JP4040334B2 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
JP4040334B2
JP4040334B2 JP2002069656A JP2002069656A JP4040334B2 JP 4040334 B2 JP4040334 B2 JP 4040334B2 JP 2002069656 A JP2002069656 A JP 2002069656A JP 2002069656 A JP2002069656 A JP 2002069656A JP 4040334 B2 JP4040334 B2 JP 4040334B2
Authority
JP
Japan
Prior art keywords
magnetic field
annular
imaging space
annular protrusion
irregular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002069656A
Other languages
English (en)
Other versions
JP2003265434A (ja
JP2003265434A5 (ja
Inventor
弘隆 竹島
武 八尾
健二 榊原
角川  滋
毅 和久田
芳英 和田山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2002069656A priority Critical patent/JP4040334B2/ja
Priority to PCT/JP2003/002951 priority patent/WO2003075757A1/ja
Publication of JP2003265434A publication Critical patent/JP2003265434A/ja
Publication of JP2003265434A5 publication Critical patent/JP2003265434A5/ja
Application granted granted Critical
Publication of JP4040334B2 publication Critical patent/JP4040334B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気共鳴イメージング(以下、MRIと略称する)装置に係り、特に1対の静磁場発生源が撮影空間を挟んで対向するオープン型MRI装置に関する。
【0002】
【従来の技術】
近年、MRI装置の分野では、撮影空間を挟んで、上下もしくは左右に、1対の静磁場発生源を対向して配置している、いわゆるオープン型マグネット(磁石装置)を用いたMRI装置が開発されつつある。このようなMRI装置は十分なオープン性(開放性)を有し、このオープン性を活用することによりいわゆるIVR(Interventional Radiology)を可能にし、医療の可能性を大きく広げるものとして期待されている。
【0003】
MRI装置用マグネットでは、高画質の画像を得るため、撮影空間に数ppmレベルの均一な静磁場を作り出すことが必須の要件である。撮影空間の静磁場を均一化する手法は、静磁場発生源を構成する複数のコイルを用いてその配置を最適化する手法と、いわゆる磁極を用いてその表面形状を最適化する手法の2通りに大別できる。
【0004】
前者の手法を用いたオープン型MRI装置に好適な超電導磁石として、国際公開公報WO 99/27851(MAGNET APPARATUS AND MRI APPARATUS)に記載の磁石装置が開示されている。この磁石装置は、MRI画像の撮影領域である撮影空間を挟んで対向する2組のマグネットアセンブリから構成される。各々のマグネットアセンブリはそれぞれ複数個の超電導コイルを有し、装置の中心軸に関して概ね軸対称に配置されている。超電導コイルの主コイルは正極性及び負極性のコイルが交互に配置され、コンパクトなマグネットながら、均一度の高い静磁場を発生することができる。
【0005】
一方、後者の手法を用いた磁石装置としては、特開平5-251231号公報(磁気共鳴結像用近接自在磁石)、特開平8‐243087号公報(磁石対向型永久磁石磁気回路)などに記載されたものが開示されている。
【0006】
【発明が解決しようとする課題】
MRI装置では、一般に、静磁場発生源からの磁束を、例えば磁極及びその外周部に設けた環状突起を介して撮影空間に導いて、撮影空間に形成される静磁場を均一にし、更に傾斜磁場コイルおよび高周波コイルを用いて、撮影空間に挿入された被検体の断層画像を得ている。ここで、撮影空間の静磁場を均一化するために磁極を用いた磁石装置において一般的に用いられる手法は、磁極の撮影空間側の面に凹凸を設けることにより磁束の流れを制御して静磁場を均一化する手法である。
【0007】
オープン型MRI装置では、漏洩磁場を抑制するために、2個の対向する磁極を磁性体から成る支柱で磁気的に連結することによって磁束の帰路を形成する方法が一般に用いらえる。しかし、この方法では、磁性体から成る支柱が円周方向において局在するために、中心軸に関する回転対称性を大きく低下させて、中心軸に関する非回転対称な不整磁場を大きく発生させる。その結果、この不整磁場が撮影空間における静磁場を不均一にするため、この不整磁場の影響で画像が乱れたり、或いは不鮮明となるという問題がある。
【0008】
図16には、特開平5‐251231号公報に開示された磁石装置(以下,第1の従来例という)の概略構造を示す。図16は、磁石装置全体の概略側面図を示したものである。この磁石装置100では、撮影空間10を挟んで上下方向に上下の磁極102a、102bが対向して配置され、両磁極はヨーク104によって磁気的に結合されている。上下の磁極102a、102bの外周部の撮影空間10に対向する側には環状突起106a、106bが設けられている。第1の従来例の磁石装置100では、上記の問題を解決する方法として、上下の環状突起106a、106bの撮影空間10に対向する側の面に離散的な磁性体108、109を配置し、この離散的な磁性体108、109の配置によって、非回転対称な不整磁場を打ち消そうとしている。
【0009】
しかし、第1の従来例の方法では、環状突起106a、106bの表面に、回転方向に磁性体108、109が局在するため、上記の非回転対称な不整磁場を打ち消す所望の磁場が発生する以外に、不要な高次の非回転対称な不整磁場を発生させてしまうという問題がある。
【0010】
また、特開平8‐243087号公報に開示された磁石装置(以下、第2の従来例という)においても、環状突起の構造の改良を行っている。図17には、第2の従来例の環状突起の平面図を示す。第2の従来例では、非回転対称な不整磁場を打ち消すために、図17において、環状突起112の幅を部分的に連続的に変化させ、かつ複数個の切欠き114、115を設けている。しかし、第2の従来例の方法でも、回転方向における磁性体の偏在による不要な高次の非回転対称な不整磁場が発生することを防ぐことができなかった。
【0011】
以上説明した如く、従来の不整磁場の抑止方法では、所望の不整磁場を打ち消す磁場以外に、不要な高次の非回転対称な不整磁場の発生を伴うという問題があった。このため、所望のモードの非回転対称な不整磁場だけを発生し、他のモードの不整磁場を発生しないシステマティックな解決方法が求められていた。
【0012】
上記に鑑み、本発明では、撮影空間の静磁場における不整磁場を除去して、鮮明な画像を形成できるMRI装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するため、本発明のMRI装置は、撮影空間を挟んで対向して配置された1対の磁極と、該磁極と磁気的に連結され、前記磁極を通して前記撮影空間に静磁場を発生させる静磁場発生源と、前記磁極の対向面側に円環状に突出して配置された磁性体から成る環状突起と、前記磁極間を直接的または間接的に支持する少なくとも1本の支柱とを備えたMRI装置において、前記撮影空間の磁場が均一となるように、前記環状突起の円周方向の少なくとも一部の磁性体の量を他の部分と異ならせる。
【0014】
この構成では、撮影空間を対向して配置された環状突起の円周方向の一部または全部の領域について、半径方向断面の磁性体の量を増減しているので、同領域を通過して撮影空間の対応する領域に集まる磁束の量を増減し、磁場強度を増減することができる。このため、撮影空間に発生している不整磁場の領域と磁場強度に対応して、環状突起の円周方向の領域と磁性体の増減量を適切に決定することにより、不整磁場を打ち消すことができ、撮影空間の磁場を均一化することができる。その結果として、鮮明なMR画像が得られる。
【0015】
また、本発明のMRI装置は、撮影空間を挟んで対向して配置された1対の磁極と、該磁極と磁気的に連結され、前記磁極を通して前記撮影空間に静磁場を発生させる静磁場発生源と、前記磁極の対向面側に円環状に突出して配置された磁性体から成る環状突起と、前記磁極間を直接的または間接的に支持する少なくとも1本の磁性体から成る支柱(以下,磁性体支柱という)とを備えたMRI装置において、前記磁性体支柱に起因して前記撮影空間に発生する不整磁場を除去し、前記撮影空間の磁場が均一となるように、前記環状突起の円周方向の少なくとも一部の磁性体の量を、他の部分と異ならせる
【0016】
この構成では、撮影空間の磁性体支柱に近接する位置に、磁性体支柱に起因する不整磁場が発生するので、この撮影空間の不整磁場の発生する領域に対向する環状突起の円周方向の少なくとも一部の領域の半径方向断面の磁性体の量を上記の不整磁場を打ち消すように増減して、撮影空間の磁場を均一化している。
【0017】
また、本発明のMRI装置では、更に前記撮影空間の磁場を均一化するために、前記環状突起の円周方向の少なくとも一部の半径方向断面における磁性体の量の少ない部分から磁性体の量の多い部分へ、またはその逆に、円周方向に沿って順次磁性体の量を増減させるものである。
【0018】
この構成では、環状突起の円周方向の少なくとも一部について、その半径方向断面の磁性体の量を円周方向に沿って、少ない部分から多い部分へ、または多い部分から少ない部分へと順次なだらかに変化させて、増減しているので、環状突起を通過して撮影空間に集まる磁束によって撮影空間の円周方向の少なくとも一部の領域になだらかな変化をする磁場強度分布を形成することができる。従って、撮影空間に上記のような分布の不整磁場が発生している場合に、本発明はこれを打ち消すのに有効である。
【0019】
また、本発明のMRI装置では、更に前記撮影空間の磁場を均一化するために、前記環状突起の円周方向の少なくとも一部の半径方向断面の断面積を円周方向に沿って順次増減させるものである。
【0020】
環状突起が同じ磁性体から成る場合には、その半径方向断面の磁性体の量と断面積は比例関係にあるので、この断面積を増減することにより、磁性体の量を増減することができる。従って、この構成では、環状突起の断面積を円周方向に沿って順次増減することにより、請求項1 同様な効果が得られる。
【0021】
また、本発明のMRI装置では、更に前記撮影空間の磁場を均一化するために、前記環状突起の円周方向の少なくとも一部の半径方向断面の半径方向幅寸法(以下、単に幅という)及びそれに直交する方向の高さ寸法(以下、単に高さという)のうちの少なくとも一方を円周方向に沿って順次増減させるものである。
【0022】
環状突起の半径方向断面が長方形またはこれに近似されるものであれば、この半径方向断面は半径方向幅及び高さに規定され、その断面積は幅または高さのうちの少なくとも一方を増減することによって増減する。従って、本構成の如く、環状突起の半径方向断面の幅または高さのうちの少なくとも一方を増減することにより、撮影空間の磁場を均一化することができる。
【0023】
また、本発明のMRI装置では、更に前記撮影空間の磁場を均一化するために、前記環状突起の内周側に外径の小さい環状突起を1個以上、ほぼ同心で配置したものである。
【0024】
この構成では、大径環状突起の内周側に小径の環状突起を配置したことにより、環状突起が円周方向と半径方向の両方にわたって配置されるので、撮影空間に発生した不整磁場を、外周部のものばかりでなく、内周部のものも、精度よく打ち消すことができるので、撮影空間の磁場を広範囲にわたって精度よく均一化することができる。
【0025】
また、本発明のMRI装置では、更に前記撮影空間の磁場を均一化するために、前記環状突起の円周方向の少なくとも一部の前記撮影空間側の端面の高さを増減させて、波型形状を形成させたものである。
【0026】
この構成では、環状突起の円周方向の少なくとも一部の端面の高さを増減して波型形状としているので、同部分の半径方向断面の断面積も波型形状で変化し、撮影空間の同部分に対向する領域に、円周方向に沿って波型形状の磁場強度分布を発生する。このため、撮影空間の上記に対向する部分に円周方向に沿って、波型形状の不整磁場が発生している場合には、これを打ち消すことができ、磁場の均一化を図ることができる。
【0027】
また、本発明のMRI装置では、更に前記撮影空間の磁場を均一化するために、前記環状突起の円周方向の少なくとも一部が、その半径方向断面の断面積、幅、及び高さのうちの少なくとも1つがそれぞれ異なる複数の環状突起部材にて構成され、該環状突起部材を円周方向に沿って、前記断面積、幅、または高さの小さいものから大きいものへ、またはその逆に順次配列し、半径方向の内周面、外周面、及び前記撮影空間側の端面のうちの少なくとも1つを階段状に形成するものである。
【0028】
この構成では、環状突起が半径方向断面の断面積、幅、高さのうちの少なくとも一つが異なる複数の環状突起部材から構成されているので、小さな環状突起部材に分けて加工して、組立てることにより、加工が容易となり、製造コストを低減することができる。また、環状突起部材を、その半径方向断面の断面積、幅、高さを小さいものから大きいものへと順次配列して、環状突起の内周面、外周面、端面を階段状としているので、それらの包絡線をとることにより、その包絡線で環状突起の内周面、外周面、端面を近似することができる。
【0029】
また、本発明のMRI装置では、更に前記静磁場発生源は、前記磁極の裏面側に、前記撮影空間を挟んで対向して、1対配置されている。
【0030】
この構成では、撮影空間を挟んで対向して配置された磁極の裏側に、磁極と同様に静磁場発生源が撮影空間を挟んで対向して配置されているので、静磁場発生源に磁極を結合することが可能となり、装置をコンパクトにすることができる。
【0031】
また、本発明のMRI装置は、対向して配置された1対の静磁場発生源が、それぞれ起磁力源と、撮影空間に面して配置された磁極を有し、該磁極に前記撮影空間側に突出した1個以上の環状突起が配置されたMRI装置において、前記撮影空間の磁場を均一化するために、前記環状突起の少なくとも1個の半径方向断面の断面積を、円周方向に関して周期的に変化させる。
【0032】
この構成では、環状突起の半径方向断面の断面積が円周方向に関して周期的に変化しているので、この環状突起を通過して撮影空間に集まる磁束による磁場強度分布も円周方向に関して周期的に変化する。この結果、撮影空間に円周方向に関して周期的に変化する不整磁場が発生している場合に、この不整磁場の磁場強度分布に対応して、環状突起の断面積の周期的変化の振幅を適切に選定することにより、不整磁場を打ち消すことができ、撮影空間の磁場を均一化することができる。
【0033】
また、本発明のMRI装置は、対向して配置された1対の静磁場発生源が、それぞれ起磁力源と、撮影空間に面して配置された磁極を有し、該磁極に前記撮影空間側に突出した1個以上の環状突起が配置され、該環状突起の少なくとも1個が複数の環状突起部材から構成されているMRI装置において、前記複数の環状突起部材の半径方向断面の断面積を、円周方向に関して周期的に変化させる。
【0034】
この構成では、環状突起が複数の環状突起部材から成り、この環状突起の半径方向断面の断面積を円周方向に関して周期的に変化させているので、請求項10と同様な効果が得られるとともに、環状突起を複数の環状突起部材に分割したことにより、環状突起部材の加工が容易になり、製造コストが低減される。
【0035】
また、本発明のMRI装置は、対向して配置された1対の静磁場発生源が、それぞれ起磁力源と、撮影空間に面して配置された磁極を有し、該磁極に前記撮影空間側に突出した1個以上の環状突起が配置されたMRI装置において、前記撮影空間の磁場を均一化するために、前記環状突起の少なくとも1個の半径方向断面の幅を、円周方向に関して周期的に変化させる。
【0036】
この構成では、環状突起の半径方向断面の幅寸法が円周方向に関して周期的に変化しているので、その結果、同時に断面積も円周方向に関して周期的に変化することになり、上記構成と同様な効果が得られる。
【0037】
また、本発明のMRI装置は、対向して配置された1対の静磁場発生源が、それぞれ起磁力源と、撮影空間に面して配置された磁極を有し、該磁極に前記撮影空間側に突出した1個以上の環状突起が配置され、該環状突起の少なくとも1個が複数の環状突起部材から構成されているMRI装置において、前記複数の環状突起部材の半径方向断面の幅を、円周方向に関して周期的に変化させる。
【0038】
この構成では、環状突起が複数の環状突起部材から成り、この環状突起の半径方向断面の幅寸法を円周方向に関して周期的に変化させているので、環状突起の断面積も円周方向に関して周期的に変化することになり、上記構成と同様な効果が得られる。
【0039】
また、本発明のMRI装置は、対向して配置された1対の静磁場発生源が、それぞれ起磁力源と、撮影空間に面して配置された磁極を有し、該磁極に前記撮影空間側に突出した1個以上の環状突起が配置されたMRI装置において、前記撮影空間の磁場を均一化するために、前記環状突起の少なくとも1個の半径方向断面の高さを、円周方向に関して周期的に変化させる。
【0040】
この構成では、環状突起の半径方向断面の高さ寸法が円周方向に関して周期的に変化しているので、その結果、同時に断面積も円周方向に関して周期的に変化することになり、上記構成と同様な効果が得られる。
【0041】
また、本発明のMRI装置は、対向して配置された1対の静磁場発生源が、それぞれ起磁力源と、撮影空間に面して配置された磁極を有し、該磁極に前記撮影空間側に突出した1個以上の環状突起が配置され、該環状突起の少なくとも1個が複数の環状突起部材から構成されているMRI装置において、前記複数の環状突起部材の半径方向断面の高さを、円周方向に関して周期的に変化させる。
【0042】
この構成では、環状突起が複数の環状突起部材から成り、この環状突起の半径方向断面の高さ寸法を円周方向に関して周期的に変化させているので、環状突起の断面積も円周方向に関して周期的に変化することになり、上記構成と同様な効果が得られる。
【0043】
また、本発明のMRI装置は、対向して配置された1対の静磁場発生源が、それぞれ起磁力源と、撮影空間に面して配置された磁極を有し、該磁極に前記撮影空間側に突出した1個以上の環状突起が配置され、該環状突起の少なくとも1個が複数の環状突起部材から構成されているMRI装置において、前記複数の環状突起部材の半径方向の内周面を結ぶ内面包絡線及び半径方向の外周面を結ぶ外面包絡線のうちの少なくとも一方の包絡線を、円周方向に関して周期的に変化させる。
【0044】
この構成では、環状突起が複数の環状突起部材から成り、これらの環状突起部材の半径方向の内周面または外周面で形成される内面包絡線または外面包絡線が円周方向に関して周期的に変化している。その結果、これらの包絡線を内周面または外周面とする環状突起の半径方向断面の幅寸法は円周方向に関して周期的に変化するため、各々の環状突起部材自体の半径方向断面の幅寸法が近似的に同様な変化をすることにより、上記構成と同様な効果が得られる。
【0045】
また、本発明のMRI装置は、対向して配置された1対の静磁場発生源は、それぞれ起磁力源と、撮影空間に面して配置された磁極を有し、該磁極に前記撮影空間側に突出した1個以上の環状突起が配置され、該環状突起の少なくとも1個が複数の環状突起部材から構成されているMRI装置において、前記複数の環状突起部材の前記撮影空間に面する端面を結ぶ包絡線を、円周方向に関して周期的に変化させる。
【0046】
この構成では、環状突起が複数の環状突起部材から成り、これらの環状突起部材の撮影空間に面する端面で形成される包絡線が円周方向に関して周期的に変化している。その結果、この包絡線を端面とする環状突起の半径方向断面の高さ寸法は円周方向に関して周期的に変化するため、各々の環状突起部材自体の半径方向断面の高さ寸法が近似的に同様な変化をすることにより、上記構成と同様な効果が得られる。
【0047】
また、本発明のMRI装置では、更に前記環状突起が複数の環状突起部材から構成されているとき、前記環状突起1個当りの前記環状突起部材の個数は50個以内である。
【0048】
この構成では、環状突起が1個当り50個以内の環状突起部材で構成されているため、環状突起部材の加工及びその組立に要する労力とコストが、環状突起を一体で加工するよりも低減され、また環状突起の据付場所への搬送や据付時の組立、調整も容易になり、環状突起部材への分割の効果が得られる。
【0049】
また、本発明のMRI装置では、更に前記環状突起の前記断面積、または前記幅、または前記高さ、または前記包絡線が、円周方向に関して正弦関数的に変化している。
【0050】
この構成では、環状突起の断面積、幅、高さ、または包絡線が円周方向に関して正弦関数的に変化しているので、撮影空間の円周方向に沿って、正弦関数的に変化するような磁場強度分布を持つ不整磁場を打ち消すことができる。
【0051】
また、本発明のMRI装置では、更に前記環状突起の前記断面積、または前記幅、または前記高さ、または前記包絡線が、円周方向の1周に関して、1以上の整数であるモードmにより正弦関数的に変化している。
【0052】
この構成では、環状突起の断面積、幅、高さ、または包絡線が円周方向の1週に関して1以上の整数であるモードmにより正弦関数的に変化しているので、撮影空間の円周方向に沿って、モードmの正弦関数で変化するような磁場強度分布を持つ不整磁場を打ち消すことができる。
【0053】
また、本発明のMRI装置では、更に前記環状突起の前記断面積、または前記幅、または前記高さ、または前記包絡線が、円周方向の1周に関して、2つ以上の異なる1以上の整数であるモードmによる正弦関数の重ね合わせにより変化している。
【0054】
この構成では、環状突起の断面積、幅、高さ、または包絡線が円周方向の1周に関して2つ以上の異なる1以上の整数であるモードmによる正弦関数の重ね合わせにより変化しているので、撮影空間の円周方向に沿って、複数モードの正弦関数の重ね合わせとなる変化をするような磁場強度分布を持つ不整磁場を打ち消すことができる。
【0055】
また、本発明のMRI装置では、更に少なくとも2つ以上の前記環状突起の前記断面積、または前記幅、または前記高さ、または前記包絡線が、それぞれ円周方向の1周に関して、1以上の異なる整数であるモードm、nなどにより、正弦関数的に変化している。
【0056】
この構成では、少なくとも2つ以上の環状突起の断面積、幅、高さ、または包絡線がそれぞれ円周方向の1周に関して、それぞれの環状突起に対応するモードで正弦関数的に変化しているので、撮影空間のそれぞれの環状突起に対応する円周方向に沿って異なるモードの正弦関数の重ね合わせで変化するような円周方向と半径方向の両方向に変化する磁場強度分布を持つ不整磁場を打ち消すことができる。
【0057】
また、本発明のMRI装置では、更に前記1対の静磁場発生源間または前記1対の磁極間を機械的に結合する少なくとも1本の支柱が存在する。
【0058】
この構成では、1対の静磁場発生源間または1対の磁極間を機械的に1本以上の支柱で結合されているので、磁極間は大きな変形もなく支持されるとともに、磁極間に挟まれた撮影空間において大きい開放性が得られる。
【0059】
また、本発明のMRI装置では、更に前記支柱が強磁性体にて構成されている。
【0060】
この構成では、静磁場発生源間または磁極間を支持する支柱が強磁性体にて構成されているので、磁極、静磁場発生源、支柱によって磁気回路を形成することにより、撮影空間に磁場を生成するために発生した磁束の帰路が得られ、装置外部への漏洩磁場を低減することができる。
【0061】
また、本発明のMRI装置では、更に前記1対の静磁場発生源間または前記1対の磁極間を磁気的に結合して磁気回路を形成する少なくとも1個の支柱状の強磁性体が存在する。
【0062】
この構成では、静磁場発生源間または磁極間を磁気的に結合して磁気回路を形成する支柱状の強磁性体が存在するので、この磁気回路が撮影空間に発生した磁束の帰路となり、装置外部への漏洩磁場を低減することができる。この支柱状強磁性体は支柱で兼用することも可能である。
【0063】
また、本発明のMRI装置では、更に前記起磁力源が超電導コイルである。この構成では、超電導コイルから成る起磁力源によって、撮影空間に高い磁場強度で、均一な静磁場を形成することができるので、高解像度で鮮明なMR画像を得ることができる。
【0064】
また、本発明のMRI装置では、更に前記起磁力源が常電導コイルである。この構成では、起磁力源が常電導コイルであるので、コイルの冷却が不要となり、装置の製造コスト及び維持費が低減される。
【0065】
また、本発明のMRI装置では、更に前記起磁力源が永久磁石である。この構成では、起磁力源が永久磁石であるので、コイルの冷却やコイル電源が不要となり、装置の保守が容易になるとともに、装置の維持費が低減される。
【0066】
【発明の実施の形態】
以下、本発明の実施例について添付図面に沿って説明する。
【0067】
まず、本発明を適用するMRI装置の概略の全体構成を示すブロック図を図18に示す。このMRI装置は、磁気共鳴現象を利用して被験体の断層像を得るためのもので、磁石装置181、傾斜磁場発生手段182、送信系183、受信系184、信号処理系185、シーケンサ186、CPU187および図示しない操作部とからなっている。
【0068】
磁石装置181は、被検体188の周りのある広がりを持った空間に配置された永久磁石・常電導磁石、超電導磁石のいずれかからなり、被検体188の周囲にその体軸方向または被検体の体軸と直交する方向に均一な静磁場を発生させ、上下に対向配置されたオープン構造となっている。
【0069】
傾斜磁場発生手段182は、X、Y、Zの3軸方向に巻かれた傾斜磁場コイル189とこれらの各々のコイルを磁化させる傾斜磁場電源1810とからなり、シーケンサ186からの命令に従って傾斜磁場電源1810の各々のコイルを磁化させることによりX、Y、Zの3軸方向の傾斜磁場を被検体188に印加する。この傾斜磁場の加え方により、被検体188の撮影して表示する断面が設定される。
【0070】
送信系183は、高周波発振器1811、変調器1812、高周波増幅器1813および高周波照射コイル1814とからなり、傾斜磁場発生手段182で設定された被検体188の撮影断面の生体組織を構成する原子の原子核を励起して核磁気共鳴を起こさせるために、高周波発振器1811から出力された高周波パルスを高周波増幅器1813で増幅した後に、被検体188に近接して設置された高周波照射コイル1814に供給して被検体に照射する。
【0071】
受信系184は、高周波受信コイル1815、受信回路1816およびA/D変換器1817とからなり、送信系183の高周波照射コイル1814から照射された電磁波による被検体188の生体組織の原子核の磁気共鳴によるエコー信号であるNMR信号を、被検体188に近接して配置された高周波受信コイル1815で検出し、受信回路1816を介してA/D変換器1817に入力し、ディジタル信号に変換して、さらにシーケンサ186からの命令によるタイミングでサンプリングされた収集データとして、その信号を信号処理系185に送る。
【0072】
信号処理系185は、収集データに対しフーリエ変換およびシーケンサ186の制御を行うCPU187、本発明の補正手段を含み補正計算や収集データを断層像に再構成するために必要な処理を行う信号処理装置1818、経時的な画像解析処理および指定された計測のシーケンスのプログラムやその実行の際に用いられるパラメータ−等を記憶し、被検体に対して行った事前の計測で得た計測パラメーターや受信系184で検出したNMR信号からの収集データおよび関心領域設定に用いる画像を一時保管すると共にその関心領域を設定するためのパラメーター等を記憶するメモリ1819、再構成された画像データを記憶するデータ格納部となる磁気ディスク1820・光ディスク1821およびこれらのディスクから読み出した画像データを映像化して断層像として表示するディスプレイ1822とからなり、受信系184で検出したNMR信号を用いて画像再構成演算を行うとともに画像表示を行う。
【0073】
シーケンサ186は、CPU187の制御で動作しスライスエンコード、位相エンコード、周波数エンコードの各傾斜磁場および高周波磁場パルスをある所定のパルスシーケンスで繰り返し発生するためのもので、被検体188の断層像のデータ取得に必要な種々の命令を傾斜磁場発生手段182、送信系183および受信系184に送る。
操作部は、トラックボールまたはマウス、キーボード等からなり信号処理系185で行う処理の制御情報を入力する。
【0074】
図1に、本発明に係るオープン型MRI装置の第1の実施例の全体構造の斜視図を示す。図1において、本実施例の磁石装置1は、撮影空間10を挟んで上下方向に対向して配置された上下の静磁場発生源2a、2bを備え、この静磁場発生源2a、2bによって撮影空間10に上下方向の均一な静磁場が形成される。図示では、撮影空間10の中心を原点0、上下方向をZ軸、左右方向をX軸、前後方向をY軸とする座標系を設定している。
【0075】
上下の静磁場発生源2a、2bの撮影空間10に対向する側には、それぞれ上下の磁極4a、4bが設置されている。上下の磁極4a、4bの撮影空間10に面する側には、撮影空間10側に円環状に突出し、磁性体で構成された上下の環状突起6a、6bが設置されている。上下の静磁場発生源2a、2bは、撮影空間10の左右に配置された、強磁性体から成る支柱(以下、強磁性体支柱ともいう)8a、8bによって機械的に支持されると共に、磁気的にも連結されている。上下の静磁場発生源2a、2bと支柱8a、8bとは、磁極4a、4b、環状突起6a、6bとともに、磁気回路を形成し、撮影空間10に発生された磁束の帰路となるので、磁石装置1の漏洩磁場が低減される。
【0076】
図1において、上下の静磁場発生源2a、2bで発生された磁束は、上下の磁極4a、4bおよび環状突起6a、6bを通過して撮影空間10に導かれ、ここに静磁場を形成する。撮影空間10の静磁場の磁場均一度を高めるためには、磁極4a、4bの撮影空間10に面する側の表面に凹凸を設けたり、環状突起6a、6bの高さを変えたり、磁極4a、4bと環状突起6a、6bの配置を変えたりしている。本実施例では、更に支柱5a、8bの偏在などに伴って撮影空間10に発生する不整磁場を除去するなど、撮影空間10の磁場均一度の一段の向上を図るために、環状突起6a、6bの構造および配置について改善を行っている。
【0077】
図2は、図1における上側の環状突起6aを、撮影空間10を含む座標系と共に表した斜視図である。環状突起6は磁極4の撮影空間10に面する側の外周部に配置されているが、本発明の要部となるため、図1の磁石装置1の全体構造から上側の環状突起6aのみを抜き出し、図2に座標系と共に示したものである。以下、図2によって、環状突起6の構造の詳細について説明する。図2において、座標の原点0は撮影空間10の中心であり、Z軸は図1における2個の静磁場発生源2a、2bの対向方向であると共に、撮影空間10に形成される静磁場の磁場方向でもある。X軸およびY軸の選び方には任意性がある。ここでは、一般に用いられるように、X軸は左右方向、Y軸は前後方向とし、Z軸に関する回転角度φをX軸から反時計方向に測ることにする。以下の実施例においても、特に指定しない限り同様とする。
【0078】
図2において、上側の環状突起6aは撮影空間10の上側に、Z軸を中心軸として円周方向に配置されている。本実施例では、この環状突起6aについて、その回転角度φにおける断面(以下、半径方向断面という)7の断面積Sを円周方向に沿って変化させるもので、この断面積Sを撮影空間10の不整磁場を除去するように円周方向に沿って増減するものである。この断面積Sの増減する範囲は円周方向の一部の領域でも、全部の領域でもよい。
【0079】
環状突起6の回転角度φにおける半径方向断面7の断面積Sは、その回転角度位置における磁性体の量に比例するので、本実施例では、環状突起6の円周方向における磁性体の量の分布を変えることができ、その結果環状突起6を通過して撮影空間10に導く磁束の撮影空間10における分布を変えることができる。従って、撮影空間10における不整磁場の分布に対応して、その不整磁場を除去するように、環状突起6の断面積Sを円周方向に沿って基準値に対して増減することにより、不整磁場を打ち消し、撮影空間10における磁場均一度を高めることができる。ここで、基準値として、最大値をとっているが、平均値や最小値などをとってもよい。
【0080】
環状突起6の半径方向断面7が、図示の如く、回転半径方向に平行な幅Dと、Z軸に平行な高さHから成る長方形である場合には、その回転角度φにおける断面積Sは幅Dと高さHによって決定される。従って、上記の断面積Sを円周方向に沿って変化させるためには、その半径方向断面7の幅Dおよび高さHのうちの一方または両方を円周方向に沿って変化させることによっても達成される。
【0081】
本実施例では、環状突起6の円周方向の一部の半径方向断面7の半径方向幅Dを、円周方向に沿って変化させて、撮影空間10の不整磁場を除去している。図1、図2において、本実施例では、不整磁場は後述するように、撮影空間10の強磁性体支柱8a、8bに近い領域、すなわちX軸方向に主に発生するので、環状突起6のX軸方向の領域の幅Dを変化させている。X軸方向には通常プラスの不整磁場が発生するので、これを除去するため、図2においては、環状突起6のX軸方向の領域の幅Dを減少させることにより、この領域からの撮影空間10への磁束の寄与を低減させて、不整磁場を打ち消すことにしている。
【0082】
図2において、環状突起6aの幅Dを、X軸方向で小さい値、すなわち回転角度φ=0°でD1、回転角度φ=180°でD3とし、Y軸方向で基準値DO(最大値)とする。最小幅D1、D3から最大幅D0までの間は、幅Dを順次広くして行くことになるが、最小幅D1、D3の値、幅Dの狭い領域の範囲及び幅Dの広げ方などは、撮影空間10における不整磁場の磁場強度の大きさ、不整磁場の発生している領域の範囲などに対応して決定される。すなわち、幅の差(D0−D1)、(D0−D3)は不整磁場の磁場強度の最大値にほぼ比例するようにし、幅Dの狭い領域は不整磁場の発生領域とほぼ一致するように決定される。
【0083】
上記において、環状突起6の幅Dを変化させる範囲は、通常撮影空間10の不整磁場が発生している領域に対応する円周方向の一部のみであるが、幅Dの変化範囲は円周方向の全領域に広げてもよい。後者の場合、低次の不整磁場の打ち消しのみならず、高次の不整磁場の打消しも可能となる。
【0084】
また、図1においては、静磁場発生源2a、2bは、上下の磁極4a、4bを背面で支持して、上下方向に撮影空間10を挟んで対向して配置されているが、本発明はこれに限定されず、静磁場発生源2a、2bを別の場所に配設し、その別の場所で発生した磁束を磁気回路にて磁極4a、4bに導き、磁極4a、4b及び環状突起6a、6bを通過した磁束によって撮影空間10に静磁場を形成する場合でも本発明は成り立つ。すなわち、撮影空間10を挟んで1対の磁極4a、4bが対向して配置され、静磁場発生源2a、2bの配置場所を問わず、静磁場発生源2a、2bで生成された磁束が磁極4a、4bを介して撮影空間10に導かれて、撮影空間10に静磁場を形成するような場合には、本発明は成り立つ。
【0085】
また、本実施例では、磁極4a、4bは上下方向に配置されているが、磁極4a、4bの配列方向はこれに限定されず、水平方向など他の方向に配列された場合でも、本発明は成り立つ。
【0086】
次に、本実施例において、撮影空間10の静磁場における不整磁場を打ち消すことができる理由について、図3乃至図5を用いて詳細に説明する。図3は、MRI装置の磁石装置による不整磁場の発生を説明するための図、図4は図3の不整磁場を本発明の環状突起により打ち消す場合を説明する平面図、図5は図3、図4に示した不整磁場と環状突起との関係を示す特性図である。
【0087】
まず、図3により、撮影空間10の静磁場における不整磁場の発生について説明する。図3(a)は強磁性体支柱によって撮影空間に発生する不整磁場の例、図3(b)は不整磁場の存在する撮影空間で被検体を撮影した断層画像の歪みの発生例を、それぞれ示したものである。図3(a)は、撮影空間10の中心0を通る磁石装置の横断面図であり、同図において、本例では撮影空間10の左右方向(X軸方向)に、2本の強磁性体支柱12a、12bが配置されている。
【0088】
撮影空間10内には、通常上下の静磁場発生源及び磁極によって均一な静磁場が形成される。しかし、図3(a)では、上記の2本の支柱12a、12bを配置したことによって、均一な静磁場内に不整磁場が発生する。この強磁性体支柱12a、12bの発生する不整磁場は、支柱12a、12bに近い部分で大きく、支柱12a、12bから距離が離れるにつれて小さくなる。このようにして2本の支柱12a、12bによって作られる不整磁場は、それぞれの支柱12a、12bからの寄与の重ね合わせとなり、定性的には図3(a)に示したような磁場強度分布となる。
【0089】
図3(a)では、支柱12a、12bの撮影空間10に作る不整磁場の様子を、その磁場強度の等高線14a、14b、14cで示している。支柱12a、12bに近い位置の等高線14aは高い磁場強度を、中心0に近い位置の等高線14cは低い磁場強度を示している。等高線14aで囲まれた、斜線を施した領域F1、F3は不整磁場の高い領域(以下、高不整磁場領域という)である。高不整磁場領域F1、F3における不整磁場強度は数百ppmに達する場合がある。
【0090】
これに対し、図3(b)には撮影空間10に挿入された被検体、例えば頭部の断層画像16が示されている。この断層画像16は説明を解り易くするため、画像の歪みのみを強調して示してある。この頭部の断層画像16は、被検体の頭部を撮影空間10の静磁場に配置し、傾斜磁場コイル及び高周波コイルを動作させることにより得られる。ここで、撮影空間10内の静磁場に、図3(a)に示すように、均一な静磁場を歪ませる高不整磁場領域F1、F3が存在すると、頭部の断層画像16には図3(b)に示すような位置に画像の歪みG1、G3が発生する。すなわち、高不整磁場領域F1、F3において、頭部の画像16が歪んだり、変形したりする画像の歪みG1、G3が発生する。
【0091】
以上説明した如く、撮影空間10の高不整磁場領域F1、F3は、強磁性体から成る支柱12a、12bに起因して発生したもので、支柱12a、12bに近い領域に形成される。そして、この高不整磁場領域F1、F3では、撮影した断層画像16において、画像が変形したり、或いは不鮮明になったりして、画像の歪みG1、G3が発生し、不整磁場と関係付けられる。
【0092】
次に、図4および図3(a)により、図3の不整磁場を環状突起の構造を変えて打ち消す場合について説明する。図4は、本発明による環状突起と支柱との関係を示した平面図である。図4において、撮影空間10の上下に本発明の環状突起20a、20bが配置され、その左右に2本の強磁性体支柱12a、12bが配置されている。ここで、本発明では、環状突起20a、20bの半径方向断面の断面積を変化させる(ここでは半径方向幅Dを変化させている)ことで、撮影空間10の不整磁場を打ち消そうとしている。
【0093】
図3(a)によれば、撮影空間10の不整磁場として支柱12a、12bの存在する左右方向(X軸方向)に高不整磁場領域F1、F3が存在するので、図4では、この高不整磁場領域F1、F3に対向する環状突起20a、20bのX軸方向の領域22a、22bにおける半径方向の幅寸法D1、D3を基準値となる幅寸法D0(最大値)より狭くする。すなわち、従来環状突起の幅Dが円周方向全体にわたって基準値のD0であったのに対して、本発明では高不整磁場領域F1、F3に対向する領域22a、22bの幅Dをそれぞれ基準値D0より小さい値D1、D3とするものである。
【0094】
環状突起20a、20bの幅Dの変化は、撮影空間10の高不整磁場領域F1、F3における不整磁場の磁場強度分布に応じて、領域22a、22bにわたってY軸方向の幅D0から徐々に狭くし、X軸方向で最小の幅D1、D3とし、更に徐々に広くし、Y軸方向の幅D0に戻すものである。幅Dの変化領域22a、22bにおける幅Dの変化のさせ方は、環状突起20a、20bの円周方向に沿って幅Dの減少量が対応する高不整磁場領域F1、F3における不整磁場の磁場強度にほぼ比例するように行われる。
【0095】
上記の不整磁場の打ち消し方法と効果を理解しやすくするため、数値を用いて説明してみることにする。先ず、支柱12a、12bによって、撮影空間10の高不整磁場領域F1、F3に、磁場強度値が(+3)の不整磁場が発生したとする。これを打ち消すために、環状突起20a、20bの領域F1、F3に対向する領域22a、22bの幅Dを狭くして幅D1、D3とすることによって、この領域22a、22bを透過して領域F1、F3に集まる磁束の量を変化させ、その変化による磁場強度の変化値を(−3)とする。この結果、高不整磁場領域F1、F3における不整磁場の磁場強度値(+3)は、環状突起20a、20bの幅Dを幅D1、D3に狭くしたことによる磁場強度値の減少(−3)によって打ち消され、均一な静磁場となる。
【0096】
図5は、上記の不整磁場と環状突起との関係を示した特性図である。図5において、横軸にはX軸を基準とした回転角度φを、縦軸には撮影空間10の不整磁場の発生する部分の円周方向の磁場強度fである。図中、横線24は撮影空間10の均一磁場領域の磁場強度f0を示している。実線25は支柱12a、12bによる不整磁場が発生している状態での磁場強度分布である。φ=0°近傍の領域F1とφ=180°近傍の領域F3でプラスの不整磁場f1とf3が発生している。これに対し、破線26は環状突起20a、20bの幅Dの変化による撮影空間10での磁場強度の変化量を示している。この破線26の磁場強度の値は、f0線を基準値(0)にして表している。幅Dを幅D1、D3とした領域D1、D3では、マイナスの磁場強度値d1、d3を持つ補正磁場を発生している。
【0097】
図5において、実線25の領域F1、F3の不整磁場f1、f3は、破線26の領域D1、D3の補正磁場d1、d3によって補正され、円周方向の全領域に渡って磁場強度f0の均一な磁場が得られる。このため、本発明のMRI装置によれば、撮影空間10の静磁場の不整磁場が除去され、磁場が均一化されるので、画面上に乱れのない、しかも鮮明な断層画像を撮影することができる。
【0098】
不整磁場を打ち消すために、環状突起20a、20bの半径方向断面の幅Dを変化する範囲に関しては、図4に示した例では、X軸方向の高不整磁場領域F1、F3に対向する領域22a、22bとしているが、この範囲は一部の領域に限定することなく、幅Dが基準値D0のままとしているY軸方向の極く近傍を除いて、円周方向の全領域としてもよい。不整磁場の打ち消し効果は、通常幅Dを変化する範囲を広げた方が良くなる。
【0099】
また、図4の例では、不整磁場を打ち消すために、環状突起の半径方向断面の幅Dを上記の如き範囲で変化させたが、不整磁場を打ち消す効果は環状突起の半径方向断面の断面積Sや断面の高さHを変化させることによっても、幅Dと同様に得られるので、これらの断面積Sや高さHを変化させる場合にも、それらの円周方向での変化範囲については、上記と同様なことが言える。
【0100】
次に、図6〜図8を用いて、本発明に係るオープン型MRI装置の第2の実施例について説明する。図6は、本発明に係るオープン型MRI装置の概略断面図、図7は図6の装置による不整磁場の発生を説明するための図、図8は図6の装置に使用した環状突起の構造図である。
【0101】
図6に示した第2の実施例の装置では、静磁場発生源を支持する支柱の材料に磁性体を使用していないが、このような場合でも撮影空間10に不整磁場が発生する。図6、図7を用いて、その不整磁場の発生の様子を、図8を用いて、その不整磁場の打ち消し方法について、それぞれ説明する。図6において、本実施例の磁石装置28では、撮影空間10を挟んで上下に対向して配置された磁性体から成る磁極30a、30bが、その外周部の一部を1本の支柱32によって支持されている。支柱30は非磁性体材料、例えばステンレス材などから成る。上下の磁極30a、30bの撮影空間10に対向する面側には環状突起34a、34bが配置されている。図6における座標系としては、撮影空間10の中心0を通り、上下方向をZ軸方向、支柱32のある左右方向をX軸方向(左側が正)、前後方向(前側が正)とする。
【0102】
この磁石装置28では、撮影空間10には上向きの静磁場が形成される。この静磁場を作るための磁束B0は矢印36a、36b、36cの方向に磁石装置28を透過しているので、この磁束B0により上下の磁極30a、30bと環状突起34a、34bとの間には矢印38a、38bで示す力Pが働く。この力Pによって、磁極30a、30b及び環状突起34a、34bはそれぞれ傾斜し(磁極の傾斜後の位置を破線で示す)、上下の磁極30aと30b間及び上下の環状突起34aと34b間で、右側すなわち支柱32に近い側のギャップに対して、左側すなわち支柱32から離れた側のギャップが狭くなるように傾斜する。
【0103】
このギャップの変化によって、撮影空間10の静磁場内には不整磁場が発生する。不整磁場の発生する領域を示したものが図7で、撮影空間10の支柱32から最も離れた領域F1と支柱32に最も近い領域F3に不整磁場が発生している。不整磁場は領域F1の方が領域F3よりも強く形成されている。撮影空間10の平均磁場強度f0を基準とした場合、不整磁場領域F1にはプラスの不整磁場f1が発生し、不整磁場領域F3にはマイナスの不整磁場f3が発生する。
【0104】
この不整磁場f1、f3を打ち消すために、本実施例では、図8に示す如く、環状突起34a、34bの半径方向断面の断面積Sを増減する。図8(a)は環状突起34a、34bの縦断面図、図8(b)はその平面図である。図8において、環状突起34a、34bのY軸方向の断面積S0を基準値として、支柱32から離れた不整磁場領域F1に対応する環状突起34a、34bの領域40aの断面積S1をS0より小さくし、支柱32に近い不整磁場領域F3に対応する環状突起34a、34bの領域40bの断面積S3をS0より大きくする。
【0105】
このように環状突起34a、34bの半径方向断面の断面積Sを増減することにより、断面積を小さくしてS1とした領域40aを透過する磁束が減少し、断面積を大きくしてS3とした領域40bを透過する磁束が増加するので、撮影空間10の不整磁場領域F1の磁場強度が(f1−f0)だけ減少し、不整磁場領域F3の磁場強度が(f0−f3)だけ増加する。この磁場強度の増減により、それぞれの不整磁場領域F1、F3の不整磁場は打ち消され、均一な静磁場が得られる。
【0106】
第1、第2の実施例では、静磁場発生源や磁極を支持する支柱の材料として、磁性体または非磁性体を使用したもの、支柱の本数として2本または1本配置したものについて説明したが、実際のオープン型MRI装置ではこれらの組み合わせとなり、磁性体支柱の存在によって発生する不静磁場や、支柱1本支持によって発生する不整磁場が、撮影空間に混在することになるため、不整磁場の存在する領域は2箇所に限らず1箇所または3箇所以上となる場合もある。このような場合においても、撮影空間10の不整磁場の発生箇所に対応して、環状突起の円周方向の対応位置の磁性体の量、または、断面積を、第1、第2の実施例と同様に増減すればよい。
【0107】
次に、図1、図2、図9〜図15を用いて、本発明の磁石装置での環状突起の変形例について説明する。
図1と図2は、上記の如く、第1の実施例を示したものである。この場合には、撮影空間10の強磁性体支柱8a、8bに近い位置に不整磁場の高い領域F1、F3が発生するので、この領域F1、F3に対向する上下の環状突起6a、6bの領域の半径方向断面について、上記の不整磁場を打ち消すように断面の高さH及び幅Dのうちの少なくとも一方を増減して、断面積Sを増減するものである。図2では、環状突起6aの幅Dを円周方向に沿って増減した例を示しており、高不整磁場領域F1、F3に対応するX軸方向の一部の領域において、幅Dを基準値D0に対しそれぞれ幅D1、D3に減少させて、断面積Sを減少させている。
【0108】
この場合、環状突起6a、6bの一部の領域の断面積Sを領域F1、F3の不整磁場を打ち消すように変化させるために、領域F1、F3に対応する環状突起6a、6bの一部の領域の幅Dについて、幅の狭い幅D1またはD3の領域から幅の広い幅D0の領域へと、円周方向に沿って両方向(左回りと右回り)に順次幅Dが広くなるように変化させるならば、撮影空間10の不整磁場の発生領域における位置とその位置の不整磁場強度値に合わせて、環状突起6a、6bの断面の位置と断面積Sの値を順次選定し、この断面積Sの値に対応して幅Dを決めればよい。このため、環状突起6a、6bは1種類だけ製作すればよいので、その製作が容易となる。また、1種類の環状突起6a、6bについて、円周方向に回転して幅の狭い位置を不整磁場発生領域に合わせれば、不整磁場を打ち消すことができるので、調整作業を容易に行うことができる。
【0109】
また、図9には、本発明に係るオープン型MRI装置の第3の実施例の概略構造図を示す。図9において、磁石装置44は、撮影空間10を挟んで対向して配置された上下の静磁場発生源2a、2b、磁極4a、4b、環状突起46a、46bと、静磁場発生源2a、2bなどを左右方向で支持する支柱8a、8bとから成る。本実施例では、撮影空間10に発生した不整磁場と対向する環状突起46a、46bの円周方向の一部の領域の高さHを、不整磁場を打ち消すように変化させ、環状突起46a、46bの撮影空間10側の端面50a、50bが波型形状を形成するようにしている。
【0110】
図9において、図9(a)は装置全体の正面図で、図9(b)は下側の環状突起46bのφ=45°方向の縦断面図である。図9の座標系は、支柱8a、8bのある左右方向がX軸方向で、回転角度φはX軸を基準にして反時計回りに設定される。本実施例では、不整磁場が撮影空間10のφ=0°、90°、180°、270°の4箇所の領域に存在し、φ=0°、180°の領域ではプラスの不整磁場が存在し、φ=90°、270°の領域ではマイナスの不整磁場が存在すると想定している。
【0111】
このため、これらの不整磁場を打ち消すために、本実施例の環状突起46bでは図9(a)、図9(b)に示す如く、φ=90°、270°の領域にて半径方向断面47の断面積Sを大きくするために高Hを高くし、φ=0°、180°の領域にて断面積Sを小さくするために高さHを低くしている。それぞれの領域においては、高さHは、対応する位置の不整磁場の量に応じて、円周方向に沿って順次変化させる。その結果、環状突起46bの撮影空間10側の端面50bが波型形状を形成する。
【0112】
環状突起46の高さHを変化させる領域は、通常撮影空間10の不整磁場の発生領域に対応する円周方向の一部の領域であるが、この高さ変化領域は円周方向の全領域にわたってもよい。後者の場合の如く環状突起46の全領域にわたって高さHを増減して不整磁場の打ち消しを行うときは、高次の不整磁場の打ち消しも可能となるので、撮影空間10の磁場を均一化するための効果はより大きくなる。
【0113】
また、図10には、本発明に係るオープン型MRI装置の第4の実施例の環状突起の平面図を示す。図10において、本実施例の環状突起52a、52bは実質的には図2に示した第1の実施例の環状突起6a、6bと同じであるが、本実施例では、環状突起54a、54bが、円周方向の一部ではなく、全領域にわたって回転角度φにおける幅Dを順次変化させている。すなわち、環状突起52a、52bの幅Dは、X軸方向の幅の狭い幅D1またはD3の領域からY軸方向の幅の広い幅D0の領域へと、円周方向に沿って全領域にわたって、両方向(左回りと右回り)に順次広がるように形成されている。その結果、本実施例においても、図9の第3の実施例と同様な効果が得られる。
【0114】
本実施例では、第1の実施例の如くX軸方向(回転角度φ=0°とφ=180°の2箇所)に同レベルのプラスの磁場強度の不整磁場が発生した場合や、第3の実施例の如く、X軸方向(φ=0°とφ=180°の2箇所)に同レベルのプラスの不整磁場、Y軸方向(φ=90°とφ=270°の2箇所)に同レベルのマイナスの不整磁場が発生した場合に、幅D1、D3を、または幅D1、D3、D0を適切に調整することにより、撮影空間10の不整磁場を打ち消すことができ、撮影空間10の磁場を均一化することができる。
【0115】
また、図11では、本発明の係るオープン型MRI装置の第5の実施例の環状突起の平面図を示す。図11において、上下の環状突起54a、54bの半径方向の幅Dは、左右方向(X軸方向)で狭く、前後方向(Y軸方向)で広く形成されている。さらに、X軸方向の幅D1とD3はほぼ同じであるが、Y軸方向では後方領域55の幅D2は前方領域56の幅D4より広くなっている。後方領域55では、幅の狭い幅D1、D3から幅の広い幅D2へと、前方領域56では、幅の狭い幅D1、D3から幅の広い幅D4へと、円周方向に沿って順次幅が広くなるように形成されている。環状突起54a、54bの後方領域55と前方領域56とを重ね合わせると、後方領域55の面積の方が前方半分領域56の面積より広く形成されている。
【0116】
本実施例は、撮影空間10のX軸方向(φ=0°とφ=180°の2箇所)に同じレベルのプラスの磁場強度の不整磁場があり、Y軸方向(φ=90°とφ=270°の2箇所)にレベルの異なるマイナスの磁場強度の不整磁場がある場合や、X軸方向に同じレベルのプラスの磁場強度の不整磁場(2箇所)があり、Y軸方向のφ=90°の位置にマイナスの磁場強度の不整磁場がある場合などに有効に適用され、環状突起52の半径方向の幅D1~D4を適切に調整することにより、撮影空間10の不整磁場を打ち消すことができ、磁場の均一化を図ることができる。
【0117】
上記の幅Dの調整において、不整磁場がX軸方向に2箇所、Y軸方向に2箇所発生している前者の場合には、φ=0°〜45°及びφ=135°〜180°の位置に幅Dの基準値D0を設定して、X軸方向では幅を狭くしてD1、D3になるようにし、Y軸方向では幅を広くして、φ=90°では最大幅D2とし、φ=270°では基準値D0より少し大きい幅D4とする。また、不整磁場がX軸方向に2箇所、Y軸方向に1箇所発生している後者の場合には、φ=270°の位置の幅D4を基準値D0とし、X軸方向では幅を狭くしてD1、D3とし、Y軸方向のφ=90°では幅を広くしてD2とする。
【0118】
また、本実施例においても、環状突起54a、54bの幅の増減を円周方向の全域にわたって行っているが、この幅の増減を行う領域は円周方向の一部のみでよいことは言うまでもない。すなわち撮影空間10の不整磁場の発生領域に対応する環状突起54a、54bの一部の領域に限定してもよいことは言うまでもない。
【0119】
また、本実施例では、環状突起54a、54bの円周方向の3〜4箇所に幅Dの増減領域を設けたが、この個数は撮影空間10の不整磁場の領域の個数に応じて決定するものであり、実施例における個数によって特に限定されるものではない。他の実施例においても同様である。
【0120】
また、図12及び図13には、本発明に係るオープン型MRI装置の第6の実施例の環状突起の構造図を示す。図12は、下側の環状突起と磁極との組み合わせの斜視図、図13は環状突起の平面図である。本実施例では、図12、図13において、磁極4b(4a)の表面に大径環状突起60と小径環状突起62とから構成される組合せ環状突起58b(58a)が配置されている。大径環状突起60の外周は磁極4bの外周面とほぼ一致するように作られ、大径環状突起60の内側に小径環状突起62がほぼ同心で配置されている。
【0121】
本実施例では、大径環状突起60の幅DLと、小径環状突起62の幅DSは、ともに円周方向に沿って変化させている。図13において、大径環状突起60では、Y軸方向に幅DLの最大値DL2と最小値DL4があり、X軸方向に、幅DLの平均値DL1、DL3がある。これに対し、小径環状突起62では、Y軸方向に幅DSの最小値DS2、DS4があり、X軸方向に幅DSの最大値DS1、DS3がある。大径環状突起60では、Y軸方向における幅の狭い幅DL4から円周方向に沿って両方向に幅DL1、幅DL3を経由して、幅の広い幅DL2へと、順次幅DLが大きくなるように変化させている。小径環状突起62では、Y軸方向における2箇所の幅の狭い幅DS2、DS4から円周方向に沿って両方向に2箇所の幅の広い幅DS1、DS3へと、順次幅DSが大きくなるように変化させている。大径環状突起60の幅の広い幅DL2の位置と、小径環状突起62の幅の広い幅DS1、DS3の位置とが約90°だけ方向が異なっている。
【0122】
本実施例の環状突起58a、58bでは、大径環状突起60によって、主に撮影空間10の外周部のY軸方向の不整磁場を打ち消し、小径環状突起62によって、主に撮影空間10の内周部のX軸方向及びY軸方向の不整磁場を打ち消すことができる。すなわち、前者では、外周部のY軸方向のφ=90°の位置のマイナスの不整磁場とφ=270°のプラスの不整磁場を打ち消し、後者では、内周部のX軸方向のマイナスの不整磁場とY軸方向のプラスの不整磁場を打ち消すことができる。
【0123】
上記の如く、本実施例では、半径の異なる環状突起を2個ずつ上下の磁極に配置したことで、撮影空間10の不整磁場について、円周方向のみならず、半径方向についても打ち消すことができる。また、本実施例では、大径環状突起60と小径環状突起60とで、円周方向の不整磁場の打ち消し領域を変えていることから、不整磁場の発生箇所が多い場合や、不整磁場の発生領域が半径方向に対して傾斜している場合などに有効な不整磁場の打ち消し方法である。
【0124】
また、本実施例では、環状突起の個数が2個の場合について説明したが、これに限定されず、3個以上であってもよいことは言うまでもない。また、本実施例では、環状突起の広い幅の位置を相互間で約90°ずらしたがこれに限定されず、他の角度ずらしてもよいことは言うまでもない。
【0125】
また、図14には、本発明に係るオープン型MRI装置の第7の実施例の環状突起の平面図を示す。本実施例は、環状突起を半径方向の幅dの異なる複数の部材で構成したものである。図14において、上下の環状突起64a、64bは半径方向の幅がそれぞれda、db、dc(da<db<dc)の3種類の環状突起ブロック66a、66b、66cによって構成されている。図示の場合、3種類の環状突起ブロック66a、66b、66cは、その外周がほぼ円形となるように円周方向に配置され、X軸方向には幅の広い(幅dc)環状突起ブロック66cが、Y軸方向には幅の狭い(幅da)環状突起ブロック66aが、両者の間には幅が中間値(幅db)の環状突起ブロック66bが、それぞれ配置されている。
【0126】
また、本実施例では、装置の中心軸であるZ軸を中心にして、環状突起64a、64bの外周面はほぼ円形であるが、その内周面は環状突起ブロック毎に半径が異なるため階段状になっている。このため、その内周面については、環状突起ブロック66の内周面の包絡線68をとり、この包絡線68によって環状突起64a、64bの内周面を代表させている。このように、包絡線で内周面を代表させることにより、図2の第1の実施例などと同様に取り扱うことができる。
【0127】
また、本実施例では、内周面の包絡線68の半径Rが回転角度φに関して、周期的に変化するように、各環状突起ブロックの幅dを決めることができる。このように内周面の包絡線68の半径Rを周期的に変化させることにより、撮影空間10の周期的な不整磁場を容易に打ち消すことができる。
【0128】
環状突起64a、64bを構成する環状突起ブロック66の個数に関しては、図示では8個としているが、これに限定されず、他の個数でもよい。環状突起ブロック66の個数が多いほど包絡線68に近付き、不整磁場の補正精度を向上させることはできるが、部品の加工や組立作業において製造コストが増加する。実際の装置製造では両者の兼ね合いを検討する必要があるが、発明者達の経験では環状突起64a、64b1個当り60個以内にするのが適当である。
【0129】
図14に示した例では、内周面の半径の異なる環状突起ブロック66を環状突起64a、64bの円周方向の全領域にわたって配置しているが、環状突起ブロック66を配置する範囲は円周方向の一部のみでもよい。すなわち、撮影空間10の不整磁場の発生している領域に対向する環状突起64a、64bの一部の領域のみでもよい。
【0130】
図14に示した環状突起64a、64bでは、外周面の半径は同じで、内周面の半径の異なる複数個の環状突起ブロック66を内周方向に沿って配列することで構成されているが、本発明ではこれに限定されず、内周面の半径が同じで、外周面の半径の異なる複数個の環状突起ブロックを円周方向に沿って配列してもよいし、また内周面と外周面の両方の半径の異なる複数個の環状突起ブロックを円周方向に沿って配列してもよい。これらの場合、前者の例では、外周面が階段状になっているので、この包絡線をとって、環状突起としての外周面を代表させ、後者の例では、内周面、外周面ともに階段状になっているので、両者の包絡線をとって、環状突起としての内周面と外周面を代表させることにより、図14の第7の実施例と同様に取り扱うことができる。
【0131】
環状突起ブロック66の固定は、通常環状突起ブロック66個々に磁極4a、4bに直接、例えばボルトなどによって取り付けられる。ボルトの材料は磁性体でも非磁性体でもよいが、不整磁場の補正精度を上げるためには、環状突起ブロック66と同じ材質の磁性体が適当である。
【0132】
図15には、本発明にかかるオープン型MRI装置の第8の実施例の概略構造図を示す。図15において、磁石装置70は、撮影空間10を挟んで対向して配置された上下の静磁場発生源2a、2b、磁極4a、4b、環状突起72a、72bと、静磁場発生源2a、2bなどを左右方向で支持する支柱8a、8bとから成る。本実施例では、環状突起72a、72bを高さ方向の寸法の異なる複数の部材で構成したものである。図15において、上下の環状突起72a、72bは円周方向に沿って配置されたZ軸方向の高さhの異なる複数の環状突起ブロック74a、74b、74cなどによって構成されている。
【0133】
複数の環状突起ブロック74によって形成された環状突起72a、72bの撮影空間10側の端面は階段状になっているので、本実施例では、これらの端面の包絡線76a、76bをとり、環状突起72a、72bの撮影空間10側の端面を代表させることにする。図示の例では、この包絡線76a、76b、すなわち環状突起72a、72bの端面は図9の第3の実施例と同様に波型形状をしているので、本実施例の場合も、図9の第3の実施例と同様に取り扱うことができる。
【0134】
また、本実施例においても、環状突起72a、72bの撮影空間10側の端面の包絡線76a、76bの高さHがZ軸に関する回転角度φに関して周期的に変化するように各環状突起ブロック74の高さhを決めることができる。このように、端面の包絡線76a、76bの高さHを周期的に変化させることにより、撮影空間10の周期的な不整磁場を容易に打ち消すことができる。
【0135】
図15に示した例では、端面の高さhの異なる環状突起ブロック74を環状突起72a、72bの円周方向の全領域にわたって配置しているが、環状突起ブロック74を配置する範囲は円周方向の一部のみでもよい。すなわち、撮影空間10の不整磁場が発生している領域に対向する環状突起72a、72bの一部の領域のみでもよい。
【0136】
本実施例においても、図14の第7の実施例と同様、加工上の見地から見て、環状突起ブロック74の個数は環状突起72a、72bの1個当り60個以内が適当である。また、それぞれの環状突起ブロック74の固定も、図14の第7の実施例と同様に行われる。
【0137】
上記の第7、第8の実施例では、環状突起を幅dまたは高さhの異なる複数の環状突起ブロックを円周方向に配列して構成した例を示したが、これらの例はいずれも環状突起ブロックの幅dまたは高さhを変えることによって環状突起ブロックの断面積Sを変えたもので、環状突起ブロックの半径方向断面が長方形の場合に適用されるものである。本発明は、環状突起ブロックの半径方向断面の形状を問わず、断面積Sの異なる複数の環状突起ブロックを円周方向に沿って配列して環状突起を構成した場合にも成立する。この場合には、例えば、環状突起ブロックの半径方向断面に外接する長方形(ただし、各辺は半径方向とZ軸方向とに平行とする)を作り、半径方向に平行な辺を幅、Z軸方向に平行な辺を高さとみなすことにより、第7、第8の実施例と同様に取り扱うことができる。
【0138】
以上の説明では、撮影空間の不整磁場を打ち消すように環状突起を変形するという考え方に基づいて実施例の説明を進めてきたが、以下の説明では、撮影空間の不整磁場を球面調和関数で展開した次数に着目して、環状突起の形状を解析した実施例の説明を進めることにする。
【0139】
図1に示した磁石装置1において、撮影空間10に上下の静磁場発生源2a、2bが発生する磁場のZ軸方向成分は一般に式(1)で表される。
【数1】
Figure 0004040334
ここで、(r、θ、φ)は図2に示した座標における極座標であり、rは原点0からの半径、θはZ軸からの回転角度、φはX軸からの回転角度である。また、Pn mは次数が(n、m)の倍ルジャンドル関数、An m及びBn mは各次数の磁場強度を表す展開係数である。
【0140】
式(1)において、特に、次数が(0,0)の磁場は、座標に依存しない磁場であり、撮影空間10に発生させたい均一な磁場である。一方、それ以外の次数の磁場は、座標によって変化する磁場であり、磁場の均一度を悪化させるため、不整磁場または不整磁場成分と呼ばれ、図3(b)などで示した如く、撮影された断層画像に画像歪みを発生させる。
【0141】
図1に示した第1の実施例、または図6に示した第2の実施例などの磁石装置においては、強磁性体支柱の配設、または磁極間に働く磁気的吸引力の影響などによって、式(1)における次数(1,1)、(3,1)、及び(2,2)などの低次の不整磁場が大きく発生する。例えば、図1に示す如く、支柱8a、8bがX軸方向の対称の位置に配置された場合などには、上記の次数(2,2)などのモードm=2の不整磁場が主に発生し、また、図6に示す如く、磁極間に大きな磁気的吸引力が働いて磁極が変位する場合などには、上記の次数(1,1)、(3,1)などのモードm=1の不整磁場が主に発生する。
【0142】
先ず、図6に示した第2の実施例の磁石装置では、式(1)における次数(1,1)、(3,1)などのモードm=1の不整磁場が大きく発生しているので、このモードm=1の不整磁場成分を打ち消すためには、図6、図8において、環状突起34a、34bの半径方向断面35の断面積Sなどを円周方向に沿ってモードm=1で周期的に変化させればよい。具体的には、図8において、環状突起34a、34bの回転角度φにおける断面積Sを周期的に変化させる。
【0143】
この例では、式(1)から分かるように、モードm=1の不整磁場成分を最も効率よく打ち消す方法は、上記断面積Sを回転角度φに関してモードm=1の正弦関数で変化させること、すなわち断面積Sを式(2)のように変化させることである。
【数2】
Figure 0004040334
ここで、Sは環状突起34a、34bの断面積の平均値、SB,1はその断面積変化の振幅である。
【0144】
式(2)によれば、環状突起34a、34bの断面積Sは、X軸方向のφ=0°で最小値(S0−SB,1)、φ=180°で最大値(S0+SB,1)となり、Y軸方向のφ=90°、270°で中間値S0となる。図8との対比では、最小値(S0−SB,1)はS1、最大値(S0+SB,1)はS3、中間値S0はS0であり、最大値と最小値の間では正弦関数的に変化している。
【0145】
環状突起34a、34bの断面積Sを式(2)のように変化させることによって、環状突起34a、34bはモードm=1の磁場成分を選択的に発生する。従って、振幅SB,1を適切に定めることにより、図6に示した磁石装置28の撮影空間10に発生しているモードm=1の不整磁場と大きさが等しく、符号が反対のモードm=1の磁場成分を発生させることができ、モードm=1の不整磁場を打ち消して、撮影空間10の磁場を均一にすることができる。
【0146】
ここで、座標系は発明などの物理的概念を説明するために導入したものであり、座標系の取り方には任意性がある。従って、この座標系の取り方によって本実施例における発明の本質が変わるものではない。すなわち、本実施例における発明の本質は、環状突起の断面積、高さ、または半径方向の幅を、打ち消すべき不整磁場の次数に対応させて、正弦関数的に周期的変化させることである。
【0147】
次に、図1に示した第1の実施例の磁石装置では、式(1)における次数(2,2)などのモードm=2の不整磁場が大きく発生しているので、このモードm=2の不整磁場成分を打ち消すためには、図1、図2において、環状突起6a、6bの半径方向断面7の断面積Sなどを円周方向に沿ってモードm=2で周期的に変化させればよい。具体的には、図2において、環状突起6a(6b)の回転角度φにおける断面積Sを周期的に変化させるために、半径方向の幅Dを周期的に変化させる。
【0148】
この場合も、式(1)から分かるようにモードm=2の不整磁場成分を最も効率よく打ち消す方法は、上記半径方向の幅Dを回転角度φに関してモードm=2の正弦関数で変化させること、すなわち、半径方向の幅Dを式(3)のように変化させることである。
【数3】
Figure 0004040334
ここで、D0は環状突起6a、6bの半径方向の幅の平均値、DB,2はその幅変化の振幅である。
【0149】
式(3)によれば、環状突起6a、6bの幅Dは、X軸方向で最小値(D−DB,2)、Y軸方向で最大値(D0+DB,2)となる。図2との対比では、最小値(D0−DB, )はD1またはD3、最大値(D0+DB,2)はD0であり、最小値と最大値の間では正弦関数的に変化している。
【0150】
環状突起6a、6bの幅Dを式(3)のように変化させることによって、環状突起6a、6bはモードm=2の磁場成分を選択的に発生する。従って、振幅DB,2を適切に定めることにより、図1の磁石装置1の撮影空間10に発生しているモードm=2の不整磁場と大きさが等しく、符号が反対のモードm=2の磁場成分を発生させることができ、モードm=2の不整磁場を打ち消して、撮影空間10の磁場を均一にすることができる。
【0151】
また、図9に示した第3の実施例では、上下の環状突起46a、46bの高さHを円周方向に沿って式(4)の如く変化させている。
【数4】
Figure 0004040334
ここで、H0は環状突起46a、46bの平均高さ、HB,2はその高さ変化の振幅である。
【0152】
環状突起46a、46bの高さHを式(4)の如く変化させることにより、環状突起46a、46bは撮影空間10にモードm=2の磁場成分を選択的に発生するため、振幅HB,2の値を適切に選ぶことにより、強磁性体支柱8a、8bに起因して撮影空間10に発生するモードm=2の不整磁場を打ち消して、撮影空間10の磁場を均一にしている。本実施例は、図1の第1の実施例と同様に、モードm=2の不整磁場を打ち消す場合に好適である。
【0153】
同様に、図10に示した第4の実施例では、上下の環状突起52a、52bの半径方向の幅Dを式(5)の如く変化させている。
【数5】
Figure 0004040334
ここで、D0は環状突起52a、52bの平均幅、DB,2はその幅変化の振幅である。
【0154】
環状突起52a、52bの幅Dを式(5)の如く変化させることにより、環状突起52a、52bは撮影空間10にモードm=2の磁場成分を選択的に発生するため、振幅DB,2を適切に選ぶことにより、モードm=2の不整磁場を打ち消して、撮影空間10の磁場を均一にしている。本実施例における式(5)は第1の実施例における式(3)と全く同じであり、図1の第1の実施例と同様に、モードm=2の不整磁場を打ち消す場合に好適である。
【0155】
また、図11に示した第5の実施例では、上下の環状突起54a、54bの半径方向の幅Dを円周方向に沿って式(6)の如く変化させている。
【数6】
Figure 0004040334
ここで、Dは環状突起54a、54bの平均幅、DA,1はそのモードm=1での幅変化の振幅、DB,2はそのモードm=2での幅変化の振幅である。
【0156】
環状突起54a、54bの幅Dを式(6)の如く変化させることにより、環状突起54a、54bは撮影空間10にモードm=1及びモードm=2の磁場成分を選択的に発生するため、振幅DA,1及びDB,2を適切に選ぶことにより、モードm=1及びモードm=2の不整磁場を打ち消して、撮影空間10の磁場を均一化している。
【0157】
本実施例の場合、モードm=1及びモードm=2の2つのモードの不整磁場を打ち消すことができるので、モードm=1とモードm=2との組み合わせの不整磁場を打ち消すことが可能となる。このため、実用的には、図1の第1の実施例や図6の第2の実施例などより複雑な構造の磁石装置での不整磁場の打ち消しに利用することができる。
【0158】
また、図12に示した第6の実施例では、上下の磁極4a、4bにそれぞれ2個ずつの環状突起、すなわち、大径環状突起60と、その内周に配置された小径環状突起62を設置し、それぞれの環状突起60、62の半径方向の断面積を異なるモードで変化させる場合を示している。具体的には、図13において、外側の大径環状突起60については、その半径方向の幅DLを式(7)の如く変化させ、内側の小径環状突起62については、その半径方向の幅DSを式(8)の如く変化させている。
【数7】
Figure 0004040334
【数8】
Figure 0004040334
【0159】
環状突起60,62のそれぞれの幅DL、DSを式(7)、(8)の如く変化させることにより、撮影空間10に、外側の環状突起60はモードm=1の磁場成分を、内側の環状突起62はモードm=2の磁場成分を、それぞれ選択的に発生するため、振幅DA,1、DB,2を適切に選択することにより、モードm=1及びm=2の不整磁場を打ち消して、撮影空間10の磁場を均一にしている。
【0160】
本実施例の場合、環状突起を磁極の内周部と外周部に配置しているので、撮影空間10の半径方向に幅のある領域を持った不整磁場を打ち消すことができるとともに、大径環状突起60と小径環状突起62とで異なるモードを持つ不整磁場を打ち消すことができる。
【0161】
また、大径環状突起60と小径環状突起62とでは、不整磁場を打ち消すために発生する磁場のモードや位相をそれぞれ独立に変更することができるので、撮影空間の全領域にわたって数多く存在する不整磁場などを打ち消すために有効である。この効果は、環状突起の数を3個以上に増加することにより、増強されるとともに、補正の精度も向上する。
【0162】
また、図14に示した第7の実施例では、上下の環状突起64a、64bがそれぞれ幅Dの異なる複数の環状突起ブロック66a、66b、66cなどで構成されている。各環状突起ブロック66の外周面の半径はほぼ同じで、内周面の半径はそれぞれの半径方向の幅dに対応して異なっている。このため、各環状突起ブロック66の内周面の半径方向の寸法を包絡線68の半径方向の寸法で近似的に決めるようにしている。本実施例では、各環状突起ブロック66の半径方向の幅dは、その内周面の包絡線68と外周面との幅Dが円周方向に関して周期的に変化するように決められている。この結果、内周面の包絡線68の回転角度φにおける半径Rも周期的に変化し、本実施例では式(9)の如く変化させている。
【数9】
Figure 0004040334
ここで、R0は内周面の包絡線68の平均半径、RB,2はその半径変化の振幅である。
【0163】
環状突起64a、64bの環状突起64a、64bの内周面の包絡線68の半径Rを式(9)の如く変化させることにより、環状突起64a、64bを構成する環状突起ブロック66の幅Dが式(9)とほぼ同じモードm=2で円周方向に沿って変化するため、環状突起64a、64bはモードm=2の磁場成分をほぼ選択的に発生し、式(9)の振幅RB,2を適切に選択することにより、モードm=2の不整磁場を打ち消して、撮影空間10の磁場を均一化している。
【0164】
本実施例では、環状突起64a、64bを構成する環状突起ブロック66の各々が異なる半径の内周面を持つ場合について説明したが、本発明ではこれに限定されず、環状突起ブロックの各々が、異なる半径の外周面を持つ場合や異なる半径の内周面と外周面とを持つ場合にも同様に適用される。
【0165】
また、図15に示した第8の実施例では、上下の環状突起72a、72bは、それぞれZ軸方向の高さhの異なる複数の環状突起ブロック74a、74b、74cなどで構成されている。各環状突起ブロック74は、その幅がほぼ同じで、撮影空間10側の端面までの高さhがそれぞれ異なっている。このため、環状突起72a、72bの端面を各環状突起ブロック74の端面の包絡線76a、76bの寸法で近似的に決定するようにしている。本実施例では、各環状突起ブロック74の端面の高さを、その端面の包絡線76a、76bのZ軸方向の高さHで代表し、その高さHが円周方向に関して周期的に変化するように決められている。この結果、端面の包絡線76a、76bの回転角度φにおける高さHは周期的に変化し、本実施例では式(10)の如く変化させている。
【数10】
Figure 0004040334
ここで、H0は環状突起72a、72bの端面の包絡線76a、76bの高さの平均値、HB,2はその高さ変化の振幅である。
【0166】
環状突起72a、72bの端面の包絡線76a、76bの高さHを式(10)の如く変化させることにより、環状突起72a、72bを構成する環状突起ブロック74の高さhが式(10)とほぼ同じモードm=2で円周方向に沿って変化するため、環状突起72a、72bはモードm=2の磁場成分をほぼ選択的に発生し、式(10)の振幅HA,2を適切に選択することにより、モードm=2の不整磁場を打ち消して、撮影空間10の磁場を均一にしている。
【0167】
上記の第1〜第8の実施例の磁石装置では、支柱が1本の場合、または支柱が2本で対称位置に配置されている場合など単純な構成となっているため、これらの例で、撮影空間10に発生する不整磁場はモードm=1またはm=2の低次のものが主なものであった。これに対し、実際の磁石装置では、支柱が2本でも非対称の位置に配置されたり、支柱が3本以上配置されたりする。これらの場合には、モードm=1または2の不整磁場の他にモードm=3以上の不整磁場が発生する。例えば、2本の強磁性体支柱を回転方向に120°の間隔で配置した場合には、モードm=1、2以外に、モードm=3の不整磁場が主に発生するとともに、更に高次のモードの不整磁場が発生する。
【0168】
このように撮影空間10に発生する不整磁場のモードmが低次から高次にわたる場合には、それぞれのモードの不整磁場の値を求め、これらの不整磁場の値に対応して、モードごとに環状突起の半径方向断面の断面積(または磁性体の量)の周期的な変化を示す正弦関数の数式を算出し、最後にモードごとの正弦関数の数式を加算して、全体としての環状突起の断面積(または磁性体の量)の周期的変化値を求めるものである。
【0169】
上記の周期的変化値により断面積などの補正をした環状突起では、それぞれのモード不整磁場を打ち消すための磁場成分をモードごとに選択的に発生するため、モードごとに不整磁場が打ち消されることにより、全体として不整磁場が打ち消され、撮影空間10の磁場が均一化される。
【0170】
上記の実施例の説明において、環状突起の周期的変形の形態に関して、座標系を導入して説明を行ってきた。しかし、座標系は本来物理現象を説明するための補助的な手段であり、この座標系の取り方の任意性によって、本発明の内容が限定されることはない。本発明の要点は、環状突起を円周方向に関して周期的に変形させることであり、このことを理解しやすくするために、座標系を導入して説明してきたものであるということは、当業者であれば容易に理解できることであろう。
【0171】
また、上記の静磁場発生源は、撮影空間10に静磁場を形成するために、何らかの起磁力源を備えている。この起磁力源としては、超電導コイルや常電導コイルや永久磁石などを用いることができる。超電導コイルは、これを超電導状態まで冷却するのに冷却手段を必要とするが、撮影空間に高磁場を発生することができるので、本発明の磁石装置に適用することにより、高解像度で、歪みのない鮮明なMR画像を得ることができる。また、常電導コイルでは、発生する磁場は超電導コイルの場合より低くなるが、コイルの冷却が不要なために、装置の製造コスト及び維持費を低減することができる。また、永久磁石では、コイルを用いていないために、コイルの電源やコイルの付勢が不要となるため、装置の保守管理が容易となり、装置の維持費を大幅に低減することができる。
【0172】
【発明の効果】
以上説明した如く、本発明のMRI装置によれば、撮影空間を挟んで対向して配置した磁極の対向面側に環状突起を配置して、この環状突起の円周方向の少なくとも一部の磁性体の量、または半径方向断面の断面積、幅、高さなどを増減することによって、撮影空間に発生する不整磁場を打ち消し、磁場の均一化を図っている。また、磁極などを支持するために、磁性体支柱を用いる場合には、これによって発生する不整磁場を除去するために、環状突起の支柱に対応する位置の磁性体の量、または半径方向断面の断面積、幅、高さなどを増減することによって、上記の不整磁場を打ち消し、撮影空間の磁場を均一化している。
【0173】
また、本発明のMRI装置によれば、環状突起を半径方向に2個以上配置して、これらの環状突起の円周方向の少なくとも一部の磁性体の量、または半径方向断面の断面積、幅、高さなどを増減することによって、撮影空間に発生する不整磁場を円周方向及び半径方向にわたって、すなわち撮影空間のほぼ全領域にわたって不整磁場を打ち消し、撮影空間の磁場を均一化している。
【0174】
また、本発明のMRI装置によれば、環状突起を半径方向断面の断面積、または幅、または高さの異なる複数の環状突起部材で構成することにより、一体で環状突起を生成したものと同様に、撮影空間の不整磁場を打ち消すことができるとともに、環状突起部材の加工及びその組立が容易になるため、環状突起の製造コストを低減することができる。
【0175】
また、本発明のMRI装置によれば、磁石装置が起磁力源と、一対の対向配置された静磁場発生源が撮影空間を挟んで対向して配置された一対の磁極と、磁極の対向面側に配置された1個以上の環状突起とを備え、この環状突起の半径方向断面の断面積、または幅、または高さが、円周方向に関して周期的に変化しているので、撮影空間に発生した不整磁場で、その磁場強度分布が円周方向に関して周期的に変化するものを打ち消すことができ、その結果、撮影空間の磁場を均一化することができる。
【0176】
また、本発明のMRI装置によれば、磁極の対向面側に配置された1個以上の環状突起を備え、環状突起が複数の環状突起部材から構成され、これらの環状突起部材の半径方向断面の断面積、または幅、または高さが、円周方向に関して周期的に変化しているので、撮影空間の円周方向に関して磁場強度が周期的に変化している不整磁場を打ち消すことができるとともに、分割した環状突起部材の加工及びその組立が容易になるため、製造コストを低減することができる。
【0177】
また、本発明のMRI装置によれば、磁極の対向面側に配置された1個以上の環状突起を備え、環状突起が複数の環状突起部材から構成され、これらの環状突起部材の半径方向の内周面を結ぶ内面包絡線、または半径方向の外周面を結ぶ外面包絡線、または撮影空間に面する端面を結ぶ端面包絡線が、円周方向に関して周期的に変化しているので、撮影空間の円周方向に関して磁場強度が周期的に変化している不整磁場を打ち消すことができるとともに、分割した環状突起部材の加工及びその組立が容易になるため、製造コストを低減することができる。
【0178】
また、本発明のMRI装置によれば、上記の環状突起の半径方向断面の断面積、または幅、または高さ、または包絡線が、円周方向に関して正弦関数的に変化しているので、撮影空間の円周方向に沿って正弦関数的に変化するような磁場強度分布を持つ不整磁場を打ち消すことができ、撮影空間の磁場を均一化することができる。
【0179】
また、本発明のMRI装置によれば、上記の環状突起の半径方向断面の断面積、または幅、または高さ、または包絡線が、円周方向の1周に関して1以上の整数であるモードmにより正弦関数的に変化しているので、撮影空間の円周方向に沿って、モードmの正弦関数で変化するような磁場強度分布を持つ不整磁場を打ち消すことができる。
【0180】
また、本発明のMRI装置によれば、上記の環状突起の半径方向断面の断面積、または幅、または高さ、または包絡線が、円周方向の1周に関して2つ以上の異なる1以上の整数であるモードmによる正弦関数の重ね合わせにより変化しているので、撮影空間の円周方向に沿って、複数のモードの正弦関数の重ね合わせで変化するような磁場強度分布を持つ不整磁場を打ち消すことができる。
【0181】
また、本発明のMRI装置によれば、磁極の対向面側に配置された少なくとも2つ以上の環状突起を備え、これらの環状突起の半径方向断面の断面積、または幅、または高さ、または包絡線が、それぞれの円周方向の1周に関して、1以上の異なる整数であるモードm、nなどにより正弦関数的に変化しているので、撮影空間のそれぞれの環状突起に対応する円周方向に沿って、異なるモードの正弦関数の重ね合わせで変化するような半径方向にも分布した磁場強度分布を持つ不整磁場を打ち消すことができる。
【0182】
また、本発明のMRI装置によれば、撮影空間を挟んで対向して配置された1対の静磁場発生源間、または1対の磁極間を機械的に結合する磁性体または非磁性体の支柱を備えているので、磁極間は大きな変形なく支持され、撮影空間では大きい開放性が得られる。また、上記の磁性体支柱、または非磁性体支柱の場合には、支柱状の磁性体を付加することにより、静磁場発生源間または磁極間を磁性体で磁気的に接続して磁気回路を形成しているので、装置の漏洩磁場を低減することができる。
【0183】
また、本発明のMRI装置によれば、起磁力源を超電導コイルとした場合には、撮影空間に高い磁場強度で、均一な静磁場が得られるので、高解像度で鮮明なMR画像が得られ、起磁力源を常電導コイルとした場合には、コイルの冷却が不要となり、装置の製造コスト及び維持費を低減することができ、また起磁力源を永久磁石とした場合には、装置の保守が容易となり、装置の維持費が大幅に低減される。
【図面の簡単な説明】
【図1】本発明に係るオープン型MRI装置の第1の実施例の全体構造の斜視図。
【図2】図1における上側の環状突起を撮影空間を含む座標系と共に表した斜視図。
【図3】 MRI装置の磁石装置による不整磁場の発生を説明するための図。
【図4】図3の不整磁場を本発明の環状突起により打ち消す場合を説明する平面図。
【図5】図3、図4に示した不整磁場と環状突起との関係を示す特性図。
【図6】本発明に係るオープン型MRI装置の概略断面図。
【図7】図6の装置による不整磁場の発生を説明するための図。
【図8】図6の装置に使用した環状突起の構造図。
【図9】本発明に係るオープン型MRI装置の第3の実施例の概略構造図。
【図10】本発明に係るオープン型MRI装置の第4の実施例の環状突起の平面図。
【図11】本発明に係るオープン型MRI装置の第5の実施例の環状突起の平面図。
【図12】本発明に係るオープン型MRI装置の第6の実施例の下側の環状突起の斜視図。
【図13】図12で使用した環状突起の平面図。
【図14】本発明に係るオープン型MRI装置の第7の実施例の環状突起の平面図。
【図15】本発明に係るオープン型MRI装置の第8の実施例の概略構造図。
【図16】従来のオープン型MRI装置の概略断面図。
【図17】図16の装置に使用されている環状突起の平面図。
【図18】本発明に係るMRI装置の構成を示すブロック図。
【符号の説明】
1、28、44、70…磁石装置
2、2a、2b…静磁場発生源
4、4a、4b、30a、30b…磁極
6、6a、6b、20a、20b、34a、34b、46a、46b、52a、52b、54a、54b、64a、64b、72a、72b…環状突起
7、47…半径方向断面
8、8a、8b、12a、12b、48a、48b…支柱(強磁性体支柱)
10…撮影空間(均一磁場領域)
14a、14b、14c…磁場強度の等高線
16…断層画像
22a、22b…幅を狭くする領域
32…支柱(非磁性体支柱)
36a、36b、36c、38a、38b…矢印
40a、40b…領域
50a、50b…端面
55…後方領域
56…前方領域
58a、58b…組合せ環状突起
60…大径環状突起
62…小径環状突起
66、66a、66b、66c、74、74a、7b、74c…環状突起ブロック
68、76、76a、76b…包絡線
D、D0、D1、D2、D3、D4、DL、DL1、DL2、DL3、DL4、DS、DS1、DS2、DS3、DS4…幅
d1、d3…補正磁場強度
F1、F3…高不整磁場領域
f0…磁場基準値
f1、f3…不整磁場強度
G1、G3…画像の歪み
S、S0、S1、S3…断面積

Claims (3)

  1. 撮影空間を挟んで対向して配置された1対の磁極と、該磁極と磁気的に連結され、前記磁極を通して前記撮影空間に静磁場を発生させる静磁場発生源と、前記磁極の対向面側に円環状に突出して配置された磁性体から成る環状突起とを備えた磁気共鳴イメージング装置において、
    前記環状突起は、同心で配置される外径の異なる複数の環状突起部材で構成され、
    前記撮影空間の磁場を均一化するために、前記複数の環状突起部材それぞれの円周方向の少なくとも一部の磁性体の量を増減させ、
    前記環状突起部材の最も外側に配置される環状突起部材(大径環状突起部材)以外の環状突起部材(小径環状突起部材)は、前記大径環状部材の磁性体の量を増加させる箇所と円周方向の位置が異なる箇所の磁性体の量を増加させること
    を特徴とする磁気共鳴イメージング装置。
  2. 請求項1記載の磁気共鳴イメージング装置であって、
    前記小径環状突起部材の前記磁性体の量を増加させる箇所は、前記大径環状突起部材の前記磁性体の量を増加させる箇所と中心角が約90度異なる位置であること
    を特徴とする磁気共鳴イメージング装置。
  3. 請求項1または2記載の磁気共鳴イメージング装置であって、
    前記複数の環状突起部材の半径方向断面の幅を、円周方向に関して周期的に変化させ、前記大径環状部材および前記小径環状突起部材の円周方向の少なくとも一部の磁性体の量を増加させること
    を特徴とする磁気共鳴イメージング装置。
JP2002069656A 2002-03-14 2002-03-14 磁気共鳴イメージング装置 Expired - Fee Related JP4040334B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002069656A JP4040334B2 (ja) 2002-03-14 2002-03-14 磁気共鳴イメージング装置
PCT/JP2003/002951 WO2003075757A1 (fr) 2002-03-14 2003-03-12 Dispositif a aimant et imagerie par resonance magnetique utilisant ledit dispositif

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002069656A JP4040334B2 (ja) 2002-03-14 2002-03-14 磁気共鳴イメージング装置

Publications (3)

Publication Number Publication Date
JP2003265434A JP2003265434A (ja) 2003-09-24
JP2003265434A5 JP2003265434A5 (ja) 2005-07-07
JP4040334B2 true JP4040334B2 (ja) 2008-01-30

Family

ID=29200433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002069656A Expired - Fee Related JP4040334B2 (ja) 2002-03-14 2002-03-14 磁気共鳴イメージング装置

Country Status (1)

Country Link
JP (1) JP4040334B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519382A (ja) * 2011-05-31 2014-08-14 コーニンクレッカ フィリップス エヌ ヴェ Mri放射線治療装置の静磁場補正

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5366484B2 (ja) * 2007-09-28 2013-12-11 株式会社東芝 磁気共鳴イメージング装置およびこの磁気共鳴イメージング装置における脂肪抑制効果の分析方法
JP2011525389A (ja) * 2008-06-24 2011-09-22 アルバータ ヘルス サービシズ 磁石組立体およびイメージング・ボリューム用の磁場を決定する方法
CN110676009A (zh) * 2019-10-18 2020-01-10 江苏力磁医疗设备有限公司 专科磁共振用倾斜开口磁体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519382A (ja) * 2011-05-31 2014-08-14 コーニンクレッカ フィリップス エヌ ヴェ Mri放射線治療装置の静磁場補正

Also Published As

Publication number Publication date
JP2003265434A (ja) 2003-09-24

Similar Documents

Publication Publication Date Title
JP3694659B2 (ja) マグネット及びその磁場調整方法並びに磁気共鳴撮像装置
JP3499973B2 (ja) 核スピン断層撮影装置用のアクティブシールド付きトランスバーサル勾配コイル装置
US6853281B1 (en) Magnet apparatus and mri apparatus
JPH09153408A (ja) 超電導磁石装置
JPS63272335A (ja) 磁気共鳴イメ−ジング装置
JP3728199B2 (ja) 磁気共鳴イメージング装置
KR100341201B1 (ko) 그레디언트 코일, 그레디언트 코일 유니트, 그레디언트코일 및 엠알아이 장치 제조 방법
JP2001327478A (ja) Mri用傾斜磁場コイル
JPH11267112A (ja) 磁気共鳴像形成システム用グラジエントコイルアセンブリ
JP2002034947A (ja) マグネット装置、および、これを用いたmri装置
JP4040334B2 (ja) 磁気共鳴イメージング装置
JPH11276457A (ja) 磁気共鳴像形成システム用グラジエントコイルアセンブリ
US6937017B2 (en) Magnetic pole magnet device using the magnetic pole, and magnetic resonance imaging apparatus
JPH02291840A (ja) 磁気共鳴像形成装置用磁石
JP3980105B2 (ja) 静磁場発生装置及び磁気共鳴イメージング装置
JP2003265435A (ja) 磁気共鳴イメージング装置用磁石装置
Ren et al. Study on shimming method for open permanent magnet of MRI
JP4293686B2 (ja) 静磁場発生装置及びそれを用いた磁気共鳴イメージング装置
JP4749699B2 (ja) 磁気共鳴イメージング装置
JP2838106B2 (ja) 核磁気共鳴イメージング装置
JP4651236B2 (ja) 磁気共鳴イメージング装置
JP2005185318A (ja) 磁石装置及び磁気共鳴イメ−ジング装置
JPH0422337A (ja) 磁界発生装置
JP4250479B2 (ja) 磁気共鳴イメージング装置
JPH10262947A (ja) 磁気共鳴検査装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees