JP4048790B2 - 誘電体磁器組成物および誘電体磁器、それを用いた磁器コンデンサ - Google Patents

誘電体磁器組成物および誘電体磁器、それを用いた磁器コンデンサ Download PDF

Info

Publication number
JP4048790B2
JP4048790B2 JP2002033663A JP2002033663A JP4048790B2 JP 4048790 B2 JP4048790 B2 JP 4048790B2 JP 2002033663 A JP2002033663 A JP 2002033663A JP 2002033663 A JP2002033663 A JP 2002033663A JP 4048790 B2 JP4048790 B2 JP 4048790B2
Authority
JP
Japan
Prior art keywords
composition
dielectric
dielectric ceramic
ceramic
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002033663A
Other languages
English (en)
Other versions
JP2003238240A (ja
Inventor
隆治 永江
正紀 藤村
伸一 若杉
徳次 西野
江美 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002033663A priority Critical patent/JP4048790B2/ja
Publication of JP2003238240A publication Critical patent/JP2003238240A/ja
Application granted granted Critical
Publication of JP4048790B2 publication Critical patent/JP4048790B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉛を含有しない誘電体磁器組成物および誘電体磁器、それを用いた磁器コンデンサに関する。
【0002】
【従来の技術】
近年、環境問題がクローズアップされ、その中で電子機器に使用される電子部品についても、環境有害物質を含まない材質が検討されている。電子部品に用いられる材料の中で、特に環境に対して有害とされるものの中に鉛(Pb)がある。鉛は放置すると環境に溶け出し悪影響を及ぼすため、電子業界では鉛フリーの電子部品の開発が進められている。
【0003】
そして、半田や半田ペーストに関しては、種々の鉛フリー半田合金が開発され、鉛フリーが進み、実用化の段階に入っている。
【0004】
また、電子部品の一つとして誘電体磁器の対向面に電極を形成した磁器コンデンサがあるが、この誘電体磁器の材料である誘電体磁器組成物にも鉛が含有されており、半田や半田ペーストに関して鉛フリー化が達成されたとしても、誘電体磁器組成物にも鉛が含有されている以上、電子部品としての鉛フリーは達成することができない。
【0005】
この鉛は全ての種類の磁器コンデンサに含有されていると言う訳ではなく、容量の温度特性が平滑で、誘電率が高く、自己発熱の低い等の目的で誘電体磁器組成物に主成分の鉛がチタン酸鉛の形で添加され、この固溶体を形成するPbTiO3の量はモル比で10〜20%と非常に多い。
【0006】
【発明が解決しようとする課題】
しかしながら、誘電体磁器組成物から単に鉛を除去すると、当然ながら磁器コンデンサに要求される容量の温度特性が平滑で、誘電率が高く、自己発熱の低い等の特性を得ることができない。
【0007】
そこで、誘電体磁器組成物に添加される鉛成分の代わりに種々の材料を吟味し、添加することが行われてきたが、温度特性が平滑で、誘電率が高く、自己発熱の低い等の全ての特性を満足する誘電体磁器組成物を得ることは未だなされていなかった。
【0008】
そこで本発明はこれら従来の課題を解決し、温度特性が平滑で、誘電率が高く、自己発熱の低い等の全ての特性を満足して、鉛を含有しない誘電体磁器組成物および誘電体磁器、それを用いた磁器コンデンサを提供することを目的としている。
【0009】
【課題を解決するための手段】
この課題を解決するために、本発明は、新たなペロブスカイト構造を形成する組成を備えた構成としたものであり、モル比による組成式をxBaCO3・yBi23・zTiO2と表した時、前記x,y,zが
0.75≦x≦0.94
0.06≦y≦0.25
0.90≦x+y≦1.10
0.90≦z≦1.10を主成分としたペロブスカイト構造をなす誘電体磁器組成物であって
前記主成分1モルに対して、
0.01≦La≦0.10
0.01≦Nd≦0.10
0.01≦Ce≦0.10
0.01≦Sn≦0.10
0.01≦Zr≦0.10
0.01≦Ta≦0.10
0.01≦Nb≦0.10なる原子%の範囲で、La,Nd,Ce,Sn,Zr,Ta,Nbのうち1種以上の元素が、
前記ペロブスカイト構造の所定の位置を占めて副成分を構成したものである。
【0010】
【発明の実施の形態】
請求項1に記載の発明は、モル比による組成式をxBaCO3・yBi23・zTiO2と表した時、前記x,y,zが
0.75≦x≦0.94
0.06≦y≦0.25
0.90≦x+y≦1.10
0.90≦z≦1.10を主成分としたペロブスカイト構造をなす誘電体磁器組成物であって
前記主成分1モルに対して、
0.01≦La≦0.10
0.01≦Nd≦0.10
0.01≦Ce≦0.10
0.01≦Sn≦0.10
0.01≦Zr≦0.10
0.01≦Ta≦0.10
0.01≦Nb≦0.10なる原子%の範囲で、La,Nd,Ce,Sn,Zr,Ta,Nbのうち1種以上の元素が、
前記ペロブスカイト構造の所定の位置を占めて副成分を構成したことを特徴とする誘電体磁器組成物であって、鉛を含有することなく、磁器コンデンサに要求される、容量の温度特性が平滑で、誘電率が高く、自己発熱の低い等の特性を得ることができる。
【0011】
請求項2に記載の発明は、モル比による組成式をxBaCO3・yBi23・zTiO2と表した時、前記x,y,zが
0.50≦x≦0.94
0.06≦y≦0.25
0.90≦x+y≦1.10
0.90≦z≦1.10かつ、Baの一部をCa≦0.20なるモル比の範囲でCaで置換して、主成分としたペロブスカイト構造をなす誘電体磁器組成物であって
前記主成分1モルに対して、
0.01≦La≦0.10
0.01≦Nd≦0.10
0.01≦Ce≦0.10
0.01≦Sn≦0.10
0.01≦Zr≦0.10
0.01≦Ta≦0.10
0.01≦Nb≦0.10なる原子%の範囲で、La,Nd,Ce,Sn,Zr,Ta,Nbのうち1種以上の元素と、前記Baの一部と置換されるCaが、
前記ペロブスカイト構造の所定の位置を占めて副成分を構成したことを特徴とする誘電体磁器組成物であって、磁器コンデンサに要求される、容量の温度特性が平滑で、誘電率が高く、自己発熱の低い等の特性を得ることができる。
【0012】
請求項3に記載の発明は、モル比による組成式をxBaCO3・yBi23・zTiO2と表した時、前記x,y,zが
0.65≦x≦0.94
0.06≦y≦0.25
0.90≦x+y≦1.10
0.90≦z≦1.10かつ、Baの一部をSr≦0.15なるモル比の範囲でSrで置換して、主成分としたペロブスカイト構造をなす誘電体磁器組成物であって
前記主成分1モルに対して、
0.01≦La≦0.10
0.01≦Nd≦0.10
0.01≦Ce≦0.10
0.01≦Sn≦0.10
0.01≦Zr≦0.10
0.01≦Ta≦0.10
0.01≦Nb≦0.10なる原子%の範囲で、La,Nd,Ce,Sn,Zr,Ta,Nbのうち1種以上の元素と、前記Baの一部と置換されるSrが、
前記ペロブスカイト構造の所定の位置を占めて副成分を構成したことを特徴とする誘電体磁器組成物であって、磁器コンデンサに要求される、容量の温度特性が平滑で、誘電率が高く、自己発熱の低い等の特性を得ることができる。
【0013】
請求項4に記載の発明は、モル比による組成式をxBaCO3・yBi23・zTiO2と表した時、前記x,y,zが
0.45≦x≦0.94
0.06≦y≦0.25
0.90≦x+y≦1.10
0.90≦z≦1.10かつ、Baの一部をCa≦0.20、Sr≦0.15なるモル比の範囲でCa,Srで置換して、主成分としたペロブスカイト構造をなす誘電体磁器組成物であって
前記主成分1モルに対して、
0.01≦La≦0.10
0.01≦Nd≦0.10
0.01≦Ce≦0.10
0.01≦Sn≦0.10
0.01≦Zr≦0.10
0.01≦Ta≦0.10
0.01≦Nb≦0.10なる原子%の範囲で、La,Nd,Ce,Sn,Zr,Ta,Nbのうち1種以上の元素と、前記Baの一部と置換されるCa及びSrが、
前記ペロブスカイト構造の所定の位置を占めて副成分を構成したことを特徴とする誘電体磁器組成物であって、磁器コンデンサに要求される、容量の温度特性が平滑で、誘電率が高く、自己発熱の低い等の特性を得ることができる。
【0014】
請求項5に記載の発明は、請求項1〜4において、誘電体磁器組成物に対してMnCO3を0.2〜1.5wt%、もしくは他のMn化合物を用い、Mnに換算して同じ原子当量のMnを添加したことを特徴とする誘電体磁器組成物であって、鉛を含有することなく、磁器コンデンサに要求される、容量の温度特性が平滑で、誘電率が高く、自己発熱の低い等の特性を得ることができる。
【0015】
請求項6に記載の発明は、請求項1〜5において、誘電体磁器組成物に対してMgOを0.2〜0.4wt%添加したことを特徴とする誘電体磁器組成物であって、鉛を含有することなく、磁器コンデンサに要求される、容量の温度特性が平滑で、誘電率が高く、自己発熱の低い等の特性を得ることができる。
【0016】
請求項7に記載の発明は、請求項1〜6いずれか1項に記載の誘電体磁器組成物を焼成して得られてことを特徴とする誘電体磁器であって、磁器コンデンサに要求される、容量の温度特性が平滑で、誘電率が高く、自己発熱の低い等の特性を得ることができる。
【0017】
請求項8に記載の発明は、請求項7に記載の誘電体磁器と、誘電体磁器の対向表面に形成された電極とを備えたことを特徴とする磁器コンデンサであって、容量の温度特性が平滑で、誘電率が高く、自己発熱の低い等の特性を備えた磁器コンデンサを得ることができる。
【0018】
請求項9に記載の発明は、請求項7に記載の誘電体磁器と、誘電体磁器の表面に形成された対向電極とを備えたことを特徴とする磁器コンデンサであって、容量の温度特性が平滑で、誘電率が高く、自己発熱の低い等の特性を備えた磁器コンデンサを得ることができる。
【0019】
このように本発明は、新たなペロブスカイト型構造を形成する組成により、鉛(Pb)入り材料と同等の特性を得ることができる。
【0020】
まず、本発明の誘電体磁器組成物及び誘電体磁器について説明する。
【0021】
誘電体磁器組成物は、モル比による組成式をxBaCO3・yBi23・zTiO2と表した時、x,y,zが
0.75≦x≦0.94
0.06≦y≦0.25
0.90≦x+y≦1.10
0.90≦z≦1.10
を主成分とし、
0.01≦La≦0.10
0.01≦Nd≦0.10
0.01≦Ce≦0.10
0.01≦Sn≦0.10
0.01≦Zr≦0.10
0.01≦Ta≦0.10
0.01≦Nb≦0.10
なる原子%の範囲で、La,Nd,Ce,Sn,Zr,Ta,Nbのうち1種以上の元素を含む。
【0022】
更に、0.50≦x≦0.94とし、Baの一部をCa≦0.20なるモル比の範囲でCaで置換することもできる。
【0023】
更に、0.65≦x≦0.94とし、Baの一部をSr≦0.15なるモル比の範囲でSrで置換することもできる。
【0024】
或いは、0.45≦x≦0.94とし、Baの一部をCa≦0.20、Sr≦0.15なるモル比の範囲でCa,Srで置換することもできる。
【0025】
これらの誘電体磁器組成物に対してMnCO3を0.2〜1.5wt%添加してもよく、更に、MgOを0.2〜0.4wt%添加してもよい。なお、MnCO3とMgOを同時に添加してもよい。
【0026】
また、誘電体磁器は、上述した誘電体磁器組成物を焼成して得られるものであり、具体的には、上述したBaCO3、Bi23、TiO2粉末、或いは、必要に応じてLa,Nd,Ce,Sn,Zr,Ta,Nbのうち1種以上の元素を単独或いは酸化物の状態で添加した粉末を主成分とし、添加剤兼焼結助剤成分であるMnCO3とMgOから選ばれた少なくとも1つ以上を添加して、焼成することによって得ることができる。
【0027】
次に、磁器コンデンサについて説明する。
【0028】
上述した誘電体磁器の対向電極として形成される電極としては、Zn,Cu,Ni,Ag,Pd,Al,等の金属を単独或いは合金として用いることができる。また、電極としては単層或いは複層であってもよい。
【0029】
そして、この電極に対して、必要に応じてリード線やリード端子を接続することもでき、更に、外装材を形成してもよい。
【0030】
なお、本発明の誘電体磁器は、その対向表面に電極を形成して磁器コンデンサとし、一つの電子部品として用いることができるのは言うまでもないが、本発明の誘電体磁器を配線基板として、その表面に対向電極を形成し、その部分をコンデンサとし、更に、導体、抵抗体等の電子回路を形成するような配線基板の基板としても用いることもできる。
【0031】
以下、本発明の磁器コンデンサについて、図面を参照して更に詳しく説明する。
【0032】
(実施の形態1)
図1(a)は本発明の実施の形態1における磁器コンデンサを示す透視側面図であり、図1(b)は本発明の実施の形態1における磁器コンデンサを示す透視正面図である。そして、図1(a),(b)において、1は誘電体磁器基板、2は第1層電極、3は第2層電極、4,5はリード線、6は外装材である。また、100は磁器コンデンサを示している。
【0033】
図1(a),(b)に示すように、磁器コンデンサ100は、円板型の誘電体磁器基板1の両主表面に、それぞれ第1層電極2、第2層電極3が形成され、更に、第2層電極3に、それぞれ一対のリード線4,5が半田接合された構成である。
【0034】
そして、リード線4,5の一部と、誘電体磁器基板1及び第1層電極2、第2層電極3を埋設する外装材6が形成される。
【0035】
誘電体磁器基板1としては、上述した誘電体磁器が用いられる。
【0036】
そして、同様に、第1層電極2、第2層電極3としてZn,Cu,Ni,Ag,Pd,Alから選ばれる少なくとも一つの金属が用いられる。第2層電極3は、リード線4,5を接合する際の鉛フリー半田や半田との接着強度が高い金属を選べばよく、更に第2層電極3を設けずに第1層電極2のみを形成してもよい。
【0037】
更に、リード線4,5としては、例えば、JIS C3102で規定される電気用軟銅線を原料とし、これに電気メッキ、又は、溶融半田を施した線材を使用することができる。
【0038】
また、外装材6としては、絶縁性を有する材料が用いられ、ガラス、絶縁性樹脂等を用いることができる。この中でも、絶縁性樹脂が加工適正、低価格であり好ましく、熱硬化性樹脂が加工適正に優れより好ましく、更に、熱硬化型のエポキシ樹脂が強度、耐湿性に優れているので特に好ましい。そして、オプトクレゾールノボラック系,ビフェニール系,ペンタジエン系等のエポキシ樹脂があげられる。
【0039】
また、図1(a)に示すように、誘電体磁器基板1の両主表面の第2層電極3に接合された一対のリード線4,5は、誘電体磁器基板1を間に挟んで離間し平行に延設されるが、折り曲げられて、最終的には、誘電体磁器基板1の厚み方向で重なるように引き出されている。そして、一対のリード線4,5は、離間距離の略半分の位置、即ち、誘電体磁器基板1の厚みを略半分にする位置で重なっている。
【0040】
更に、図1(b)に示すように、一対のリード線4,5は、誘電体磁器基板1の表裏面でクロスするように第2層電極3にそれぞれ接合され、折り曲げられて、略平行になるように互いに離間して延設され、更に折り曲げられて、双方の離間距離を狭めた状態で略平行に延設されている。
【0041】
そして、磁器コンデンサ100の一対のリード線4,5は、回路基板のスルーホールに挿入されて、回路基板の裏面で半田接合され実装されるが、図1(b)に示すように、一対のリード線4,5が離間する距離をスルーホールへの挿入部分で狭くすることによって、外装材6から突出したリード線4,5の全ての部分がスルーホールに入り込むこともない。
【0042】
また、実装される磁器コンデンサ100の外装材6の最下部と回路基板の間にはリード線4,5の一部が必ず介在するので、半田接合時の熱の影響を受けにくい上、半田フラックスも確実に排出できる。そして、半田接合時の熱の影響を受けにくいので、半田付け温度の高い鉛(Pb)フリー半田が使用可能となる。
【0043】
次に、本発明の実施の形態1における磁器コンデンサの製造方法について説明する。
【0044】
まず、上述した誘電体磁器を配合し、通常の窯業的手法によって、湿式混合或いは造粒を行い、円板型の形状に加圧成形した後、これを焼成する。
【0045】
そして、得られた誘電体磁器基板1の両主表面に、第1層電極2として例えばZn電極を印刷法によって形成する。具体的には、亜鉛ペーストをスクリーン印刷法によって誘電体磁器の両主表面に形成した後、約600℃で焼き付けを行う。この焼き付けは、中性又は還元雰囲気中で行う必要はなく、大気雰囲気下で行うことができる。なお、Zn電極のその他の形成方法としては、導電ペーストに浸積して塗布するいわゆるディップ塗装や、電着法、鍍金法、蒸着法等の成膜方法を用いることができる。
【0046】
更に、第1層電極2であるZn電極表面の活性化処理を行う。この表面活性化処理は、Zn電極表面の酸化物を除去するものである。これにより、積層される第2層電極3のCu,Ni,Ag,Pd,Alから選ばれる少なくとも一つの金属を主体とする電極との密着性を向上させ、Zn電極と例えばCu電極との間に不安定な金属化合物を発生させることもない。Zn電極表面活性化処理としては、化学的エッチングを用いることができ、酸を利用することによって行われる。具体的には、pH3程度の例えばりんご酸を用いて行う。他の方法としては、表面を物理的に粗す等の物理的エッチングによっても良い。
【0047】
次に、第1層電極2であるZn電極の上に、第2層電極3として、例えばCu電極を形成する。第2層電極3であるCu電極の形成は、メッキ法によって行う。このメッキは電解メッキ、或いは、無電解メッキのいずれの方法であってもよいが、無電解メッキがセラミック素子特性を劣化させないと言う理由で好ましい。
【0048】
そして、第2層電極3であるCu電極の上にリード線4,5を鉛フリー半田等で半田付けし、リード線4,5の一部を除いて、絶縁性樹脂等でコーティングし、外装材6を形成する。
【0049】
(実施の形態2)
図2は本発明の実施の形態2における面実装型磁器コンデンサを示す断面図であり、図2において、7,8はリード端子であり、200は面実装型磁器コンデンサを示している。なお、実施の形態1で説明したものと同様の部分には、同じ符号を付している。
【0050】
図2に示すように、面実装型磁器コンデンサ200は、円板状の誘電体磁器基板1の両主表面に、それぞれ第1層電極2、第2層電極3が形成され、更に、第2層電極3に、それぞれ一対のリード端子7,8が半田接合された構成である。
【0051】
そして、外装材6によって、誘電体磁器基板1、第1層及び第2層の電極2,3、リード端子の一部が埋設される。
【0052】
また、リード端子7,8の外装材6から突出した部分は、外部端子形成部を構成するものであり、このリード端子7,8の外部端子形成部を介して回路基板に表面実装できるようになっている。
【0053】
誘電体磁器基板1としては、実施の形態1で説明したように、本発明の誘電体組成物を主成分とする誘電体磁器が用いられ、同様に、第1層電極2、第2層電極3としては、Zn,Cu,Ni,Ag,Pd,Alから選ばれる少なくとも一つの金属が用いられる。
【0054】
また、外装材6としても、実施の形態1で説明したものと同様であり、絶縁性を有する材料を用いられ、ガラス、絶縁性樹脂等を用いることができ、絶縁性樹脂が加工適正、低価格であり好ましく、熱硬化性樹脂が加工適正に優れより好ましく、更に、オプトクレゾールノボラック系,ビフェニール系,ペンタジエン系等のエポキシ樹脂等に代表される熱硬化型のエポキシ樹脂が強度、耐湿性に優れているので特に好ましい。
【0055】
リード端子7,8としては、導電材料を用いることができるが、Fe,Cu,Niの少なくとも一つから選択される金属材料が好適に用いられ、電気的特性や加工性の面で有利である。
【0056】
次に、本発明の実施の形態2における面実装型磁器コンデンサの製造方法は、実施の形態1で説明したものと同様であるが、リード線4,5ではなく、第2層電極3の上にリード端子7,8が半田付けされ、リード端子7,8の一部を除いて、誘電体磁器基板1、第1層電極2、第2層電極3を絶縁性樹脂等でコーティングし、外装材6を形成し、面実装型磁器コンデンサ200を得ることができる。
【0057】
(実施の形態3)
図3は、本発明の実施の形態3におけるチップ型磁器コンデンサを示す透視斜視図であり、図4は本発明の実施の形態3におけるチップ型磁器コンデンサを示す断面図である。なお、図4は図3のA−A線断面図である。
【0058】
図3,4において、1aは誘電体磁器で構成された基体、2aは導電膜、6は外装材、9は端子電極である。更に、10は間隙、11は軸芯部、12は端子部、13は傾斜部であり、300はチップ型磁器コンデンサを示している。なお、図4において、h1は端子部12の高さ、h2は軸芯部11の高さであり、θは軸芯部11と傾斜部13とがなす角度である。また、実施の形態1,2で説明したものと同様の部分には、同じ符号を付している。
【0059】
図3,4に示すように、チップ型磁器コンデンサ300は、端子部12間に外装材6が充填され、外形が略直方体である。
【0060】
更に、基体1aは、その両端に端子部12、中央に軸芯部11を備えた構成であり、軸芯部11は端子部12よりも外周に亘って凹んでいる。そして、この凹んだ部分に外装材6が充填される。
【0061】
そして、基体1aは、その機械的強度、諸特性を維持するために、端子部12の高さh1と、軸芯部11の高さh2との寸法比は、h2/h1=0.5〜0.85であること、即ち、端子部12の高さh1と、軸芯部11の高さh2の比が、h1:h2=1:0.5〜0.85の範囲にあることが好ましい。この値が0.5未満であると、機械的強度が不足して、コンデンサ製品として品質を維持することができない。また、この値が0.85を超えると、充填される外装材6の厚みが不足し、耐湿性の低下など、信頼性が悪くなる。
【0062】
更に、基体1aにおいて、軸芯部11と、両端の端子部12との間には、それぞれ傾斜部13が形成されることが好ましい。この傾斜部13を備えることによって、外装材6が確実かつ安定して充填でき、チップ型磁器コンデンサ300は、外装材6と基体1aの間には、気泡の抱き込みがほとんどない。また、この軸芯部11と傾斜部13とがなす角度θは、90度〜150度であることが好ましい。90度以下であると、気泡が発生し、安定した外装材6の充填が困難である。また、150度を超えると充填される外装材6が薄くなってしまい、耐湿性の低下など、信頼性が悪くなる。
【0063】
以上のような構成を有する基体1aの表面には、導電膜2aが形成され、更に、軸芯部11において導電膜2aは間隙10によって分離されている。そして、間隙10、軸芯部11及び傾斜部13に形成された導電膜2aを覆うように外装材6が形成されている。
【0064】
また、外装材6で被覆されていない端子部12の導電膜2aの上には、導電膜2aを覆うように端子電極9が形成されている。なお、端子電極9を設けずに、端子部12で露出している導電膜2aをそのまま電極として用いても良い。
【0065】
また、外装材6と端子部12は略面一であり、外形が略直方体となり、チップコンデンサとしての実装性に優れるものである。また、チップ型磁器コンデンサ300の外形は略直方体であることが実装性に優れるので好ましいが、チップコンデンサとしての実装性を阻害しない範囲で、円柱状、多角形状であってもよい。
【0066】
更に、チップ型磁器コンデンサ300の各構成について詳しく説明する。
【0067】
まず、基体1aは、実施の形態1,2で説明したように、本発明の誘電体組成物を主成分とする誘電体磁器が用いられる。そして、導電膜2aはZn,Cu,Ni,Ag,Pd,Alから選ばれる少なくとも一つの金属を主体とするものである。
【0068】
また、外装材6としても、実施の形態1、2で説明したものと同様である。
【0069】
また、端子電極9は、実装時の半田付け性を向上させ、導電膜2aを保護することができる。この端子電極9としては、Ni,Sn,鉛フリー半田または半田の中から選ばれる少なくとも1種以上の材料を用いることができる。この中でも、Ni層上にSnまたは鉛フリー半田、半田を形成した電極は、半田付性および耐熱性が向上すると言う理由で特に好ましい。
【0070】
また、導電膜2aと端子電極9との間に、実施の形態1、2における第2層の電極としてZn,Cu,Ni,Ag,Pd,Alから選ばれる少なくとも一つの金属を用いてもよい。
【0071】
次に、本発明の実施の形態3におけるチップ型磁器コンデンサの製造方法について説明する。
【0072】
まず、実施の形態1,2と同様に、本発明の誘電体磁器組成物を配合して、これら誘電体材料を金型に装填し加圧成形した後焼成する。
【0073】
そして、焼成された略直方体のベース基体1aの中央を外周に亘って削ることによって、両端の端子部12よりも外周に亘って凹んでいる軸芯部11を形成する。なお、両端の端子部12よりも外周に亘って凹んでいる軸芯部11を備えるように予め金型を形成し、この金型で誘電体材料を加圧成形し、これを焼成して基体1aを形成してもよい。このように形成することで、基体1aを削る工程を無くすことができる。
【0074】
次に、この基体1aに感光性樹脂を塗布し、露光及び現像を行って、所定幅の間隙10に相当する導電膜2aを形成しない部分を基体1aの外周に亘ってマスクする。
【0075】
そして、このマスク部分以外の基体1a表面にZn,Cu,Ni,Ag,Pd,Alから選ばれる少なくとも一つの金属を主体とする導電膜2aを形成する。導電膜2aの形成方法としては、導電ペーストに浸積して塗布するいわゆるディップ塗装や、印刷法、電着法、鍍金法、蒸着法等の成膜方法を用いることができる。
【0076】
次に、所定幅の間隙10に相当する導電膜2aを形成しない部分にマスクされた感光性樹脂を除去し、所望の形状にパターニングされ、間隙10によって分離された導電膜2aを得ることができる。
【0077】
基体1aに間隙10によって分離された導電膜2aを形成する方法としては、所定幅の間隙10に相当する導電膜2aを形成しない部分を除いて、導電膜2aを基体1aに直接塗布形成することもできる。
【0078】
更に、種々の成膜方法によって、一旦導電膜2aを基体1aの表面全面に形成した後、所定幅の間隙10に相当する導電膜2aを形成しない部分のみを研磨、レーザートリミング、物理的或いは化学的エッチング等の方法によって除去してもよい。この中でも、レーザートリミングは高精度であり好ましい。
【0079】
更に、レーザートリミングにより導電膜2aの不要な部分を除去する場合において、まず、レーザートリミングで不要部分の導電膜2aの所定厚み分を除去する。次に、不要部分及びその他の部分を含め全体を一律にエッチングする。このエッチングは不要部分の導電膜2aの膜厚が完全に除去されるまで行う。これによって、不要部分以外の導電膜2aは残留し、所望の形状にパターニングされた導電膜2aを得ることができる。この方法によれば、レーザートリミングによって、基体1aの表面に形成された導電膜2aを除去する際に、レーザーの熱が基体1aに達することがないので、基体1aの材料を熱変性させ、特性を劣化させることがなく、レーザーの熱による基体1aの特性劣化を防ぐことができる。
【0080】
次に、軸芯部11に形成された導電膜2aを覆うように、上述した絶縁性を有する材料を用いて外装材6を充填する。
【0081】
次に、端子部12の導電膜2aに対して、導電膜2aを覆うように端子電極9を形成する。
【0082】
そして、本発明の実施の形態3におけるチップ型磁器コンデンサ300は、外形が略直方体となり、チップコンデンサとしての実装性に優れる。
【0083】
なお、本発明の実施の形態3において、実装性や外装材6の充填性を必要としない場合には、両端の端子部12よりも外周に亘って凹んでいる軸芯部11を形成せずに、単に略直方体、或いは角柱状、円柱状の基体1aの表面に導電膜2aを形成し、導電膜2aを分離する間隙10を備えた単純な構成としてもよい。
【0084】
(実施の形態4)
図5は本発明の実施の形態4におけるチップ型磁器コンデンサを示す透視斜視図であり、図6は本発明の実施の形態4におけるチップ型磁器コンデンサを示す断面図である。なお、図6は図5のA−A線断面図である。
【0085】
図5,6において、1aは誘電体磁器で構成された基体、2aは導電膜、6は外装材、9は端子電極である。更に、10a,10bは間隙、11は軸芯部、12は端子部、13は傾斜部であり、400はチップ型磁器コンデンサを示している。
【0086】
なお、図6において、h1は端子部12の高さ、h2は軸芯部11の高さであり、θは軸芯部11と傾斜部13とがなす角度である。また、実施の形態3で説明したものと同様の部分には、同じ符号を付している。
【0087】
図5,6に示すように、チップ型磁器コンデンサ400は、端子部12間に外装材6が充填され、外形が略直方体である。
【0088】
更に、基体1aは、その両端に端子部12、中央に軸芯部11を備えた構成であり、軸芯部11は端子部12よりも外周に亘って凹んでいる。そして、この凹んだ部分に外装材6が充填される。
【0089】
そして、基体1aは、その機械的強度、諸特性を維持するために、端子部12の高さh1と、軸芯部11の高さh2との寸法比は、h2/h1=0.5〜0.85であること、即ち、端子部12の高さh1と、軸芯部11の高さh2の比が、h1:h2=1:0.5〜0.85の範囲にあることが好ましい。この値が0.5未満であると、機械的強度が不足して、コンデンサ製品として品質を維持することができない。また、この値が0.85を超えると、充填される外装材6の厚みが不足し、耐湿性の低下など、信頼性が悪くなる。
【0090】
更に、基体1aにおいて、軸芯部11と、両端の端子部12との間には、それぞれ傾斜部13が形成されることが好ましい。この傾斜部13を備えることによって、外装材6が確実かつ安定して充填でき、チップ型磁器コンデンサ300は、外装材6と基体1aの間には、気泡の抱き込みがほとんどない。また、この軸芯部11と傾斜部13とがなす角度θは、90度〜150度であることが好ましい。90度以下であると、気泡が発生し、安定した外装材6の充填が困難である。また、150度を超えると充填される外装材6が薄くなってしまい、耐湿性の低下など、信頼性が悪くなる。
【0091】
以上のような構成を有する基体1aの表面には、導電膜2aが形成され、更に、軸芯部11において導電膜2aは間隙10a,10bによって分離されている。
【0092】
そして、図5,6に示すように、軸芯部11の対向する一対の側面及び端子部12には導電膜2aが形成され、この導電膜2aは、対向する一対の側面で互いに異なる端子部12と間隙10a,10bを介し、対向する一対の側面で互いに異なる端子部12に引き出されている。
【0093】
即ち、チップ型磁器コンデンサ400には、基体1aの軸芯部11の表裏で、互いに異なる方向に引き出された導電膜2aが形成され、基体1aの表裏でそれぞれ間隙10a,10bによって分離されている。そして、互いに異なる方向に引き出された導電膜2aのそれぞれが端子部12を覆う構成であり、互いに対向する端子部12間において、基体1aの表裏に形成され、導電膜2aを分離する間隙10aと間隙10bとは点対称の関係にある。なお、端子部12における導電膜2aは、側面にのみ設け端面には設けなくてもよい。
【0094】
そして、本発明の実施の形態4におけるチップ型磁器コンデンサ400は、対向する端子部12間において、導電膜2aを分離する間隙10aと間隙10bによって静電容量を得ることができる。更に、軸芯部11を介して互いに対向する導電膜2aが形成され、基体1aの軸芯部11の厚み(高さh2)によって、静電容量を得ることができる。また、基体1aの軸芯部11の厚みを変更することによって、所望の静電容量を得ることができる。
【0095】
また、外装材6と端子部12は略面一であり、外形が略直方体となり、チップコンデンサとしての実装性に優れるものである。また、チップ型磁器コンデンサ400の外形は略直方体であることが実装性に優れるので好ましいが、チップコンデンサとしての実装性を阻害しない範囲で、円柱状、多角形状であってもよい。
【0096】
更に、チップ型磁器コンデンサ400の各構成について詳しく説明する。
【0097】
まず、基体1は、実施の形態1〜3で説明したように、本発明の誘電体組成物を主成分とする誘電体磁器が用いられる。そして、導電膜2aはZn,Cu,Ni,Ag,Pd,Alから選ばれる少なくとも一つの金属を主体とするものである。
【0098】
また、外装材6としても、実施の形態1〜3で説明したものと同様である。
【0099】
また、実施の形態3と同様に、端子電極9は、実装時の半田付け性を向上させ、導電膜2aを保護することができる。この端子電極9としては、Ni,Sn,半田の中から選ばれる少なくとも1種以上の材料を用いることができる。この中でも、Ni層上にSnまたは半田を形成した電極は、半田付性および耐熱性が向上すると言う理由で特に好ましい。また、導電膜2aと端子電極9との間に、実施の形態1、2における第2層の電極としてZn,Cu,Ni,Ag,Pd,Alから選ばれる少なくとも一つの金属を用いてもよい。
【0100】
次に、本発明の実施の形態4におけるチップ型磁器コンデンサの製造方法について説明する。
【0101】
まず、実施の形態1〜3と同様に、本発明のを配合して、これら誘電体材料を金型に装填し加圧成形した後焼成する。
【0102】
そして、焼成された略直方体のベース基体1aの中央を外周に亘って削ることによって、両端の端子部12よりも外周に亘って凹んでいる軸芯部11を形成する。なお、両端の端子部12よりも外周に亘って凹んでいる軸芯部11を備えるように予め金型を形成し、この金型で誘電体材料を加圧成形し、これを焼成して基体1aを形成してもよい。このように形成することで、基体1aを削る工程を無くすことができる。
【0103】
次に、この基体1aに感光性樹脂を塗布し、露光及び現像を行って、所定幅の間隙10a,10bに相当する導電膜2aを形成しない部分を基体1aの表裏でそれぞれマスクする。
【0104】
そして、このマスク部分以外の基体1a表面に例えばZnを主体とする導電膜2aを形成する。導電膜2aの形成方法としては、導電ペーストに浸積して塗布するいわゆるディップ塗装や、印刷法、電着法、鍍金法、蒸着法等の成膜方法を用いることができる。
【0105】
次に、所定幅の間隙10a,10bに相当する導電膜2aを形成しない部分にマスクされた感光性樹脂を除去し、所望の形状にパターニングされ、間隙10a,10bによって分離された導電膜2aを得ることができる。
【0106】
基体1aに間隙10a,10bによって分離された導電膜2aを形成する方法としては、所定幅の間隙10a,10bに相当する導電膜2を形成しない部分を除いて、導電膜2aを基体1aに直接塗布形成することもできる。
【0107】
更に、種々の成膜方法によって、一旦導電膜2aを基体1aの表面全面に形成した後、所定幅の間隙10a,10bに相当する導電膜2aを形成しない部分のみを研磨、レーザートリミング、物理的或いは化学的エッチング等の方法によって除去してもよい。この中でも、レーザートリミングは高精度であり好ましい。
【0108】
更に、レーザートリミングにより導電膜2aの不要な部分を除去する場合において、まず、レーザートリミングで不要部分の導電膜2aの所定厚み分を除去する。次に、不要部分及びその他の部分を含め全体を一律にエッチングする。このエッチングは不要部分の導電膜2aの膜厚が完全に除去されるまで行う。これによって、不要部分以外の導電膜2aは残留し、所望の形状にパターニングされた導電膜2aを得ることができる。この方法によれば、レーザートリミングによって、基体1aの表面に形成された導電膜2aを除去する際に、レーザーの熱が基体1aに達することがないので、基体1aの材料を熱変性させ、特性を劣化させることがなく、レーザーの熱による基体1aの特性劣化を防ぐことができる。
【0109】
次に、軸芯部11に形成された導電膜2aを覆うように、上述した絶縁性を有する材料を用いて外装材6を充填する。
【0110】
次に、端子部12の導電膜2aに対して、導電膜2aを覆うように端子電極9を形成する。
【0111】
そして、本発明の実施の形態4におけるチップ型磁器コンデンサ400は、外形が略直方体となり、チップコンデンサとしての実装性に優れる。
【0112】
なお、本発明の実施の形態4において、実装性や外装材6の充填性を必要としない場合には、両端の端子部12よりも外周に亘って凹んでいる軸芯部11を形成せずに、単に、基体1aを略直方体とし、略直方体の基体1aの対向する一対の側面で互いに異なる端面と間隙10a,10bを介して、一対の側面で互いに異なる端面に引き出された導電膜2aを備えた単純な構成としてもよい。
【0113】
(実施の形態5)
図7は、本発明の実施の形態5におけるチップ型磁器コンデンサを示す斜視図であり、図8は本発明の実施の形態5におけるチップ型磁器コンデンサを示す断面図である。なお、図8(a)は図7のA−A線断面図、図8(b)は図7のB−B線断面図、図8(c)は図7のC−C線断面図である。
【0114】
図7,8において、11aは中央対向部である。また、500はチップ型磁器コンデンサを示している。また、Lは凹部に挟まれた中央対向部11aの基体1aの厚みである。なお、本実施の形態5においては、実施の形態4で説明した部分と同じものには同じ符号を付している。
【0115】
そして、本実施の形態5においては、チップ型磁器コンデンサ500を構成する各部は、実施の形態4で説明したものと同様であり、詳しい説明は一部省略する。
【0116】
図7に示すように、チップ型磁器コンデンサ500は、基体1aの両端部に端子電極9を備え、端子電極9間の凹部に外装材6が充填され、外形が略直方体である。
【0117】
更に、図8(a)に示すように、チップ型磁器コンデンサ500は、略直方体である基体1aの対向する一対の面に凹部がそれぞれ形成されている。この対向する凹部の深さは任意であり、対向する凹部の深さによって、基体1aの中央対向部11aの厚みLが決定される。対向する凹部は、中央対向部11aを挟み対称形状であり、体積も同一である事が好ましいが、互いに異なっていてもよい。
【0118】
また、図8(a)、(b)、(c)に示すように、基体1aの表面には、対向する凹部で、即ち、基体1aの中央対向部11aの表裏で、互いに異なる端面に引き出された導電膜2aが形成されている。更に、導電膜2aは、基体1aの中央対向部11aの表裏でそれぞれ間隙10a,10bによって分離されている。
【0119】
そして、互いに異なる端面に引き出された導電膜2aのそれぞれが基体1aの端子部12を覆う構成であり、互いに対向する端子部12間において、基体1aの中央対向部11aの表裏に形成され、導電膜2aを分離する間隙10aと間隙10bとは点対称の関係にある。
【0120】
更に、対向する凹部には、それぞれ外装材6が充填され、基体1aの中央対向部11aの表裏の導電膜2a及び間隙10a,10bを覆う構成となっている。
【0121】
また、端子部12の導電膜2aに対して、導電膜2aを覆うように端子電極9が形成されている。なお、端子電極9を設けずに、端子部12で露出している導電膜2aをそのまま電極として用いても良い。
【0122】
また、外装材6を端子部12と略面一に充填することで、外形が略直方体となり、チップコンデンサとしての実装性に優れるものである。
【0123】
そして、本発明の実施の形態5におけるチップ型磁器コンデンサ500は、対向する端子部12間において、導電膜2aを分離する間隙10aと間隙10bによって静電容量を得ることができると共に、更に、中央対向部11aを介して互いに対向する導電膜2aが形成され、基体1aの中央対向部11aの厚みLによって、静電容量を得ることができる。また、基体1aの中央対向部11aの厚みLを変更することによって、所望の静電容量を得ることができる。
【0124】
特に、大きな静電容量を得るために、基体1aの中央対向部11aの厚みLを小さくしても、中央対向部11aを取り囲む基体1aの存在によって、チップ型磁器コンデンサ50の機械的強度を維持することが可能である。
【0125】
基体1は、実施の形態1〜4で説明したように、本発明の誘電体組成物を主成分とする誘電体磁器が用いられる。そして、導電膜2aはZn,Cu,Ni,Ag,Pd,Alから選ばれる少なくとも一つの金属を主体とするものである。
【0126】
また、外装材6としても、実施の形態1〜4で説明したものと同様である。
【0127】
また、端子電極9も、実施の形態3,4で説明したものと同様である。
【0128】
次に、チップ型磁器コンデンサ500の製造方法について説明する。
【0129】
この基体1aの形成方法としては、まず、金型に上記した誘電体材料を装填し加圧成形後これを焼成する。そして、焼成されたこの略直方体のベース基体1aの対向する一対の面の中央を削ることによって、凹部を形成する。また、基体1aの対向する一対の面の中央にそれぞれ凹部を備えるように予め金型を形成し、この金型で誘電体材料を加圧成形し、これを焼成してもよい。このように形成することで、基体1aを削る工程を無くすことができる。
【0130】
次に、基体1aの表裏に導電膜2aが形成される。一方の凹部において導電膜2aは間隙10aを備えるように形成され、他方の凹部において導電膜2aは間隙10bを備えるように形成される。
【0131】
導電膜2aの形成方法としては、実施の形態4で説明した方法と同様である。
【0132】
そして、凹部に上記した絶縁性を有する材料を用いて外装材6を充填する。なお、外装材6は端子部12と略面一に形成することが好ましい。
【0133】
更に、端子部12の導電膜2aに対して、導電膜2aを覆うように端子電極9を形成する。
【0134】
そして、本発明の実施の形態5におけるチップ型磁器コンデンサ500は、外形が略直方体となり、チップコンデンサとしての実装性に優れる。
【0135】
以上実施の形態1〜5で説明したように、本発明の磁器コンデンサは、様々な形態を取ることが可能である。そして、いずれの形態であっても、本発明の磁器コンデンサは、本発明の誘電体磁器を備えることにより、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができるものである。
【0136】
用途としては、液晶バックライトインバーターのバラスト回路、スイッチング電源の1次、2次スナバー回路、テレビ・CRTディスプレイなどの水平共振回路、インバーター蛍光灯、電子機器の高圧・パルス回路、通信用モデムの対サージ回路等として広く使用される。
【0137】
【実施例】
実施例により本発明を詳細に説明する。なお、本発明は以下の実施例等により何ら限定されるものではない。
【0138】
(実施例1)
まず、主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.94〜0.75 Bi23 0.06〜0.25 TiO2 0.96)と、SnO2をモル比で0.04、それぞれ電子天秤で秤量し、10mmφのZrO2質ボールが入ったモノマロン製ポットミル中に投入した。
【0139】
次に、100rpmの回転速度で水を媒体とした湿式で16時間混合した後、テフロンシートを敷いたステンレスバット中に投入し、120℃の温度で乾燥した。乾燥した塊状物はアルミナ乳鉢中で解砕した後、この粉体をアルミナルツボに入れ、約200℃/hの昇温速度で1050℃まで昇温した後4時間保持し約200℃/hで降温した。この仮焼粉体を10mmφのZrO2質ボールが入ったモノマロン製ポットミル中に投入し、100rpmの回転速度で水を媒体とした湿式で16時間混合粉砕した後、120℃の温度で乾燥した。乾燥した塊状物はアルミナ乳鉢中で解砕した後、ポリビニールアルコール10%水溶液を粉体重量に対し10%添加混合しメッシュカットを行い造粒した。
【0140】
この造粒物を円板型の形状に加圧成形した後、約200℃/hの昇温速度で約1200℃まで昇温し、2時間保持した後、約200℃/hで降温し、誘電体磁器基板を得た。誘電体磁器基板の形状は、直径約10.0mm、厚さ約1.0mmである。
【0141】
次に、得られた誘電体磁器基板の両主表面に、印刷法によって第1層電極としてのAg電極を直径8.0mmで形成し、800℃で焼き付けを行った。
【0142】
そして、誘電体磁器の両主表面のAg電極上に、それぞれリード線を半田付けした。
【0143】
更に、リード線の一部を除いて、エポキシ樹脂をコーティングし、Ag電極が形成された誘電体磁器を被覆して外装材を形成し、図1に示したような磁器コンデンサを得た。
【0144】
次に、得られた実施例1の磁器コンデンサの静電容量(Cap)、誘電体損失(tanδ)、誘電体形状(φ/t)、誘電率(ε)、温度特性(TC)、自己発熱特性(Δt)を測定した。
【0145】
静電容量(Cap)と誘電体損失(tanδ)はYHP製Cメータ4278Aを使用して1V/1MHzの信号電圧下で測定した。誘電体形状(φ/t)はマイクロメーターで測定し、誘電率(ε)は以下の計算で求めた。温度特性(TC)は温度毎の静電容量をYHP製Cメータ4278Aで測定した。
【0146】
C=ε・D2/144t
C:静電容量
ε:誘電率
D:誘電体電極径
t:誘電体厚み
自己発熱特性(δt)は、実施例1の磁器コンデンサに、AC500Vp−p、周波数100kHzを印加し、φ0.1mmの熱電対(クロメルアルメル)を実施例1の磁器コンデンサのエポキシ樹脂からなる外装材に密着させ、温度上昇が安定した時の外装材の表面温度を測定し、この外装材の表面温度と、そのときの雰囲気温度との差を自己発熱特性(Δt)とした。
【0147】
この測定結果を実施例1の組成と共に(表1)に示した。なお、実施例1の組成及び測定結果は、(表1)のNo2〜6が対応する。
【0148】
【表1】
Figure 0004048790
【0149】
(表1)の結果から明らかなように、本実施例1の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0150】
(比較例1)
(表1)のNo1に示す組成で、その他は実施例1と同様にして、比較例1の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果も(表1)に示した。(表1)からわかるように、Bi23が0.06より少ない場合は誘電体損失(tanδ)、自己発熱特性(Δt)が悪化し実用的でない。
【0151】
(比較例2)
(表1)のNo7に示す組成で、その他は実施例1と同様にして、比較例2の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果も(表1)に示した。(表1)からわかるように、Bi23が0.25より多い場合は、誘電率(ε)が低下し実用的でない。
【0152】
(実施例2)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.84〜0.75 Bi23 0.15 TiO2 1.00)と、Nd23をモル比で0.005〜0.05、それぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例2の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例2の組成と共に(表1)に示した(No9〜11)。
【0153】
(表1)の結果から明らかなように、本実施例2の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0154】
(比較例3)
(表1)のNo8に示す組成で、その他は実施例2と同様にして、比較例3の磁器コンデンサを得た。更に、実施例2と同様に評価を行い、その測定結果も(表1)に示した。(表1)からわかるように、Nd23が0.005より少ない場合は誘電体損失(tanδ)、自己発熱特性(Δt)が悪化し実用的でない。
【0155】
(比較例4)
(表1)のNo12に示す組成で、その他は実施例2と同様にして、比較例4の磁器コンデンサを得た。更に、実施例2と同様に評価を行い、その測定結果も(表1)に示した。(表1)からわかるように、Nd23が0.05より多い場合は、誘電率(ε)が低下し実用的でない。
【0156】
(実施例3)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.84〜0.75 Bi23 0.15 TiO2 1.00)と、La23をモル比で0.005〜0.05、それぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例3の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例3の組成と共に(表1)に示した(No14〜16)。
【0157】
(表1)の結果から明らかなように、本実施例の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0158】
(比較例5)
(表1)のNo13に示す組成で、その他は実施例3と同様にして、比較例5の磁器コンデンサを得た。更に、実施例3と同様に評価を行い、その測定結果も(表1)に示した。(表1)からわかるように、La23が0.005より少ない場合は誘電体損失(tanδ)、自己発熱特性(Δt)が悪化し実用的でない。
【0159】
(比較例6)
(表1)のNo17に示す組成で、その他は実施例3と同様にして、比較例6の磁器コンデンサを得た。更に、実施例3と同様に評価を行い、その測定結果も(表1)に示した。(表1)からわかるように、La23が0.05より多い場合は誘電率(ε)が低下し実用的でない。
【0160】
(実施例4)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.84〜0.75 Bi23 0.15 TiO2 1.00)と、CeO2をモル比で0.01〜0.10、それぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例4の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例4の組成比と共に(表1)に示した(No18〜21)。
【0161】
(表1)の結果から明らかなように、本実施例の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0162】
(比較例7)
(表1)のNo22に示す組成で、その他は実施例4と同様にして、比較例7の磁器コンデンサを得た。更に、実施例4と同様に評価を行い、その測定結果も(表1)に示した。(表1)からわかるように、CeO2が0.10より多い場合は誘電率(ε)が低下し実用的でない。
【0163】
(実施例5)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.85 Bi23 0.15 TiO2 0.99〜0.90)と、SnO2をモル比で0.01〜0.10、それぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例5の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例5の組成と共に(表1)に示した(No23〜26)。
【0164】
(表1)の結果から明らかなように、本実施例5の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0165】
(比較例8)
(表1)のNo27に示す組成で、その他は実施例5と同様にして、比較例8の磁器コンデンサを得た。更に、実施例5と同様に評価を行い、その測定結果も(表1)に示した。(表1)からわかるように、SnO2が0.10より多い場合は誘電率(ε)が低下し実用的でない。
【0166】
(実施例6)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.85 Bi23 0.15 TiO2 0.99〜0.90)と、ZrO2をモル比で0.01〜0.10、それぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例6の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例6の組成と共に(表2)に示した(No29〜31)。
【0167】
【表2】
Figure 0004048790
【0168】
(表2)の結果から明らかなように、本実施例6の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0169】
(比較例9)
(表2)のNo28に示す組成で、その他は実施例6と同様にして、比較例9の磁器コンデンサを得た。更に、実施例6と同様に評価を行い、その測定結果も(表2)に示した。(表2)からわかるように、ZrO2が0.01より少ない場合は誘電体損失(tanδ)、自己発熱特性(Δt)が悪化し実用的でない。
【0170】
(比較例10)
(表2)のNo32に示す組成で、その他は実施例6と同様にして、比較例10の磁器コンデンサを得た。更に、実施例6と同様に評価を行い、その測定結果も(表2)に示した。(表2)からわかるように、ZrO2が0.10より多い場合は誘電率(ε)が低下し実用的でない。
【0171】
(実施例7)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.85 Bi23 0.15 TiO2 0.99〜0.90)と、Nb25をモル比で0.005〜0.05、それぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例7の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例7の組成と共に(表2)に示した(No34〜36)。
【0172】
(表2)の結果から明らかなように、本実施例7の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0173】
(比較例11)
(表2)のNo33に示す組成で、その他は実施例7と同様にして、比較例11の磁器コンデンサを得た。更に、実施例7と同様に評価を行い、その測定結果も(表2)に示した。(表2)からわかるように、Nb25が0.005より少ない場合は誘電体損失(tanδ)、自己発熱特性(Δt)が悪化し実用的でない。
【0174】
(比較例12)
(表2)のNo37に示す組成で、その他は実施例7と同様にして、比較例12の磁器コンデンサを得た。更に、実施例7と同様に評価を行い、その測定結果も(表2)に示した。(表2)からわかるように、Nb25が0.05より多い場合は誘電率(ε)が低下し実用的でない。
【0175】
(実施例8)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.85 Bi23 0.15 TiO2 0.99〜0.90)と、Ta2O5をモル比で0.005〜0.05、それぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例8の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例8の組成と共に(表2)に示した(No39〜41)。
【0176】
(表2)の結果から明らかなように、本実施例8の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0177】
(比較例13)
(表2)のNo38に示す組成で、その他は実施例8と同様にして、比較例13の磁器コンデンサを得た。更に、実施例8と同様に評価を行い、その測定結果も(表2)に示した。(表2)からわかるように、Ta25が0.005より少ない場合は誘電体損失(tanδ)、自己発熱特性(Δt)が悪化し実用的でない。
【0178】
(比較例14)
(表2)のNo42に示す組成で、その他は実施例8と同様にして、比較例14の磁器コンデンサを得た。更に、実施例8と同様に評価を行い、その測定結果も(表2)に示した。(表2)からわかるように、Ta25が0.05より多い場合は誘電率(ε)が低下し実用的でない。
【0179】
(実施例9)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.75〜0.95 Bi23 0.15 TiO2 0.85〜1.05)と、ZrO2をモル比で0.05、または、SnO2をモル比で0.05、それぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例9の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例9の組成と共に(表2)に示した(No43〜46)。
【0180】
(表2)の結果から明らかなように、本実施例9の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0181】
(実施例10)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.725〜0.89 Bi23 0.06〜0.15 TiO2 1.00)と、モル比で0.01〜0.025のNd23とLa23、CeO2をそれぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例10の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例10の組成と共に(表2)に示した(No47〜48)。
【0182】
(表2)の結果から明らかなように、本実施例10の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0183】
(実施例11)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.94 Bi23 0.06 TiO2 0.96〜0.94)と、モル比で0.01のSnO2とZrO2、0.005〜0.01のNb25とTa25をそれぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例11の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例11の組成と共に(表2)に示した(No49〜50)。
【0184】
(表2)の結果から明らかなように、本実施例11の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0185】
(実施例12)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.72〜0.91 Bi23 0.06〜0.25 TiO2 0.97)と、モル比で0.005のNd23とLa23、0.01のCeO2、0.005のSnO2、ZrO2、Nb25、Ta25をそれぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例12の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例12の組成と共に(表2)に示した(No51〜52)。
【0186】
(表2)の結果から明らかなように、本実施例12の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0187】
(実施例13)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.82,Bi23 0.15TiO2 0.97)と、モル比で0.005のNd23とLa23、0.01のCeO2、0.005のSnO2、ZrO2、Nb25、Ta25、また添加剤としてMnCO3を0.2〜1.5wt%、それぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例13の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例13の組成と共に(表3)に示した(No54〜56)。なお、MnCO3の添加量は、BaCO3、Bi23、TiO2、Nd23、La23、CeO2、SnO2、ZrO2、Nb25、Ta25で構成される誘電体磁器組成物の総重量に対するものであり、これら誘電体磁器組成物を100重量部とすれば、0.2〜1.5重量部添加される。
【0188】
【表3】
Figure 0004048790
【0189】
(表3)の結果から明らかなように、本実施例13の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0190】
(比較例15)
(表3)のNo53に示す組成で、その他は実施例13と同様にして、比較例15の磁器コンデンサを得た。更に、実施例13と同様に評価を行い、その測定結果も(表3)に示した。(表3)からわかるように、MnCO3が0.2より少ない場合は温度特性(TC)が悪化し実用的でない。
【0191】
(比較例16)
(表3)のNo57に示す組成で、その他は実施例13と同様にして、比較例16の磁器コンデンサを得た。更に、実施例13と同様に評価を行い、その測定結果も(表3)に示した。(表3)からわかるように、MnCO3が1.5より多い場合は誘電体損失(tanδ)、自己発熱特性(Δt)が悪化し実用的でない。
【0192】
(実施例14)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.82 Bi23 0.15 TiO2 0.97)と、モル比で0.005のNd23とLa23、0.01のCeO2、0.005のSnO2、ZrO2、Nb25、Ta25、また添加剤としてMgOを0.2〜0.4wt%、それぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例14の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例14の組成と共に(表3)に示した(No59〜61)。なお、MgOの添加量は、BaCO3、Bi23、TiO2、Nd23、La23、CeO2、SnO2、ZrO2、Nb25、Ta25で構成される誘電体磁器組成物の総重量に対するものであり、これら誘電体磁器組成物を100重量部とすれば、0.2〜0.4重量部添加される。
【0193】
(表3)の結果から明らかなように、本実施例14の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0194】
(比較例17)
(表3)のNo58に示す組成で、その他は実施例14と同様にして、比較例17の磁器コンデンサを得た。更に、実施例14と同様に評価を行い、その測定結果も(表3)に示した。(表3)からわかるように、MgOが0.2より少ない場合は温度特性(TC)が悪化し実用的でない。
【0195】
(比較例18)
(表3)のNo62に示す組成で、その他は実施例14と同様にして、比較例18の磁器コンデンサを得た。更に、実施例14と同様に評価を行い、その測定結果も(表3)に示した。(表3)からわかるように、MgOが0.4より多い場合は誘電率(ε)が低下し実用的でない。
【0196】
(実施例15)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.40〜0.Bi23 0.15TiO2 0.95)と、モル比で0.10〜0.0のCaCO3、0.01のNd23とLa23、CeO2、0.015のSnO2、ZrO2、0.005のNb25、Ta25をそれぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例15の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例15の組成と共に(表4)に示した(No63〜64)。
【0197】
【表4】
Figure 0004048790
【0198】
(表4)の結果から明らかなように、本実施例15の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0199】
(比較例19)
(表4)のNo66に示す組成で、その他は実施例15と同様にして、比較例19の磁器コンデンサを得た。更に、実施例15と同様に評価を行い、その測定結果も(表4)に示した。(表4)からわかるように、CaCO3が0.40より多い場合は誘電率(ε)が低下し実用的でない。
【0200】
(実施例16)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.65〜0.75 Bi23 0.15 TiO2 0.95)と、モル比で0.05〜0.15のSrCO3、0.01のNd23とLa23、CeO2、0.015のSnO2、ZrO2、0.005のNb25、Ta25をそれぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例16の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例16の組成と共に(表4)に示した(No67〜69)。
【0201】
(表4)の結果から明らかなように、本実施例16の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0202】
(比較例20)
(表4)のNo70に示す組成で、その他は実施例16と同様にして、比較例20の磁器コンデンサを得た。更に、実施例16と同様に評価を行い、その測定結果も(表4)に示した。(表4)からわかるように、SrCO3が0.15より多い場合は誘電率(ε)が低下し実用的でない。
【0203】
(実施例17)
主成分であるBaCO3・Bi23・TiO2粉末(モル比で、BaCO3 0.45〜0.55 Bi23 0.15 TiO2 0.95)と、モル比で0.05〜0.15のSrCO3、0.20のCaCO3、0.01のNd23とLa23、CeO2、0.015のSnO2、ZrO2、0.005のNb25、Ta25をそれぞれ電子天秤で秤量し、その他は実施例1と同様にして、実施例17の磁器コンデンサを得た。更に、実施例1と同様に評価を行い、その測定結果を実施例17の組成と共に(表4)に示した(No71〜73)。
【0204】
(表4)の結果から明らかなように、本実施例17の組成の誘電体磁器を用いた磁器コンデンサは、鉛を含有せず、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足することができた。
【0205】
(比較例21)
(表4)のNo74に示す組成で、その他は実施例17と同様にして、比較例21の磁器コンデンサを得た。更に、実施例17と同様に評価を行い、その測定結果も(表4)に示した。(表4)からわかるように、SrCO3が0.15より多い場合は誘電率(ε)が低下し実用的でない。
【0206】
ここで、(表1)〜(表4)において、BaCO3、Bi23、TiO2、Nd23、La23、CeO2、SnO2、ZrO2、Nb25、Ta25の単位はモル比であり、MnCO3及びMgOの単位はwt%である。
【0207】
なお、本発明は基幹組成であり、例えばSi、Al、W、Znなどの焼結助材の添加の有無や、出発原料にあらかじめ作成したチタン酸バリウムやチタン酸ストロンチウム、チタン酸カルシウム、チタン酸ビスマス等を用いたり、他の成分をあらかじめ反応させたものを用いる等により基本特性を左右されるものではない。
【0208】
【発明の効果】
以上の様に本発明によれば、温度特性が平滑で、誘電率が高く、自己発熱の低い全ての特性を満足して、鉛を含有しない誘電体磁器組成物および誘電体磁器、それを用いた磁器コンデンサを提供することができる。
【図面の簡単な説明】
【図1】(a)本発明の実施の形態1における磁器コンデンサを示す透視側面図
(b)本発明の実施の形態1における磁器コンデンサを示す透視正面図
【図2】本発明の実施の形態2における面実装型磁器コンデンサを示す断面図
【図3】本発明の実施の形態3におけるチップ型磁器コンデンサを示す透視斜視図
【図4】本発明の実施の形態3におけるチップ型磁器コンデンサを示す断面図
【図5】本発明の実施の形態4におけるチップ型磁器コンデンサを示す透視斜視図
【図6】本発明の実施の形態4におけるチップ型磁器コンデンサを示す断面図
【図7】本発明の実施の形態5におけるチップ型磁器コンデンサを示す斜視図
【図8】本発明の実施の形態5におけるチップ型磁器コンデンサを示す断面図
【符号の説明】
1 誘電体磁器基板
1a 基体
2 第1層電極
2a 導電膜
3 第2層電極
4,5 リード線
6 外装材
7,8 リード端子
9 端子電極
10,10a,10b 間隙
11 軸芯部
11a 中央対向部
12 端子部
13 傾斜部
100 磁器コンデンサ
200 面実装型磁器コンデンサ
300,400,500 チップ型磁器コンデンサ

Claims (9)

  1. モル比による組成式をxBaCO3・yBi23・zTiO2と表した時、前記x,y,zが
    0.75≦x≦0.94
    0.06≦y≦0.25
    0.90≦x+y≦1.10
    0.90≦z≦1.10を主成分としたペロブスカイト構造をなす誘電体磁器組成物であって
    前記主成分1モルに対して、0.01≦La≦0.10
    0.01≦Nd≦0.10
    0.01≦Ce≦0.10
    0.01≦Sn≦0.10
    0.01≦Zr≦0.10
    0.01≦Ta≦0.10
    0.01≦Nb≦0.10なる原子%の範囲で、La,Nd,Ce,Sn,Zr,Ta,Nbのうち1種以上の元素が、
    前記ペロブスカイト構造の所定の位置を占めて副成分を構成したことを特徴とする誘電体磁器組成物。
  2. モル比による組成式をxBaCO3・yBi23・zTiO2と表した時、前記x,y,zが
    0.50≦x≦0.94
    0.06≦y≦0.25
    0.90≦x+y≦1.10
    0.90≦z≦1.10かつ、Baの一部をCa≦0.20なるモル比の範囲でCaで置換して、主成分としたペロブスカイト構造をなす誘電体磁器組成物であって
    前記主成分1モルに対して、
    0.01≦La≦0.10
    0.01≦Nd≦0.10
    0.01≦Ce≦0.10
    0.01≦Sn≦0.10
    0.01≦Zr≦0.10
    0.01≦Ta≦0.10
    0.01≦Nb≦0.10なる原子%の範囲で、La,Nd,Ce,Sn,Zr,Ta,Nbのうち1種以上の元素と、前記Baの一部と置換されるCaが、
    前記ペロブスカイト構造の所定の位置を占めて副成分を構成したことを特徴とする誘電体磁器組成物。
  3. モル比による組成式をxBaCO3・yBi23・zTiO2と表した時、前記x,y,zが
    0.65≦x≦0.94
    0.06≦y≦0.25
    0.90≦x+y≦1.10
    0.90≦z≦1.10かつ、Baの一部をSr≦0.15なるモル比の範囲でSrで置換して、主成分としたペロブスカイト構造をなす誘電体磁器組成物であって
    前記主成分1モルに対して、
    0.01≦La≦0.10
    0.01≦Nd≦0.10
    0.01≦Ce≦0.10
    0.01≦Sn≦0.10
    0.01≦Zr≦0.10
    0.01≦Ta≦0.10
    0.01≦Nb≦0.10なる原子%の範囲で、La,Nd,Ce,Sn,Zr,Ta,Nbのうち1種以上の元素と、前記Baの一部と置換されるSrが、
    前記ペロブスカイト構造の所定の位置を占めて副成分を構成したことを特徴とする誘電体磁器組成物。
  4. モル比による組成式をxBaCO3・yBi23・zTiO2と表した時、前記x,y,zが
    0.45≦x≦0.94
    0.06≦y≦0.25
    0.90≦x+y≦1.10
    0.90≦z≦1.10かつ、Baの一部をCa≦0.20、Sr≦0.15なるモル比の範囲でCa,Srで置換して、主成分としたペロブスカイト構造をなす誘電体磁器組成物であって
    前記主成分1モルに対して、
    0.01≦La≦0.10
    0.01≦Nd≦0.10
    0.01≦Ce≦0.10
    0.01≦Sn≦0.10
    0.01≦Zr≦0.10
    0.01≦Ta≦0.10
    0.01≦Nb≦0.10なる原子%の範囲で、La,Nd,Ce,Sn,Zr,Ta,Nbのうち1種以上の元素と、前記Baの一部と置換されるCa及びSrが、
    前記ペロブスカイト構造の所定の位置を占めて副成分を構成したことを特徴とする誘電体磁器組成物。
  5. 前記誘電体磁器組成物に対してMnCO3を0.2〜1.5wt%、もしくは他のMn化合物を用い、Mnに換算して同じ原子当量のMnを添加したことを特徴とする請求項1〜4いずれか1項に記載の誘電体磁器組成物。
  6. 前記誘電体磁器組成物に対してMgOを0.2〜0.4wt%添加したことを特徴とする請求項1〜5いずれか1項に記載の誘電体磁器組成物。
  7. 請求項1〜6いずれか1項に記載の誘電体磁器組成物を焼成して得られてことを特徴とする誘電体磁器。
  8. 請求項7に記載の誘電体磁器と、前記誘電体磁器の対向表面に形成された電極とを備えたことを特徴とする磁器コンデンサ。
  9. 請求項7に記載の誘電体磁器と、前記誘電体磁器の表面に形成された対向電極とを備えたことを特徴とする磁器コンデンサ。
JP2002033663A 2002-02-12 2002-02-12 誘電体磁器組成物および誘電体磁器、それを用いた磁器コンデンサ Expired - Fee Related JP4048790B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002033663A JP4048790B2 (ja) 2002-02-12 2002-02-12 誘電体磁器組成物および誘電体磁器、それを用いた磁器コンデンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002033663A JP4048790B2 (ja) 2002-02-12 2002-02-12 誘電体磁器組成物および誘電体磁器、それを用いた磁器コンデンサ

Publications (2)

Publication Number Publication Date
JP2003238240A JP2003238240A (ja) 2003-08-27
JP4048790B2 true JP4048790B2 (ja) 2008-02-20

Family

ID=27776393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002033663A Expired - Fee Related JP4048790B2 (ja) 2002-02-12 2002-02-12 誘電体磁器組成物および誘電体磁器、それを用いた磁器コンデンサ

Country Status (1)

Country Link
JP (1) JP4048790B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273698A (ja) * 2005-03-30 2006-10-12 Matsushita Electric Ind Co Ltd チタン酸バリウムを主成分とする誘電体磁器組成物およびこれを用いた誘電体磁器コンデンサ
US8154851B2 (en) 2005-08-29 2012-04-10 Kyocera Corporation Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP2007153710A (ja) * 2005-12-07 2007-06-21 Tdk Corp 誘電体磁器組成物および電子部品
JP5294441B2 (ja) * 2006-03-30 2013-09-18 双信電機株式会社 電子部品
JP4946822B2 (ja) * 2007-11-22 2012-06-06 Tdk株式会社 誘電体磁器組成物および電子部品
JP5414433B2 (ja) * 2008-09-30 2014-02-12 キヤノン株式会社 強誘電セラミック材料
JP5278682B2 (ja) * 2009-02-09 2013-09-04 Tdk株式会社 誘電体磁器組成物および電子部品

Also Published As

Publication number Publication date
JP2003238240A (ja) 2003-08-27

Similar Documents

Publication Publication Date Title
US6458734B1 (en) Dielectric ceramic composition
JP5332807B2 (ja) 誘電体磁器組成物
US6108192A (en) Dielectric ceramic composition and ceramic electronic parts using the same
JP3940424B2 (ja) 誘電体磁器組成物及びその製造方法
KR20030023558A (ko) 자기 콘덴서
JP2008177611A (ja) 表面実装型負特性サーミスタ
KR100417304B1 (ko) 비환원성 유전체 세라믹 및 그를 이용한 세라믹 전자 부품
CN112242254B (zh) 层叠电子部件及其安装构造
JP2001247359A (ja) 絶縁体磁器組成物
JP7193918B2 (ja) 積層セラミックコンデンサおよびその製造方法
JP4048790B2 (ja) 誘電体磁器組成物および誘電体磁器、それを用いた磁器コンデンサ
JP5012932B2 (ja) 誘電体磁器組成物および電子部品
JP3851295B2 (ja) 低温焼成誘電体組成物、積層セラミックキャパシター及びセラミック電子部品
JP4748831B2 (ja) 電子部品
CN100412027C (zh) 介电陶瓷组合物和多层电子元件
JP4407112B2 (ja) 磁器コンデンサ
JP4804701B2 (ja) 磁器コンデンサ
JP2003163132A (ja) 磁器コンデンサ
CN115938801A (zh) 陶瓷电子部件
JP2009206430A (ja) 積層電子部品およびその製造方法
JP2005217170A (ja) 複合積層セラミック電子部品
JP4419487B2 (ja) 酸化物磁器組成物、セラミック多層基板およびセラミック電子部品
JP2005213126A (ja) 耐還元性誘電体組成物及びそれを用いたセラミック電子部品
JP2006273698A (ja) チタン酸バリウムを主成分とする誘電体磁器組成物およびこれを用いた誘電体磁器コンデンサ
JP2010235325A (ja) 誘電体磁器組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees