JP4052557B2 - 窒化アルミニウム−複合材料−アルミニウム接合体からなる半導体素子用放熱基板の製造方法 - Google Patents

窒化アルミニウム−複合材料−アルミニウム接合体からなる半導体素子用放熱基板の製造方法 Download PDF

Info

Publication number
JP4052557B2
JP4052557B2 JP2002133297A JP2002133297A JP4052557B2 JP 4052557 B2 JP4052557 B2 JP 4052557B2 JP 2002133297 A JP2002133297 A JP 2002133297A JP 2002133297 A JP2002133297 A JP 2002133297A JP 4052557 B2 JP4052557 B2 JP 4052557B2
Authority
JP
Japan
Prior art keywords
aluminum
aln
aluminum nitride
composite material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002133297A
Other languages
English (en)
Other versions
JP2003327480A (ja
Inventor
靖宏 中尾
有利 菅谷
崇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002133297A priority Critical patent/JP4052557B2/ja
Publication of JP2003327480A publication Critical patent/JP2003327480A/ja
Application granted granted Critical
Publication of JP4052557B2 publication Critical patent/JP4052557B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一例として半導体素子に発生した熱を逃がす放熱基板に使用する窒化アルミニウム−複合材料−アルミニウム接合体からなる半導体素子用放熱基板の製造方法に関する。
【0002】
【従来の技術】
図15は従来の半導体装置を示す側面図である。半導体装置100は、放熱基板101の上面101aに半導体素子102を取付けるとともに、放熱基板101の上面101aにバスバー103をボルト104で取付け、バスバー103をリード線105で半導体素子102に取付けたものである。
半導体素子102を放熱基板101上に設けることで、半導体素子102に発生した熱を放熱基板101に逃がすことができる。
【0003】
ところで、半導体素子102は、一般に主要部位がシリコン(Si)で形成されている。このSi製の半導体素子102を放熱基板101の上面101aに取付けるので、放熱基板101の上面101aを半導体素子102の熱膨張特性に合わせた部材で構成する必要がある。
加えて、放熱基板101の上面101aは電気的回路を成立させるために電気的絶縁層に構成する必要がある。
【0004】
そこで、放熱基板101を構成するアルミニウム108の上面108aに、半導体素子102の熱膨張特性に近く、かつ電気的絶縁体である炭化珪素(SiC)107を半田付けなどで接合している。
しかし、炭化珪素107とアルミニウム108とでは熱膨張特性に大きな差があるため、炭化珪素107とアルミニウム108との熱膨張差で放熱基板101が変形したり、冷熱サイクルで放熱基板101が損傷したりする虞があり、この点において改良の余地があった。
【0005】
この不具合を解消するために、特開2001-335859号公報「アルミニウム−炭化珪素系複合材料及びその製造方法」でアルミニウム(Al)−炭化珪素(SiC)系複合材料製の放熱基板が提案されている。
このアルミニウム−炭化珪素系複合材料は、下端側をアルミニウム層とするとともに、上面側をアルミニウム系金属マトリックス中に炭化珪素を分散させた複合化層とし、この複合化層の炭化珪素の量を下端側から上端側に向けて漸次増加させたものである。
【0006】
これにより、アルミニウム−炭化珪素系複合材料の上面側に多量の炭化珪素を含ませることができ、上面側の熱膨張特性を半導体素子の熱膨張特性に合わせるとともに、下面側をアルミニウムの熱膨張特性に合わせることが可能になる。
よって、炭化珪素とアルミニウムとの熱膨張差で放熱基板が変形したり、冷熱サイクルで放熱基板が損傷したりすることを防ぐことができる。
【0007】
【発明が解決しようとする課題】
このアルミニウム−炭化珪素系複合材料の上面側は、上述したように電気的絶縁層で構成する必要がある。しかし、上記公報のアルミニウム−炭化珪素系複合材料においては、複合化層中の炭化珪素の量が75体積%を超えると、アルミニウムの量が少なすぎてアルミニウムと炭化珪素との濡れ性が著しく低下する。
【0008】
濡れ性の低下を抑えるために、アルミニウム−炭化珪素系複合材料の上面側の炭化珪素の量を75体積%以下に設定する必要があり、アルミニウム−炭化珪素系複合材料の上面側の炭化珪素の量を100%に確保することは難しい。
よって、上記公報のアルミニウム−炭化珪素系複合材料では上面側を電気的絶縁構造とすることができないので、アルミニウム−炭化珪素系複合材料では上面に電気的回路を形成することはできない。
このため、アルミニウム−炭化珪素系複合材料を、図1に示す放熱基板101として使用する場合には、上面にセラミックス基板を接合させる必要がある。
【0009】
しかしながら、アルミニウム−炭化珪素系複合材料とセラミックス基板とは直接半田付けができないため、セラミックス基板の接着面にニッケルメッキ被膜を形成した後、アルミニウム−炭化珪素系複合材料とセラミックス基板とを半田付けする必要がある。
アルミニウム−炭化珪素系複合材料とセラミックス基板とを半田付けすると、アルミニウム−炭化珪素系複合材料にセラミックス基板を接合する際に手間がかかるという問題があった。
さらに、アルミニウム−炭化珪素系複合材料とセラミックス基板とを半田付けした際の半田層は熱伝導率が低く、図15に示す半導体素子102の放熱性を低下させるという問題があった。
【0010】
そこで、本発明の目的は、セラミックス基板を半田付けなどで接合する必要がなく、放熱性を高めることができる窒化アルミニウム−複合材料−アルミニウム接合体からなる半導体素子用放熱基板の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために本発明の請求項1は、窒化アルミニウム粉体及びマグネシウム粉体を有する多孔質成形体、或いは窒化アルミニウム粉体及びマグネシウム粉体を混合した混合体としての複合素材を、一端側で窒化アルミニウム粉体の密度を高く、他端側で低くなるように形成し、この複合素材を前記一端が下向きになるように窒化アルミニウムプレートに載せ、この窒化アルミニウムプレートに載せた複合素材の他端にアルミニウムビレットを載せ、このアルミニウムビレット、窒化アルミニウムプレート及び複合素材を窒素ガス雰囲気中で加熱することにより、前記マグネシウム粉体と窒素ガスとを反応させて窒化マグネシウムを生成するとともに前記アルミニウムビレットを溶融し、生成した窒化マグネシウムで前記窒化アルミニウム粉体の表面及び窒化アルミニウムプレートの表面を還元し、この還元した窒化アルミニウム粉体間に、前記溶融されたアルミニウムビレットのアルミニウムを充填させてアルミニウム−窒化アルミニウム複合材料を形成するとともに、前記アルミニウムでアルミニウム−窒化アルミニウム複合材料を窒化アルミニウムプレートに接合することを特徴とする。
【0012】
ここで、従来技術において放熱基板としてアルミニウム−炭化珪素系複合材料を選択した理由は、アルミニウム(Al)の熱伝導率が高く、炭化珪素(SiC)の熱膨張係数が半導体素子に近いからである。
しかし、アルミニウム(Al)系金属マトリックス中にセラミックスとして炭化珪素(SiC)を分散させた場合、アルミニウム(Al)と炭化珪素(SiC)との馴染みを考慮すると、馴染みが十分であるとは言い難い。よって、アルミニウム−炭化珪素系複合材料中のアルミニウムの含有量が少なくなるとアルミニウムと炭化珪素との濡れ性が著しく低下すると考えられる。
【0013】
濡れ性の低下を抑えるためには、アルミニウム−炭化珪素系複合材料の上面に比較的多量のアルミニウムを含有させておく必要がある。
このため、アルミニウム−炭化珪素系複合材料の電気的絶縁性が確保できない。よって、アルミニウム−炭化珪素系複合材料を放熱基板として使用するためには、アルミニウム−炭化珪素系複合材料の上面に電気的絶縁層であるセラミックス基板を別途半田付けなどで接合する必要がある。
【0014】
しかしながら、従来の技術で説明したように、アルミニウム−炭化珪素系複合材料にセラミックス基板を別途半田付けなどで接合するためには手間がかかり、さらにはアルミニウム−炭化珪素系複合材料とセラミックス基板とを半田付けした際の半田層は熱伝導率が低く放熱性を低下させる。
【0015】
そこで、請求項1において、混合体のセラミックスとして窒化アルミニウムプレートを採用するとともに、アルミニウムビレット、窒化アルミニウムプレート及び複合素材を窒素ガス雰囲気中で加熱するようにした。
複合素材に含まれたマグネシウム粉体を窒素ガス雰囲気中で加熱することにより窒化マグネシウムを生成し、この窒化マグネシウムが、複合素材を構成する窒化アルミニウム粉体の表面や、複合素材の一端側に配置した窒化アルミニウムプレートの表面を還元することができる。
【0016】
よって、窒化アルミニウム粉体や窒化アルミニウムプレートを、複合材料の金属マトリックスであるアルミニウム成分と馴染みやすくでき、窒化アルミニウム粉体や窒化アルミニウムプレートのアルミニウム濡れ性を高めることができる。
これにより、アルミニウム−窒化アルミニウム複合材料の一端側のアルミニウムを少量に抑えることができるので、一端側に十分な量の窒化アルミニウム成分を含ませることができる。
【0017】
加えて、窒化アルミニウムプレートのアルミニウム濡れ性を高めることで、アルミニウム−窒化アルミニウム複合材料を製造すると同時に、溶融したアルミニウムビレットのアルミニウムでアルミニウム−窒化アルミニウム複合材料の一端に、電気的絶縁体である窒化アルミニウムプレート(セラミックス)を接合することができる。
よって、従来の技術のように、アルミニウム−窒化アルミニウム複合材料に窒化アルミニウムプレート(セラミックス)を半田付けする必要がない。
【0018】
このように、アルミニウム−窒化アルミニウム複合材料の一端にセラミックスとしての窒化アルミニウムプレートを接合することで、半導体素子と放熱基板との熱膨張差をより小さく抑えることができ、さらに半導体素子と窒化アルミニウムプレートとの電気的絶縁性を確保することができる。
【0019】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。
図1は本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体(第1実施形態)を使用した半導体装置を示す断面図である。以下、窒化アルミニウム−複合材料−アルミニウム接合体を「半導体素子用放熱基板(以下、放熱基板と略記する)」として説明する。
半導体装置10は、放熱基板11の上端12aに半導体素子13を取付けるとともに、放熱基板11の上端12aにバスバー14をボルト15で取付け、バスバー14をリード線16で半導体素子13に取付けたものである。
【0020】
放熱基板11は、上端12a側の窒化アルミニウム層21と下端12b側のアルミニウム層23との間にアルミニウム−窒化アルミニウム複合材料(以下、「Al−AlN複合材料」という)24を介在させ、このAl−AlN複合材料24を構成する窒化アルミニウム粉体(AlN粉体)25a・・・,25b・・・の成分を、窒化アルミニウム層21側で多量に設定し、アルミニウム層23側で少なくなるように設定したものである。
なお、AlN粉体25a・・・,25b・・・は、現実には図示の形状より微細であるが、理解を容易にするために大きく図示して説明する。
【0021】
窒化アルミニウム層21は、熱伝導率が0.4cal/cm・sec・℃と高く、熱膨張係数が4.6×10−61/℃と小さい窒化アルミニウムで形成したセラミックス層である。
なお、半導体素子13を構成する珪素(Si)は、熱膨張係数が4.2×10−61/℃であり、窒化アルミニウム層21の熱膨張係数に近い。
このように、窒化アルミニウム層21の熱膨張係数は、半導体素子13の熱膨張係数に近いので、半導体素子13に対する熱膨張差を小さく抑えることができる。
【0022】
加えて、Al−AlN複合材料24の一端(上端)に窒化アルミニウム層21を接合することで、半導体素子13をセラミックス材である窒化アルミニウム層21に取付けることが可能になり、半導体素子13と放熱基板11との熱膨張差をより小さく抑えることができる。
【0023】
また、アルミニウム層23は、熱伝導率が0.53cal/cm・sec・℃と高いアルミニウムで形成した層である。アルミニウム層23をAl−AlN複合材料24の他端(下端)に接合することで、半導体素子13に発生した熱を放熱基板11でより効率よく逃がすことができる。
【0024】
Al−AlN複合材料24は、窒化アルミニウム層21側において小径のAlN粉体25a・・・を高密度に含ませた高AlN層26を形成し、この高AlN層26に接触させて大径のAlN粉体25b・・・を高密度に含ませた中AlN層27を形成し、この中AlN層27に接触させて大径のAlN粉体25b・・・の密度をアルミニウム層23に向けて漸次小さくなるようにAlN粉体25b・・・を含ませた低AlN層28を形成したものである。
これにより、Al−AlN複合材料24は、窒化アルミニウム層21側でAlN粉体の成分を多量に設定することができ、Al−AlN複合材料24を窒化アルミニウム層21に好適に接合することができる。
【0025】
また、Al−AlN複合材料24は、アルミニウム層23側でAlN粉体25b・・・の成分を少量に抑えて、Al成分29・・・を多量に設定することができる。これにより、Al−AlN複合材料24をアルミニウム層23に好適に接合することができる。
【0026】
この放熱基板11によれば、放熱基板11の上端12a側を窒化アルミニウム層21とすることで、放熱基板11の上端12a側を半導体素子13の熱膨張特性と同様に設定することができる。よって、放熱基板11の上端12a側と半導体素子13との接合を好適に保つことができ、さらに窒化アルミニウム層21は電気的絶縁性が高いので、電気回路を形成することができる。
加えて、窒化アルミニウム層21は熱伝達率も高いので、半導体素子13に発生した熱を放熱基板11側に良好に逃がすことができる。
【0027】
以下、図2〜図5に基づいて第1実施形態の窒化アルミニウム−複合材料−アルミニウム接合体の製造方法を説明する。
図2(a),(b)は本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第1実施形態)を示す第1説明図である。
(a)において、放熱基板の製造装置30の雰囲気炉31内の坩堝(るつぼ)32の底面32aに、窒化アルミニウムとしての窒化アルミニウムプレート(以下、「AlNプレート」という)33を収容し、AlNプレート33に多孔質成形体(複合素材)34を載せ、多孔質成形体34にアルミニウムとしてのアルミニウムビレット(以下、「Alビレット」という)39を載せる。
【0028】
(b)に示すように、多孔質成形体34は、小径のAlN粉体25a・・・、大径のAlN粉体25b・・・及びマグネシウム粉体(Mg粉体)36・・・を混合した多孔質のビレットである。
この多孔質成形体34は、一端側(下端側)のAlNプレート33に接するように小径のAlN粉体25a・・・を高密度で混合した層34aを形成し、この層34aに接するように大径のAlN粉体25b・・・を比較的高密度で混合した層34bを形成し、この層34bに接するように、大径のAlN粉体25b・・・をAlビレット39に向けて漸次小さくなるように混合した層34cを形成したものである。
【0029】
図3(a),(b)は本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第1実施形態)を示す第2説明図である。
(a)において、雰囲気炉31内の空気を除去するために、真空ポンプ41で真空引きして一定の真空度に達したとき真空ポンプ41を止める。次いで、アルゴンガスボンベ42からアルゴンガス(Ar:「×」で示す)42aを雰囲気炉31内に矢印▲1▼の如く供給する。
雰囲気炉31がアルゴンガス42aの雰囲気になり、Alビレット39及びMg粉体36・・・の酸化を防ぐことができる。
【0030】
同時に、加熱コイル43で雰囲気炉31を加熱することで、AlNプレート33、AlN粉体25a・・・,25b・・・、Al粉体35及びMg粉体36を所定温度(例えば、約760℃〜約900℃)まで加熱する。
この際、雰囲気炉31内の温度を温度センサ44で検知し、温度センサ44からの検知信号に基づいて制御部45で雰囲気炉31内の温度を設定値に調整してAlビレット39を溶融する。
【0031】
(b)において、窒素ガスボンベ46から窒素ガス(N:「黒丸」で示す)46aを雰囲気炉31に矢印▲2▼の如く供給する。同時に、雰囲気炉31の内部を加圧(例えば、大気圧+約0.5kg/cm)して、雰囲気炉31内の雰囲気を窒素ガス46aに置換する。
雰囲気炉31が窒素ガス46aの雰囲気になると、窒素ガス46aは、Mg粉体36・・・と反応して窒化マグネシウムになる。この窒化マグネシウムは、多孔質成形体34を構成するAlN粉体25a・・・,25b・・・の表面、及びAlNプレート33の表面の還元作用を有する。
【0032】
図4(a)〜(c)は本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第1実施形態)を示す第3説明図であり、(a),(b)は多孔質成形体34の作用を拡大して示す説明図である。なお、(a),(b)においては、小径のAlN粉体25a・・・と、大径のAlN粉体25b・・・を同一とみなしてまとめて説明する。
【0033】
(a)において、Mg粉体36・・・は窒化マグネシウムとなり還元作用を有するため、セラミックスとして使用するAlN粉体25a・・・,25b・・・の各表面をアルミニウム25c・・・に変える働きをなす。
このように、AlN粉体25a・・・,25b・・・の各表面にアルミニウム25c・・・を生成することで、AlN粉体25a・・・,25b・・・と、溶融状態のAlビレット39との濡れ性を良好にすることができる。
【0034】
(b)において、AlN粉体25a・・・,25b・・・と、溶融状態のAlビレット39との濡れ性を良好にすることで、AlN粉体25a・・・,25b・・・間に、溶融状態のAlビレット39を良好に充填させて、AlN粉体25a・・・,25b・・・の表面に良好に馴染ませることができる。
【0035】
(c)において、溶融状態のAlビレット39をAlN粉体25a・・・,25b・・・間に良好に充填することにより、Alビレット39の一部をAlN粉体25a・・・,25b・・・間に矢印▲3▼の如く好適に充填させることができる。
【0036】
図5は本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第1実施形態)を示す第4説明図である。
AlN粉体25a・・・,25b・・・間に溶融状態のAlビレット39を良好に充填させて、AlN粉体25a・・・,25b・・・の表面に良好に馴染ませることで、好適なAl−AlN複合材料24をより一層安定的に成形することができる。
【0037】
ここで、上述したように窒化マグネシウムは還元作用を有するため、図4に示すAlNプレート33の表面をアルミニウムに変える働きをなす。
AlNプレート33の表面にアルミニウムを生成することで、AlNプレート33と、溶融状態のAlビレット39(図4に示す)との濡れ性を良好にすることができる。
【0038】
これにより、多孔質成形体34の一端側の小径のAlN粉体25a・・・を溶融状態のAlビレット39でAlNプレート33に好適に接合して、窒化アルミニウム層21を形成することができる。
従って、従来の技術のように、アルミニウム−窒化アルミニウム複合材料にAlNプレート33(セラミックス)を半田付けする必要がない。
【0039】
このため第1実施形態によれば、アルミニウム−窒化アルミニウム複合材料にAlNプレート33を半田付けする手間を省くことができる。
加えて、アルミニウム−炭化珪素系複合材料とAlNプレート33との間から、熱伝導率が低い半田層を除去できるので、半導体素子の放熱性を確保することができる。
【0040】
また、溶融状態のAlビレット39は、一部のAlビレット39が多孔質成形体34(図4に示す)の内部に充填し、その他のAlビレット39が多孔質成形体34の端部に残り、アルミニウム層23の層を形成する。
【0041】
なお、Al−AlN複合材料24は、窒化アルミニウム層21側において小径のAlN粉体25a・・・を高密度に含ませた高AlN層26、この高AlN層26に接触させて大径のAlN粉体25b・・・を高密度に含ませた中AlN層27、この中AlN層27に接触させて大径のAlN粉体25b・・・の密度をアルミニウム層23に向けて漸次小さくなるようにAlN粉体25b・・・を含ませた低AlN層28からなる。
このアルミニウム−窒化アルミニウム複合材料24の一端にセラミックスとしてのAlNプレート33を接合することで、半導体素子と放熱基板との熱膨張差をより小さく抑えることができ、さらに半導体素子とAlNプレート33との電気的絶縁性を確保することができる。
【0042】
ここで、第1実施形態では、窒化アルミニウム−複合材料−アルミニウム接合体、すなわち放熱基板11を、AlN粉体25a・・・,25b・・・及びMg粉体36・・・からなる多孔質成形体34を用いて製造する例について説明したが、この多孔質成形体34に代えて混合体(複合素材)、すなわちAlN粉体、Mg粉体及びAl粉体の混合体を用いて放熱基板を製造することも可能である。
AlN粉体、Mg粉体及びAl粉体の混合体をを用いて放熱基板11を製造する第2〜第5実施形態を図6〜図12に基づいて説明する。
なお、第2〜第5実施形態において、第1実施形態と同一部材については同一符号を付して説明を省略する。
【0043】
第2実施形態
図6(a),(b)は本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体(第2実施形態)の製造方法を示す第1説明図である。
(a)において、放熱基板の製造装置30の雰囲気炉31内の坩堝(るつぼ)32の底面32aに、AlNプレート33を収容し、AlNプレート33に混合体(複合素材)48を載せ、混合体48にAlビレット39を載せる。
【0044】
(b)に示すように、混合体48は、小径のAlN粉体25a・・・、大径のAlN粉体25b・・・、アルミニウム粉体(Al粉体)35・・・及びMg粉体36・・・を混合したものである。
この混合体48は、一端側のAlNプレート33に接するように小径のAlN粉体25a・・・を高密度で混合した層34aを形成し、この層34aに接するように大径のAlN粉体25b・・・を比較的高密度で混合した層34bを形成し、この層34bに接するように、大径のAlN粉体25b・・・をAlビレット39に向けて漸次小さくなるように混合した層34cを形成したものである。
【0045】
図7(a),(b)は本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体(第2実施形態)の製造方法を示す第2説明図である。
(a)において、雰囲気炉31内の空気を除去するために、真空ポンプ41で真空引きして一定の真空度に達したとき真空ポンプ41を止める。次いで、アルゴンガスボンベ42からアルゴンガス(Ar:「×」で示す)42aを雰囲気炉31内に矢印▲4▼の如く供給する。
雰囲気炉31がアルゴンガス42aの雰囲気になり、Alビレット39及びMg粉体36・・・の酸化を防ぐことができる。
【0046】
同時に、加熱コイル43で雰囲気炉31を加熱することで、AlNプレート33、AlN粉体25a・・・,25b・・・、Al粉体35及びMg粉体36を所定温度(例えば、約760℃〜約900℃)まで加熱する。
この際、雰囲気炉31内の温度を温度センサ44で検知し、温度センサ44からの検知信号に基づいて制御部45で雰囲気炉31内の温度を設定値に調整して、Al粉体35・・・やAlビレット39を溶融する。
【0047】
(b)において、窒素ガスボンベ46から窒素ガス(N:「黒丸」で示す)46aを雰囲気炉31に矢印▲5▼の如く供給する。同時に、雰囲気炉31の内部を加圧(例えば、大気圧+約0.5kg/cm)して、雰囲気炉31内の雰囲気を窒素ガス46aに置換する。
雰囲気炉31が窒素ガス46aの雰囲気になると、窒素ガス46aは、Mg粉体36・・・と反応して窒化マグネシウムになる。この窒化マグネシウムは、混合体48を構成するAlN粉体25a・・・,25b・・・の表面及びAlNプレート33の表面の還元作用を有する。
【0048】
図8(a)〜(c)は本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体(第2実施形態)の製造方法を示す第3説明図であり、(a),(b)は混合体48の作用を拡大して示す説明図である。なお、(a),(b)においては、小径のAlN粉体25a・・・と、大径のAlN粉体25b・・・を同一とみなしてまとめて説明する。
【0049】
(a)において、Mg粉体36・・・は窒化マグネシウムとなり還元作用を有するため、セラミックスとして使用するAlN粉体25a・・・,25b・・・の各表面をアルミニウム25c・・・に変える働きをなす。
このように、AlN粉体25a・・・,25b・・・の各表面にアルミニウム25c・・・を生成することで、AlN粉体25a・・・,25b・・・と、溶融状態のAl粉体35・・・や溶融状態のAlビレット39との濡れ性を良好にすることができる。
【0050】
(b)において、AlN粉体25a・・・,25b・・・と、溶融状態のAl粉体35・・・や溶融状態のAlビレット39との濡れ性を良好にすることで、AlN粉体25a・・・,25b・・・間に、溶融状態のAl粉体35・・・や溶融状態のAlビレット39を良好に充填させて、AlN粉体25a・・・,25b・・・の表面に良好に馴染ませることができる。
【0051】
(c)において、溶融状態のAl粉体35・・・や溶融状態のAlビレット39をAlN粉体25a・・・,25b・・・間に良好に充填することにより、Alビレット39の一部をAlN粉体25a・・・,25b・・・間に矢印▲6▼の如く好適に充填させることができる。
【0052】
AlN粉体25a・・・,25b・・・間に溶融状態のAl粉体35や溶融状態のAlビレット39を良好に充填させて、AlN粉体25a・・・,25b・・・の表面に良好に馴染ませることで、第1実施形態と同様に、図5に示す好適なAl−AlN複合材料24を安定的に成形することができる。
【0053】
ここで、上述したように窒化マグネシウムは還元作用を有するため、AlNプレート33の表面をアルミニウムに変える働きをなす。
AlNプレート33の表面にアルミニウムを生成することで、AlNプレート33と、溶融状態のAl粉体35・・・や溶融状態のAlビレット39との濡れ性を良好にすることができる。
【0054】
これにより、混合体48の一端側(下端側)の小径のAlN粉体25a・・・を、溶融状態のAl粉体35・・・や溶融状態のAlビレット39でAlNプレート33に好適に接合して、図5に示すように混合体48の一端側に窒化アルミニウム層21を形成することができる。
従って、従来の技術のように、アルミニウム−窒化アルミニウム複合材料にAlNプレート33(セラミックス)を半田付けする必要がない。
【0055】
このため、第2実施形態によれば、第1実施形態と同様に、アルミニウム−窒化アルミニウム複合材料にAlNプレートを半田付けする手間を省くことができる。
加えて、アルミニウム−炭化珪素系複合材料とAlNプレート33との間から、熱伝導率が低い半田層を除去できるので、半導体素子の放熱性を確保することができる。
【0056】
また、溶融状態のAlビレット39は、一部のAlビレット39が混合体48の内部に充填し、その他のAlビレット39が混合体48の端部に残り、アルミニウム層23の層を形成する。
【0057】
第3実施形態
図9(a),(b)は本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第3実施形態)を示す説明図である。
(a)において、図2(a)に示す放熱基板の製造装置30の雰囲気炉31内の坩堝(るつぼ)32の底面32aに、AlNプレート33を収容し、AlNプレート33に混合体(複合素材)51を載せ、混合体51にAlビレット39を載せる。
【0058】
混合体51は、高AlN層52及び低AlN層53からなる粉体である。高AlN層52は、小径のAlN粉体25a・・・、Al粉体35・・・及びMg粉体36・・・を混合したものである。小径のAlN粉体25a・・・を混合することで窒化アルミニウムの成分を多量に含ませることができる。
【0059】
低AlN層53は、大径のAlN粉体25b・・・、Al粉体35・・・及びMg粉体36・・・を混合したものである。小径のAlN粉体25a・・・を混合することで窒化アルミニウムの成分を比較的少量に抑えることができる。
よって、混合体51は、一端側のAlNプレート33に窒化アルミニウムの成分を多量に含んだ高AlN層52を接触させ、他端のAlビレット39に窒化アルミニウムの成分を少量含んだ低AlN層53を接触させることができる。
【0060】
このAlNプレート33、混合体51及びAlビレット39を、第1実施形態の図3(a),(b)と同じ行程で加熱することにより、第1、第2実施形態で説明した窒化マグネシウムの還元作用を利用して、(b)に示す放熱基板55を得る。
【0061】
(b)において、窒化マグネシウムの還元作用を利用することで、AlN粉体25a・・・,25b・・・間に溶融状態のAl粉体35やAlビレット39を良好に充填させて、AlN粉体25a・・・,25b・・・の表面に良好に馴染ませることができる。
これにより、第1、第2実施形態と同様に、好適なAl−AlN複合材料56をより一層安定的に成形することができる。
【0062】
このAl−AlN複合材料56は、窒化アルミニウム層21側において小径のAlN粉体25a・・・を高密度に含ませた高AlN層57と、この高AlN層57に接触させるとともにAlビレット39に接触させ、かつ大径のAlN粉体25b・・・を高密度に含ませた低AlN層58とからなる。
よって、Al−AlN複合材料56は、窒化アルミニウム層21側の高AlN層57に、アルミニウム層23側の低AlN層58より多量のAlN成分を含ませることができる。
【0063】
また、(a)で説明したように、AlNプレート33、混合体51及びAlビレット39を加熱することで、第1、第2実施形態と同様に、表面が溶融状態のAlで覆われたAlN粉体25a・・・を、表面が溶融状態のAlで覆われたAlNプレート33に良好に接合することができる。
よって、Al−AlN複合材料56の一端に窒化アルミニウム層21を接合することができる。
【0064】
この際、溶融状態のAlビレット39は、第1、第2実施形態と同様に、一部のAlビレット39が混合体51の内部に充填し、その他のAlビレット39が混合体51の他端側に残り、アルミニウム層23の層を形成する。
よって、Al−AlN複合材料56の他端にアルミニウム層23を形成することができる。
これにより、窒化アルミニウム層21とアルミニウム層23との間にAl−AlN複合材料56を介在させて、放熱基板55を手間をかけないで簡単に製造することができる。
【0065】
また、Al−AlN複合材料56の一端に窒化アルミニウム層21を接合することができるので、従来の技術のように、アルミニウム−窒化アルミニウム複合材料にAlNプレート33を半田付けする必要がなく、半田付けの手間を省くことができる。
加えて、アルミニウム−炭化珪素系複合材料と窒化アルミニウム層21との間から、熱伝導率が低い半田層を除去できるので、半導体素子の放熱性を確保することができる。
【0066】
以上述べたように第3実施形態によれば、第1、第2実施形態と同様の効果を得ることができ、さらにAl−AlN複合材料56を、高AlN層57及び低AlN層58の二層とすることで、第2実施形態と比較してより簡単に放熱基板55を成形することができる。
【0067】
なお、第3実施形態においては、Al−AlN複合材料56を小径のAlN粉体25aと大径のAlN粉体25bとの二種のAlN粉体を用いて、AlN成分の異なる2層の複合材料を製造する例について説明したが、これに限らないで、径の異なる複数のAlN粉体を用いて、AlN成分の異なる複数層の複合材料を製造することも可能である。
【0068】
第4実施形態
図10(a),(b)は本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第4実施形態)を示す説明図である。
(a)において、図2(a)に示す放熱基板の製造装置30の雰囲気炉31内の坩堝(るつぼ)32の底面32aに、AlNプレート33を収容し、AlNプレート33に混合体(複合素材)61を載せ、混合体61にAlビレット39を載せる。
【0069】
混合体61は、高AlN層62及び低AlN層63からなる粉体である。高AlN層62は、小径のAlN粉体25a・・・を多量含ませた状態で、Al粉体35・・・及びMg粉体36・・・と混合したものである。小径のAlN粉体25a・・・を多量に含ませることで窒化アルミニウムの成分を多量に含ませることができる。
【0070】
低AlN層63は、小径のAlN粉体25a・・・を少量含ませた状態で、Al粉体35・・・及びMg粉体36・・・と混合したものである。小径のAlN粉体25a・・・の混合量を少量に抑えることで、窒化アルミニウムの成分を比較的少量に抑えることができる。
よって、混合体61は、一端側のAlNプレート33に窒化アルミニウムの成分を多量に含んだ高AlN層62を接触させ、他端のAlビレット39に窒化アルミニウムの成分を少量含んだ低AlN層63を接触させることができる。
【0071】
このAlNプレート33、混合体61及びAlビレット39を、第1実施形態の図3(a),(b)と同じ行程で加熱することにより、第1、第2実施形態で説明した窒化マグネシウムの還元作用を利用して、(b)に示す放熱基板65を得る。
【0072】
(b)において、窒化マグネシウムの還元作用を利用することで、AlN粉体25a・・・間に溶融状態のAl粉体35やAlビレット39を良好に充填させて、AlN粉体25a・・・の表面に良好に馴染ませることができる。
これにより、第1、第2実施形態と同様に、好適なAl−AlN複合材料66をより一層安定的に成形することができる。
【0073】
このAl−AlN複合材料66は、窒化アルミニウム層21側において小径のAlN粉体25a・・・を高密度に含ませた高AlN層67、この高AlN層67に接触させるとともにAlビレット39に接触させて小径のAlN粉体25b・・・を低密度に含ませた低AlN層68からなる。
よって、Al−AlN複合材料66は、窒化アルミニウム層21側の高AlN層67に、アルミニウム層23側の低AlN層68より多量のAlN成分を含ませることができる。
【0074】
また、(a)で説明したように、AlNプレート33、混合体61及びAlビレット39を加熱することで、第1、第2実施形態と同様に、表面が溶融状態のAlに覆われたAlN粉体25a・・・を、表面が溶融状態のAlに覆われたAlNプレート33に良好に接合することができる。
よって、Al−AlN複合材料66の一端に窒化アルミニウム層21を接合することができる。
【0075】
この際、溶融状態のAlビレット39は、第1、第2実施形態と同様に、一部のAlビレット39が混合体61の内部に充填し、その他のAlビレット39が混合体61の端部に残り、アルミニウム層23の層を形成する。
よって、Al−AlN複合材料66の他端にアルミニウム層23を形成することができる。
これにより、窒化アルミニウム層21とアルミニウム層23との間にAl−AlN複合材料66を介在させて、放熱基板65を手間をかけないで簡単に製造することができる。
【0076】
また、Al−AlN複合材料66の一端に窒化アルミニウム層21を接合することができるので、従来の技術のように、アルミニウム−窒化アルミニウム複合材料にAlNプレート33を半田付けする必要がなく、半田付けの手間を省くことができる。
加えて、アルミニウム−炭化珪素系複合材料と窒化アルミニウム層21との間から、熱伝導率が低い半田層を除去できるので、半導体素子の放熱性を確保することができる。
【0077】
以上述べたように第4実施形態によれば、第1、第2実施形態と同様の効果を得ることができ、さらに、Al−AlN複合材料66を、高AlN層67及び低AlN層68の二層とすることで、第2実施形態と比較してより簡単に放熱基板65を成形することができる。
【0078】
なお、第4実施形態においては、Al−AlN複合材料66を、小径のAlN粉体25aを含ませる量を2段階に変えてAlN成分の異なる2層の複合材料を製造する例について説明したが、これに限らないで、小径のAlN粉体25aを含ませる量を複数段階に変えてAlN成分の異なる複数層の複合材料を製造することも可能である。
【0079】
第5実施形態
図11(a),(b)は本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第5実施形態)を示す第1説明図である。
(a)において、小径のAlN粉体25a・・・、Al粉体35・・・及びMg粉体36・・・を多量混合して第1プレス前混合体72を形成する。この第1プレス前混合体72に大きなプレス圧力F1を矢印の如くかけることにより、第1プレス前混合体72をコンパクトに圧縮することにより第1プレス後混合体72aを得る。この第1プレス後混合体72aは、AlN粉体25a・・・を多量含む。
【0080】
(b)において、小径のAlN粉体25a・・・、Al粉体35・・・及びMg粉体36・・・を少量混合して第2プレス前混合体72を形成する。この第2プレス前混合体72に小さなプレス圧力F2を矢印の如くかけることにより、第2プレス前混合体72を僅かに圧縮することにより第2プレス後混合体72aを得る。この第2プレス後混合体72aは、AlN粉体25a・・・を少量含む。
【0081】
図12(a),(b)は本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第5実施形態)を示す第2説明図である。
(a)において、図2(a)に示す放熱基板の製造装置30の雰囲気炉31内の坩堝(るつぼ)32の底面32aに、AlNプレート33を収容し、AlNプレート33に第1プレス後混合体72aを載せ、第1プレス後混合体72aに第2プレス後混合体72aのせ、第2プレス後混合体72aにAlビレット39を載せる。第1プレス後混合体72a及び第2プレス後混合体72aで混合体(複合素材)71を形成する。
【0082】
よって、混合体71は、一端側のAlNプレート33に窒化アルミニウムの成分を多量に含んだ高AlN層72aを接触させ、他端のAlビレット39に窒化アルミニウムの成分を少量含んだ低AlN層73aを接触させることができる。
【0083】
このAlNプレート33、混合体71及びAlビレット39を、第1実施形態の図3(a),(b)と同じ行程で加熱することにより、第1、第2実施形態で説明した窒化マグネシウムの還元作用を利用して、(b)に示す放熱基板75を得る。
【0084】
(b)において、窒化マグネシウムの還元作用を利用することで、AlN粉体25a・・・間に溶融状態のAl粉体35やAlビレット39を良好に充填させて、AlN粉体25a・・・の表面に良好に馴染ませることができる。
これにより、第1、第2実施形態と同様に、好適なAl−AlN複合材料76をより一層安定的に成形することができる。
【0085】
この、Al−AlN複合材料76は、窒化アルミニウム層21側において小径のAlN粉体25a・・・を高密度に含ませた高AlN層77、この高AlN層77に接触させるとともにAlビレット39に接触させて小径のAlN粉体25a・・・を低密度に含ませた低AlN層78からなる。
よって、Al−AlN複合材料76は、窒化アルミニウム層21側の高AlN層77に、アルミニウム層23側の低AlN層78より多量のAlN成分を含ませることができる。
【0086】
また、(a)で説明したように、AlNプレート33、混合体71及びAlビレット39を加熱することで、第1、第2実施形態と同様に、表面が溶融状態のAlで覆われたAlN粉体25a・・・を、表面が溶融状態のAlで覆われたAlNプレート33に良好に接合することができる。
よって、Al−AlN複合材料76の一端に窒化アルミニウム層21を接合することができる。
【0087】
この際、溶融状態のAlビレット39は、第1、第2実施形態と同様に、一部のAlビレット39が混合体71の内部に充填し、その他のAlビレット39が混合体71の端部に残り、アルミニウム層23の層を形成する。
よって、Al−AlN複合材料76の他端にアルミニウム層23を形成することができる。
これにより、窒化アルミニウム層21とアルミニウム層23との間にAl−AlN複合材料76を介在させて、放熱基板65を手間をかけないで簡単に製造することができる。
【0088】
また、Al−AlN複合材料76の一端に窒化アルミニウム層21を接合することができるので、従来の技術のように、アルミニウム−窒化アルミニウム複合材料にAlNプレート33を半田付けする必要がなく、半田付けの手間を省くことができる。
加えて、アルミニウム−炭化珪素系複合材料と窒化アルミニウム層21との間から、熱伝導率が低い半田層を除去できるので、半導体素子の放熱性を確保することができる。
【0089】
以上述べたように第5実施形態によれば、第1〜第2実施形態と同様の効果を得ることができ、さらにAl−AlN複合材料76を、高AlN層77及び低AlN層78の二層とすることで、第2実施形態と比較してより簡単に放熱基板75を成形することができる。
【0090】
なお、第5実施形態においては、Al−AlN複合材料76を、小径のAlN粉体25aを含ませる量を2段階に変えてAlN成分の異なる2層の複合材料を製造する例について説明したが、これに限らないで、小径のAlN粉体25aを含ませる量を複数段階に変えてAlN成分の異なる複数層の複合材料を製造することも可能である。
【0091】
ここで、第2〜第5実施形態では、窒化アルミニウム−複合材料−アルミニウム接合体、すなわち放熱基板11,51,61,71をAlN粉体、Mg粉体及びAl粉体の三種の混合体を用いて製造する例について説明したが、この混合体に代えて、AlN粉体及びMg粉体の二種の粉体の混合体を用いて放熱基板を製造することも可能である。
以下、AlN粉体及びMg粉体の二種の粉体の混合体を用いて放熱基板を製造する第6〜第7実施形態を、図13〜図14に基づいて説明する。
なお、第6〜第7実施形態において、第1実施形態と同一部材については同一符号を付して説明を省略する。
【0092】
第6実施形態
図13(a),(b)は本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第6実施形態)を示す説明図である。
(a)において、図2(a)に示す放熱基板の製造装置30の雰囲気炉31内の坩堝(るつぼ)32の底面32aに、AlNプレート33を収容し、AlNプレート33に混合体(複合素材)81を載せ、混合体81にAlビレット39を載せる。
【0093】
混合体81は、高AlN層82及び低AlN層83からなる粉体である。高AlN層82は、小径のAlN粉体25a・・・及びMg粉体36・・・を混合したものである。小径のAlN粉体25a・・・を混合することで窒化アルミニウムの成分を多量に含ませることができる。
【0094】
低AlN層83は、大径のAlN粉体25b・・・及びMg粉体36・・・を混合したものである。小径のAlN粉体25a・・・を混合することで窒化アルミニウムの成分を比較的少量に抑えることができる。
よって、混合体81は、一端側のAlNプレート33に窒化アルミニウムの成分を多量に含んだ高AlN層82を接触させ、他端のAlビレット39に窒化アルミニウムの成分を少量含んだ低AlN層83を接触させることができる。
【0095】
このAlNプレート33、混合体81及びAlビレット39を、第1実施形態の図3(a),(b)と同じ行程で加熱することにより、第1、第2実施形態で説明した窒化マグネシウムの還元作用を利用して、(b)に示す放熱基板85を得る。
【0096】
(b)において、窒化マグネシウムの還元作用を利用することで、AlN粉体25a・・・,25b・・・間に溶融状態のAlビレット39を良好に充填させて、AlN粉体25a・・・,25b・・・の表面に良好に馴染ませることができる。
これにより、第1、第2実施形態と同様に、好適なAl−AlN複合材料86をより一層安定的に成形することができる。
【0097】
このAl−AlN複合材料86は、窒化アルミニウム層21側において小径のAlN粉体25a・・・を高密度に含ませた高AlN層87と、この高AlN層87に接触させるとともにアルミニウム層23に接触させ、かつ大径のAlN粉体25b・・・を高密度に含ませた低AlN層88とからなる。
よって、Al−AlN複合材料86は、窒化アルミニウム層21側の高AlN層87に、アルミニウム層23側の低AlN層88より多量のAlN成分を含ませることができる。
【0098】
また、(a)で説明したように、AlNプレート33、混合体81及びAlビレット39を加熱することで、第1、第2実施形態と同様に、表面が溶融状態のAlで覆われたAlN粉体25a・・・を、表面が溶融状態のAlで覆われたAlNプレート33に良好に接合することができる。
よって、Al−AlN複合材料86の一端に窒化アルミニウム層21を接合することができる。
【0099】
この際、溶融状態のAlビレット39は、第1、第2実施形態と同様に、一部のAlビレット39が混合体81の内部に充填し、その他のAlビレット39が混合体81の端部に残り、アルミニウム層23を形成する。
よって、Al−AlN複合材料86の他端にアルミニウム層23を形成することができる。
これにより、窒化アルミニウム層21とアルミニウム層23との間にAl−AlN複合材料86を介在させて、放熱基板85を手間をかけないで簡単に製造することができる。
【0100】
また、Al−AlN複合材料86の一端に窒化アルミニウム層21を接合することができるので、従来の技術のように、アルミニウム−窒化アルミニウム複合材料にAlNプレート33を半田付けする必要がなく、半田付けの手間を省くことができる。
加えて、アルミニウム−炭化珪素系複合材料とAlNプレート33との間から、熱伝導率が低い半田層を除去できるので、半導体素子の放熱性を確保することができる。
【0101】
以上述べたように第6実施形態によれば、第2〜第5実施形態と同様の効果を得ることができる。
加えて、第6実施形態によれば、第2〜第5実施形態の混合体に必要としたAl粉体を、混合体81から除去することができるので、放熱基板85をより一層簡単に成形することができる。
【0102】
また、第6実施形態においては、Al−AlN複合材料86を小径のAlN粉体25aと大径のAlN粉体25bとの二のAlN粉体を用いて、AlN成分の異なる2層の複合材料を製造する例について説明したが、これに限らないで、径の異なる複数のAlN粉体を用いて、AlN成分の異なる複数層の複合材料を製造することも可能である。
【0103】
第7実施形態
図14(a),(b)は本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第7実施形態)を示す説明図である。
(a)において、図2(a)に示す放熱基板の製造装置30の雰囲気炉31内の坩堝(るつぼ)32の底面32aに、AlNプレート33を収容し、AlNプレート33に混合体(複合素材)91を載せ、混合体81にAlビレット39を載せる。
【0104】
混合体91は、高AlN層92及び低AlN層93からなる粉体である。高AlN層92は、小径のAlN粉体25a・・・を多量含ませた状態でMg粉体36・・・と混合し、この混合体を圧縮力を高く設定して圧縮した層である。
これにより、高AlN層92にAlN粉体25a・・・を密の状態に多量含ませることができる。
【0105】
低AlN層93は、小径のAlN粉体25a・・・を少量含ませた状態でMg粉体36・・・と混合し、この混合体を圧縮力を低く設定して圧縮した層である。
なお、図中においては、低AlN層93と高AlN層92との相違を明瞭に示すために、低AlN層93に空間が含まれているように図示したが、現実には低AlN層93の全域にAlN粉体25a・・・が粗の状態に配置される。
これにより、低AlN層93に窒化アルミニウムの成分を比較的少量含ませることができる。
【0106】
この混合体91は、一端側のAlNプレート33に窒化アルミニウムの成分を多量に含んだ高AlN層92を接触させ、他端のAlビレット39に窒化アルミニウムの成分を少量含んだ低AlN層93を接触させることができる。
【0107】
このAlNプレート33、混合体91及びAlビレット39を、第1実施形態の図3(a),(b)と同じ行程で加熱することにより、第1、第2実施形態で説明した窒化マグネシウムの還元作用を利用して、(b)に示す放熱基板95を得る。
【0108】
(b)において、窒化マグネシウムの還元作用を利用することで、AlN粉体25a・・・間に溶融状態のAlビレット39を良好に充填させて、AlN粉体25a・・・の表面に良好に馴染ませることができる。
これにより、第1、第2実施形態と同様に、好適なAl−AlN複合材料96をより一層安定的に成形することができる。
【0109】
このAl−AlN複合材料96は、窒化アルミニウム層21側において小径のAlN粉体25a・・・を高密度に含ませた高AlN層97、この高AlN層97に接触させるとともにAlビレット39に接触させ、かつ小径のAlN粉体25a・・・を低密度に含ませた低AlN層98からなる。
よって、Al−AlN複合材料96は、窒化アルミニウム層21側の高AlN層97に、アルミニウム層23側の低AlN層68より多量のAlN成分を含ませることができる。
【0110】
また、(a)で説明したように、AlNプレート33、混合体91及びAlビレット39を加熱することで、第1、第2実施形態と同様に、表面が溶融状態のAlに覆われたAlN粉体25a・・・を、表面が溶融状態のAlに覆われたAlNプレート33に良好に接合することができる。
よって、Al−AlN複合材料96の一端に窒化アルミニウム層21を接合することができる。
【0111】
この際、溶融状態のAlビレット39は、第1、第2実施形態と同様に、一部のAlビレット39が混合体91の内部に充填し、その他のAlビレット39が混合体91の端部に残り、アルミニウム層23の層を形成する。
よって、Al−AlN複合材料96の他端にアルミニウム層23を形成することができる。
これにより、窒化アルミニウム層21とアルミニウム層23との間にAl−AlN複合材料96を介在させて、放熱基板95を手間をかけないで簡単に製造することができる。
【0112】
また、Al−AlN複合材料96の一端に窒化アルミニウム層21を接合することができるので、従来の技術のように、アルミニウム−窒化アルミニウム複合材料にAlNプレート33を半田付けする必要がなく、半田付けの手間を省くことができる。
加えて、アルミニウム−炭化珪素系複合材料と窒化アルミニウム層21との間から、熱伝導率が低い半田層を除去できるので、半導体素子の放熱性を確保することができる。
【0113】
以上述べたように第7実施形態によれば、第2〜第5実施形態と同様の効果を得ることができる。
加えて、第7実施形態によれば、第2〜第5実施形態の混合体に必要としたAl粉体を、混合体91から除去することができるので、放熱基板95をより一層簡単に成形することができる。
【0114】
また、第7実施形態においては、Al−AlN複合材料96を、小径のAlN粉体25aを含ませる量を2段階に変えてAlN成分の異なる2層の複合材料を製造する例について説明したが、これに限らないで、小径のAlN粉体25aを含ませる量を複数段階に変えてAlN成分の異なる複数層の複合材料を製造することも可能である。
【0115】
なお、前記第1〜第7実施形態では、Alビレット39を溶融して多孔質成形体34に充填した例について説明したが、その他の例としてAlビレット39に代えてAl粉体を使用しても同様の効果を得ることができる。
さらに、前記第2〜第5実施形態では、混合体にAl粉体35を用いた例について説明したが、Al粉体35に代えて銅(Cu)粉体を使用しても同様の効果を得ることができる。
【0116】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1は、複合素材に含まれたマグネシウム粉体を窒素ガス雰囲気中で加熱することにより窒化マグネシウムを生成し、この窒化マグネシウムが複合素材を構成する窒化アルミニウム粉体の表面を還元することができる。
【0117】
よって、窒化アルミニウム粉体や窒化アルミニウムプレートを、複合材料の金属マトリックスであるアルミニウム成分と馴染みやすくでき、窒化アルミニウム粉体や窒化アルミニウムプレートのアルミニウム濡れ性を高めることができる。
これにより、アルミニウム−窒化アルミニウム複合材料の一端側のアルミニウムを少量に抑えることができるので、一端側に十分な量の窒化アルミニウム成分を含ませることができる。
【0118】
加えて、窒化アルミニウムプレートのアルミニウム濡れ性を高めることで、アルミニウム−窒化アルミニウム複合材料を製造すると同時に、溶融したアルミニウムビレットのアルミニウムでアルミニウム−窒化アルミニウム複合材料の一端に、電気的絶縁体である窒化アルミニウムプレート(セラミックス)を接合することができる。
よって、従来の技術のように、アルミニウム−窒化アルミニウム複合材料に窒化アルミニウムプレート(セラミックス)を半田付けする必要がない。
【0119】
このように、アルミニウム−窒化アルミニウム複合材料の一端にセラミックスとしての窒化アルミニウムプレートを接合することで、半導体素子と放熱基板との熱膨張差をより小さく抑えることができ、さらに半導体素子と窒化アルミニウムプレートとの電気的絶縁性を確保して電気回路を形成することができる。
【0120】
この結果、アルミニウム−炭化珪素系複合材料にセラミックス基板を別途半田付けなどで接合する手間を省くことができ、さらにアルミニウム−炭化珪素系複合材料とセラミックス基板とを半田付けした際に生じる熱伝導率の低下を防止することができる。
【図面の簡単な説明】
【図1】本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体(第1実施形態)を使用した半導体装置を示す断面図
【図2】本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第1実施形態)を示す第1説明図
【図3】本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第1実施形態)を示す第2説明図
【図4】本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第1実施形態)を示す第3説明図
【図5】本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第1実施形態)を示す第4説明図
【図6】本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第2実施形態)を示す第1説明図
【図7】本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第2実施形態)を示す第2説明図
【図8】本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第2実施形態)を示す第3説明図
【図9】本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第3実施形態)を示す説明図
【図10】本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第4実施形態)を示す説明図
【図11】本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第5実施形態)を示す第1説明図
【図12】本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第5実施形態)を示す第2説明図
【図13】本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第6実施形態)を示す説明図
【図14】本発明に係る窒化アルミニウム−複合材料−アルミニウム接合体の製造方法(第7実施形態)を示す説明図
【図15】従来の半導体装置を示す側面図
【符号の説明】
11,55,65,75,85,95…窒化アルミニウム−複合材料−アルミニウム接合体(半導体素子用放熱基板)、21…窒化アルミニウム層、23…アルミニウム層、24,56,66,76,86,96…アルミニウム−窒化アルミニウム複合材料、25a,25b…窒化アルミニウム粉体、33…窒化アルミニウムプレー、34…多孔質成形体(複合素材)、35…アルミニウム粉体、36…マグネシウム粉体、39…アルミニウムビレッ、46a…窒素ガス、48,51,61,71,81,91…混合体(複合素材)。

Claims (1)

  1. 窒化アルミニウム粉体及びマグネシウム粉体を有する多孔質成形体、或いは窒化アルミニウム粉体及びマグネシウム粉体を混合した混合体としての複合素材を、一端側で窒化アルミニウム粉体の密度を高く、他端側で低くなるように形成し、
    この複合素材を前記一端が下向きになるように窒化アルミニウムプレートに載せ、
    この窒化アルミニウムプレートに載せた複合素材の他端にアルミニウムビレットを載せ、
    このアルミニウムビレット、窒化アルミニウムプレート及び複合素材を窒素ガス雰囲気中で加熱することにより、前記マグネシウム粉体と窒素ガスとを反応させて窒化マグネシウムを生成するとともに前記アルミニウムビレットを溶融し、
    生成した窒化マグネシウムで前記窒化アルミニウム粉体の表面及び窒化アルミニウムプレートの表面を還元し、
    この還元した窒化アルミニウム粉体間に、前記溶融されたアルミニウムビレットのアルミニウムを充填させてアルミニウム−窒化アルミニウム複合材料を形成するとともに、前記アルミニウムでアルミニウム−窒化アルミニウム複合材料を窒化アルミニウムプレートに接合することを特徴とする窒化アルミニウム−複合材料−Al接合体からなる半導体素子用放熱基板の製造方法。
JP2002133297A 2002-05-08 2002-05-08 窒化アルミニウム−複合材料−アルミニウム接合体からなる半導体素子用放熱基板の製造方法 Expired - Fee Related JP4052557B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133297A JP4052557B2 (ja) 2002-05-08 2002-05-08 窒化アルミニウム−複合材料−アルミニウム接合体からなる半導体素子用放熱基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002133297A JP4052557B2 (ja) 2002-05-08 2002-05-08 窒化アルミニウム−複合材料−アルミニウム接合体からなる半導体素子用放熱基板の製造方法

Publications (2)

Publication Number Publication Date
JP2003327480A JP2003327480A (ja) 2003-11-19
JP4052557B2 true JP4052557B2 (ja) 2008-02-27

Family

ID=29696371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133297A Expired - Fee Related JP4052557B2 (ja) 2002-05-08 2002-05-08 窒化アルミニウム−複合材料−アルミニウム接合体からなる半導体素子用放熱基板の製造方法

Country Status (1)

Country Link
JP (1) JP4052557B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101191806B1 (ko) 2012-02-20 2012-10-16 한국기계연구원 복합재 방열 기판 및 이의 제조방법

Also Published As

Publication number Publication date
JP2003327480A (ja) 2003-11-19

Similar Documents

Publication Publication Date Title
JP5656962B2 (ja) 電子部品モジュール
JP2006505951A (ja) 銅/ダイヤモンドの複合材料を有する半導体基板及びその製造方法
JPH07202063A (ja) セラミックス回路基板
JP2006352080A (ja) 半導体装置の製造方法および半導体装置
JPH0261539B2 (ja)
JP2017183716A (ja) ヒートシンク付絶縁回路基板の製造方法、及び、ヒートシンク付絶縁回路基板
TWI737894B (zh) 附有散熱片絕緣電路基板之製造方法
JP7243793B2 (ja) セラミックス/アルミニウム接合体、絶縁回路基板、ledモジュール、セラミックス部材
JP7052374B2 (ja) セラミックス/アルミニウム接合体の製造方法、絶縁回路基板の製造方法
JPH02275657A (ja) 複合材料、回路システム内にその材料を使用する熱分散部材、回路システム、及びそれらの製法
JP4113971B2 (ja) 低膨張材料及びその製造方法
JPH05347469A (ja) セラミックス回路基板
JPH08186204A (ja) ヒートシンク及びその製造方法
JP4052557B2 (ja) 窒化アルミニウム−複合材料−アルミニウム接合体からなる半導体素子用放熱基板の製造方法
JP2520334B2 (ja) 活性金属ろう材および活性金属ろう材を用いた金属部材とセラミックス部材との接合方法
JP2004231452A (ja) 炭素基金属複合材とセラミックスとの接合方法
JPH0748180A (ja) セラミックス−金属接合体
JP6819385B2 (ja) 半導体装置の製造方法
JP2002246717A (ja) セラミック回路基板
JP2003327479A (ja) 窒化アルミニウム−複合材料−アルミニウム接合体
JP2967065B2 (ja) 半導体モジュール
JP2002059272A (ja) セラミック粉末層を介在させたAl複合材及びその製造方法
JP2007250807A (ja) 電子部品搭載回路基板の製造方法およびそれを用いたモジュールの製造方法
JPS6370545A (ja) 半導体パツケ−ジ
JP3559457B2 (ja) ロウ材

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees