JP4059624B2 - 撮影画像の補正方法 - Google Patents

撮影画像の補正方法 Download PDF

Info

Publication number
JP4059624B2
JP4059624B2 JP2000396701A JP2000396701A JP4059624B2 JP 4059624 B2 JP4059624 B2 JP 4059624B2 JP 2000396701 A JP2000396701 A JP 2000396701A JP 2000396701 A JP2000396701 A JP 2000396701A JP 4059624 B2 JP4059624 B2 JP 4059624B2
Authority
JP
Japan
Prior art keywords
image
coordinates
correction
lens
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000396701A
Other languages
English (en)
Other versions
JP2002199203A (ja
Inventor
和己 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2000396701A priority Critical patent/JP4059624B2/ja
Priority to US10/025,467 priority patent/US7050205B2/en
Publication of JP2002199203A publication Critical patent/JP2002199203A/ja
Application granted granted Critical
Publication of JP4059624B2 publication Critical patent/JP4059624B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Facsimile Image Signal Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、撮影レンズのディストーション及び撮影時の露光画面の湾曲による原画像の歪みを補正する撮影画像の補正方法に関するものである。
【0002】
【従来の技術】
現在、写真撮影用の撮影装置としては、一眼レフカメラやコンパクトカメラ等の他に、手軽に写真撮影を楽しむことができるようにしたレンズ付きフイルムユニットが知られている。レンズ付きフイルムユニットは、撮影レンズやシャッタ装置などの撮影機構を組み込んだユニット本体に予め未露光の写真フイルムを内蔵させたもので、購入したその場ですぐに写真撮影ができ、撮影後にもそのまま現像取扱い店に出せばよいという簡便性から、一般に広く利用されている。
【0003】
上記のようなレンズ付きフイルムユニットに搭載される撮影レンズは、一般に1〜2枚の樹脂製のレンズから構成されている。このように1〜2枚のレンズで撮影レンズを構成した場合に、撮影レンズの性能だけで諸収差の改善を図り、画質を向上させるのは困難である。このため、従来のレンズ付きフイルムユニットでは、画質を劣化させる1つの要因である撮影レンズの像面湾曲に対しては、物体側に曲率中心を持つようにして露光画面の長手方向を湾曲させて写真フイルムを支持し、この写真フイルムのフイルム面に露光を与えることにより、露光画面の全域でピントが良好に合うようにしている。
【0004】
また、画質を劣化させる要因としては、上述した像面湾曲の他に、撮影レンズの性能に起因するディストーション(歪曲収差)が代表的である。ディストーションは、射出瞳から結像面(フイルム面)までの距離に応じて結像倍率が変わってしまうことによって発生する。
【0005】
一眼レフカメラなどのように、ある程度コストを掛けられるカメラであれば、多数のレンズを組み合わせた精度の高い撮影レンズを用いることにより、ディストーションを良好に補正した画像を写真フイルムに写し込むことができる。しかしながら、レンズ付きフイルムユニットや低価格帯のコンパクトカメラでは、撮影レンズにあまりコストを掛けることができないため、写真フイルムに写し込まれた画像のディスト−ションの発生を十分に抑えることができていないのが現状である。
【0006】
上記のような画質の劣化の問題に対して、ある情報取得手段を介して得られる撮影レンズの収差特性に応じて画像の収差の補正を行う画像処理方法や画像処理装置が特開平11−313214号公報,特開2000−125174号公報で知られている。これらによれば、レンズ付きフイルムユニット等のようにディストーションが発生するカメラで撮影された画像であっても、画像処理によってディストーションを補正して歪みのない高画質な画像が得られる。
【0007】
例えば、特開平11−313214号公報に記載されている画像処理方法では、写真フイルムに記録された原画像をスキャナなどで光学的に読み取り、画素ごとの原画像データとして抽出する際に、原画像を撮影した撮影レンズのレンズ情報を同時に読み取り、得られたレンズ情報に基づいて、デイストーションを補正する画像処理を原画像データに施し出力するものである。この画像処理の際には、原画像データに設定された座標値を、レンズ情報に応じて予め設定されている補正式、及びその補正式に使用する補正係数によって座標変換し、再配列することによって歪みを補正するものである。また、特開2000−125174号公報に記載されている画像処理方法では、デイストーションを補正する補正式として、歪み率f(r)=(r’−r)/r’(但し、rは光軸からの距離、r’は距離rがデイストーションにより変動した後の距離)の式を用いて、デイストーションを補正する画像処理を施している。
【0008】
【発明が解決しようとする課題】
ところで、特開平11−313214号公報に記載されている画像処理方法では、レンズ情報に応じて予め設定されている補正式が具体的にあげられていない。もし、このような画像処理方法に複雑な補正式を用いると、補正式を用いた演算処理の過程で膨大な時間を要するために大量の写真フイルムを取り扱う場合には適さない。
【0009】
また、特開2000−125174号公報に記載されている画像処理方法では、撮影レンズのディストーションを補正する場合にのみにしか対応していない。しかしながら、上述したようにレンズ付きフイルムユニットのように、写真フイルムを湾曲させて支持した場合においては、この湾曲によっても歪みが発生する。したがって、撮影レンズのディストーションのみを補正するだけでは、満足のいく画質を得ることができなかった。
【0010】
本発明は上記の事情を考慮してなされたものであり、撮影レンズの性能に起因するディストーション及び露光時に写真フイルムが湾曲して支持されることに起因した歪みの両方を簡単な演算処理によって補正することができる撮影画像の補正方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の撮影画像の補正方法では、撮影レンズの光軸が写真フイルムと交わる位置を原点とし、前記湾曲させた方向をX軸方向、X軸方向と直交する方向をY軸方向としたXY平面座標系を設定して、平面とした露光画面上の任意の画素の位置と前記ディストーション及び前記歪みがないときの理想的な像点に対応した画素の理想位置の座標をそれぞれ表し、理想位置のX座標をP ,Y座標をP とするとともに、この理想位置に対応する原画像上の任意の画素の位置のX座標をF ,Y座標をF とし、また前記ディストーションに応じて決められた補正パラメータをα,β,γとし、さらに前記湾曲された露光画面の曲率半径をR 、撮影レンズの射出瞳の中心から撮影レンズの光軸が写真フイルムと交わる位置までの距離をL としたときに、
=R ・tan −1 (W /(R −W ))
(( −W )・D ) /L
但し、
=P ・(1+α・√R+β・R+γ・R
=P ・(1+α・√R+β・R+γ・R
R =√(P +P
=(−D /(M・L )) ・(N−√(N −M・D ) −M・L
=(N−√(N −M・D )) /M
M = 1+(D /L
N = R +(D /L
の式により、前記原画像上の各画素の位置に対する理想位置の対応関係をそれぞれ求め、この対応関係に基づいて、原画像の各画素を対応する理想位置に再配列するものである。
【0012】
請求項2記載の撮影画像の補正方法では、1 画面分の理想位置の各座標と、この理想位置の各座標を上記式に適用して得られる原画像上の画素の座標との対応関係を示す補正用ルックアップテーブルを予め作成し、再配列の際には補正用ルックアップテーブルにしたがって、原画像の各画素の座標を理想位置の座標に変換するようにしたものである。また、請求項3記載の撮影画像の補正方法では、1本の写真フイルムの各露光画面について再配列を行う際に、各露光画面に共通な前記補正用ルックアップテーブルを作成し、この共通な補正用ルックアップテーブルを用いて各露光画面について再配列するようにしたものである。
【0013】
【発明の実施の形態】
図1にフイルム面を湾曲させるように支持して撮影を行うレンズ付きフイルムユニットの一例を示す。レンズ付きフイルムユニット2は、各種撮影機構が組み込まれたユニット本体3と、このユニット本体3を部分的に覆う外装紙4とからなり、ユニット本体3には未露光の写真フイルムが予め装填されている。
【0014】
ユニット本体3の前面には、撮影レンズ5,ファインダ6の対物側窓6a,ストロボ発光部7,ストロボユニットをオン,オフするためのストロボ操作部材8が設けられている。また、上面には、シャッタボタン9,残り撮影可能コマ数を表示するカウンタ窓10,ストロボ充電の完了を表示する表示用ライトガイド11が突出される開口12が設けられている。さらに、ユニット本体10の背面側には、1コマの撮影ごとに回転操作される巻上げノブ13が露呈されている。
【0015】
図2にユニット本体3の分解斜視図を示す。ユニット本体3は、本体基部15,前カバー16,後カバー17,ストロボユニット18,電池19等から構成され、このユニット本体3内にフイルムパトローネ20が製造時に装填される。フイルムパトローネ20は、135タイプのものであり、パトローネ21とネガタイプの写真フイルム22とからなる。
【0016】
本体基部15の前面中央部には、撮影レンズ5から写真フイルム22までの間の撮影光路を遮光する暗箱24が一体に形成されている。この暗箱24を挟む両側方には、パトローネ21が収納されるパトローネ室25と、パトローネ21から引き出されてロール状に巻かれた写真フイルム22が収納されるフイルム室26とが一体に設けられている。
【0017】
暗箱24の外側には、シャッタボタン9の押圧操作に応答してシャッタ羽根を駆動するシャッタ機構やフイルムカウント機構等を構成する各種部品や撮影レンズ5等が取り付けられる。暗箱24の背面には、写真フイルム22上で撮影コマのサイズ、すなわち露光画面22aを画定するアパーチャ(図示省略)が形成されている。露光画面22aは、約24×36mmとなっており、写真フイルム22の長手方向に長い長方形とされる。露光画面22aの中心は、撮影レンンズ5の撮影光軸5aと一致するように画定される。
【0018】
パトローネ室25の上部には、巻上げノブ13が回転自在に取り付けられている。この巻上げノブ13の回転操作で写真フイルム22の撮影済の部分がパトローネ21内に巻き上げられ、未露光の部分がアパーチャの背後にセットされる。
【0019】
前カバー16は、その前面にファインダ6の対物側窓6aの他、撮影レンズ5や,ストロボ発光部7,ストロボ操作部材8を露呈させる開口が形成されており、本体基部15の前面を覆う。
【0020】
後カバー17は、本体基部15の背面を覆うように取り付けられる。この後カバー17には、パトローネ室25とフイルム室26との底面を塞ぐ底蓋17a,17bが一体に形成されている。フイルムパトローネ20が装填された本体基部15に後カバー17を取り付けた後に、底蓋17a,17bが閉鎖されてパトローネ室25及びフイルム室26が光密に塞がれる。底蓋17aは、現像所で撮影済のフイルムパトローネ20を取り出す際に開放される。
【0021】
後カバー17には、本体基部15のアパーチャと対面する部分にフイルム支持面30が形成されている。このフイルム支持面30と本体基部15との隙間によって、パトローネ室25とフイルム室26とを連絡するフイルム給送路が形成される。
【0022】
フイルム支持面30は、物体側に向けて凹状となるように写真フイルム22の給送方向が湾曲され、アパーチャの上下に設けられたフイルムガイドレール(図示省略)は、フイルム支持面30側に凸状となるように写真フイルム22の給送方向に湾曲されている。
【0023】
撮影レンズ5からの撮影光は、暗箱24内に入射し、写真フイルム22の露光画面22a内に露光を与える。アパーチャの背面側に位置決めされた露光画面22aのフイルム面は、前述のフイルム支持面30とガイドレールとによって、図3に示すように、撮影レンズ側(物体側)に曲率中心を持つようにして、曲率半径RF で露光画面22aの長手方向を湾曲した形状で支持される。これにより、撮影レンズ5の像面湾曲に起因するピントのボケを改善する。
【0024】
ストロボユニット18は、各種電気部品が取り付けられたプリント基板32、放電管やリフレクタ,拡散板等からなるストロボ発光部7、充電スイッチ33,シンクロスイッチ34,ストロボ操作部材8が一体に形成されたスイッチ板35、このスイッチ板35をスライド自在に支持する受け板36等から構成され、電池19を電源としている。このストロボユニット18は、ストロボ操作部材8が上方にスライドされて充電スイッチ33がオンとなると充電を行い、シャッタ羽根の開閉に同期してシンクロスイッチ34がオンとなことでストロボ発光する。
【0025】
上記レンズ付きフイルムユニットに装填される写真フイルム22には、その
レンズ付きフイルムユニットの機種に固有の機種コードが光学的にサイドプリントされている。本実施形態では、この従来より写真フイルム22にサイドプリントされている機種コードを利用して、詳細を後述するように歪み補正処理の際に使用する補正パラメータα,γ,β,LC ,RF を特定する。
【0026】
図4に本発明を実施したデジタルプリンタの構成を示す。このデジタルプリンタ40は、大別して補正装置としての機能を有する画像入力部41と、印画紙に画像をプリントする画像記録部42とからなる、画像入力部41は、撮影装置の機種が入力される入力手段としてのコードリーダ43,写真フイルム22の各露光画面22aからカラー画像を読み取るスキャナ44,第1画像メモリ45a,第2画像メモリ45b,画像処理回路46、及びこれらを制御するコントローラ47等からなる。
【0027】
デジタルプリンタ40に現像済みの写真フイルム22がセットされると、この写真フイルム22が図示しない搬送機構によって搬送され、コードリーダ43を介してスキャナ44に送られる。
【0028】
コードリーダ43は、写真フイルム22を照明する光源と、写真フイルム22の搬送路を挟んで光源の反対側に配されたフォトセンサ等から構成されており、現像によって顕在化した機種コードを搬送中の写真フイルム22から光学的に読み取る。この機種コードの読み取りは、写真フイルム1本毎に行われ、読み取られた機種コードはコントローラ47を介して画像処理回路46に送られる。
【0029】
スキャナ44は、写真フイルム22を平面に支持するフイルムキャリア,ランプからの光を拡散してフイルムキャリアにセットされている露光画面22aを照明する照明装置、露光画面22a内の原画像を読み取るCCD、このCCDに原画像を結像させるレンズ等から構成されている。
【0030】
このスキャナ44は、写真フイルム22が1コマ分送られる毎に、CCDで露光画面22a内の原画像を赤色、青色、緑色で3色分解測光し、得られる光電信号をA/D変換器48に送る。A/D変換器48は、各色の光電信号をデジタル変換することにより、露光画面22aの各位置の濃度をそれに応じた3色の画像データに変換する。3色の画像データは、第1画像メモリ45aに書き込まれる。これにより、露光画面22a内の原画像は、多数の画素に分解され、各画素の画像データは、露光画面22a上の位置と1対1に対応する第1画像メモリ45aのアドレスに書き込まれる。なお、画像データの種類はどのようなものであってもよく、3色の画像データの代わりに、例えば輝度データと色データとを画像データとしてもよい。
【0031】
画像処理回路46は、画像メモリ45aに1画面分の画像データが書き込まれると、これを読み出して所定の画像処理を行う。機種コードが記録されている写真フイルム22に対しては、第1画像メモリ45aから読み出した各画素を再配列するように画像データを第2画像メモリ45bに補正画像データとして書き込むことによりに、撮影レンズ5のディス−ション及び露光時に露光画面22a湾曲されていることに起因した歪みを補正する歪み補正処理を行う。歪み補正処理後には、歪み補正処理が施された補正画像の補正画像データに対してプリント用の色補正やネガ・ポジ反転処理等の通常画像処理を行う。通常画像処理が施された補正画像データは、画像記録部42に送られる。
【0032】
なお、画像処理回路46は、歪み補正処理を行うのに先立って、1本の写真フイルム22の各露光画面22aに対して共通に用いる1画面分の補正用LUT(ルックアップテーブル)をワークメモリ46aに作成する。このように、1本の写真フイルム22に対して共通な補正用LUTを用いて、歪み補正処理を行うことで処理時間を短縮している。
【0033】
画像処理回路46には、ワークメモリ46aとEEPROM46bとが接続されている。ワークメモリ46aは、それに補正用LUTが作成される他、画像処理回路46が画像処理を行う際に必要なデータを一時的に記憶する作業用として用いられる。
【0034】
EEPROM46aには、前述の補正パラメータα,γ,β,LC ,RF が機種コード毎に書き込まれており、画像処理回路46は、機種コードに対応した補正パラメータα,γ,β,LC ,RF を用いて歪み補正処理を行う。なお、このように補正パラメータα,γ,β,LC ,RF をEEEPROM46aに記憶することで、レンズ付きフイルムユニットの新たな機種に対応した補正パラメータα,γ,β,LC ,RF の追加を可能としている。
【0035】
また、EEPROM46aには、理想像点に対応した画素の理想位置として用いられる1画面分の座標(Px ,Py )が書き込まれている。理想像点は、撮影レンズ5にディス−ションがなく、また露光時に露光画面22aが平面とされていると仮定したときに、露光画面22a上に形成される像点であり、座標(Px ,Py )は、原画像の画素が歪み補正処理によって再配列されるべき位置を後述するXY平面座標系を用いて表している。なお、歪み補正が施された補正画像はスキャナ44で読み取られた原画像と同様に多数の画素で構成されるので、座標(Px ,Py )は、歪み補正後に想定する1画面の画素数分だけ用意しておけばよく、予め計算によって決めることができる。
【0036】
画像記録部42は、画像メモリ51,赤色、青色、緑色の各レーザ光を出力するレーザユニット52,レーザユニット52の出力を制御するドライバ53,ポリゴンミラー54,Fθレンズ55,長尺のカラー印画紙56を搬送する搬送機構(図示せず)等から構成されている。
【0037】
画像入力部41からの補正画像データは、画像メモリ51に書き込まれる。画像メモリ51の補正画像データによってレーザユニット52の出力が制御され、高速回転するポリゴンミラー54にレーザ光が照射される。これにより、カラー印画紙56の幅方向(搬送方向と直交する方向)にレーザ光の走査が行われ、カラー印画紙56をその長手方向に搬送することで露光画面22aから得られた補正画像がカラー印画紙56に露光される。露光されたカラー印画紙56は、図示しない現像処理部で現像処理された後に1個の画像毎に切り分けられてプリント写真とされる。
【0038】
画像処理回路46が行う歪み補正処理について説明する。画像処理回路46は、図5に示すように、露光画面22aの中心、すなわち露光画面22a上の撮影光軸5aの位置を原点Oとし、露光画面22aの長手方向(湾曲させた方向)をX軸、長手方向に直交する露光画面の幅方向をY軸としたXY平面座標系を用い、平面とされた露光画面22aから読み取られた原画像の任意の画素のX座標を「Fx 」,Y座標を「Fy 」として、また補正後の座標、すなわち理想像点のX座標を「Px 」,Y座標を「Py 」として処理する。
【0039】
そして、画像処理回路46は、次の演算式(a),(b)により、座標(Fx ,Fy )と座標(Px ,Py )との対応関係を表す補正用LUTを作成し、この補正用LUTに示される対応関係に基づいて座標(Fx ,Fy )の画素を座標(Px ,Py )に再配列することにより歪み補正を行う。
【0040】
x =RF ・tan-1(Wx /(RF −Wz )) ・・・(a)
y =((LC −Wz )・DY ) /LC ・・・・・・・(b)
但し、
x =Px ・(1+α・√R+β・R+γ・R2
Y =PY ・(1+α・√R+β・R+γ・R2
R =√(Px 2 +PY 2
x =(−Dx /(M・LC ))・(N−√(N2 −M・Dx 2)−M・LC
z =(N−√(N2 −M・Dx 2 ))/M
M = 1+(Dx 2 /LC 2
N = RF +(Dx 2 /LC
【0041】
以下、上記演算式について説明する。露光時の露光画面22aを平面と仮定したときに、ディストーションを有する撮影レンズ5で撮影を行った場合、図6に模式的に示すように、上記のXY平面座標系において座標(Px ,Py )の位置に形成されるべき理想像点PPは、撮影レンズ5のディストーションの影響を受けて、座標(Dx ,Dy )の像点PDに形成される。
【0042】
撮影レンズ5のディストーションは、一般に理想像高R1 と結像像高R2 とを用いて「D=(R2 −R1 )/R1 」で表される。また、「レンズ設計法(共立出版:松井吉哉著)初版8刷」の102ページに記載されているように、3次収差係数V1 ,5次収差係数V2 とすると、「D=−50・(V1 ・(N1 ・tan ω)2 +(V2 /4)(N1 tan ω)4 」で表すことができ、この式中の「N1 tan ω」は理想像高R1 に相当する項である。このような式に理想像高を与えることにより、露光画面22aを平面に支持したときのディストーションによる結像位置、すなわち理想像点PPに対応する像点PDの位置を求めることが可能である。
【0043】
この例では、上記の式に基づき、露光時の露光画面22aを平面と仮定したときに、理想像点PPと、これが撮影レンズ5のディストーションによってずれる像点PDとの関係を、撮影レンズ5の性能によって決まる補正パラメータα,β,γを用いて、次の(1),(2)のように定義した。
x =Px ・(1+α・√R+β・R+γ・R2 )・・・(1)
Y =PY ・(1+α・√R+β・R+γ・R2 )・・・(2)
但し、R=√(Px 2 +PY 2
【0044】
ところで、上記のレンズ付きフイルムユニット2のように、撮影レンズ5がディストーションを有し、さらに像面湾曲を補正するために、露光時に露光画面22aを湾曲させて支持した場合には、理想像点PPは、露光画面22aが湾曲していることの影響を受けて、像点PDからさらにずれた像点PFとして形成され、その像点PFは、スキャナ44で座標(Fx ,Fy )から読み取られる。
【0045】
図7に、撮影レンズ5の光軸方向をZ軸として、上記のXY平面座標系を拡張したXYZ座標系を示す。この図7中の符号EPは、撮影レンズ5の射出瞳の中心EP(座標(0,0,LC ))を、符号Rcは、露光画面の曲率中心(座標(0,0,RF ))を表しており、射出瞳の中心EPのZ座標LC は、射出瞳の中心EPから露光画面22aの中心までの距離と同じ値であり、曲率中心RcのZ座標RF は、露光画面22aの曲率半径と同じ値である。なお、各軸の矢線の向きを各座標の正方向とする。
【0046】
平面とされた露光画面22aからスキャナ44での読み取られる像点PFが、上記のXYZ座標系において、露光時に湾曲された露光画面22a上の座標(Wx ,Wy ,Wz )で表される像点PWに形成されるとすると、Y軸方向から見た各像点PW,PF,PD,及び曲率中心Rc,射出瞳の中心EPの関係は、図8に示すようになる。
【0047】
図8の関係図からわかるように、像点PFのX座標Fx は、原点Oと像点PWの間の弧(以下、弧OWという)の長さと等しくなり、それは射出瞳の中心EPから像点PDに向かう線分EP−PDと、弧OPの交点の座標、すなわち像点PWのX座標Wx ,Z座標Wz を求めることによって得ることができる。そして、上記線分EP−PDは次の(3)式によって、また弧OWは次の(4)式によっ表される。
X=−(Dx /LC )・Z+Dx ・・・・(3)
(Z−RF 2 +X2 =RF 2 ・・・・(4)
【0048】
上記(3),(4)式により、像点PWのX座標Wx ,Z座標Wz は、次の(5),(6)式によって求められる。なお、(5),(6)式は、弧OWすなわち湾曲された露光画面22aと、線分EP−PDとの交点が射出瞳の中心EPよりも原点O側にあることが考慮されている。
Figure 0004059624
【0049】
曲率半径の中心Rcから像点PWに向かう線分Rc−PWと、撮影光軸(Z軸)とのなす角を「θx 」(ラジアン)とすると、弧OPの長さ、すなわち像点PFのX座標Fx は、次の(7)式によって得られる。
x =RF ・θx ・・・(7)
【0050】
そして、(7)式中の「θx 」は、(5),(6)式より得られる像点PWのX座標Wx ,Z座標Wz と、曲率半径の中心RcのZ座標RF とを用いて、次の(8)式で表されるから、結果として上記(a)式により、任意の理像像点PPに対応した像点PFのX座標Fx を算出することができる。
θx =tan-1(Wx /(RF −Wz ))・・・(8)
【0051】
一方、上記のXYZ座標系をX軸方向から見た各像点PW,PF,PD,及び射出瞳の中心EPの関係は、図9に示すようになる。射出瞳の中心EPから像点PDに向かう線分EP−PDと、撮影光軸(Z軸)とのなす角を「θy 」とすると、次の(9)式が成立し、また像点PWのY座標Wy は、角度「θy 」と、像点PWのZ座標Wz とを用いて次の(10)式のように表すことができる。
tanθy =DY /LC ・・・(9)
y =(LC −Wz )・tanθy ・・・(10)
【0052】
露光画面22aは、その長手方向(X軸方向)を湾曲した形状で支持され、幅方向(Y軸方向)に湾曲されていないから、像点PFのY座標Fy は、像点PWのY座標Wy と同じになる(Fy =Wy )。したがって、上記の式(9),(10)より得られる上記の(b)によって、任意の理像像点PPに対応した像点PFのY座標Fy を算出することができる。
【0053】
結果的に、上記の演算式(a),(b)により、理想像点PPとした任意の画素の座標(Px ,PY )と、撮影レンズ5のデイストーションに応じた補正パラメータα,β,γと、露光画面の湾曲に応じた各補正パラメータRF ,LC とを用いて、理想像点PPとした画素に対応した像点PFである画素の座標(Fx ,Fy )との対応関係を得ることができる。
【0054】
なお、補正パラメータα,β,γは、レンズ付きフイルムユニット2に組み込まれる撮影レンズ5の仕様から計算によって、あるいは実験的に決めることができる。また、前述のように補正パラメータRF は、露光面22aの曲率半径であり、補正パラメータLC は、撮影レンズ5の射出瞳の中心から露光画面22aの中心までの距離であって、これらはレンズ付きフイルムユニット2及びそれに組み込まれた撮影レンズ5の仕様から得られる。そして、各補正パラメータα,β,γ,RF ,LC は、機種コードに対応づけてEEPROM46bに書き込まれる。
【0055】
補正用LUTの作成時では、画像処理回路46は、EEPROM46から読み出した補正パラメータα,β,γ,LC ,RF を用いた演算式(a),(b)に、理想像点PPの座標として予め用意されている1画面分の各画素の座標(Px Y )(Px ,PY は実数)をそれぞれ適用することにより、1画面分の座標(Fx ,FY )(Fx ,FY は実数)を求める。そして、計算に用いた座標(Px ,PY )と、その座標から得られる座標(Fx ,FY )とを対応付けてワークメモリ46aに書き込むことにより、補正用LUTを作成する。
【0056】
歪み補正処理時では、画像処理回路46は、第1画像メモリ45aから各画素の画像データを順次に読み出し、この読み出しの際に用いた第1画像メモリ45aのアドレスを座標(Fx ,FY )に変換し、得られる座標(Fx ,FY )に対応する座標(Px ,PY )を補正用LUTから取り出す。そして、取り出した座標(Px ,PY )を再びアドレスに変換し、そのアドレスを用いて第2画像メモリ45bに対象となる画像データを書き込む。そして、この処理を各画素について行う。このようにして、スキャナ44で読み込んだ第1画像メモリ45a上に記憶されているの各画素の画像データを第2画像メモリ45bに書き込むことにより歪み補正処理を行う。
【0057】
なお、この例では、第1画像メモリ45aのアドレスを座標(Fx ,FY )に変換し、その座標(Fx ,FY )に基づいて補正用LUTから得られる座標(Px ,PY )を第2画像メモリ45bのアドレスに変換しているが、座標(Fx ,FY )に対応する第1画像メモリ45aのアドレスと、座標(Px ,PY )に対応する第2画像メモリ45bのアドレスとを対応付けたLUTを作成し、このLUTを用いて直接に補正前の第1画像メモリ45aのアドレスから第2画像メモリ45bのアドレスに変換してもよい。このようにすれば、処理を高速化することができる。
【0058】
さらに、上記演算(a)は、「tan-1」の関数を含んでいるが、この関数は、いくつかの定数パラメータを含む単純な式の近似関数とすることができ、演算処理を高速化することが可能である。
【0059】
次に上記構成の作用について説明する。フイルムパトローネ20の写真フイルム22には、装填されるレンズ付きフイルムユニット2に対応する機種コードがサイドプリントされる。この写真フイルム22は、パトローネ21とともにユニット本体3に装填される。そして、完成したユニット本体3に外装紙4が貼付されてレンズ付きフイルムユニット2が完成し、これが出荷されてユーザのもとで撮影に供される。
【0060】
撮影を行う際には、まず巻き上げノブ13を回転操作する。これにより、写真フイルム22が1コマ分巻き上げられるとともに、シャッタチャージが行われる。この後、撮影者は、ファインダ6でフレーミングを行ってからシャッタボタン9を押圧する。また、ストロボ撮影を行う場合には、ストロボ操作部材8を上方にスライド移動し、充電完了後にシャッタボタン9を押圧する。シャッタボタン9を押圧すると、シャッタ羽根が揺動されてシャッタ開口が開閉される。
【0061】
このシャッタ開口の開閉の間に、撮影レンズ5を透過した撮影光は、暗箱24内に入射し、アパーチャ内に露呈されている写真フイルム22、すなわち露光画面22a内のフイルム面に露光を与える。このときに、フイルム面はその長手方向が湾曲されて支持されている。
【0062】
上記同様にして順次に撮影を行い、全コマの撮影終了後、ユーザは巻上げノブ13を連続的に回転操作して、全ての写真フイルム22をパトローネ21に収納する。そして、このレンズ付きフイルムユニット2を現像所やDPE店に提出する。
【0063】
現像所等では、ユニット本体3から撮影済のフイルムパトローネ20を取り出す。取り出されたフイルムパトローネ20は、そのパトローネ21から写真フイルム22が引き出されて分離される。そして、この写真フイルム22は、所定の現像装置にかけられて現像処理された後、デジタルプリンタ40にセットされる。
【0064】
デジタルプリンタ40は、写真フイルム22がセットされると、これの先端をスキャナ44に向けて搬送する。この搬送中に、図10に示すように、コントローラ47は写真フイルム22に記録されている機種コードをコードリーダ43を用いて読み取り、読み取った機種コードを画像処理回路46に送る。
【0065】
画像処理回路46は、機種コードを受け取ると、これに対応した各補正パラメータα,β,γ,LC ,RF をEEPROM46bから読み出す。そして、これらの各補正パラメータα,β,γ,LC ,RF を用いた演算式(a),(b)に、EEPROM46bから読み出した1画面分の各画素の座標(Px ,PY )を順次に適用することによって、各画素の座標(Px ,PY )に対応した座標(Fx ,FY )をそれぞれ求める。
【0066】
なお、上記の補正用LUTを作成する際には、演算式(a),(b)を用いて1つの象限、例えば第1象限だけについて演算を行い、第2〜第4象限については第1象限の演算結果の符号だけを変えると効率的である。また、座標(Px ,PY )をEEPROM46bに予め用意して置く代わりに、画素間隔に基づいて、座標(Px ,PY )を所定のステップずつ増大、または減少させて演算を順次に行ってもよい。
【0067】
上記の演算で得られる座標(Fx ,FY )と、その演算に用いた座標(Px ,PY )は、対応づけられてワークメモリ46aに書き込まれ、これにより補正用LUTが作成される。。
【0068】
一方、搬送によって写真フイルム22の最初の露光画面22aがスキャナ44のフィルムキャリアに達すると、搬送が停止される。そして、この停止中に露光画面22a内の原画像がスキャナ44で読み取られ、A/D変換器48によって3色の画像データに変換され、第1画像メモリ45aに書き込まれる。1画面分の画像データが第1画像メモリ45aに書き込まれると、画像処理回路46は、図11に示すように、アドレスを指定して画像メモリ45から画像データを順次に読み出す。
【0069】
画像処理回路46は、1個の画像データを読み出すと、この画像データのアドレスを座標(Fx ,FY )に変換する。次に、補正用LUTを用いて、座標(Fx ,FY )を対応する座標(Px ,PY )に変換する。そして、補正用LUTから得た座標(Px ,PY )をアドレスに変換した後、そのアドレスを用いて画像データを第2画像メモリ45bに補正画像データとして書き込む。
【0070】
上記のようにして変換処理を行って、1個の画像データを第2画像メモリ45bに書き込むと、新たな画像データが画像メモリ45から読み出されて、上記と同じ手順で変換処理が行われ、第1画像メモリ45aから読み出した画像データが第2画像メモリ45bに補正画像データとして書き込まれる。以降同様にして、順次に画像データが読み出しながら変換処理を行って、第2画像モリ45bに補正画像データが書き込まれる。
【0071】
これにより、図12に模式的に示すように、スキャナ44で読み取った原画像上での座標(Fx ,FY )が、例えば座標(J+2,I−1)、座標(J+1,I)、座標(J,I+1)の各画素の画像データがD1,D2,D3であって、これらの画素に対応する座標(Px ,PY )が(J,I−1)、座標(J,I)、座標(J,I+1)であった場合には、歪み補正処理により、座標(J,I−1)の補正画像データがD1に、座標(J,I)の補正画像データがD2に、座標(J+1,I+1)の補正画像データがD3にとなるようにして、原画像の各画素が第2画像メモリ45bに再配列して書き込まれる。なお、図12では、X座標だけが変換される場合を描いてあるが、実際には、対応関係に応じてY座標についても変換される。
【0072】
上記のようにして、第1画像メモリ45a上の1画面分の全ての画素が第2画像メモリ45bに再配列されて書き込まれることにより、歪み補正処理が完了する。
【0073】
歪み補正処理が完了すると、画像処理回路46は、第2画像メモリ45bの各補正画像データに対して、プリント用の色補正、ネガポジ反転処理等の通常画像処理を行い、通常画像処理を施した各補正画像データを画像記録部42の画像メモリ51に書き込む。なお、この通常画像処理に際して、露光ムラ,色収差等の補正を行ってもよい。
【0074】
画像記録部42は、1画面分の補正画像データが画像メモリ51に書き込まれると、これらの3色の補正画像データに基づいてレーザユニット52を駆動して、カラー印画紙56にカラー画像を潜像として記録する。
【0075】
1画面分のカラー画像の記録が開始されると、次の露光画面22aがスキャナにセットされ、上記と同じ手順によって歪み補正処理が行われる。なお、このときにも最初に作成された補正用LUTが用いられる。1画面分の画像データに対して歪み補正処理が完了後、通常画像処理を行ってから各補正画像データが画像記録部42の画像メモリ51に書き込まれる。そして、先に記録を開始したカラー画像の記録の完了後に、この補正画像データに基づいてカラー印画紙56にカラー画像が記録される。
【0076】
以降、同様にして1本の写真フイルム22の各露光画面22aから読み取ったカラー画像に対して歪み補正処理、通常画像処理を行い、カラー印画紙56にカラー画像を記録する。
【0077】
露光されたカラー印画紙56は、現像処理工程に送られ、現像、定着、乾燥等が行われてから、各画像毎に切り分けられてデジタルプリンタ40からプリント写真として排紙される。こうして得られるプリント写真には、画像の歪みが補正補正されたカラー画像が写っている。
【0078】
【実施例】
次に実施例について説明する。なお、実施例では、上記説明と共通な符号を付して説明する。この実施例で使用するレンズ付きフイルムユニット2の撮影レンズ5は、物体側の第1レンズと、露光画面側の第2レンズとからなる2枚構成とした。
【0079】
実施例で使用したレンズ付きフイルムユニット2の仕様を以下に示す。
f=33.14mm
FNo.=8.0
f1=104.37mm
θ=34°
【0080】
なお、上記データ中、「f」は撮影レンズ5全体での合成焦点距離、「f1」は第1レンズの焦点距離、「FNo.」は撮影レンズの開放値、「θ」は撮影半画角である。また、露光画面22aは、撮影レンズ5側に凹面となるように、その長手方向が曲率半径RF =100mmで湾曲するように支持される。
【0081】
撮影レンズ5のレンズデータを次の表1に示す。表1中の面番号は、物体側から順番に付した第1レンズ,第2レンズの各レンズ面に付した番号であり、間隔は次の面との間のレンズ厚みあるいは空気間隔を表している(単位はmm)。また、像面の間隔の欄に示された数値は、近軸焦点位置から最良ピント位置までのズレ量であり、フイルム面が最良ピント位置にあることを表している。さらに、表1中で(*)で示されるレンズ面は、次の条件式を満たすように形成された非球面であり、その非球面係数を表2に示す。なお。式中のcは曲率半径の逆数であり、hは光軸からの光線の高さである。
Figure 0004059624
【0082】
【表1】
Figure 0004059624
【0083】
【表2】
Figure 0004059624
【0084】
上述の仕様のレンズ付きフイルムユニット2で撮影した場合の歪みの発生具合を光線追跡によって調べた。その結果を撮影レンズ5の光軸に対する入射光線の角度(θ1,θ2)と、入射光線の結像点の座標とを用いて表3に示す。なお、表3及び以下に示す表5,表6中の座標の値は、小数点以下が3桁となるように端数を丸めてある。
【0085】
【表3】
Figure 0004059624
【0086】
上記表3において、角度θ1は、前述のZXY座標系において、撮影光軸を含むZX平面上における撮影光軸と入射光線のなす角度を、また角度θ2は撮影光軸を含むZY平面上における撮影光軸と入射光線のなす角度である。また、表3中の各座標は、露光画面22aを平面とした場合での像点PF(Fx ,FY )に相当する座標で表しており、その単位はmmである。
【0087】
同じ角度θ1である場合には、各角度θ2に対応するX座標は本来その角度θ1に応じた座標Px と同じで一定に、また角度θ2が同じである場合には、各角度θ1に対応するY座標は本来その角度θ2に応じた座標PY と同じで一定になるべきである。
【0088】
ここで、角度θ1が「0°」,「7.844°」,「15.463°」,「22.686°」,「29.424°」のときの理想像点PPの座標Px は、順に「0」,「4.512」,「9.060」,「13.690」,「18.472」(mm)である。また、角度θ2が「0°」,「5.237°」,「10.36°」,「15.28°」,「19.92°」のときの理想像点PPの座標PY は、順に「0」,「3.002」,「5.988」,「8.948」,「11.870」(mm)である。
【0089】
しかしながら、撮影レンズ5のディストーション及び露光時に露光画面22aが湾曲されていることによって、表3の座標は座標(PY ,PY )とずれが生じており、歪んでいることがわかる。
【0090】
上記のレンズ付きフイルムユニットに対して、各補正パラメータα,β,γ,LC ,RF を表4のように設定し、上記の入射光線の各角度θ1,θ2に対応する各座標(Px ,PY )と、これに対応する座標(Dx ,DY )と座標(Fx ,FY )とを上述の(1),(2)式及び演算式(a),(b)を用いて求めた結果を表5に示す。
【0091】
【表4】
Figure 0004059624
【0092】
【表5】
Figure 0004059624
【0093】
演算式(a)を用いて演算する際には、関数「tan -1」の代わりに、その近似関数を「f(σ)=δ・σ+ε・σ3 」と定義して、定数パラメータδ,εを最適化を行ったものを用いた。この最適化を行った近似関数による補完精度を表6に示す。この表6から分かるように、近似関数を用いても十分に高い精度の計算結果が得られることがわかる。なお、δ=0.9993935,ε=−0.3086605とした。
【0094】
【表6】
Figure 0004059624
【0095】
表3に示される光線追跡による座標と、表4中に示される計算による座標(Fx ,FY )との関係を表7に示す。なお、表7中の誤差の値は、光線追跡による座標及び計算による座標(Fx ,FY )の座標の値を丸めないものを用いて絶対値として算出し、小数点以下が3桁となるように端数を丸めてある。
【0096】
【表7】
Figure 0004059624
【0097】
表7から分かるように、演算式(a),(b)によって得られる座標(Fx ,FY )と光線追跡による座標とのずれは、最大でも0.012であり、精度よく歪みが補正されることがわかる。
【0098】
上記実施形態では、写真フイルムにサイドプリントされている機種コードを利用して補正パラメータを特定しているが、パトローネの外側に機種コードを記しておき、これを手動で、あるいは機械読み取りで入力するようにしてもよい。また、補正パラメータを特定できるものであれば、機種コード以外のものを利用してもよく、補正パラメータを特定するための補正コードを写真フイルムにサイドプリントしたり、パトローネの外側等に記してもよい
【0099】
補正コードを付与する場合には、同じ補正パラメータを用いて補正を行うのであれば、レンズ付きフイルムユニットの機種が異なる場合であっても同じものを付与してもよい。また、補正パラメータ自体を補正コードとして採用してもよい。さらに、単に補正処理をプリント時に実行させるための指示を補正コードとして付与し、この補正コードを読み取ったときには予め決められた補正パラメータを用いて歪み補正処理を実行するようにしてもよい。
【0100】
また、上記実施形態では、レンズ付きフイルムユニットによって撮影された写真フィルムに対して歪み補正を行う例について説明したが、フイルム面を湾曲させて支持するようにしたコンパクトカメラ等のカメラで撮影された写真フイルムに対しても同様な処理を行うことができる。カメラで用いられる135タイプの写真フイルムからでは、撮影に使用されたカメラの種類(機種)に応じた補正パラメータを特定することはできないが、例えば作業者にカメラの機種名を伝え、この機種名、あるいはこれに応じた補正コードをデジタルプリンタに手動で入力するようにすれば、撮影に用いたカメラの機種に応じた補正が可能となる。
【0101】
さらに、上記実施形態では、135タイプの写真フイルムに対して補正を行う例を示したが、Advanced Photo SystemのIX240型式等の各種タイプの写真フイルムを用いることができる。IX240型式の写真フイルムでは、写真フイルムに透明な磁気記録層が設けられているから、これに補正コード等を記録してもよく、またこれに対応したカメラでは磁気記録層にデータを記録できるので、カメラ側で補正コード等を記録して、歪み補正処理の際に利用するようにしてもよい。
【0102】
上記では、プリント写真を作成するデジタルプリンタに本発明を適用した例について説明したが、これ以外の機器にも利用でき、また歪みを補正する独立した補正装置にも利用できる。
【0103】
【発明の効果】
以上に述べたように、本発明によれば、原画像上の各像点に対応する理想像点の位置の対応関係を、理想像点の位置と、撮影レンズのディストーション及び撮影時の露光画面の湾曲に応じて予め決められた補正パラメータとに基づいて原画像上の像点の位置を算出することにより求め、原画像の各像点を対応する理想像点の位置に再配列するようにしたから、簡単な演算で処理によって、撮影レンズのディストーション及び写真フイルムが露光時に湾曲されていることに起因した画像の歪みを補正すいることができる。
【図面の簡単な説明】
【図1】フイルム面を湾曲して支持するレンズ付きフイルムユニットの外観を示す斜視図である。
【図2】レンズ付きフイルムユニットの構成を示す分解斜視図である。
【図3】撮影レンズとフイルム面の湾曲とを模式的に示す説明図である。
【図4】本発明を実施したデジタルプリンタの構成を示すブロック図である。
【図5】補正の際に用いる露光画面の座標を示す説明図である。
【図6】撮影レンズのディストーション及び写真フイルムが露光時に湾曲されていることに起因した像点の移動を示す説明図である。
【図7】写真フイルム及び曲率中心Rc,射出瞳の中心EPの関係を示すXYZ座標系を示すものである。
【図8】図7の座標系をY軸方向から見た各像点PW,PF,PD,及び曲率中心Rc,射出瞳の中心EPの関係を示す説明図である。
【図9】図7の座標系をX軸方向から見た各像点PW,PF,PD,及び射出瞳の中心EPの関係を示す説明図である。
【図10】補正用LUTの作成手順を示すフローチャートである。
【図11】画素を再配列する手順を示すフローチャートである。
【図12】再配列前と再配列後の画像データの関係を示す説明図である。
【符号の説明】
22 写真フイルム
22a 露光画面
43 コードリーダ
44 スキャナ
45a,45b 画像メモリ
46 画像処理回路
46b EEPROM

Claims (3)

  1. 一方向にのみ湾曲させて撮影レンズ側に凹面を向けて支持された状態で撮影された写真フイルムの露光画面上の原画像を多数の画素に分解して読み取り、これらの画素を再配列することによって、撮影レンズのディストーション及び撮影時の露光画面の湾曲による原画像の歪みを補正する撮影画像の補正方法において、
    撮影レンズの光軸が写真フイルムと交わる位置を原点とし、前記湾曲させた方向をX軸方向、X軸方向と直交する方向をY軸方向としたXY平面座標系を設定して、平面とした露光画面上の任意の画素の位置と前記ディストーション及び前記歪みがないときの理想的な像点に対応した画素の理想位置の座標をそれぞれ表し、理想位置のX座標をP ,Y座標をP とするとともに、この理想位置に対応する原画像上の任意の画素の位置のX座標をF ,Y座標をF とし、また前記ディストーションに応じて決められた補正パラメータをα,β,γとし、さらに前記湾曲された露光画面の曲率半径をR 、撮影レンズの射出瞳の中心から撮影レンズの光軸が写真フイルムと交わる位置までの距離をL としたときに、
    =R ・tan −1 (W /(R −W ))
    (( −W )・D ) /L
    但し、
    =P ・(1+α・√R+β・R+γ・R
    =P ・(1+α・√R+β・R+γ・R
    R =√(P +P
    =(−D /(M・L )) ・(N−√(N −M・D ) −M・L
    =(N−√(N −M・D )) /M
    M = 1+(D /L
    N = R +(D /L
    の式により、前記原画像上の各画素の位置に対する前記理想位置の対応関係をそれぞれ求め、この対応関係に基づいて、原画像の各画素を対応する理想位置に再配列することを特徴とする撮影画像の補正方法。
  2. 1 画面分の理想位置の各座標と、この理想位置の各座標を前記式に適用して得られる原画像上の画素の座標との対応関係を示す補正用ルックアップテーブルを予め作成し、再配列の際には前記補正用ルックアップテーブルにしたがって、原画像の各画素の座標を理想位置の座標に変換することを特徴とする請求項1記載の撮影画像の補正方法。
  3. 1本の写真フイルムの各露光画面について前記再配列を行う際に、各露光画面に共通な前記補正用ルックアップテーブルを作成し、この共通な前記補正用ルックアップテーブルを用いて各露光画面について再配列することを特徴とする請求項2記載の撮影画像の補正方法。
JP2000396701A 2000-12-26 2000-12-27 撮影画像の補正方法 Expired - Fee Related JP4059624B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000396701A JP4059624B2 (ja) 2000-12-27 2000-12-27 撮影画像の補正方法
US10/025,467 US7050205B2 (en) 2000-12-26 2001-12-26 Method of correcting image data picked up from photographic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396701A JP4059624B2 (ja) 2000-12-27 2000-12-27 撮影画像の補正方法

Publications (2)

Publication Number Publication Date
JP2002199203A JP2002199203A (ja) 2002-07-12
JP4059624B2 true JP4059624B2 (ja) 2008-03-12

Family

ID=18861944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396701A Expired - Fee Related JP4059624B2 (ja) 2000-12-26 2000-12-27 撮影画像の補正方法

Country Status (1)

Country Link
JP (1) JP4059624B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414752B2 (ja) * 2011-08-08 2014-02-12 キヤノン株式会社 画像処理方法、画像処理装置、撮像装置、および、画像処理プログラム
JP5264968B2 (ja) 2011-08-08 2013-08-14 キヤノン株式会社 画像処理装置、画像処理方法、撮像装置、および、画像処理プログラム
JP5611439B2 (ja) * 2013-11-13 2014-10-22 キヤノン株式会社 画像処理方法、画像処理装置、撮像装置、および、画像処理プログラム

Also Published As

Publication number Publication date
JP2002199203A (ja) 2002-07-12

Similar Documents

Publication Publication Date Title
JPH10319517A (ja) 画像形成装置、及びレンズ付きフィルムユニットの製造方法
US6868231B2 (en) Imaging using silver halide films with micro-lens capture and optical reconstruction
JP2001183756A (ja) プリンタ
US7050205B2 (en) Method of correcting image data picked up from photographic film
JPH10200693A (ja) デジタルプリント方法
JP2000347352A (ja) 撮影レンズ及びレンズ付きフイルムユニット
US6546197B2 (en) Method and apparatus of correcting image data picked up from photographic film
US4930009A (en) Method of making a print of color slide
JP4059624B2 (ja) 撮影画像の補正方法
US7161655B2 (en) Method for printing a developed photo film
JP4220670B2 (ja) 撮影画像の補正方法
JP2006267692A (ja) カメラ
JP2001086332A (ja) 画像処理装置
JP2001264903A (ja) 撮影画像の補正方法及び装置
US6614945B1 (en) Image processing method and apparatus
JP3894699B2 (ja) 撮影画像の補正方法
JP3781329B2 (ja) デジタルプリントシステム
JP3766537B2 (ja) レンズ付きフイルムユニット及びプリント写真作成方法
JP3289171B2 (ja) 写真焼付装置及び画像処理装置
JP2001318439A (ja) 撮影画像の光量ムラ補正方法
US20030090733A1 (en) Device for digitally generating images
JP3312185B2 (ja) インデックスプリント装置
JPH0915760A (ja) 写真処理制御ツールの作成方法
JPH11242274A (ja) カメラおよび写真プリントシステム
JPH11184021A (ja) デジタルプリントによる合成写真システム及びカメラ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees