JP4075405B2 - 受信装置 - Google Patents

受信装置 Download PDF

Info

Publication number
JP4075405B2
JP4075405B2 JP2002048176A JP2002048176A JP4075405B2 JP 4075405 B2 JP4075405 B2 JP 4075405B2 JP 2002048176 A JP2002048176 A JP 2002048176A JP 2002048176 A JP2002048176 A JP 2002048176A JP 4075405 B2 JP4075405 B2 JP 4075405B2
Authority
JP
Japan
Prior art keywords
signal
value
unit
correlation
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002048176A
Other languages
English (en)
Other versions
JP2003249874A (ja
Inventor
和彦 松野
正幸 鹿嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2002048176A priority Critical patent/JP4075405B2/ja
Priority to US10/369,499 priority patent/US7180961B2/en
Publication of JP2003249874A publication Critical patent/JP2003249874A/ja
Application granted granted Critical
Publication of JP4075405B2 publication Critical patent/JP4075405B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70707Efficiency-related aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、拡散変調された変調信号を拡散信号列(拡散符号)を用いて復調される受信装置に関するものである。
【0002】
【従来技術】
拡散(SS)通信方式、符号分割多重接続(CDMA)通信方式で使用されるデータの受信方式として、現在、マッチドフィルタ、スライディングコリレータなどが使用される。マッチドフィルタを使用した場合において、その出力信号は、アナログ値となり、アナログ/ディジタル変換器(A/D変換器)が必要とされる。
【0003】
【発明が解決しようとする課題】
変調信号のデータ伝送速度が数ギガビット/秒(数Gbps)程度の高速なチップレートで送信される場合、現在使用できるA/D変換器の最大処理速度が100MHz程度であるため、数GHzのアナログ信号をA/D変換しようとすると並列にいくつものA/D変換器を使用しなければならなくなり、回路規模が大きくなってしまうなどの問題がある。
【0004】
【課題を解決するための手段】
上記課題を解決するために、本発明の受信装置は、拡散変調された第1の変調信号と第1の拡散信号列との相関演算して、第1の相関信号を出力する相関演算部と、第1の相関信号の振幅値を判定して、判定信号を出力する判定部とを有し、判定部は、第1の相関信号の値が第1のしきい値を超えたことを検出したとき、第1の検出信号を出力する第1の検出部と、第1の相関信号の値が第2のしきい値を超えたことを検出したとき、第2の検出信号を出力する第2の検出部と、第1の検出信号が入力されると第1の値(Highレベルの値)からなる判定信号を出力し、前記第2の検出信号が入力されると第2の値(Lowレベルの値)からなる判定信号を出力する検出結果選択部とを有するものである。
そして前記第1の検出部は、前記第1の相関信号を半波整流して第1の半波整流信号を出力する第1の半波整流部と、前記第1の半波整流信号の振幅値を調整して第1の調整信号を出力する第1の振幅値調整部と、所定のクロック信号に同期し、入力される前記第1の調整信号の値が前記第1のしきい値以上となるときに前記第1の値からなる第1の信号をラッチし、前記第1のしきい値未満となるときに前記第2の値からなる第1の信号をラッチし、ラッチされた第1の信号を前記第1の検出信号として出力する第1のラッチ部を具えている。
同様に前記第2の検出部は、前記第1の相関信号の振幅値を反転させ第2の相関信号として出力する振幅反転部と、前記第2の相関信号を半波整流して第2の半波整流信号を前記第2の検出部に出力する第2の半波整流部と、前記第2の半波整流信号の振幅値を調整して第2の調整信号を出力する第2の振幅値調整部と、所定のクロック信号に同期し、入力される前記第2の調整信号が前記第2のしきい値以上となるときに前記第1の値からなる第2の信号をラッチし、前記第2のしきい値未満となるときに前記第2の値からなる第2の信号をラッチし、ラッチされた第2の信号を前記第2の検出信号として出力する第2のラッチ部を具えている。
【0005】
【発明の実施の形態】
(A)第1の実施形態
以下、本発明の第1の実施形態に係る受信装置を、図面を参照しながら詳述する。
【0006】
(A−1)第1の実施形態の構成
第1の実施形態に係る受信装置を含む送受信システムの概略構成は、図1に示される。受信装置1は、1つ以上の送信部からなる送信装置2から出力される変調信号を受信するものである。ここでは、2つの送信部(第1の送信部3、第2の送信部4)からなる送信装置2から出力される第1の変調信号5を受信し、第1の拡散信号列を用いて復調する。送信装置2において、第1の送信部3は、第1の送信信号6を第2の拡散信号列7により拡散変調して、第2の変調信号8を出力する。第2の拡散信号列8の符号系列は、第1の拡散信号列の符号系列と同じものとする。第2の送信部4は、第2の送信信号9を第3の拡散信号列10により拡散変調して、第3の変調信号11を出力する。第3の拡散信号列11の符号系列は、第1の拡散信号列の符号系列と異なるものとする。送信装置2から出力される第1の変調信号5は、第2の変調信号8と第3の変調信号11とが多重された信号である。第1の変調信号5、第2の変調信号8、第3の変調信号11が有線を介して伝送されるとき、第2の変調信号8と第3の変調信号11は、例えばマルチプレクサ、加算器などを用いて多重される。また受信装置1においては、第1の変調信号5を復調し、第1の送信部3の第1の送信信号5に対応する受信信号を判定信号12として出力する。
【0007】
第1の実施形態に係る受信装置の全体構成を示すブロック図は、図2に示される。この受信装置1は、相関演算部21、判定部22からなり、判定部22は、第1の検出部23、第2の検出部24、検出結果選択部25からなる。
【0008】
相関演算部21は、拡散変調された第1の変調信号5と第1の拡散信号列との相関演算して、第1の相関信号26を出力する。相関演算部21は、例えば、電荷結合素子(CCD)、SAWフィルタ、SAWコンボルーバなどを用いたマッチドフィルタ(MF)からなる。相関演算部21がマッチドフィルタであるとき、内部シフトレジスタの動作、相関演算の動作には第1のクロック信号27を基準としたクロック信号が用いられる。第1の拡散信号列の符号系列は、例えば、PN符号、Gold符号、Walsh符号などの符号系列から構成される。
【0009】
判定部22は、第1の検出部23、第2の検出部24、検出結果選択部25により、第1の相関信号26の振幅値を判定して、判定信号12を出力する。
【0010】
第1の検出部23は、第1の相関信号26の値が第1のしきい値を超えたことを検出したとき、第1の検出信号29を出力する。第1の検出部23は、例えば、第1の半波整流部30、第1の振幅値調整部31、第1のラッチ部32からなる。第1の半波整流部30は、第1の相関信号26を半波整流して、第1の半波整流信号33を出力する。第1の振幅値調整部31は、第1の半波整流信号33の振幅値を調整して、第1の調整信号34を出力する。第1のラッチ部32は、第2のクロック信号35に同期し、入力される第1の調整信号34の値が第1のしきい値以上となるときに第1の値(Highレベルの値)からなる第1の信号をラッチし、第1のしきい値未満となるときに第2の値(Lowレベルの値)からなる第1の信号をラッチし、ラッチされた第1の信号を第1の検出信号29として出力する。第1のラッチ部32は、例えば、Dフリップフロップからなる。
【0011】
第2の検出部24は、第1の相関信号26の値が第2のしきい値を超えたことを検出したとき、第2の検出信号36を出力する。第2の検出部24は、例えば、振幅反転部37、第2の半波整流部38、第2の振幅値調整部39、第2のラッチ部40からなる。振幅反転部37は、第1の相関信号26の振幅値を反転させ、第2の相関信号41を出力する。第2の半波整流部38は、第2の相関信号41を半波整流して、第2の半波整流信号42を出力する。第2の振幅値調整部39は、第2の半波整流信号42の振幅値を調整して、第2の調整信号43を出力する。第2のラッチ部40は、第2のクロック信号35に同期し、入力される第2の調整信号43が第1のしきい値以上となるときに第1の値(Highレベルの値)からなる第2の信号をラッチし、第1のしきい値未満となるときに第2の値(Lowレベルの値)からなる第2の信号をラッチし、ラッチされた第2の信号を第2の検出信号36として出力する。第2のフリップフロップ部40は、例えば、Dフリップフロップからなる。ここで、第1のしきい値は、第2のしきい値の符号を反転させた値である。
【0012】
検出信号選択部25は、第1の検出信号29が入力されると第1の値(Highレベルの値)からなる判定信号12を出力し、第2の検出信号36が入力されると第2の値(Lowレベルの値)からなる判定信号12を出力する。検出信号選択部25は、第1の値(Highレベルの値)からなる第3の信号44を入力し、第1の検出信号29がクロック信号として入力されたときに第1の値(Highレベルの値)からなる第4の信号をラッチし、第2の検出信号36がリセット信号として入力されたとき第2の値(Lowレベルの値)からなる第4の信号をラッチし、このラッチされた第4の信号を判定信号12として出力する。検出信号選択部25は、例えば、Dフリップフロップからなる。検出信号選択部25がDフリップフロップからなるとき、第3の信号44は電源電圧(Vcc)が入力されてもよい。また、検出信号選択部25がDフリップフロップからなり、DフリップフロップはLowレベルの値からなるリセット信号がクリア端子(CLR)に入力されると出力信号が第2の値(Lowレベルの値)となる場合、リセット信号はインバータ45を介してクリア端子(CLR)に入力される。
【0013】
(A−2)第1の実施形態の動作
次に、本発明の受信動作を示す。図3は、第1の実施形態の受信装置の全体動作を示すフローチャート図である。第1の実施形態の受信装置における各部の入力データおよび出力データの波形の一例は、図4に示される。
【0014】
受信装置の全体動作は、相関演算処理51、判定処理52からなり、判定処理52は、第1の検出処理53、第2の検出処理54、検出結果選択処理55からなる。第1の検出処理53は、例えば、第1の半波整流処理56、第1の振幅値調整処理57、第1のラッチ処理58からなる。第2の検出処理54は、例えば、振幅反転処理59、第2の半波整流処理60、第2の振幅値調整処理61、第2のラッチ処理62からなる。
【0015】
S1)相関演算処理
相関演算処理51(図3)は、図2の相関演算部21により、拡散変調された第1の変調信号5と第1の拡散信号列との相関演算して、第1の相関信号26を出力する。入力される第1の変調信号5は、例えば第1の送信信号6(図1)を1個に対して第2の拡散信号列7(図1)の符号系列を1周期分(ここでは、第2の拡散信号列7の符号系列の1周期分の拡散信号を15個とする)用いて拡散変調された第2の変調信号8(図1)が含まれる。また、相関演算された第1の相関信号26を出力するタイミングは、第1のクロック信号27を基準として制御される。第1の実施形態においては、第1のクロック信号27の立ち上がりにより制御される。第1のクロック信号27の周期は、例えば、第1の拡散信号列の符号系列が1個生成される周期に等しいとする(ここで、第1のクロック信号27の周期は、第1の拡散信号列の符号系列が1個生成される周期よりn(nは2以上の正整数)倍速くてもよい)。
【0016】
相関演算部21に用いられる第1の変調信号5の時系列は、拡散変調における符号系列の1周期分の数を時系列S(1+(a−1)×15)〜S(a×15):(aは1以上の整数)、第1の拡散信号列の時系列は、拡散変調における符号系列の1周期分を時系列C(1)〜C(15)としたとき、第1の相関信号26の時系列は時系列R(a)とする。
【0017】
第1のクロック信号の波形71と第1の相関信号26の時系列R(a)の波形72は、図4に示される。時系列R(a)の波形72は、時系列R(1)〜R(22)のものが示される。時系列R(1)は、第1の変調信号[S(1)〜S(15)]5(図2)と第1の拡散信号列[C(1)〜C(15)]との相関演算された相関信号であり、時系列R(2)は、第1の変調信号[S(2)〜S(16)]5(図2)と第1の拡散信号列[C(1)〜C(15)]との相関演算された相関信号である。時系列R(a)の波形72における第1のタイミング73と第2のタイミング74において、第1の変調信号5(図2)の時系列Sの周期と第1の拡散信号列の時系列Cの周期とは一致し、第1の変調信号5(図2)の時系列Sと第1の拡散信号列の時系列Cとは相関があることが示される。第1のタイミング73は、第1の送信部3(図1)の第1の送信信号6(図1)が「1」であるときの時系列R(3)の波形、第2のタイミング74は、第1の送信部3(図1)の第1の送信信号6(図1)が「0」であるときの時系列R(18)の波形とする。第1の相関信号5(図2)の時系列R(a)の波形72は、15個毎に第1のタイミング73および第2のタイミング74に示されるような正の値のピークないし負の値のピークを示す波形が現れるとする。
【0018】
S2)判定処理
判定処理52(図3)は、図2の第1の検出部23、第2の検出部24、検出結果選択部25により、第1の相関信号26の振幅値を判定して、判定信号28を出力する。判定処理52(図3)は、第1の検出処理53、第2の検出処理54、検出結果選択処理55の3つに分けて処理される。
【0019】
S2a)第1の検出処理
第1の検出処理53(図3)は、図2の第1の検出部23により、第1の相関信号26の値が第1のしきい値を超えたことを検出したとき、第1の検出信号29を出力する。第1の検出処理53(図3)は、第1の半波整流処理56(図3)、第1の振幅値調整処理57(図3)、第1のラッチ処理58(図3)の3つに分けて処理される。
【0020】
S2a−1)第1の半波整流処理
第1の半波整流処理56(図3)は、図2の第1の半波整流部30により、第1の相関信号26を半波整流して、第1の半波整流信号33を出力する。第1の半波整流部は、所定の値、例えば値「0」を基準として、第1の相関信号26の振幅値において値「0」または正の値を通過させ、負の値を所定の値、例えば値「0」とする。第1の半波整流信号26の波形は、波形75(図4)となる。
【0021】
S2a−2)第1の振幅値調整処理
第1の振幅値調整処理57(図3)は、図2の第1の振幅値調整部31により、第1の半波整流信号33の振幅値を調整して、第1の調整信号34を出力する。第1の振幅値調整部31は、第1の相関信号の波形72(図4)の時系列R(3)に対応する第1の調整信号34における正の値のピーク値が次段の第1のラッチ部32において第1のしきい値以上となるように第1の調整信号34の振幅値を増幅(または減衰)させることによりレベル調整を行なう。
【0022】
S2a−3)第1のラッチ処理
第1のラッチ処理58(図3)は、図2の第1のラッチ部32により、第2のクロック信号35に同期し、入力される第1の調整信号34の値が第1のしきい値以上となるときに第1の値(Highレベルの値)からなる第1の信号をラッチし、第1のしきい値未満となるときに第2の値(Lowレベルの値)からなる第1の信号をラッチし、ラッチされた第1の信号を第1の検出信号29として出力する。第1のフリップフロップ部32が、例えばDフリップフロップからなるとき、第1のしきい値は、TTL、あるいはPECLなどの論理回路の閾値判定レベルが使用される。第2のクロック信号35は、相関演算部21、第1の半波整流部30、第1のレベル調整部32からなる処理遅延を考慮し、所定の時間だけ遅れたクロック信号、例えば第1のクロック信号27に対して半周期(位相:180度)遅れたクロック信号からなる。第1のラッチ部32は、第2のクロック信号の立ち上がるときに、しきい値判定、ラッチを行い、ラッチされた第1の信号を第1の検出信号29として出力する。第2のクロック信号35の波形は波形76(図4)となり、第1の検出信号29の波形は波形77(図4)となる。ここで、第1の相関信号26の波形72(図4)がR(3)のとき、第1の検出信号29の波形77(図4)は、第2のクロック信号35の波形79(図4)に同期し、第1のクロック信号27に対し半周期分(位相:180度)遅れた、Highレベルの値からなる信号となる(第3のタイミング78参照)。
【0023】
S2b)第2の検出処理
第2の検出処理54(図3)は、図2の第2の検出部24により、第1の相関信号26の値が第2のしきい値を超えたことを検出したとき、第2の検出信号36を出力する。第2の検出処理54(図3)は、振幅反転処理59(図3)、第2の半波整流処理60(図3)、第2の振幅値調整処理61(図3)、第2のラッチ処理62(図3)の4つに分けて処理される。
【0024】
S2b−1)振幅反転処理
振幅反転処理59(図3)は、図2の振幅反転部37により、第1の相関信号26の振幅値を反転させ、第2の相関信号41を出力する。振幅反転部37は、所定の値、例えば値「0」を基準として、第1の相関信号26の振幅値において符号を反転させた値とする。第2の相関信号41の波形は、波形79(図4)となる。
【0025】
S2b−2)第2の半波整流処理
第2の半波整流処理60(図3)は、図2の第2の半波整流部38により、第2の相関信号41を半波整流して、第2の半波整流信号42を出力する。第2の半波整流部38は、所定の値、例えば値「0」を基準として、第2の相関信号42の振幅値において値「0」または正の値を通過させ、負の値を所定の値、例えば値「0」とする。第2の半波整流信号42の波形は、波形80(図4)となる。
【0026】
S2b−3)第2の振幅値調整処理
第2の振幅値調整処理61(図3)は、図2の第2の振幅値調整部39により、第2の半波整流信号42の振幅値を調整して、第2の調整信号43を出力する。第2の振幅値調整部39は、第2の相関信号の波形78(図4)の時系列R(18)に対応する第2の調整信号43における正の値のピーク値が次段の第2のラッチ処理において第1のしきい値以上となるように、第2の調整信号43の振幅値を増幅(または減衰)させることによりレベル調整を行なう。(ここで、第1のしきい値は、第2のしきい値の符号を反転させた値である。)
【0027】
S2b−4)第2のラッチ処理
第2のラッチ処理62(図3)は、図2の第2のラッチ部40により、第2のクロック信号35に同期し、入力される第2の調整信号43の値が第1のしきい値以上となるときに第1の値(Highレベルの値)からなる第2の信号をラッチし、第1のしきい値未満となるときに第2の値(Lowレベルの値)からなる第2の信号をラッチし、ラッチされた第2の信号を第2の検出信号36として出力する。第2のラッチ部40が、例えばDフリップフロップからなるとき、第1のしきい値は、TTL、あるいはPECLなどの論理回路の閾値判定レベルを使用する。第2のクロック信号35は、さらに相関演算部21、振幅反転部37、第2の半波整流部38、第2のレベル調整部39からなる処理遅延を考慮し、所定の時間だけ遅れたクロック信号、例えば第1のクロック信号27に対して半周期(位相:180度)遅れたクロック信号からなる。第2のラッチ部40は、第2のクロック信号の立ち上がるときに、しきい値判定、ラッチを行い、ラッチされた第2の信号を第2の検出信号36として出力する。第2の検出信号36の波形は、波形81(図4)となる。ここで、第1の相関信号26の波形72(図4)がR(18)のとき、第2の検出信号36の波形81(図4)は、第2のクロック信号35の波形76(図4)に同期し、第1のクロック信号27に対し半周期分(位相:180度)遅れた、Highレベルの値からなる信号となる(第4のタイミング82参照)。
【0028】
S2c)検出信号選択処理
検出信号選択処理55(図3)は、図2の検出信号選択部25により、第1の検出信号29が入力されると第1の値(Highレベルの値)からなる判定信号28を出力し、第2の検出信号36が入力されると第2の値(Lowレベルの値)からなる判定信号28を出力する。検出信号選択部25は、例えばDフリップフロップからなるとき、Highレベルの値からなる第3の信号44を入力し、第1の検出信号29がクロック信号として入力され、Lowレベルの値からHighレベルの値へと立ち上がるときにHighレベルの値からなる第4の信号をラッチし、第2の検出信号45がLowレベルの値からHighレベルの値へと立ち上がり、リセット信号として入力されたときLowレベルの値からなる第4の信号をラッチし、このラッチされた第4の信号を判定信号12として出力する。判定信号12の波形は、波形83(図4)となる。
【0029】
判定信号12の波形83(図4)は、Highレベルからなる第1の検出信号29(第1の送信信号6(図1)が「1」であるとき)が検出信号選択部25のDフリップフロップのCLK端子に入力されると、判定信号12の波形83(図4)がHighレベルからなる信号となる。判定信号12の波形83(図4)は、Lowレベルからなる第2の検出信号36(第1の送信信号6(図1)が「0」であるとき)が検出信号選択部25のDフリップフロップのCLR端子に入力されると、Lowレベルからなる信号となる。判定信号12は、第1の送信信号6(図1)を復調された受信信号となり、判定信号12が1個生成される周期は、第1の送信信号6(図1)が1個生成される周期と等しくなる。このようにして、受信装置1(図1)は、第1の送信信号6(図1)を、復調し受信して、判定信号12(図1)を出力する。
【0030】
(A−3)第1の実施形態の効果
以上のように、第1の実施の形態によれば、相関器からの出力レベルのしきい値判定を、TTLなどのロジック回路の論理判定レベルで行なうようにしたため、A/D変換器を使用する必要がない。その結果、受信装置の処理能力、装置規模は、従来よりも軽減される。
【0031】
(B)第2の実施形態の形態
(B−1)第2の実施形態の構成
第2の実施形態に係る受信装置を含む送受信システムの概略構成は、第1の実施形態と同様に図1である。また、第2の実施形態の受信装置の全体構成を示すブロック図は、図5に示される。この受信装置1は、第1の実施形態と同様に、相関演算部21、判定部22からなり、判定部22は、第1の検出部23、第2の検出部24、検出結果選択部25からなる。但し、第1の検出部23はさらに第1のシュミットトリガ部91が配置され、第2の検出部24はさらに第2のシュミットトリガ部92が配置される。受信装置1の全体構成は、以下、第1の実施形態と異なる構成のみが記載される。
【0032】
第1の検出部23は、第1の相関信号26の値が第1のしきい値を超えたことを検出したとき、第1の検出信号29を出力する。第1の検出部23は、例えば第1の実施の形態における構成(第1の半波整流部30、第1の振幅値調整部31、第1のラッチ部32)に、さらに第1の振幅値調整部31と第1のラッチ部32との間に第1のシュミットトリガ部91が配置される。第1のシュミットトリガ部91は、第3のしきい値と、第3のしきい値より小さい第4のしきい値を有する。第1のシュミットトリガ部91は、第1の調整信号34の値が第3のしきい値以上となりかつ第1の調整信号34の値が第4のしきい値以上のときに第1の値(Highレベルの値)からなる第5の信号を生成し、第1の調整信号34の値が第4のしきい値未満となりかつ第1の調整信号34の値が第3のしきい値未満のときに第2の値(Lowレベルの値)からなる第5の信号を生成し、生成された第5の信号を第1のシュミットトリガ信号93として第1のラッチ部32に出力する。第1のラッチ部32は、第1の調整信号34の換わりに第1のシュミットトリガ信号93を入力し、第1の実施の形態と同様に第1の検出信号29を出力する。また、第1の半波整流部30、第1の振幅値調整部31は、第1の実施形態と同様である。
【0033】
第2の検出部24は、第1の相関信号26の値が第2のしきい値を超えたことを検出したとき、第2の検出信号36を出力する。第2の検出部24は、例えば第1の実施形態における構成(振幅反転部37、第2の半波整流部38、第2の振幅値調整部39、第2のラッチ部40)に、さらに第2の振幅値調整部39と第2のラッチ部40との間に第2のシュミットトリガ部92が配置される。第2のシュミットトリガ部92は、第3のしきい値と、第3のしきい値より小さい第4のしきい値を有する。第2のシュミットトリガ部92は、第2の調整信号43の値が第3のしきい値以上となりかつ第2の調整信号43の値が第4のしきい値以上のときに第1の値(Highレベルの値)からなる第6の信号を生成し、第2の調整信号43の値が第4のしきい値未満となりかつ第2の調整信号43の値が第3のしきい値未満のときに第2の値(Lowレベルの値)からなる第6の信号を生成し、生成された第6の信号を第2のシュミットトリガ信号94として第2のラッチ部40に出力する。第2のラッチ部40は、第2の調整信号43の換わりに第2のシュミットトリガ信号94を入力し、第1の実施の形態と同様に第2の検出信号36を出力する。また、振幅反転部37、第2の半波整流部38、第2の振幅値調整部39は、第1の実施形態と同様である。
【0034】
(B−2)第2の実施形態の動作
次に、本発明の受信動作を示す。図6は、第2の実施形態の受信装置の全体動作を示すフローチャート図である。第2の実施形態の受信装置における第1のシュミットトリガ部91に関するデータの波形の一例は、図7に示される。
【0035】
図6に示される受信装置の全体動作は、第1の実施形態の動作と同様に、相関演算処理51、判定処理52からなり、判定処理52は、第1の検出処理53、第2の検出処理54、検出結果選択処理55からなる。但し、第1の検出処理53は、さらに第1のシュミットトリガ処理101が追加される。第2の検出処理54は、さらに第2のシュミットトリガ処理102が追加される。受信装置の全体動作は、以下、第1の実施形態と異なる処理のみが記載される。
【0036】
S2a)第1の検出処理
図6の第1の検出処理53は、第1の検出部23(図5)により、第1の相関信号26(図5)の値が第1のしきい値を超えたことを検出したとき、第1の検出信号29(図5)を出力する。第1の検出処理53は、例えば第1の実施形態と同様に第1の半波整流処理56、第1の振幅値調整処理57、第1のラッチ処理58と、さらに第1の振幅値調整処理57と第1のラッチ処理58との間に、第1のシュミットトリガ処理101が追加される。但し、第1のラッチ処理58は、第1の調整信号34(図5)の換わりに第1のシュミットトリガ処理101から出力される第1のシュミットトリガ信号93(図5)を入力し、第1の実施形態と同様に第1の検出信号29(図5)を出力する。
【0037】
S2a−4)第1のシュミットトリガ処理
第1のシュミットトリガ処理101(図6)は、図5の第1のシュミットトリガ部91により、第1の調整信号34の値が第3のしきい値以上となりかつ第1の調整信号34の値が第4のしきい値以上のときに第1の値(Highレベルの値)からなる第5の信号を生成し、第1の調整信号34の値が第4のしきい値未満となりかつ第1の調整信号34の値が第3のしきい値未満のときに第2の値(Lowレベルの値)からなる第5の信号を生成し、生成された第5の信号を第1のシュミットトリガ信号93として第1のラッチ部32に出力する。第1のシュミットトリガ部91において、第3のしきい値は、第1の変調信号5と第1の拡散信号列とが同期が取れ、相関(正の相関)があるときに得られる第1の相関信号26の値のうち、他の送信局による干渉の影響とノイズの影響を除去し相関があると識別できる最も低いレベルとなる値が選択される。また、第4のしきい値は、第1の変調信号5と第1の拡散信号列との間に相関が無いときに得られる第1の相関信号26の値のうち、他の送信局による干渉の影響(相互相関値)およびノイズの影響を考慮した最も高いレベルとなる値が選択される。
【0038】
図7は、第1の第1の振幅値調整部31(図5)から出力され第1のシュミットトリガ部91(図5)に入力される第1の調整信号34(図5)の波形103と、第1のシュミットトリガ部91(図5)から出力される第1のシュミットトリガ信号93(図5)の波形104が示される。第1の調整信号34(図5)の波形103は、正の値および値「0」を有する第1の相関信号26(図5)の波形からなる。第1の調整信号34(図5)の波形103における領域105の波形は、第1の変調信号5(図5)と第1の拡散信号列とが同期が取れ相関があるが、他の送信局による干渉の影響(相互相関値)とノイズの影響を受けた波形である。第1の調整信号34(図5)の波形103における領域106の波形は、第1の変調信号5(図5)と第1の拡散信号列との間に相関が無いと共に他の送信局による干渉の影響(相互相関値)とノイズの影響を受けた波形である。
【0039】
領域105の波形において、第1の調整信号34(図5)の波形103は第3のしきい値を境に上下しているが、第1のシュミットトリガ部91(図5)は、Highレベルの値からなる第1のシュミットトリガ信号93を生成する。よって、領域107の波形のように、第1のシュミットトリガ信号93(図5)の波形104は、Highレベルの値からなる信号の波形となる。また領域106において、第1の調整信号34(図5)の波形103は第4のしきい値を境に上下しているが、第1のシュミットトリガ部91(図5)は、Lowレベルの値からなる第1のシュミットトリガ信号93を生成する。よって、領域108の波形のように、第1のシュミットトリガ信号93(図5)は、Lowレベルの値からなる信号の波形となる。
【0040】
S2b)第2の検出処理
図6の第2の検出処理54は、第2の検出部24(図5)により、第1の相関信号26(図5)の値が第2のしきい値を超えたことを検出したとき、第2の検出信号36(図5)を出力する。第2の検出処理54は、例えば第1の実施形態と同様に振幅反転処理59、第2の半波整流処理60、第2の振幅値調整処理61、第2のラッチ処理62と、さらに第2の振幅値調整処理61と第2のラッチ処理62との間に第2のシュミットトリガ処理102が追加される。但し、第2のラッチ処理62は、第2の調整信号43(図5)の換わりに第2のシュミットトリガ処理102から出力される第2のシュミットトリガ信号94(図5)を入力し、第1の実施形態と同様に第2の検出信号36(図5)を出力する。
【0041】
S2b−4)第2のシュミットトリガ処理
第2のシュミットトリガ処理102(図6)は、第1のシュミットトリガ処理101(図6)と同様な処理を行う。第2のシュミットトリガ処理102(図6)は、図5の第2のシュミットトリガ部92により、第2の調整信号43の値が第3のしきい値以上となりかつ第2の調整信号43の値が第4のしきい値以上のときに第1の値(Highレベルの値)からなる第6の信号を生成し、第2の調整信号36の値が第4のしきい値未満となりかつ第2の調整信号36の値が第3のしきい値未満のときに第2の値(Lowレベルの値)からなる第6の信号を生成し、生成された第6の信号を第2のシュミットトリガ94として第2のラッチ部40に出力する。
【0042】
第2のシュミットトリガ部92においても、第3のしきい値は、第1の変調信号5と第1の拡散信号列とが同期が取れ、相関(負の相関)があるときに得られる第1の相関信号26の値のうち、他の送信局による干渉の影響とノイズの影響を除去し相関があると識別できる最も低いレベルとなる値が選択される。また、第4のしきい値は、第1の変調信号5と第1の拡散信号列との間に相関が無いときに得られる第1の相関信号26の値のうち、他の送信局による干渉の影響(相互相関値)とノイズの影響を考慮した最も高いレベルとなる値が選択される。
【0043】
詳細な動作は、第2の振幅値調整部39(図5)から出力され第2のシュミットトリガ部92(図5)に入力される第2の調整信号43の波形が、負の値を有する第1の相関信号26においてこの第1の相関信号26の値の符号を反転させた波形からなることを除き、第1のシュミットトリガ処理101における動作と同様なので省略する。
【0044】
(B−3)第2の実施形態の効果
第1のラッチ部の前段に第1のシュミットトリガ部が配置され、第2のラッチ部の前段に第2のシュミットトリガ部が配置されることにより、相関器から出力される相関信号における他の送信局による干渉の影響(相互相関値)とノイズの影響によるチャタリングを防止することが出来るので、第2の実施例は変調信号と拡散符号との同期位置を正確に抽出することが可能となる。
【0045】
(C)第3の実施形態の形態
(C−1)第3の実施形態の構成
第3の実施形態に係る受信装置を含む送受信システムの概略構成は、第1の実施形態と同様に図1である。また、第2の実施形態の受信装置の全体構成を示すブロック図は、図8に示される。この受信装置1の全体構成は、第1の実施形態の構成(相関演算部21、判定部22)に、さらに相関演算部1の前段に前処理部111が配置される。また、相関演算部21は、前処理された第1の変調信号:前処理信号112を第1の拡散信号列の1周期分の数だけ格納し遅延させる遅延部113(図9)と、格納し遅延された前処理信号112のそれぞれの前処理信号(遅延信号)に1周期分の数の第1の拡散信号列のそれぞれの拡散信号を乗算し、乗算された1周期分の数のそれぞれの乗算信号を加算する演算部114(図9)とからなる。受信装置の全体構成は、以下、第1の実施形態と異なる構成のみが記載される。
【0046】
前処理部111は、相関演算部21における入力信号の電力の最大値が所定の値となるように第1の変調信号5を前処理し、前処理された第1の変調信号を前処理信号112として相関演算部21に出力する。
【0047】
相関演算部21は、図9において、前処理された第1の変調信号:前処理信号112を第1の拡散信号列の1周期分の数(ここでは15個)だけ格納し遅延させる遅延部113と、格納し遅延された前処理信号112のそれぞれの信号:第1の遅延信号S(1+(a−1)×15)、・・・、第15の遅延信号S(a×15)に第1の拡散信号列の1周期分の数(ここでは15個)のそれぞれの信号:第1の拡散信号C(1)、・・・、第15の拡散信号C(15)を乗算し、乗算された1周期分の数(ここでは15個)のそれぞれの乗算信号:第1の乗算信号S(1+(a−1)×15)×C(1))、・・・、第15の乗算信号(S(a×15)×C(15))を加算する演算部114とからなる。遅延部113は、複数のシフトレジスタ:第1のシフトレジスタ[D1]115、・・・、第15のシフトレジスタ[D15]129からなり、例えば電荷結合素子(CCD)からなる。遅延部113は、前処理信号112を格納し遅延して、第1の遅延信号[S(1+(a−1)×15)]130、・・・、第15の遅延信号[S(a×15)]144を出力する。格納し遅延された遅延信号[S(1+(a−1)×15)]130は最も遅延された時間が長い前処理信号112であり、格納し遅延された遅延信号[S(a×15)]144は最も遅延された時間が短い前処理信号112である。演算部114は、第1の乗算器145、・・・、第15の乗算器159と加算器160からなる。第1の乗算器145は、第1の遅延信号[S(1+(a−1)×15)]130と第1の拡散信号[C(1)]161とを乗算し、第1の乗算信号[S(1+(a−1)×15)×C(1)]162を出力する。同様に、各乗算器:第2の乗算器163〜第15の乗算器176は、各遅延信号:第2の遅延信号[S(2+(a−1)×15)]131、・・・、第15の遅延信号[S(a×15)]144と、各拡散信号:第1の拡散信号[C(2)]163、・・・、第1の拡散信号[C(15)]176とを乗算し、各乗算信号:第2の乗算信号[S(2+(a−1)×15)×C(2)]177〜第15の乗算信号[S(a×15)×C(15)]190を出力する。加算器160は、第1の乗算信号162、各乗算信号:第2の乗算信号177、・・・、第15の乗算信号190を加算し、加算信号を出力する。この加算信号は、第1の相関信号26となる。
【0048】
(C−2)第3の実施形態の動作
次に、本発明の受信動作を示す。図10は、第3の実施形態の受信装置の全体動作を示すフローチャート図である。
【0049】
受信装置の全体動作は、第1の実施形態の動作と同様に、相関演算処理51、判定処理52からなり、さらに前処理193が追加される。また、相関演算処理51はCCDからなる遅延部113(図9)を用いた処理となる。相関演算処理51は、第1の変調信号5(図8)の換わりに前処理193から出力された前処理信号112(図8)を入力し、第1の実施の形態と同様に第1の相関信号26(図8)を出力する。判定処理52は、第1の実施形態の動作と同様に、第1の検出処理53、第2の検出処理54、検出結果選択処理55からなる。受信装置の全体処理は、以下、第1の実施形態と異なる構成のみが記載される。
【0050】
S4)前処理
前処理193(図10)は、図8の前処理部111により、相関演算部21における入力信号の電力の最大値が所定の値となるように第1の変調信号5を前処理し、前処理された第1の変調信号を前処理信号112として相関演算部21に出力する。前処理部111は、所定の時間毎に第1の変調信号5の電力の最大値を測定し、測定された値を基にして相関演算部21における入力信号の電力の最大値を所定の値となるように第1の変調信号5を増幅(または減衰、所定の値にてスライス)させる。前処理部111は、第1の変調信号5の電力の最大値を相関演算部21の遅延部113で許容される電力の最大値となるように、前処理信号112を出力する。
【0051】
また、前処理部111は、送信装置2において接続される送信部の数より第1の変調信号5の電力の最大値を推定し、推定された値を基にして相関演算部21における入力信号の電力の最大値が所定の値となるように第1の変調信号5を増幅(または減衰)させる。前処理部111は、第1の変調信号5の電力の最大値を相関演算部21の遅延部113で許容される電力の最大値となるように、前処理信号112を出力する。前処理部111において、送信装置2において接続される送信部の数がN個であり、かつ前処理信号112の値は相関演算部21の遅延部113で許容される最大の入力値と等しいとする。このとき、送信装置2において接続される送信部が1個接続されるとき、前処理部111は、第1の変調信号5をN倍した前処理信号112を相関演算部21の遅延部113に出力する。また、前処理部111において、送信装置2において接続される送信部の数が1個であり、かつ前処理信号112の値は相関演算部21の遅延部113で許容される最大の入力値と等しいとする。このとき、送信装置2において接続される送信部がN個接続されるとき、前処理部111は、第1の変調信号5を1/N倍した前処理信号112を相関演算部21の遅延部113に出力する。
【0052】
S1)相関演算処理
相関演算処理51(図10)は、図8の相関演算部21により、前処理された第1の変調信号:前処理信号112と第1の拡散信号列との相関演算して、第1の相関信号26を出力する。図9において相関演算部21は、複数(ここでは、第1の拡散信号列の1周期分の数:15個)の複数のシフトレジスタ:第1のシフトレジスタ[D1]115、・・・、第15のシフトレジスタ[D15]129からなり、前処理信号112を第1の拡散信号列の1周期分の数だけ格納し遅延させる遅延部113と、格納し遅延された前処理信号112のそれぞれの遅延信号:第1の遅延信号[S(1+(a−1)×15)]130、・・・、第15の遅延信号[S(a×15)]144に、1周期分の数(15個)の第1の拡散信号列のそれぞれの拡散信号:第1の拡散信号[C(1)]161、第2の拡散信号[C(2)]163、・・・、第15の拡散信号[C(15)]176を乗算し、乗算された第1の拡散信号列の1周期分の数(15個)のそれぞれの乗算信号:第1の乗算信号[S(1+(a−1)×15)×C(1))]162、第2の乗算信号[S(2+(a−1)×15)×C(2))]177、・・・、第15の乗算信号[S(a×15)×C(15)]190を加算する、第1の乗算器145、・・・、第15の乗算器159と加算器160からなる演算部114とからなる。
【0053】
遅延部113における複数のシフトレジスタ:第1のシフトレジスタ[D1]115〜第15のシフトレジスタ[D15]129は、前処理信号112を第1のシフトレジスタ[D1]115に入力して、第2のシフトレジスタ[D2]116、第3のシフトレジスタ[D3]117、・・・、第15のシフトレジスタ[D15]129と、シフトレジスタの左から右へと(短い遅延時間から長い遅延時間へと)、第1の拡散信号列の1周期分の数(15個)の前処理信号112を格納し遅延させる。遅延部113において、前処理信号112を格納し遅延させる方法は、第3のクロック信号191と第4のクロック信号192を用意し、第3のクロック信号191の位相値と第4のクロック信号192の位相値は、180度異なるとする。第3のクロック信号191は、各シフトレジスタの中央から左側の領域に位置される前処理信号112の入力側に入力され、第3のクロック信号191は、第1のシフトレジスタ[D1]115、・・・、第15のシフトレジスタ[D15]129に入力される。第4のクロック信号192は、各シフトレジスタの中央から右側の領域に位置される前処理信号112の出力側に入力され、第4のクロック信号192は、第1のシフトレジスタ[D1]115、・・・、第15のシフトレジスタ[D15]129に入力される。前処理信号112は、第3のクロック信号191と第4のクロック信号192により、第1のシフトレジスタ115、・・・、第15のシフトレジスタ129の左側の領域:入力側の領域(または右側の領域:出力側の領域)の電荷ポテンシャルを高くし、第1のシフトレジスタ115、・・・、第15のシフトレジスタ129の右側の領域:出力側の領域(左側の領域:入力側の領域)の電荷ポテンシャルを低くすることにより、格納し遅延される。
【0054】
相関演算部21における演算部114は、前処理され格納され遅延された前処理信号112のそれぞれの遅延信号:第1の遅延信号[S(1+(a−1)×15)]130〜第15の遅延信号[S(a×15)]144に第1の拡散信号列のそれぞれの拡散信号列:第1の拡散信号[C1]161、第2の拡散信号[C2]163、・・・、第15の拡散信号[C15]176を乗算し、乗算されたそれぞれの乗算信号:第1の乗算信号[S(1+(a−1)×15)×C(1))]162、第2の乗算信号[S(2+(a−1)×15)×C(2))]177、・・・、第15の乗算信号[(S(a×15)×C(15))]190を加算し、加算された信号:第1の相関信号R(a)を第1の相関信号26として出力する。演算部114(相関演算部21)に第1のクロック信号27が入力されたとき、第1の相関信号[R(1)]26は、それぞれの遅延信号:第1の遅延信号[S(1)]130、・・・、第15の遅延信号[S(15)]144と、第1の拡散信号列のそれぞれの拡散信号:第1の拡散信号[C1]161、第2の拡散信号[C2]163、・・・、第15の拡散信号[C15]176との乗算、加算された信号[S(1)×C1+S(2)×C2+・・・+S(15)×C15]からなる。相関演算部21(演算部114)に再び第1のクロック信号27が入力されたとき、第1の相関信号[R(2)]26は、それぞれの遅延信号:第1の遅延信号[S(2)]130、・・・、第15の遅延信号[S(16)]144と、第1の拡散信号列のそれぞれの拡散信号:第1の拡散信号[C1]161、第2の拡散信号[C2]163、・・・、第15の拡散信号[C15]176との乗算、加算された信号[S(2)×C1+S(3)×C2+・・・+S(16)×C15]からなる。
【0055】
つまり、第1の拡散信号列の数の1周期分だけ格納され遅延された前処理信号112のそれぞれの遅延信号:第1の遅延信号[S(1+(a−1)×15)]130、・・・、第15の遅延信号[S(a×15)]144に、1周期分の数(15個)の第1の拡散信号列のそれぞれの拡散信号:第1の拡散信号[C(1)]161、第2の拡散信号[C(2)]163、・・・、第15の拡散信号[C(15)]176を乗算する。第1の遅延信号[S(1+(a−1)×15)]130と第1の拡散信号[C(1)]161とが乗算された信号は第1の乗算信号162、・・・、第15の遅延信号[S(a×15)]144と第15の拡散信号[C(15)]176とが乗算された信号は第15の乗算信号190とする。さらに、第1の乗算信号162、第2の乗算信号162、・・・、第15の乗算信号190は加算され、相関演算部21(演算部114)から第1の相関信号26として出力される。ここでは、第1の拡散信号列を15個からなる第1の拡散信号[C1]161、第2の拡散信号[C2]163、・・・、第15の拡散信号[C15]176からなる符号系列で示したが、第1の拡散信号列をN個からなる符号系列のときは、それぞれの遅延信号:第1の遅延信号、・・・、第Nの遅延信号に、それぞれの拡散信号:第1の拡散信号、・・・、第Nの拡散信号を乗算し、加算すればよい。また、第1のクロック信号27と第3のクロック信号191との関係において、第3のクロック信号191の位相の値は、第1のクロック信号27の位相の値に対して0〜90度の位相遅延を有するものであり、好ましくは、第3のクロック信号191の位相の値は、第1のクロック信号27の位相の値に対して45度の位相遅延を有する。また、第1のクロック信号27と第4のクロック信号192との関係において、第4のクロック信号192の位相の値は、第1のクロック信号27の位相の値に対して180〜270度の位相遅延を有するものであり、好ましくは、第4のクロック信号192の位相の値は、第1のクロック信号27の位相の値に対して225度の位相遅延を有する。
【0056】
図9において、第1のクロック信号27、第3のクロック信号191、第4のクロック信号192は、それぞれ別々に記載したが、第1のクロック信号27を入力とし第1のクロック信号27の位相の値に対して0〜90度(好ましくは45度)の位相遅延させ、第3のクロック信号191を出力する、さらに第1のクロック信号27を入力とし第1のクロック信号27の位相の値に対して180〜270度(好ましくは225度)の位相遅延させ、第4のクロック信号191を出力する位相遅延器(図示せず)を設けても良い。
【0057】
(C−3)第3の実施形態の効果
相関演算部にCCDを用いることにより、相関演算を高速にすることが出来るので、第3の実施例は変調信号のデータ転送速度が速くても受信することが可能となる。
【0058】
(D)第4の実施形態
(D−1)第4の実施形態の構成
第4の実施形態に係る受信装置を含む送受信システムの概略構成は、図11に示される。この送受信システムの概略構成は、第1の実施形態の構成(第1の送信部3、第2の送信部4からなる送信装置2、受信装置1)に、さらに第1の送信部3の後段に第1の電気/光変換部194が配置され、第2の送信部4の後段に第2の電気/光変換部195が配置される。受信装置1は、第1の光変調信号196を受信、光/電気変換をして第1の変調信号を生成し、この第1の変調信号に対して第1の拡散信号列を用いて復調する。送信装置2において、第1の送信部3は、第1の送信信号6を第2の拡散信号列7により拡散変調し、電気/光変換された第2の光変調信号197を出力する。第2の送信部4は、第2の送信信号9を第3の拡散信号列10により拡散変調し、電気/光変換された第3の光変調信号198を出力する。送信装置2から出力される第1の光変調信号196は、第2の光変調信号197と第3の光変調信号198とが多重された信号である。第2の光変調信号197と第3の光変調信号198は、例えばカプラなどを用いて多重される。また受信装置1においては、第1の光変調信号196を復調し、第1の送信部3の第1の送信信号5に対応する受信信号を判定信号12を出力する。
【0059】
第1の電気/光変換部193は、例えば、レーザダイオード、発光ダイオードなどにより、第1の送信部3の第2の変調信号8を電気信号から光信号に変換された第2の光変調信号197が送信される。第2の電気/光変換部195は、例えば、レーザダイオード、発光ダイオードなどにより、第2の送信部4の第3の変調信号11を電気信号から光信号に変換された第3の光変調信号198が送信される。第1の光変調信号196は、例えばカプラなどを用いて、第2の光変調信号197と第3の光変調信号198とが多重される。
【0060】
また、第4の実施形態に係る受信装置の全体構成を示すブロック図は、図12に示される。この受信装置の全体構成は、第1の実施形態の構成(相関演算部21、判定部22)に、さらに相関演算部21の前段に、光/電気変換部199が配置される。また図13において、相関演算部21は、第3の実施形態と同様に、複数のシフトレジスタ:第1のシフトレジスタ[D1]115〜第15のシフトレジスタ[D15]129からなり、第1の光変調信号196を光信号から電気信号に変換された第1の変調信号200を第1の拡散信号列の1周期分の数(ここでは15個)だけ格納し遅延させる電荷結合素子(CCD)による遅延部113と、格納し遅延させた第1の変調信号200の1周期分の数(ここでは15個)のそれぞれの遅延信号:第1の遅延信号130、・・・、第15の遅延信号144に、第1の拡散信号列のそれぞれの拡散信号:第1の拡散信号161、第2の拡散信号163、・・・、第15の拡散信号176を第1の乗算器145、・・・、第15の乗算器159にて乗算し、乗算された1周期分の数(ここでは15個)のそれぞれの乗算信号:第1の乗算信号162、第2の乗算信号177、・・・、第15の乗算信号190を加算器160にて加算する演算部114とからなる。受信装置の全体構成は、以下、第1の実施形態、第3の実施形態と異なる構成のみが記載される。
【0061】
光/電気変換部199はフォトダイオードまたはCCDからなり、第1の光変調信号196を入力して、光信号を電気信号に変換された変調信号を第1の変調信号200として相関演算部21に出力する。
【0062】
(D−2)第4の実施形態の動作
次に、本発明の受信動作を示す。図13は、第4の実施形態の受信装置の全体動作を示すフローチャート図である。
【0063】
受信装置の全体動作は、第1の実施形態の動作と同様に、相関演算処理51、判定処理52からなり、さらに光/電気変換処理201が追加される。また、第3の実施形態の動作と同様に、相関演算処理51はCCDからなる遅延部113(図13)を用いた処理となる。相関演算処理51は、第1の変調信号5の換わりに光/電気変換処理から生成された第1の変調信号200(図12)を入力し、第3の実施の形態と同様に処理され、第1の相関信号26(図12)を出力する。判定処理52は、第1の実施形態の動作と同様に、第1の検出処理53、第2の検出処理54、検出結果選択処理55からなる。受信装置の全体処理は、以下、第1の実施形態、第3の実施形態と異なる構成のみが示される。
【0064】
S5)光/電気変換処理
光/電気変換処理201(図14)は、図12の光/電気変換部199により、光信号からなる第1の光変調信号196を入力して、光信号を電気信号に変換し、電気信号からなる第1の変調信号200を相関検波部21に出力する。ここで、光/電気変換部199がCCDからなるとき、図13のように、光/電気変換部199と相関演算部21のCCDからなる遅延部113とは一体型となる。光/電気変換部199は、第3の実施形態と同様に、第3のクロック信号191と第4のクロック信号192を入力し、第1の光変調信号196を電気信号に変換された第1の変調信号200をCCDからなる遅延部113のように格納し遅延させることにより、CCDからなる遅延部113へ転送される。第3のクロック信号191は、光/電気変換部199の左側の領域に位置される第1の光変調信号196の入力側の領域に入力される。第4のクロック信号192は、光/電気変換部199の右側の領域に位置される第1の変調信号200の出力側の領域に入力される。第1の光変調信号196は、光/電気変換部199の左側の領域に位置される第1の光変調信号196の入力側の領域において光信号を電気信号に変換し、電気信号からなる第1の変調信号が生成される。生成された電気信号からなる第1の変調信号は、第3のクロック信号191と第4のクロック信号192により、光/電気変換部199の左側の領域:第1の光変調信号196の入力側の領域(または光/電気変換部199の右側の領域:第1の光変調信号196の出力側の領域)の電荷ポテンシャルを高くし、光/電気変換部199の右側の領域:第1の変調信号200の出力側の領域(または光/電気変換部199の左側の領域:第1の光変調信号196の入力側の領域)の電荷ポテンシャルを低くすることにより転送され、電気信号からなる第1の変調信号を第1の変調信号200として出力する。
【0065】
(D−3)第4の実施形態の効果
相関演算部の前段に光/電気変換部が配置されることにより、電気信号からなる変調信号を光信号からなる変調信号とすることが出来るので、第4の実施例は、大容量の情報を受信することが可能となる。
【0066】
(E)変形例の構成
第3の実施形態に記載される受信装置1の構成は、第2の実施形態に適用されることが可能である。
【0067】
また、第4の実施形態に記載される受信装置1の構成は、第2の実施形態に適用されることが可能である。
【0068】
さらに、第4の実施形態に記載される光/電気変換部199をフォトダイオード(PD)とした受信装置1の構成は、第4の実施形態に適用されることが可能である。
【0069】
【発明の効果】
以上のように、本発明の受信装置によれば、相関器からの出力レベルを、第1の検出部、第2の検出部、検出結果選択部とを用いたしきい値判定により処理するため、A/D変換器を使用する必要がない。その結果、受信装置の処理能力と受信装置の規模は、従来よりも軽減される。
【図面の簡単な説明】
【図1】第1の実施形態の送信/受信システム構成を示すブロック図である。
【図2】第1の実施形態の受信構成を示すブロック図である。
【図3】第1の実施形態の受信処理を示すフローチャートである。
【図4】第1の実施形態の各受信構成における信号波形を示す図である。
【図5】第2の実施形態の受信構成を示すブロック図である。
【図6】第2の実施形態の受信処理を示すフローチャートである。
【図7】第2の実施形態のシュミットトリガ部における信号波形を示す図である。
【図8】第3の実施形態の受信構成を示すブロック図である。
【図9】第3の実施形態の相関演算部を示すブロック図である。
【図10】第3の実施形態の受信処理を示すフローチャートである。
【図11】第4の実施形態の送信/受信システム構成を示すブロック図である。
【図12】第4の実施形態の受信構成を示すブロック図である。
【図13】第4の実施形態の相関演算部と光/電気変換部を示すブロック図である。
【図14】第4の実施形態の受信処理を示すフローチャートである。
【符号の説明】
1…受信装置、2…送信装置、3…第1の送信部、4…第2の送信部、5…第1の変調信号、6…第1の送信信号、7…第2の拡散信号列、8…第2の変調信号、9…第2の送信信号、10…第3の拡散信号列、11…第3の変調信号、12…判定信号、21…相関演算部、22…判定部、23…第1の検出部、24…第2の検出部、25…検出結果選択部、26…第1の相関信号、27…第1のクロック、29…第1の検出信号、30…第1の半波整流部、31…第1の振幅値調整部、32…第1のラッチ部、33…第1の半波整流信号、34…第1の調整信号、35…第2のクロック信号、36…第2の検出信号、37…振幅反転部、38…第2の半波整流部、39…第2の振幅値調整部、40…第2のラッチ部、41…第2の相関信号、42…第2の半波整流信号、43…第2の調整信号、44…第1の信号、45…インバータ。

Claims (8)

  1. 拡散変調された第1の変調信号を受信して、前記第1の変調信号に対応する判定信号を出力する受信装置において、
    前記第1の変調信号と第1の拡散信号列との相関演算して、第1の相関信号を出力する相関演算部と、
    前記第1の相関信号の振幅値を判定して、前記判定信号を出力する判定部とを有し、
    前記判定部は、
    前記第1の相関信号を半波整流して第1の半波整流信号を出力する第1の半波整流部と、
    前記第1の半波整流信号の振幅値を調整して第1の調整信号を出力する第1の振幅値調整部と、所定のクロック信号に同期し、入力される前記第1の調整信号の値が第1のしきい値以上となるときに前記第1の値からなる第1の信号をラッチし、前記第1のしきい値未満となるときに前記第2の値からなる第1の信号をラッチし、ラッチされた第1の信号を前記第1の検出信号として出力する第1のラッチ部を具えることで、前記第1の相関信号の値が前記第1のしきい値を超えたことを検出したとき、前記第1の検出信号を出力する第1の検出部と、
    前記第1の相関信号の振幅値を反転させ第2の相関信号として出力する振幅反転部と、前記第2の相関信号を半波整流して第2の半波整流信号を前記第2の検出部に出力する第2の半波整流部と、前記第2の半波整流信号の振幅値を調整して第2の調整信号を出力する第2の振幅値調整部と、所定のクロック信号に同期し、入力される前記第2の調整信号が第2のしきい値以上となるときに前記第1の値からなる第2の信号をラッチし、前記第2のしきい値未満となるときに前記第2の値からなる第2の信号をラッチし、ラッチされた第2の信号を前記第2の検出信号として出力する第2のラッチ部を具えることで、前記第1の相関信号の値が前記第2のしきい値を超えたことを検出したとき、第2の検出信号を出力する第2の検出部と、
    前記第1の検出信号が入力されると第1の値からなる前記判定信号を出力し、前記第2の検出信号が入力されると第2の値からなる前記判定信号を出力する検出結果選択部と
    を有することを特徴とする受信装置。
  2. 請求項1記載の受信装置における前記検出結果選択部は、
    前記第1の値からなる第3の信号を入力し、前記第1の検出信号がクロック信号として入力されたときに前記第1の値からなる第4の信号をラッチし、前記第2の検出信号がリセット信号として入力されたとき前記第2の値からなる第4の信号をラッチし、ラッチされた第4の信号を前記判定信号として出力する第3のラッチ部からなること
    を特徴とする受信装置。
  3. 請求項1記載の受信装置における前記第1の検出部は、さらに、前記第1の振幅値調整部と第1のフリップフロップ部との間に、第1のシュミットトリガ部が配置され、
    前記第2の検出部は、さらに、前記第2の振幅値調整部と第2のフリップフロップ部との間に第2のシュミットトリガ部が配置され、
    前記第1のシュミットトリガ部は、
    第3のしきい値と、第3のしきい値より小さい第4のしきい値を有し、
    前記第1の調整信号の値が第3のしきい値以上となりかつ前記第1の調整信号の値が第4のしきい値以上のときに前記第1の値からなる第5の信号を生成し、前記第1の調整信号の値が第4のしきい値未満となりかつ前記第1の調整信号の値が第3のしきい値未満のときに前記第2の値からなる第5の信号を生成し、生成された第5の信号を第1のシュミットトリガ信号として前記第1のラッチ部に出力し、
    前記第2のシュミットトリガ部は、
    前記第3のしきい値と、前記第4のしきい値を有し、
    前記第2の調整信号の値が前記第3のしきい値以上となりかつ前記第2の調整信号の値が前記第4のしきい値以上のときに前記第1の値からなる第6の信号を生成し、前記第2の調整信号の値が前記第4のしきい値未満となりかつ前記第2の調整信号の値が前記第3のしきい値未満のときに前記第2の値からなる第6の信号を生成し、生成された第6の信号を第2のシュミットトリガ信号として前記第2のラッチ部に出力すること
    を特徴とする受信装置。
  4. 請求項2記載の受信装置における前記相関演算部は、
    複数のシフトレジスタからなり、前記第1の変調信号を前記第1の拡散信号列の1周期分の数だけ格納し遅延させる遅延部と、
    遅延された前記第1の変調信号の各遅延信号に1周期分の数の前記第1の拡散信号列の各拡散信号を乗算し、乗算された1周期分の数の各乗算信号を加算し、加算された信号を前記第1の相関信号として出力する演算部とからなる
    ことを特徴とする受信装置。
  5. 請求項4記載の受信装置における前記遅延部は、第1の電荷結合素子からなること
    を特徴とする受信装置。
  6. 請求項1記載の受信装置は、さらに、前記相関演算部の前段に前処理部が配置され、前記前処理部は、前記第1の変調信号の電力の最大値が所定の値となるように前処理された前処理信号を前記相関演算部に出力すること
    を特徴とする受信装置。
  7. 請求項1記載の受信装置は、さらに、
    前記相関演算部の前段に光/電気変換部が配置され、
    前記光/電気変換部は、光信号からなる第1の光変調信号を入力し電気信号に変換して、変換された信号を前記第1の変調信号として前記相関演算部に出力することを特徴とする受信装置。
  8. 請求項7記載の受信装置における前記光/電気変換部は、第2の電荷結合素子からなることを特徴とする受信装置。
JP2002048176A 2002-02-25 2002-02-25 受信装置 Expired - Fee Related JP4075405B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002048176A JP4075405B2 (ja) 2002-02-25 2002-02-25 受信装置
US10/369,499 US7180961B2 (en) 2002-02-25 2003-02-21 Receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002048176A JP4075405B2 (ja) 2002-02-25 2002-02-25 受信装置

Publications (2)

Publication Number Publication Date
JP2003249874A JP2003249874A (ja) 2003-09-05
JP4075405B2 true JP4075405B2 (ja) 2008-04-16

Family

ID=27750731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048176A Expired - Fee Related JP4075405B2 (ja) 2002-02-25 2002-02-25 受信装置

Country Status (2)

Country Link
US (1) US7180961B2 (ja)
JP (1) JP4075405B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876602B2 (ja) * 2006-02-02 2012-02-15 沖電気工業株式会社 光アクセスネットワークシステム
KR20140002133A (ko) * 2012-06-28 2014-01-08 에스케이하이닉스 주식회사 지연 회로 및 이를 이용한 신호 지연 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499265A (en) * 1989-08-07 1996-03-12 Omnipoint Data Company, Incorporated Spread spectrum correlator
JPH0787400B2 (ja) * 1989-12-01 1995-09-20 クラリオン株式会社 相関パルス発生回路
JP3376224B2 (ja) * 1996-10-23 2003-02-10 株式会社エヌ・ティ・ティ・ドコモ Ds−cdma基地局間非同期セルラ方式における初期同期方法および受信機
US6574268B1 (en) * 2000-11-21 2003-06-03 Bbnt Solutions Llc Asymmetric orthogonal codes for optical communications

Also Published As

Publication number Publication date
US7180961B2 (en) 2007-02-20
US20030161389A1 (en) 2003-08-28
JP2003249874A (ja) 2003-09-05

Similar Documents

Publication Publication Date Title
JP2800796B2 (ja) Cdma同期捕捉回路
KR100315197B1 (ko) 확산스펙트럼수신기
US5383220A (en) Data demodulator of a receiving apparatus for spread spectrum communication
JP2780697B2 (ja) 相関復調における同期捕捉方法及び装置
JPH06296171A (ja) 広帯域伝送システム
RU96118247A (ru) Конвейерный приемник базовой станции сотовой ячейки для уплотненных сигналов с расширенным спектром
US9015220B2 (en) Correlation device
JPH0724397B2 (ja) スペクトラム拡散通信装置
EP0887946B1 (en) Synchronous capture circuit for code division multiple access communication
JP3852533B2 (ja) 初期捕捉回路
JP4075405B2 (ja) 受信装置
KR100929081B1 (ko) 이동단말에서 파일롯 신호의 의사잡음 시퀀스 위상을 추적하기 위한 장치 및 방법
JP5634354B2 (ja) 通信システムおよび受信機
EP0748060B1 (en) Post detection integration spread spectrum receiver
US20030152137A1 (en) Low cost DSSS communication system
JP2999368B2 (ja) 同期装置
JP2001223674A (ja) スペクトル拡散復調器
JP2941651B2 (ja) 移動通信方式
JP2896817B2 (ja) スペクトラム拡散通信装置
JP3575440B2 (ja) 符号推定装置及び符号推定方法
JPH0832547A (ja) 同期捕捉方法
JPH08154069A (ja) スペクトラム拡散通信用受信機
JP2906891B2 (ja) M−aryスペクトラム拡散方式通信装置
JP2721473B2 (ja) スペクトル拡散通信用受信装置
KR100277468B1 (ko) 부호분할다원접속 단말국용 의사잡음 부호탐색기

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060923

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees