形態と同じく計器盤下方で車両左右方向の略中心部に配置され、送風機ユニット(図示せず)は、空調ユニット20の側方(助手席側)にオフセット配置するレイアウトとしている。
空調ケース21の上面部には、車両後方側から車両前方側に向かって順に、フェイス開口部27、デフロスタ開口部28、フット開口部26が開口している。このフット開口部26は、空調ケース21とは別体のダクト40に連通し、このダクト40の端部のフット吹出口41が車室内の乗員足元に開口している。また、フェイス開口部27は冷風バイパス通路32の上方に配置されている。
【0059】
一方向流れタイプのヒータコア23は、空調ケース21内において車両前方側に寄せて配置されており、温水出口側タンク23bが空調ケース21の内壁に接して、この温水出口側タンク23bがフット開口部26の下方に位置している。一方、温水入口側タンク23aは、フェイス開口部27およびデフロスタ開口部28の下方に位置している。
【0060】
冷風バイパス通路32は、温水入口側タンク23aと空調ケース21の車両後方側内壁との間に形成されている。この冷風バイパス通路32を開閉する冷風バイパスドア33は、中間部を回転軸33aにて回動自在に支持された板状のドアである。
吹出モード切替用のドア手段は、次のように構成されている。
【0061】
空調ケース21内には、駆動軸50と従動軸51が空調ケース21に対して回転自在に支持されている。これらの軸50、51には、可撓性部材(具体的には、ポリエチレン樹脂のように可撓性、強度に優れた樹脂製フィルム)よりなるフィルムドア52の両端が連結され、巻回されている。駆動軸50と従動軸51の中間部位にはガイド軸53が配置されており、このガイド軸53は、空調ケース21の内壁面に沿ってフィルムドア52を屈曲させてフィルムドア52の移動をガイドする。
【0062】
駆動軸50と従動軸51にはそれぞれプーリー(図示せず)が連結され、この両プーリーにワイヤー(図示せず)の両端が巻架されている。そして、駆動軸50がサーボモータ(図示せず)にてフィルムドア52を巻き取る方向に回転すると、駆動軸50がフィルムドア52を巻き取り、逆に、駆動軸50がフィルムドア52を送りだす方向に回転すると、駆動軸50の回転が上記両プーリーおよびワイヤーを介して従動軸51に伝わり、従動軸51がフィルムドア52を巻き取る方向に回転する構成となっている。
【0063】
フィルムドア52には、空気を通過させるための開口部(図示せず)が形成されており、サーボモータにより駆動軸50を正逆両方向に回転させてフィルムドア52の開口部を任意の位置で停止させることによって、フィルムドア52の開口部と空調ケース21に形成した各開口部26〜28との連通、遮断が切り換えられ、吹出モードが切り換えられる。
【0064】
この第2実施形態においても、ヒータコア23は一方向流れタイプであるため、ヒータコア23で加熱された空気の温度は、温水出口側タンク23bよりも温水入口側タンク23aに近い方が高くなる。そして、温水出口側タンク23bがフット開口部26側に位置し、温水入口側タンク23aがフェイス開口部27およびデフロスタ開口部28側に位置しているため、冷風バイパスドア33で冷風バイパス通路32を全閉した状態では、第1実施形態と同様にフット吹出温度よりもデフロスタ吹出温度やフェイス吹出温度の方が高くなる。
【0065】
そこで、第1実施形態と同様に、吹出モードや温水弁25の開度位置に関連して、冷風バイパスドア33の開度位置を制御することにより、フット吹出モード、フットデフロスタ吹出モードおよびバイレベル吹出モード時に、フット吹出温度よりもデフロスタ吹出温度やフェイス吹出温度の方を低くすることができる。
なお、第2実施形態においては、フェイス開口部27および冷風バイパス通路32が、空調ケース21内において共に車両後方側に位置して近接し、かつフェイス開口部27が冷風バイパス通路32のほぼ真上に位置しているため、冷風バイパス通路32の冷風がその上方のフェイス開口部27に向けて直線的に流れる。従って、冷風バイパス通路32からフェイス開口部27に至る間の通風抵抗が著しく小さくなり、冷風バイパス通路32が全開となるフェイス吹出モードの最大冷房時に、冷風の風量がより一層増加し、最大冷房能力をさらに増加できる。
【0066】
また、吹出モード切替用のドア手段をフィルムドア方式にしているため、空調ケース21の車両上下方向の寸法を短くすることができる。
(第3実施形態)
図10は本発明の第3実施形態における空調装置通風系の概要を示すもので、第2実施形態との相違点は、吹出モード切替用のフィルムドアを、板ドアに変更した点である。
【0067】
図10において、フットドア29は端部の回転軸29aを支点に回動する平板状のドアで、フェイスドア30およびデフロスタドア31は、中間部に回転軸30a,31aを有するバタフライドアである。
(他の実施形態)
なお、上記の実施形態では、ヒータコア23(暖房用熱交換器)に循環する温水の流量を制御する温水弁25として、弁開度を連続的に調整するタイプのものについて説明したが、温水弁25を電磁的に開閉を繰り返すタイプのものとして、温水弁25の開弁時間と閉弁時間との時間比率(デューティ比)を制御することにより、温水流量を制御するタイプのものを使用してもよい。
【0068】
また、上記の実施形態では、温水弁25と、冷風バイパスドア33をそれぞれサーボモータを用いたアクチェータ機構により独立に操作する場合について説明したが、温水弁25と冷風バイパスドア33を適宜のリンク機構等を用いて連結し、温水弁25の操作に連動して冷風バイパスドア33を開閉することもできる。この場合、空調操作パネルに設けられたマニュアル式の温度調整部材の手動操作により、温水弁25と冷風バイパスドア33を連動操作するようにしてもよい。
【0069】
さらに、上記の実施形態では、送風機ユニット10と空調ユニット20を計器盤近傍に配置する空調装置の例を示したが、本発明は、送風機ユニットと空調ユニットを車両後席周辺に配置して後席の空調を行う空調装置にも適用可能で、この場合はデフロスタ開口部28およびデフロスタドア31が不要である。
【図面の簡単な説明】
【図1】本発明の第1実施形態の通風系の全体構成を示す概略断面図である。
【図2】第1実施形態における温水回路図である。
【図3】フット吹出モードにおける温水弁開度と吹出空気温度の実験結果を示すグラフである。
【図4】フット吹出モードにおける温水弁開度と吹出空気温度の実験結果を示すグラフである。
【図5】フェイス吹出モードにおける温水弁開度と吹出空気温度の実験結果を示すグラフである。
【図6】フェイス吹出モードにおける温水弁開度と吹出空気温度の実験結果を示すグラフである。
【図7】バイレベル吹出モードにおける冷風バイパスドア開度と吹出空気温度の実験結果を示すグラフである。
【図8】バイレベル吹出モードにおける冷風バイパスドア開度と吹出空気温度の実験結果を示すグラフである。
【図9】本発明の第2実施形態の通風系の全体構成を示す概略断面図である。
【図10】本発明の第3実施形態の通風系の全体構成を示す概略断面図である。
【符号の説明】
10…送風機ユニット、12…ファン、20…空調ユニット、
21…空調ケース、22…蒸発器、23…ヒータコア、
23a…温水入口タンク、23b…温水出口タンク、25…温水弁、
26…フット開口部、27…フェイス開口部、28…デフロスタ開口部、
29…フットドア、30…フェイスドア、31…デフロスタドア、
32…冷風バイパス通路、33…冷風バイパスドア。

Claims (5)

  1. 空調空気が流れる空気通路を形成する空調ケース(21)と、
    この空調ケース(21)内に配置され、空調空気を加熱する暖房用熱交換器(23)と、
    この暖房用熱交換器(23)に循環する温水流量を制御する温水弁(25)と、
    前記暖房用熱交換器(23)を通過して温度制御された空調空気を車室内乗員の足元に向けて吹き出すフット開口部(26)と、
    前記温度制御された空調空気を車室内乗員の頭部に向けて吹き出すフェイス開口部(27)と
    前記温度制御された空調空気を車両窓ガラス内面に向けて吹き出すデフロスタ開口部(28)とを備え、
    前記暖房用熱交換器(23)は、温水入口側から温水出口側に向かって全部のチューブを一方向のみに温水が流れる一方向流れタイプであり、
    前記暖房用熱交換器(23)をバイパスして空調空気が流れる冷風バイパス通路(32)を、前記暖房用熱交換器(23)と並列に設けるとともに、前記暖房用熱交換器(23)の温水入口側に配置し、
    前記空調ケース(21)内において、前記暖房用熱交換器(23)の温水入口側の部位を前記フェイス開口部(27)側に近接するように配置するとともに、前記暖房用熱交換器(23)の温水出口側の部位を前記フット開口部(26)側に配置し、
    前記フェイス開口部(27)は、前記冷風バイパス通路(32)に近接するように配置され、
    さらに、前記冷風バイパス通路(32)内に設けられ、前記冷風バイパス通路(32)を開閉する冷風バイパスドア(33)を具備し、
    前記フット開口部(26)および前記デフロスタ開口部(28)の両方から空調空気を吹き出す吹出モードにおいて、前記温水弁(25)が最大暖房状態にあるとき、前記冷風バイパスドア(33)は全閉位置に操作され、
    前記温水弁(25)が最大暖房状態から温度制御領域に操作されると、前記冷風バイパスドア(33)が前記冷風バイパス通路(32)を所定量開く中間開度位置に操作されるようになっており、
    前記フェイス開口部(27)から空調空気を吹き出すフェイス吹出モードにおいて、前記温水弁(25)が最大冷房状態にあるとき、前記冷風バイパスドア(33)は全開位置に操作され、
    前記温水弁(25)が最大冷房状態から温度制御領域に操作されると、前記冷風バイパスドア(33)が前記冷風バイパス通路(32)を所定量開く中間開度位置に操作されるようになっており、
    前記フット開口部(26)および前記フェイス開口部(27)の両方から空調空気を吹き出すバイレベル吹出モードにおいて、前記温水弁(25)が最大暖房状態と最大冷房状態との間の温度制御領域に操作されるとともに、前記冷風バイパスドア(33)が前記冷風バイパス通路(32)を所定量開く中間開度位置に操作されることを特徴とする車両用空調装置。
  2. 前記空調ケース(21)内であって前記暖房用熱交換器(23)の空気流れ上流側に配置され、空調空気を冷却する冷房用熱交換器(22)を備えることを特徴とする請求項1に記載の車両用空調装置。
  3. 前記デフロスタ開口部(28)を前記暖房用熱交換器(23)の温水入口側に配置したことを特徴とする請求項1または2に記載の車両用空調装置。
  4. 前記暖房用熱交換器(23)の前記温水出口側および前記フット開口部(26)を前記空調ケース(21)の下方側に配置し、
    前記暖房用熱交換器(23)の前記温水入口側、前記フェイス開口部(27)および前記冷風バイパス通路(32)を前記空調ケース(21)の上方側に配置したことを特徴とする請求項1ないし3のいずれか1つに記載の車両用空調装置。
  5. 前記空調ケース(21)内において、前記暖房用熱交換器(23)を車両前方側に配置すると共に、前記冷風バイパス通路(32)を車両後方側に配置し、前記フェイス開口部(27)を、前記フット開口部(26)よりも車両後方側で、かつ前記冷風バイパス通路(32)の上方に配置したことを特徴とする請求項1ないし3のいずれか1つに記載の車両用空調装置。
JP00966299A 1998-04-16 1999-01-18 車両用空調装置 Expired - Lifetime JP4078743B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00966299A JP4078743B2 (ja) 1998-04-16 1999-01-18 車両用空調装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-106686 1998-04-16
JP10668698 1998-04-16
JP00966299A JP4078743B2 (ja) 1998-04-16 1999-01-18 車両用空調装置

Publications (2)

Publication Number Publication Date
JP2000001117A JP2000001117A (ja) 2000-01-07
JP4078743B2 true JP4078743B2 (ja) 2008-04-23

Family

ID=26344429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00966299A Expired - Lifetime JP4078743B2 (ja) 1998-04-16 1999-01-18 車両用空調装置

Country Status (1)

Country Link
JP (1) JP4078743B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496668B2 (ja) * 2001-05-21 2010-07-07 株式会社デンソー 車両用空調装置
WO2018079756A1 (ja) * 2016-10-29 2018-05-03 株式会社石井製作所 食品の冷却搬送装置

Also Published As

Publication number Publication date
JP2000001117A (ja) 2000-01-07

Similar Documents

Publication Publication Date Title
US6311763B1 (en) Vehicle air conditioner
US6568468B1 (en) Air conditioning apparatus for vehicle
JP3858466B2 (ja) 自動車用空調装置
JP3804152B2 (ja) 車両用空調装置
JPH10230734A (ja) 車両用空調装置
JP3893661B2 (ja) 車両用空調装置
US6079484A (en) Air conditioning apparatus for vehicle
JP3894028B2 (ja) 車両用空調装置
JP3774961B2 (ja) 車両用空調装置
JP3823531B2 (ja) 車両用空調装置
JP3900592B2 (ja) 車両用空調装置
JP4967900B2 (ja) 車両用空調装置
JP3791126B2 (ja) 車両用空調装置
JP4078743B2 (ja) 車両用空調装置
JP2004511384A (ja) 暖房、換気または空調装置
JP3772471B2 (ja) 車両用空調装置
JP2006001378A (ja) 車両用空調装置
JP3945022B2 (ja) 車両用空調装置
JP3975541B2 (ja) 車両用空調装置
JP3915218B2 (ja) 車両用空調装置
JPH11208240A (ja) 車両用空調装置
JP4192317B2 (ja) 車両用空調装置
JP4624773B2 (ja) 車両用空調装置
JP3896671B2 (ja) 車両用空調装置
JP3772470B2 (ja) 車両用空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term