JP4054893B2 - 高解像度共焦点顕微鏡 - Google Patents
高解像度共焦点顕微鏡 Download PDFInfo
- Publication number
- JP4054893B2 JP4054893B2 JP54918898A JP54918898A JP4054893B2 JP 4054893 B2 JP4054893 B2 JP 4054893B2 JP 54918898 A JP54918898 A JP 54918898A JP 54918898 A JP54918898 A JP 54918898A JP 4054893 B2 JP4054893 B2 JP 4054893B2
- Authority
- JP
- Japan
- Prior art keywords
- spot
- pinhole
- optical
- light
- scanning microscope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 54
- 238000009792 diffusion process Methods 0.000 claims description 30
- 238000005286 illumination Methods 0.000 claims description 3
- 238000003384 imaging method Methods 0.000 claims 1
- 230000005855 radiation Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 13
- 238000010586 diagram Methods 0.000 description 14
- 239000000523 sample Substances 0.000 description 13
- 230000008859 change Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0056—Optical details of the image generation based on optical coherence, e.g. phase-contrast arrangements, interference arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0028—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders specially adapted for specific applications, e.g. for endoscopes, ophthalmoscopes, attachments to conventional microscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0032—Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0072—Optical details of the image generation details concerning resolution or correction, including general design of CSOM objectives
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Radiology & Medical Imaging (AREA)
- Surgery (AREA)
- Microscoopes, Condenser (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
本発明は、光学顕微鏡に関する。本発明は、特に共焦点走査光学顕微鏡に関する。
共焦点走査光学顕微鏡は先行技術で公知であり、従来の光学顕微鏡に比べて多くの利点を有する。共焦点走査顕微鏡の1つの主な利点は、共焦点走査顕微鏡は、焦点が合っていない光を減衰するため、サンプルの光学的区分を行うことである。したがって、焦点が合っている光のみが最終画像に役立つ。
走査共焦点顕微鏡の場合、ビームは、サンプルの表面を横断して掃引される。サンプルから放射される光、たとえばサンプルから反射するか、サンプルから放出されるかまたはサンプルを介して伝搬される光は、ピンホールに向かって方向付けられる。焦点が合っている光はピンホールを通過して光検出器上に達する。ビームはサンプルの表面を横断して走査されるので、光検出器からの出力は、蓄積して被走査面の画像として形成することができる。
発明の開示
本発明は、共焦点走査顕微鏡を含む。この顕微鏡は、光ビームを提供する光源と、サンプルの表面を横断して光ビームを掃引する走査光学機器とを備える。表面から放射される光、つまり表面から反射するか、表面から放出されるかまたは表面を介して伝搬される光はピンホール上に光を収束するピンホールレンズを通り、光検出器により検出されて、物体の像を形成する。光拡散要素は、光路内に挿置され、サンプルから放射される光を拡散することにより、ピンホールレンズの増加した面積を覆う。
【図面の簡単な説明】
図1は、先行技術の共焦点顕微鏡の簡略なダイヤグラムを示す。
図2は、図1の顕微鏡の「展開」ダイヤグラムを示す。
図3は、図1に示す共焦点顕微鏡の検出アームの簡略なダイヤグラムを示す。
図4は、共焦点顕微鏡の細長い先行技術の検出アームの簡略なダイヤグラムを示す。
図5は、本発明の一態様により検出アーム内に挿置された光学要素を備える共焦点顕微鏡の検出アームの簡略なダイヤグラムである。
図6Aは、共焦点顕微鏡内の走査光学機器の側面図である。
図6Bは、走査光学機器の斜視図である。
図6Cは、本発明の一態様による走査光学機器を有する共焦点顕微鏡の簡略な図である。
図7は、共焦点顕微鏡による解像目標走査に関する強度対側方位置のグラフである。
図8および図9は、共焦点顕微鏡のコントラスト対空間周波数のグラフであり、本発明により提供される改良を示す。
図10は、本発明の一態様による共焦点顕微鏡の検出アーム内におけるビームの拡散を示す簡略なダイヤグラムである。
好適な実施例の詳細な説明
本発明は、走査共焦点顕微鏡を提供する。本発明の一態様は、解像度を3の係数より以上増加することを含む。本発明は、顕微鏡のリターンパス内に追加の光学部品を配置して、軸外光(つまりプローブビームが収束する位置から離れた点から入射する光)の拒絶を増大することを含む。これは、ビームと光学軸との間の角度を増加し、ビームの自然拡散を増加してピンホールレンズの充填を改善し、ピンホールの平面に比較的小さい収束スポットを形成することにより行われる。
図1は、サンプル8上に収束した先行技術の無限遠修正共焦点顕微鏡10(つまりWilsonおよびSheppard後のタイプII顕微鏡)の簡略なダイヤグラムである。こうした顕微鏡は、光源12、空間フィルタ14、ビームスプリッタ16、走査光学機器18および対物レンズ20の間に並列ビーム路を有する。走査光学機器18および対物レンズ20は、光をサンプル8上に1回に付き1点収束する。サンプル8から放射する光は、公知の技術によりピンホール24に向かって集合して収束する。焦点が合っている軸上の点からの光は、検出ピンホール24を介して収束し、検出器26により検出される。焦点が合っていないか、および/または軸外の点からの光は、ピンホール24から離れて収束し、検出されない。図2は、本発明が使用される顕微鏡10およびリターンパスまたはアーム30を「展開」した簡略なダイヤグラムである。以降の各図面には、顕微鏡のリターンパス部分のみを記載する。
本発明は、対物レンズ20から検出器26までのビーム路部分、つまりリターンパスまたはアーム30に関する。顕微鏡10が光をどのように検出するかを理解するには、軸上の物点、つまりサンプル8上のスポット照明上の中心にある物体を考える。物点が移動して軸から外れると、検出器26における信号が減少する。物点の偏位による検出信号の変化は、点像分布関数(PSF)として定義する。PSFが狭くなればなるほど、側方解像度が高くなる。
図3を参照すると、光学軸34からのビーム32の傾斜は、ピンホール24上のスポットの偏位を決定し、光学軸34からの物点の偏位量に直接関連することが分かる。あるいは、この傾斜によって、ビーム32は、ピンホールレンズ22上でわずかに側方に偏位する。しかし、先行技術では、典型的な顕微鏡は比較的短いビーム路を使用するため、これは、ごくわずかであるとして無視されてきた。センチメートルではなくメートル台の非常に長いビーム路の場合、こうした影響は無視することはできない。図4に示すように、検出アーム30を大幅に長くすることにより、ビーム32はピンホールレンズ22を完全に外れる。その結果、検出される軸外の光が減少し、側方解像度が高まる。この場合、以下のように側方の反応が誘導された。
「おそらく、レンズシステムは検出器アーム内に挿置され、平行ビームと光学軸との間の角度が増加するであろう。その結果、均一な比較的強度の側方反応が生じる。」(1991年にDissertation Abstracts Internationalが発行したMatthew R.C.Atkinson博士の仮説「Confocal Microscopy Applied to Metrology of Integrated Circuits」(集積回路の計測に応用される共焦点顕微鏡)、53/06-B、2947ページ)。
図5は、本発明の一態様によるリターンアーム40の簡略なダイヤグラムである。各図面では、類似要素は、分かりやすくするために同じ参照符号で示す。リターンアーム30は、走査光学機器18とピンホールレンズ22との間の光ビーム路内に挿置される光学要素42を備える。図5に示す実施例では、光学要素42は、対物レンズ46および低出力レンズ44を有する単純なケプラー望遠鏡である。しかし、本発明は、単純なガリレイ望遠鏡および比較的複雑なマルチレンズ素子など、その他の光学要素を備える。
光学的挿置物42は、光学軸と軸外の物体から来る光との間の角度を拡大する望遠鏡として作用する。特定の物体偏位の場合、ピンホール平面におけるスポットは、図3(タイプII)よりさらに光学軸から離れる。しかし、図5の装置を検査すると、ビームが少ないレンズ22に充満するので、スポットはピンホール24からさらに離れるが、ピンホール平面におけるスポットは、光学軸からの距離の増加と同じ係数だけ大きくなり、その結果、解像度の正味の改善は得られない。
図5の実施例を使用すると、ビームの自然拡散を考慮してシステムのモデルを開発することができる。先行技術の共焦点顕微鏡の場合、ビームが十分に広く影響は最小限であり(ビームの角度の広がりは、最も狭い点におけるビーム直径に逆比例する)、ビーム路が目立たないほど十分に短いため、あるいは有限共役つまりタイプI構成と呼ばれる動作により、ビームの自然拡散は要因にはならない。しかし、本発明によると、レンズ44、46を出るビームは直径が減少して、拡散が要因になる。ビームがレンズ44、46を通過した後、光学軸に対するビーム角度が拡大するのみならず、ビーム幅が減少する。ビームの減少比が大きい場合、結果として生じるビーム幅は十分に狭くなり、ビームの幾何学的特性の伝搬は有効ではなく、物理的な光学機器を使用しなければならない。本発明は、ビームの拡散に役立つ物理的光学モデルを備える。本発明では、ビームがピンホールレンズ22に達するときに、以下によりビームの拡散θが得られる。
ここで、λは光の波長、doは初期ビーム幅である。この式は、ガウスビームの拡散を説明する。ビームプロファイルは異なり、ビームが第2挿置レンズ46を出るときに、場に対して一般に少量の位相曲率があるため、式1により表される拡散はわずかに変化する。これらは拡散角度を変更し、ひいてはピンホールレンズにおけるビーム幅を変更する。
本発明は、共焦点顕微鏡のリターンアーム内のどこかで実施することができる。たとえば、本発明は、以下に詳細に説明する走査光学機器18で実施できる。図6Aは、走査光学機器18の代表的な実施例のリレーレンズ80Aおよび80Bの配置を示す。レンズ80A、80Bは、走査鏡82A、対物レンズ20および互いに対して指定の距離で配置される。走査鏡82Aは、図6Aに矢印で示すようにビームを移動させる。図6Bは、代表的な走査システム18の斜視図を示す。2つの走査鏡82Aおよび82B並びに2対のリレーレンズ80A、80Bおよび84A、84Bがある。走査鏡82A、82Bは、直交方向のビームに角度運動を与える。図6Cは、リターンパスに沿って展開したビーム路、および走査光学機器18を詳細に示す。
点像分布関数(PSF)は通常計算されるが、測定はされない。測定する代わりに、幅が異なるラインの対のグループを含む解像ターゲットを結像して、そのコントラストを測定する。図7は、解像ターゲットの画像の一部分を横断するラインプロファイルの略図である。物体の検出品質の1つの評価基準はコントラスト(contrast)であり、以下のとおり図7から計算する。
2つの物体をレイリー解像基準(「標準」基準)に従って解像する場合、2つの物体と背景との間のコントラストは0.19である。システムの解像度を決定するには、コントラストを単位距離当たりのライン-空間対の数により与えられる「空間周波数」の関数として測定し、たとえばコントラスト=1mm当たり200ラインにおいて0.33である。レイリー解像限界(またはその他の基準)は、これらの結果から決定できる。図6Cの装置を使用して得られた画像から計算したコントラスト図を図8および図9に示す。予想どおり、計算された「慣習的な共焦点」モデル(つまり先行技術)は、最低の解像度を示す。走査光学機器および検出アーム内に挿置物を含むと最も良い。
本発明の一態様は、ビームの自然拡散を有利に利用して、典型的な先行技術のシステムより多くのピンホールレンズ22に充填できることである。その結果、ピンホール平面内の収束スポットは、より小さくなる。所望の光の拡散は、リターンアーム30の光路内のどこかに適切な光学要素を挿置するかまたは構成して得られる。一例は、図5の望遠鏡42である。レンズ80A、80Bによって2:1望遠鏡が形成されるもう1つの例を図6Cに示す。レンズ84Aおよび84Bは、単位倍率(1:1)要素から2:1望遠鏡にさらに変化する。これは、対物レンズ20における角度走査範囲を縮小し、その結果、物体上の走査面積が縮小する。さらに、各々の望遠鏡は、ビームがリターンパス40上の走査光学機器18を通って戻るときに、反射ビームの幅を縮小する。反射ビームは、走査光学機器を出るとき、幅が4の係数だけ縮小した。このビームは十分に狭いので、リターンパス40内で拡散し、ピンホールレンズ22に充満する。さらに、収束スポットの中心から離れているスポットから戻る光は、光学軸に対して、先行技術の1:1リレー光学機器の場合より4倍大きいある角度で走査鏡82Bを出る。この場合のコントラスト図を図8および図9に事例Iとして示す。
図6Cは、リターンアーム40に望遠鏡42をさらに設けた場合にさらに強化されることを示す。望遠鏡42は、ビームをさらに狭くし、その結果より強度な拡散が生じ、ピンホールレンズ22により良く充満して、ピンホール24における収束スポットがさらに小さくなる。さらに、望遠鏡42は、収束スポットの中心から離れているスポットから戻る光と光学軸34との間の角度を拡大する。この場合のコントラスト図を図8および図9に事例IIとして示す。事例IIは、事例Iに比べて解像度がさらに改善される。
図10は、本発明の作用を示すために記載し、リターンアーム40の自然拡散の効果を示す。軸上のスポットの拡散を60の線で示す。図示のとおり、この拡散によって、ビームは、先行技術のシステムに比べてピンホールレンズ22のより大きい部分に充満する。要素42は、上記のとおり軸外の光の偏向を増加する。拡散によって、ビームはピンホールレンズ22を完全に充填することが好ましい。
本発明の作用は、図10を参照して説明することができる。本明細書で使用する場合、Ux、Ux'は、各々位置xにおけるレンズ(つまり物体レンズまたはピンホールレンズ)前後のスカラー場である。光は、伝搬する電磁(ベクトル)場だが、システム構造の標準的な概算にはスカラー場を使用するべきである。さらに、fx、Pxは各々、位置xにおけるレンズの焦点距離および瞳孔サイズである。
平面波の角スペクトル(ASPW)は、すべての程度のビーム拡散の距離範囲全体における場の伝搬を正確に描写する。ASPW描写の概算様々なレベルは、公知のフレネル回折およびフランホーファー回折積分を生じる。本発明のシステムでは、軸上の物点によるピンホール24における光スポットの形状は、ASPWを使用して計算することができる。十分に補正されたシステム、つまり一定視野の範囲内の最小収差を有するシステムの場合、ピンホール24の平面内のスポットは、物点が物体平面内で移動するときに形状を変えない。物体平面内の物連の位置の関数としてのピンホール24の平面内のスポットの位置は、標準の幾何光学を使用して予測することができる。
対物レンズ20の瞳孔は、d20,44、U44の合理的なすべての値が有効に平面波であるように十分に大きい。ビームは、レンズ44および46を通った後、幅が係数f44/f46だけ縮小する。ビームが物体平面内の軸外物点により光学軸に対して元々角度αである場合、その角度はβ=α×f44/f46である。
自由空間内のすべての光は、結局拡散する傾向がある。しかし、ある口径の比較的狭いビームは比較的速い速度で拡散する。ガウスビーム(ガウスプロファイルを有するビーム)については、正確な拡散方程式がある。しかし、同じ拡散原理は両方に適用される。ガウスビームの拡散角度θを記述する方程式は、上記の方程式1に記載する。方程式1では、doは、ビームがレンズ46を出るときのビームの幅である。本発明の場合、2つの事実によって、拡散は方程式1から変化する。つまり、ビームプロファイルは異なり、ビームがレンズ46を出るときに場に対して少量の位相曲率が一般に存在するという事実である。これらは拡散角度を変更し、ひいてはピンホールレンズ22におけるビーム幅を変更する。
U'46は十分に狭く、ピンホールレンズ22に向かって伝搬するときに拡散する。1つの設計目標は、U22の幅がU'20の幅に近づくように、ビームが十分に拡散することである。これは、U'46を小さくして拡散角度を増加するか、またはd46,22を大きくして、ビームが拡散できる距離を増加することにより行うことができる。U'46は、大きい比率f44/f46を有することで小さくすることができる。幾何光学では、U'46の幅=P20×f46/f44と予測される。回折の計算は、これが合理的な概算であることを示す。しかし、ピンホール24における収束スポットの実際の形状を決定するには、回折計算を全体的に使用しなければならない。距離d46,22は大きくすることができるが、これを行う方法に限界がある。レンズ46からピンホール22までの単純な自由空間伝搬は、機器のサイズにより制限される。最も商業的な共焦点顕微鏡は、標準的な光学顕微鏡上に付属品として組み立てられ、必要な数メートル台の距離の余裕がない。ビームは、鏡を使用して、よりコンパクトな領域に折りたたむことができる。しかし、最善の鏡の場合も、回折後、ビームに多少の波面の歪みが導入される(一般にλ/4)。こうした誤差は蓄積し、ピンホール24における比較的大きいスポットの原因になる。これは、機器の解像度を劣化させる。
U22の拡散により、ピンホール24は、最善の焦点を得るために、d22,24=f22の公称位置から軸方向に離れて偏位しなければならない。一般に、この偏位は、f22の10%未満である。軸上の物体に関する回折の計算を使用して、最善の焦点位置、およびピンホール24の平面内のスポットつまりU24の形状を決定する。焦点平面が見つかると、軸外物体に関するピンホール24の平面内のスポットの位置は、幾何光学を使用して計算することができる。したがって、側方解像度を決定することができる。
幾何光学では、ある条件並びにレンズおよび距離の組合せの場合、スポットは、物体が移動するときにピンホール24上で移動しないと予測される。ビームは1つのスポットに収束し、ピンホール24の周囲で傾斜するが、側方には移動しない。これは、非共焦点側方反応の点に対する反応を著しく劣化させる。この位置は、予測して回避することができる。
上記のとおり、本発明は、少なくとも1つの拡大要素を共焦点顕微鏡のリターンパス内に挿置して、軸外光の偏位を増加することを含む。さらに、挿置される光学要素によってビームの自然拡散が増加し、それよりピンホールレンズの比較的大きい面積にビームが充満する。自然拡散は、ビームの「物理光学的」または「非幾何学的」拡散と呼ばれ、光の波面は、波面が広がるときに拡散する。これは、収束しない幾何光学で発生する拡散ではない点に注意を要する。十分に長距離では、光ビームは自然に拡散する。しかし、リターンパスに挿置した光学要素を使用すると、この拡散を加速して、ビーム路全体を1メートル以下まで短くすることができる。本発明の一態様は、所望の自然拡散および3メートル未満のビーム路を有する共焦点顕微鏡を含む。さらに、どのタイプの光学要素でも、この機能を果す検出アームに挿置することができ、本発明は、好適な実施例に記載した望遠鏡に限定されない。たとえば、適切な鏡、プリズムまたは活性要素を使用して、拡散および/または拡大を促進することができる。さらに、この顕微鏡は、患者の眼の角膜および水晶体が、眼の後方を見るための対物レンズとして作用する検眼鏡として使用することができる。あるいは、この顕微鏡は、多層記録光学データの多層データ媒体から光学データを検索するシステムに使用することができる。
本発明について、好適な実施例に関して説明したが、当業者は、本発明の精神および範囲を逸脱せずに、形態および詳細に変更を加えることができることが分かるであろう。
Claims (6)
- 物体の画像形成用の共焦点走査顕微鏡であって、
光軸(34)を有する光路に沿って前記物体(8)に方向付けられる照明ビームを提供する光源(12)と、
前記照明ビームを前記物体上または物体内の1スポットに収束し、それにより前記物体が前記スポットから放射線を放出し、前記スポットから放射するビームを提供する前記光路内の対物レンズシステム(20)と、
前記収束されたスポットを前記物体の表面を横断して移動させる前記光路内の走査光学機器(18)と、
前記スポットから放射するビームを前記光路内のピンホール(24)に向けて収束させるピンホールレンズ(22)であって、前記ピンホールは前記スポットから放射するビームの少なくとも一部分を受入れるものと、
前記スポットから放射し、前記ピンホールを通るビームを検出する検出器(26)と、
前記ピンホールレンズと前記走査光学機器との間に配置され、まず前記光軸上に収束されたスポットから放射されて、前記対物レンズシステム(20)により並行にされたビームの直径を減少させ、それにより前記焦点化されたスポットから放射するビーム及び軸外の点から発生する任意のビームの自然な拡散を増大し且つ任意の軸外角度を拡大する望遠鏡(42)を備える少なくとも2つの光学要素(44、46)を備えた少なくとも1つの光学的拡散要素(42)と、を備えた共焦点走査顕微鏡。 - さらに、前記走査光学機器(18)内の光路内に配置されたレンズ(80A及び80B)を備える少なくとも1つのリレー望遠鏡を備えた請求項1に記載の共焦点走査顕微鏡。
- さらに、前記走査光学機器(18)内にリレーレンズ(84A及び84B)を備えた請求項1又は2に記載の共焦点走査顕微鏡。
- 少なくとも1つの望遠鏡は鏡又はプリズムを備えた、請求項1から3のいずれか一項に記載の共焦点走査顕微鏡。
- 前記光路の全長は3メートルより短い、請求項1から4のいずれか一項に記載の共焦点走査顕微鏡。
- 前記光源はレーザーを備えた、請求項1から5のいずれか一項に記載の共焦点走査顕微鏡。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/857,127 US6108127A (en) | 1997-05-15 | 1997-05-15 | High resolution confocal microscope |
US08/857,127 | 1997-05-15 | ||
PCT/US1997/016855 WO1998052084A1 (en) | 1997-05-15 | 1997-09-23 | High resolution confocal microscope |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001525082A JP2001525082A (ja) | 2001-12-04 |
JP2001525082A5 JP2001525082A5 (ja) | 2005-06-16 |
JP4054893B2 true JP4054893B2 (ja) | 2008-03-05 |
Family
ID=25325250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54918898A Expired - Fee Related JP4054893B2 (ja) | 1997-05-15 | 1997-09-23 | 高解像度共焦点顕微鏡 |
Country Status (9)
Country | Link |
---|---|
US (1) | US6108127A (ja) |
EP (1) | EP0981776B1 (ja) |
JP (1) | JP4054893B2 (ja) |
KR (1) | KR20010012563A (ja) |
AT (1) | ATE270439T1 (ja) |
AU (1) | AU4491997A (ja) |
CA (1) | CA2290575C (ja) |
DE (1) | DE69729747T2 (ja) |
WO (1) | WO1998052084A1 (ja) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPP548298A0 (en) * | 1998-08-27 | 1998-09-17 | Optiscan Pty Limited | Compact confocal endoscope and endomicroscope method and apparatus |
GB9904150D0 (en) | 1999-02-23 | 1999-04-14 | Medical Res Council | Confocal microscope detector optics and methods for using them |
US6555802B2 (en) | 2000-01-07 | 2003-04-29 | Axon Instruments, Inc. | Scanning microscope |
JP4576664B2 (ja) * | 2000-03-08 | 2010-11-10 | 株式会社ニコン | 光路ズレ検知装置、および共焦点顕微鏡 |
EP1164402B1 (de) * | 2000-06-17 | 2010-04-28 | Leica Microsystems CMS GmbH | Scanmikroskop mit mehrbandiger Beleuchtung und optisches Bauelement für ein Scanmikroskop mit mehrbandiger Beleuchtung |
US6898367B2 (en) * | 2000-06-17 | 2005-05-24 | Leica Microsystems Heidelberg Gmbh | Method and instrument for microscopy |
DE20122783U1 (de) * | 2000-06-17 | 2007-11-15 | Leica Microsystems Cms Gmbh | Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop und Beleuchtungseinrichtung für ein Scanmikroskop |
DE10115589B4 (de) * | 2000-06-17 | 2020-07-30 | Leica Microsystems Cms Gmbh | Konfokales Scanmikroskop |
WO2002020729A2 (en) * | 2000-09-06 | 2002-03-14 | UNIVERSITé LAVAL | In vitro human angiogenesis model |
DE10107210C1 (de) * | 2001-02-16 | 2002-10-10 | Evotec Ag | Mikroskop |
DE10111824B4 (de) * | 2001-03-13 | 2017-04-06 | Leica Microsystems Cms Gmbh | Verfahren zum Justieren eines Mikroskops und Mikroskop mit Einrichtung zum Justieren des Lichtstrahls |
DE102004053705B4 (de) * | 2004-11-03 | 2016-04-14 | Leica Microsystems Cms Gmbh | Detektionsvorrichtung für eine optische Anordnung und ein Konfokalmikroskop |
WO2008081729A1 (ja) * | 2006-12-22 | 2008-07-10 | Nikon Corporation | レーザ走査共焦点顕微鏡 |
KR100850214B1 (ko) * | 2007-05-23 | 2008-08-04 | 삼성전자주식회사 | 현미경 및 이를 이용한 이미지 데이터의 제공 방법. |
CN103054554B (zh) * | 2012-12-29 | 2014-10-22 | 陈英俊 | 一种沿轴向进行深度扫描的光学成像装置、方法及其应用 |
US9007582B2 (en) * | 2013-03-15 | 2015-04-14 | University Of Rochester | Apparatus and method for suppression of background noise in microscopy imaging |
CN106802479B (zh) * | 2017-03-22 | 2019-09-13 | 精微视达医疗科技(武汉)有限公司 | 激光扫描中继镜组及具有该中继镜组的共聚焦显微内窥镜 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8531011D0 (en) * | 1985-12-17 | 1986-01-29 | Medical Res Council | Confocal scanning microscope |
NL8701716A (nl) * | 1987-07-21 | 1989-02-16 | Philips Nv | Aftastende optische mikroskoop. |
US5032720A (en) * | 1988-04-21 | 1991-07-16 | White John G | Confocal imaging system |
US5153428A (en) * | 1990-06-15 | 1992-10-06 | Hamamatsu Photonics K.K. | Confocal laser scanning microscope having relay lens and a slit for removing stray light |
GB9014263D0 (en) * | 1990-06-27 | 1990-08-15 | Dixon Arthur E | Apparatus and method for spatially- and spectrally- resolvedmeasurements |
JP2801974B2 (ja) * | 1991-05-14 | 1998-09-21 | ローム株式会社 | 顕微鏡 |
JP3082346B2 (ja) * | 1991-09-12 | 2000-08-28 | 株式会社ニコン | 蛍光コンフォーカル顕微鏡 |
DE727684T1 (de) * | 1991-10-31 | 1997-02-13 | Yokogawa Electric Corp | Konfokaler optischer Scanner |
US5532873A (en) * | 1993-09-08 | 1996-07-02 | Dixon; Arthur E. | Scanning beam laser microscope with wide range of magnification |
-
1997
- 1997-05-15 US US08/857,127 patent/US6108127A/en not_active Expired - Fee Related
- 1997-09-23 KR KR1019997010518A patent/KR20010012563A/ko active Search and Examination
- 1997-09-23 AT AT97943446T patent/ATE270439T1/de not_active IP Right Cessation
- 1997-09-23 EP EP97943446A patent/EP0981776B1/en not_active Expired - Lifetime
- 1997-09-23 JP JP54918898A patent/JP4054893B2/ja not_active Expired - Fee Related
- 1997-09-23 AU AU44919/97A patent/AU4491997A/en not_active Abandoned
- 1997-09-23 CA CA002290575A patent/CA2290575C/en not_active Expired - Fee Related
- 1997-09-23 DE DE69729747T patent/DE69729747T2/de not_active Expired - Fee Related
- 1997-09-23 WO PCT/US1997/016855 patent/WO1998052084A1/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
JP2001525082A (ja) | 2001-12-04 |
CA2290575A1 (en) | 1998-11-19 |
ATE270439T1 (de) | 2004-07-15 |
EP0981776A1 (en) | 2000-03-01 |
DE69729747T2 (de) | 2005-07-21 |
AU4491997A (en) | 1998-12-08 |
WO1998052084A1 (en) | 1998-11-19 |
US6108127A (en) | 2000-08-22 |
KR20010012563A (ko) | 2001-02-15 |
EP0981776B1 (en) | 2004-06-30 |
CA2290575C (en) | 2007-02-06 |
DE69729747D1 (de) | 2004-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4054893B2 (ja) | 高解像度共焦点顕微鏡 | |
US7633053B2 (en) | Microscope, particularly a laser scanning microscope with adaptive optical arrangement | |
TW529927B (en) | Method and apparatus for measuring wavefront aberrations | |
US7550699B1 (en) | Removal of unwanted reflections in autofocus systems | |
BR122021004250B1 (pt) | Sistemas e métodos para rastreamento de foco aprimorado com uso de uma configuração de fonte de luz | |
JP2002071513A (ja) | 液浸系顕微鏡対物レンズ用干渉計および液浸系顕微鏡対物レンズの評価方法 | |
US6693704B1 (en) | Wave surface aberration measurement device, wave surface aberration measurement method, and projection lens fabricated by the device and the method | |
JPH1068616A (ja) | 形状計測装置 | |
US7022978B2 (en) | Method and apparatus including in-resonator imaging lens for improving resolution of a resonator-enhanced optical system | |
JP2001235317A (ja) | 光学球面曲率半径測定装置 | |
JP6549718B2 (ja) | レーザースキャナシステムのための光学配置 | |
JP7420793B2 (ja) | ライン焦点を生成するように構成された共焦点レーザー走査顕微鏡 | |
JPH1031154A (ja) | 物体の反射率の測定用光学システム | |
JPH05188301A (ja) | レーザ顕微鏡 | |
JP2511271B2 (ja) | 曲率半径測定装置および測定方法 | |
JP2009288076A (ja) | 収差測定装置 | |
JPH0540225A (ja) | 走査形顕微鏡 | |
CN118276294A (zh) | 一种单物镜光片荧光投影分辨率补偿成像系统 | |
JPH0843717A (ja) | 焦点検出装置 | |
BR102018004080A2 (pt) | sistemas e métodos para rastreamento de foco aprimorado com uso de uma fonte de luz de modo híbrido | |
BR102018004080B1 (pt) | Sistemas de imageamento | |
JPH06294924A (ja) | 合焦検出装置 | |
BR102018004086A2 (pt) | sistemas e métodos para rastreamento de foco aprimorado usando estruturas de bloqueio | |
JPH0843016A (ja) | 顕微鏡装置 | |
JPH0198946A (ja) | 光学測定器用集光光学系 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040917 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070605 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070905 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071122 |
|
A72 | Notification of change in name of applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A721 Effective date: 20071122 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |