JP4038650B2 - 内燃機関の回転角センサの故障診断制御装置 - Google Patents

内燃機関の回転角センサの故障診断制御装置 Download PDF

Info

Publication number
JP4038650B2
JP4038650B2 JP2001308488A JP2001308488A JP4038650B2 JP 4038650 B2 JP4038650 B2 JP 4038650B2 JP 2001308488 A JP2001308488 A JP 2001308488A JP 2001308488 A JP2001308488 A JP 2001308488A JP 4038650 B2 JP4038650 B2 JP 4038650B2
Authority
JP
Japan
Prior art keywords
angle sensor
signal
cam
crank
rotation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001308488A
Other languages
English (en)
Other versions
JP2003113734A (ja
Inventor
克彦 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2001308488A priority Critical patent/JP4038650B2/ja
Publication of JP2003113734A publication Critical patent/JP2003113734A/ja
Application granted granted Critical
Publication of JP4038650B2 publication Critical patent/JP4038650B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、内燃機関の回転角センサの故障診断制御装置に係り、特に回転角センサの誤診断を防止する内燃機関の回転角センサの故障診断制御装置に関する。
【0002】
【従来の技術】
車両等に搭載される内燃機関においては、例えば、回転軸の回転角を検出する回転角センサ等の各種センサを設け、これら各種センサからの各種信号により、空燃比が目標値になるように燃料噴射量を制御し、空燃比を適正にして燃焼性を改善し、触媒による排気浄化効率を向上し、排出される排気有害成分の低減しているものがある。
【0003】
内燃機関には、回転角センサとして、例えば、回転軸としてのカム軸の回転角を検出するカム角センサや、回転軸としてのクランク軸の回転角を検出するクランク角センサ等の各種センサを設けている。しかし、これらセンサが故障した場合には、誤った検出結果となり、空燃比を適正に維持することができなくなるものである。
【0004】
そこで、例えば、カム角センサやクランク角センサの故障診断にあっては、図16、17に示す如く、イグニションスイッチ(Ig・SW)がオンになってイグニション信号がオンになった条件と(図16の時間T1で示す)、その後、クランキングスイッチ(又はスタータスイッチ(ST・SW))がオンになってクランキング信号(又はスタータ信号)がオンになった条件と(図16の時間T2で示す)、このクランキング信号(又はスタータ信号)のオンになった時(図16の時間T2で示す)から一定時間であるx1秒間(図16の時間T2〜時間T3の間で示す)までに、カム信号(CMCNT)(又はクランク信号(CRCNT))が検出されていない条件との、全ての条件を満たしたときに、カム角センサ又はクランク角センサが異常であると診断している。
【0005】
また、このような回転角センサの診断方法としては、例えば、特開2000−82240号公報に開示されている。この公報に記載のものは、バッテリ電圧の変化からクランキング時間を計測し、クランキング時間が長いときに、所定気筒の行程判断が終了していない場合、クランク角センサが故障と診断し、スタータスイッチがない内燃機関でも、クランク角センサの誤診断を防止するものである。
【0006】
【発明が解決しようとする課題】
ところが、従来、回転角センサであるカム角センサ又はクランク角センサの診断方法にあっては、図18に示す如く、例えば、クランキングスイッチ(又はスタータスイッチ(ST・SW))が故障していて、クランキング信号(又はスタータ信号)が始めから高電圧(High)側にショートしている場合に、イグニションスイッチ(Ig・SW)がオンになり(図18の時間T4で示す)、その後、クランキング信号(又はスタータ信号)がオンになったという動作が生じないので、カム信号(CMCNT)(又はクランク信号(CRCNT))が制御手段に入力されなくなり、よって、イグニション信号のオン時(図18のT4で示す)からの一定時間であるx1秒間経過時に(図18のT5で示す)、カム角センサ(又はクランク角センサ)の異常フラグが立ってしまい、正常なカム角センサ(又はクランク角センサ)が異常であると誤診断され、市場では、カム角センサ(又はクランク角センサ)が故障したという誤った情報により、正常なカム角センサ(又はクランク角センサ)が不必要に交換されてしまうという不都合があった。
【0007】
【課題を解決するための手段】
そこで、この発明は、上述の不都合を除去するために、内燃機関の一方の回転軸としてのカム軸の回転角を検出して二つのカム信号を出力するカム角センサと、前記内燃機関の他方の回転軸としてのクランク軸の回転角を検出してクランク信号を出力するクランク角センサとから構成される回転角センサを設け、イグニション信号がオンした後に前記回転角センサからの出力信号の有無によって前記回転角センサが故障か否かを診断する内燃機関の回転角センサの故障診断制御装置において、スタータ信号を検出するスタータ信号検出手段を設け、前記スタータ信号検出手段によりスタータの作動を検出し、且つエンジン負荷の変化量が設定値より大きい場合には、前記二つのカム信号を第1カム信号と第2カム信号として前記第1カム信号のパルス数と前記第2カム信号のパルス数とを計測し、前記クランク信号のパルス数を計測し、計測されたエンジン1回転あたりの前記第1カム信号のパルス数と前記第2カム信号のパルス数と前記クランク信号のパルス数の割合と、設定された正常値とを比較し、前記カム信号の異常か、前記クランク信号の異常か、前記カム角センサのハード部の異常かを判断する制御手段を設けたことを特徴とする。
【0008】
【発明の実施の形態】
この発明は正常な回転角センサが誤って異常と誤診断されることがなくなり、回転角センサの取付不良による異常時に、その取付不良と、回転角センサそのものの破損や配線の断線ショート、回転角センサの部品の破損による異常等とを区別することが可能となり、よって、このような不具合の発生時に、故障部位を特定することで、修理時間や異常箇所を見つけ出すための作業時間の短縮を図り、また、正常なのに異常と誤って診断された回転角センサを不必要に交換することがなくなり、部品・作業コストの低廉や、作業時間の短縮を図ることができる。
【0009】
【実施例】
以下図面に基づいてこの発明の実施例を詳細且つ具体的に説明する。図1〜15は、この発明の実施例を示すものである。図15において、2は車両(図示せず)に搭載される内燃機関、4は吸気通路、6は排気通路である。
【0010】
内燃機関2は、一側の第1シリンダバンク8と他側の第2シリンダバンク10とをV字形状に配置して構成されている。
【0011】
吸気通路4には、上流側から順次に、エアクリーナ12と、吸入空気の温度を検出する吸気温センサ14と、吸入空気量を検出するエアフローセンサ16と、スロットルバルブ18とが配設されている。吸気通路4の下流側は、2本の第1、第2分岐吸気通路4−1、4−2に分岐されている。第1分岐吸気通路4−1は第1シリンダバンク8側の燃焼室(図示せず)に接続されるとともに、第2分岐吸気通路4−2は第2シリンダバンク10側の燃焼室に接続されている。
【0012】
また、吸気通路4には、スロットルバルブ18のスロットル開度を検出するスロットル開度センサ20が設けられている。更に、吸気通路4には、スロットルバルブ18を迂回するバイパス通路22が設けられている。このバイパス通路22途中には、空気流量を調整するアイドル制御弁(ISCバルブ)24が設けられている。
【0013】
排気通路6は、上流側が2本の第1、第2分岐排気通路6−1、6−2に分岐されている。第1分岐排気通路6−1は第1シリンダバンク8側の燃焼室に接続されるとともに、第2分岐排気通路6−2は第2シリンダバンク10側の燃焼室に接続されている。
【0014】
第1分岐排気通路6−1途中に第1触媒コンバータ26−1が設けられるとともに、第2分岐排気通路6−2途中には第2触媒コンバータ26−2が設けられている。第1分岐排気通路6−1途中の第1触媒コンバータ26−1よりも上流側部位には、第1分岐排気通路6−1の排気中の酸素濃度を検出する第1フロント側O2センサ28−1が設けられている。また、第1分岐排気通路6−1途中の第1触媒コンバータ26−1よりも下流側部位には、第1リヤ側O2センサ30−1が設けられる。
【0015】
第2分岐排気通路6−2途中の第2触媒コンバータ26−2よりも上流側部位には、第2分岐排気通路6−2の排気中の酸素濃度を検出する第2フロント側O2センサ28−2が設けられる。また、第2分岐排気通路6−2途中の第2触媒コンバータ26−2よりも下流側部位には、第2リヤ側O2センサ30−2が設けられる。
【0016】
第1、第2リヤ側O2センサ30−1、30−2よりも下流側部位においては、第1、第2分岐排気通路6−1、6−2が合流され、この合流部位よりも下流側の排気通路6途中には三元触媒コンバータ32が配設される。
【0017】
内燃機関2には、燃焼室に指向させて燃料噴射弁34が設けてられている。この燃料噴射弁34は、燃料供給通路36を介して燃料タンク38に連絡されている。この燃料タンク38内の燃料は、燃料ポンプ40によって圧送され、燃料フィルタ42で含有した塵埃が除去されて燃料供給通路36によって燃料噴射弁34に供給される。
【0018】
燃料供給通路36途中には、燃料の圧力を調整する燃料圧力調整部44が連絡して設けられている。この燃料圧力調整部44は、吸気通路4に連通する導圧通路46から導入される吸気圧力である吸気管圧力によって燃料圧を一定値に調整し、余剰の燃料を燃料戻り通路48から燃料タンク38に戻させるものである。燃料タンク38には、燃料レベルセンサ50と圧力センサ52とが配設されている。
【0019】
燃料タンク38内は、蒸発燃料用通路54を介してスロットルバルブ18よりも下流側の吸気通路4に連通している。蒸発燃料用通路54の途中には、キャニスタ56が設けられている。
【0020】
内燃機関2には、EGR制御手段58が設けられている。このEGR制御手段58には、排気系から吸気系に還流される排気のEGR量を調整するEGRバルブ60が設けられている。このEGRバルブ60は、排気系の第2フロント側O2センサ28−2よりも上流側の第2分岐排気通路6−2と吸気系の第1、第2分岐吸気通路4−1、4−2の合流部位とを連通するEGR通路62とに設けられ、電子的に制御されてEGR量を調整するものである。
【0021】
内燃機関2の第2シリンダバンク10には、PCVバルブ64が設けられている。
【0022】
吸気温センサ14と、マスエアフローセンサ16と、スロットル開度センサ20と、アイドル制御弁24と、第1フロント側O2センサ28−1と、第1リヤ側O2センサ30−1と、第2フロント側O2センサ28−2と、第2リヤ側O2センサ30−2と、燃料噴射弁34と、燃料ポンプ40と、圧力センサ52と、EGRバルブ60とは、制御手段(ECM)66に連絡している。
【0023】
また、この制御手段66には、内燃機関2の一方の回転軸としてのカム軸の回転角を検出してカム信号を出力する回転角センサとしてのカム角センサ68と、吸気圧力である吸気管圧力を検出する吸気圧センサ70と、イグニションコイルアッセンブリ72と、内燃機関2の冷却水温度を検出する水温センサ74と、内燃機関2の他方の回転軸としてのクランク軸の回転角を検出してクランク信号を出力する回転角センサとしてのクランク角センサ76と、インジケータランプ78と、接続端子80と、パワーステアリング圧力スイッチ82と、ヒータブロアファンスイッチ84と、クルーズ・コントロール・モジュール86と、車速センサ88と、コンビネーションメータ90と、A/Dコンデンサファンリレー92と、A/Cコントローラ94と、データリンクコネクタ96と、ABSコントローラモジュール98と、メインリレー100と、エンジンキーを回すとオンしてイグニション信号を出力するイグニションスイッチ102、P/Nポジションスイッチ104と、バッテリ106と、スタータが作動するとオンになってスタータ信号を出力するスタータ信号検出手段としてのスタータスイッチ108と、O/Dオフランプ110と、パワーランプ112と、ライティングスイッチ114と、ストップランプスイッチ116と、O/Dカットスイッチ118と、パワー/ノーマルチェンジスイッチ120と、4WD・LOWスイッチ122と、トランスミッションレンジスイッチ124と、第1ソレノイドバルブ126と、第2ソレノイドバルブ128と、TCCソレノイドバルブ130と、A/Tインプットスピードセンサ132と、A/Tアウトプットスピードセンサ134と、内燃機関2がクランキングするとオンになるクランキングスイッチ136と、エンジン回転数を検出するエンジン回転数センサ138とが連絡している。
【0024】
更に、この制御手段66には、一定時間(x1)の燃料噴射量(Tp)の変化量(ΔTp)を算出可能な燃料噴射変化量算出部66Aと、一定時間(x1)のバッテリ電圧(Vb)の変化量(ΔVb)を算出可能なバッテリ電圧変化量算出部66Bと、一定時間(x1)の吸入空気(Qa)の変化量(ΔQa)を算出可能な吸入空気変化量算出部66Cと、一定時間(x1)の吸気圧力である吸気管圧力(負圧)(Pin)の変化量(ΔPin)を算出可能な吸気圧力変化量算出部66Dとが備えられるとともに、スタータスイッチ108からのスタータ信号を入力し、図1、7に示す如く、燃料噴射変化量算出部66Aで算出した燃料噴射量の変化量(ΔTp)が設定値(TPM)よりも大きい条件とバッテリ電圧変化量算出部66Bで算出したバッテリ電圧の変化量(ΔVb)が設定値(VBM)よりも大きい条件と吸入空気変化量算出部66Cで算出した吸入空気の変化量(ΔQa)が設定値(QAM)よりも大きい条件と吸気圧力変化量算出部66Dで算出した吸気管圧力の変化量(ΔPin)が設定値(PINM)よりも大きい条件との少なくとも一つの条件を満たした時に、カム角センサ68やクランク角センサ76が故障と診断する故障診断部66Eが備えられ、更に、タイマ66Fが備えられている。前記一定時間(x1)は、従来の図16、18に示す時間と同じものである。
【0025】
つまり、この実施例において、具体的には、回転角センサであるカム角センサ68やクランク角センサ76の誤診断の信頼性を高めるために、図1に示す如く、スタータスイッチ108からのスタータ信号を入力し、燃料噴射変化量算出部66Aで算出した燃料噴射量の変化量(ΔTp)が設定値(TPM)よりも大きい条件と、バッテリ電圧変化量算出部66Bで算出したバッテリ電圧の変化量(ΔVb)が設定値(VBM)よりも大きい条件と、吸入空気変化量算出部66Cで算出した吸入空気の変化量(ΔQa)が設定値(QAM)よりも大きい条件と、吸気圧力変化量算出部66Dで算出した吸気管圧力の変化量(ΔPin)が設定値(PINM)よりも大きい条件との、全ての条件を満たした時に、カム角センサ68やクランク角センサ76が故障と診断する。また、図8、15に示す如く、クランク角センサ76がクランク歯車76Aとセンサ体76Bとからなり、センサ体76Bから制御手段66に入力される出力波形が、従来の図15に示すように、センサ体76B内の波形整形部76B−1によって波形整形され、その波形整形されたパルス信号が制御手段66に入力される場合についての提案である。また、カム角センサ68から2つのカム信号1・2、クランク角センサ76から1つのクランク信号を出力している場合で、且つ、これら各信号は、従来の図16に示すよう、波形整形されたパルス信号であり、図7に示す如く、エンジン1回転の時のカム信号1:カム信号2:クランク信号は、2:3:12として設計されている場合である。
【0026】
次に、この実施例の作用を、図1〜6の各フローチャートに基づいて説明する。
【0027】
内燃機関2を始動する際、エンジンキーで電源が入ると、プログラムがスタートし(ステップ202)、その後、イグニションスイッチ102がオンか否かを判断し(ステップ204)、イグニションスイッチ102がオフで、ステップ204がNOの場合は、この判断を継続し、一方、イグニションスイッチ102がオンで、ステップ204がYESの場合は、スタータスイッチ108がオンか否かを判断し(ステップ206)、スタータスイッチ108がオフで、ステップ206がNOの場合は、ステップ204に戻し、一方、スタータスイッチ108がオンで、スタータが作動し、ステップ206がYESに場合は、内燃機関2が始動する。
【0028】
このとき、スタータが作動すれば、燃料噴射が行われ、バッテリ電圧がスタータの負荷によって低下し、吸入空気量が増加し、吸気管圧力が変化するものである。
【0029】
従来においては、図16、17に示すように、カム角センサ及びクランク角センサの故障診断において、イグニションスイッチがオンになった条件と、クランキングスイッチ(スタータスイッチ)がオンになった条件と、このクランキングスイッチ(スタータスイッチ)のオン時からカム信号が一定時間であるx1秒間カウントされていない条件との、全ての条件を満たすことで、カム角センサ(又はクランク角センサ)が異常と診断していた。
【0030】
ところが、図18に示す如く、クランキング信号(スタータ信号)が高電圧(High)側にショートしていると、カム角センサ(又はクランク角センサ)の故障診断条件が成立してしまい、クランキング信号(又はスタータ信号)が異常であるにもかかわらず、カム角センサ(又はクランク角センサ)が異常と誤診断されてしまうという不具合があった。
【0031】
そこで、この実施例においては、内燃機関2の始動の際、実際にスタータが作動した時に、エンジン負荷の変化量として、燃料噴射量の変化量(ΔTp)、バッテリ電圧の変化量(ΔVb)、吸入空気の変化量(ΔQa)、吸気管圧力の変化量(ΔPin)の夫々の値を検出し、これら各変化量を夫々の設定値と比較し、これら各変化量を、単独又は組み合わせて、カム角センサ68又はクランク角センサ76の故障の診断条件に加味する。
【0032】
つまり、図1に示す如く、ステップ206がYESの後に、燃料噴射量の変化量(ΔTp)が設定値(TPM)よりも大きいか否かを判断し(ステップ208)、ΔTp<TPMで、このステップ208がNOの場合は、ステップ204に戻し、一方、ΔTp>TPMで、このステップ208がYESの場合には、バッテリ電圧の変化量(ΔVB)が設定値(VBM)よりも大きいか否かを判断し(ステップ210)、ΔVB<VBMで、このステップ210がNOの場合は、ステップ204に戻し、一方、ΔVB>VBMで、このステップ210がYESの場合には、吸入空気の変化量(ΔQa)が設定値(QAM)よりも大きいか否かを判断し(ステップ212)、ΔQa<QAMで、このステップ212がNOの場合に、ステップ204に戻し、一方、ΔQa>QAMで、このステップ212がYESの場合に、吸気管圧力の変化量(ΔPin)が設定値(PINM)よりも大きいか否かを判断し(ステップ214)、ΔPin<PINMで、このステップ214がNOの場合は、ステップ204に戻す。
【0033】
一方、ΔPin>PINMで、このステップ214がYESの場合には、一定時間のx1秒間のカム信号1のパルス数をCMCNT1に記録し、x1秒間のカム信号1のカム信号電圧をCM1Vに記録し、一定時間のx1秒間のカム信号2のパルス数をCMCNT2に記録し、x1秒間のカム信号2のカム信号電圧をCM2Vに記録する(ステップ216)。
【0034】
また、クランク信号のパルス数をCRCNTに記録し、クランク信号電圧をCRVに記録する(ステップ218)。
【0035】
そして、一定時間のx1秒間経過したか否かを判断し(ステップ220)、このステップ220がNOの場合は、ステップ216に戻る。
【0036】
一定時間のx1秒間経過して、このステップ220がYESの場合には、カム信号1のパルス数が、CMCNT1>1として、1パルス以上計測されたか否かを判断する(ステップ222)。
【0037】
もし、カム信号1のパルス数が1パルスも計測されず、CMCNT1<1であり、このステップ222がNOの場合は、カム信号1が断線しているか、高電圧(High)ショートしているかを判断するために、先ず、図2のA部分に示す如く、カム信号1のカム信号電圧(CM1V)が設定値であるカム信号判定電圧(CMMIN)よりも大きいか否かを判断し(ステップ224)、CM1V>CMMINで、このステップ224がYESの場合は、カム信号1の高電圧(High)ショートの異常とし(ステップ226)、CM1V<CMMINで、このステップ224がNOの場合には、カム信号1の低電圧(Low)ショートの異常とする(ステップ228)。
【0038】
前記ステップ222がYESで、CMCNT1>1の場合には、図3のB部分に示す如く、カム信号2のパルスが入力されているので、次に、カム信号2のパルス数が、CMCNT2>1として、1パルス以上計測されたか否かを判断する(ステップ230)。
【0039】
もし、カム信号2のパルス数が1パルスも計測されず、CMCNT2<1で、このステップ230がNOの場合は、カム信号2が断線しているか、高電圧(High)ショートしているかを判断するために、先ず、カム信号2のカム信号電圧(CM2V)が設定値であるカム信号判定電圧(CMMIN)よりも大きいか否かを判断し(ステップ232)、CM2V>CMMINで、このステップ232がYESの場合は、高電圧(High)ショートの異常とし(ステップ234)、一方、CM2V<CMMINで、このステップ232がNOの場合には、低電圧(Low)ショートの異常とする(ステップ236)。
【0040】
図3の前記ステップ230がYESの場合には、図4のC部分に示す如く、クランク角センサ76のクランク信号(CRCNT)を診断する。
【0041】
先ず、クランク信号(CRCNT)のパルス数が、CRCNT1>1として、1パルス以上計測されたか否かを判断する(ステップ238)。
【0042】
もし、クランク信号のパルス数が1パルスも計測されず、CRCNT<1で、このステップ238がNOの場合は、クランク信号が断線しているか、高電圧ショートしているかを判断するために、先ず、クランク信号のクランク信号電圧(CRV)が設定値であるクランク信号判定電圧(CRVMIN)よりも大きいか否かを判断し(ステップ240)、CRV>CRVMINで、このステップ240がYESの場合は、高電圧(High)ショートの異常とし(ステップ242)、一方、CRV<CRVMINで、このステップ240がNOの場合には、低電圧(Low)ショートの異常とする(ステップ244)。
【0043】
図2の前記ステップ226・228、図3のステップ234・236、及び、図4のステップ242・244の異常診断の後は、図5のD部分に示す如く、ランプ等を点灯し、運転者にその異常を知らせ(ステップ246)、プログラムをエンドとする(ステップ248)。
【0044】
一方、図4の前記ステップ238でYESの場合には、カム信号1、2、クランク信号のパルス数CMCNT1:CMCNT2:CRCNTが、正常か否かを診断する。
【0045】
即ち、図6のE部分に示す如く、CMCNT1、CMCNT2、CRCNTの各パルス数を取り入れ(ステップ250)、CMCNT1、CMCNT2、CRCNTが異常か否かを判断し(ステップ252)、CMCNT1:CMCNT2:CRCNTが正常であれば、2:3:12の割合で、パルスが入力されるので、パルス割合が合って、このステップ252がNOの場合に、正常とし(ステップ254)、プログラムをエンドとする(ステップ256)。
【0046】
一方、CMCNT1:CMCNT2:CRCNTが2:3:12の割合でなく、CMCNT1:CMCNT2:CRCNTが異常で、このステップ252がYESの場合には、CMCNT1、CMCNT2のパルス数が、異常か否かを判断する(ステップ258)。
【0047】
つまり、CMCNT1:CMCNT2が2:3であり、パルス割合が正常であり、ステップ258がNOの場合に、カム角センサ76が正常で、クランク角センサ76のパルスが異常とする(ステップ260)。
【0048】
一方、前記ステップ258がYESの場合には、カム角センサ68が異常で、パルス割合が正常でなければ、CMCNT1:CRCNTと2:12のパルス割合が正しいか否かを判断し(ステップ262)、CMCNT1:CRCNTと2:12のパルス割合が正しく、このステップ262がNOの場合は、カム信号2のパルスが異常とする(ステップ264)。
【0049】
一方、前記ステップ262がYESの場合に、CMCNT1:CRCNTと2:12のパルス割合が正しくなく、CMCNT2とCRCNTとのパルス割合を比較し(ステップ266)、CMCNT2とCRCNTとのパルス割合が正しく、このステップ266がNOの場合に、カム信号1のパルスが異常とする(ステップ268)。
【0050】
前記ステップ266がYESで、CMCNT2とCRCNTとのパルス割合が正しくない場合には、全ての信号割合がバラバラであり、カム角センサ68のハード部が異常とする(ステップ270)。
【0051】
前記ステップ260、264、268、270の診断の後は、ランプ等を点灯し、運転者にその異常を知らせ(ステップ272)、プログラムをエンドとする(ステップ256)。
【0052】
そして、もし、カム角センサ68とクランク角センサ76との双方が異常であった場合には、この診断の流れで、先ず、カム角センサ68が正常に修理され、次に、クランク角センサ76の異常が診断されるので、正常に修理されることになる。
【0053】
この結果、クランキング信号(スタータ信号)の異常時に、上述の各条件中の少なくとも一つの条件を満たしたときに、正常なカム角センサ68やクランク角センサ76が誤って異常と誤診断されることがなくなり、また、カム角センサ68やクランク角センサ76の取付不良による異常時に、その取付不良と、カム角センサ68やクランク角センサ76そのものの破損や配線の断線ショート、カム角センサ68やクランク角センサ76の部品の破損による異常等とを区別することが可能となり、よって、このような不具合の発生時に、故障部位を特定することで、修理時間や異常箇所を見つけ出すための作業時間の短縮を図り、また、正常なのに異常と誤って診断されたカム角センサ68やクランク角センサ76を不必要に交換することがなくなり、部品・作業コストの低廉や、作業時間の短縮を図ることができる。
【0054】
また、この実施例においては、クランク角センサ76のセンサ体76Bに波形整形部76B−1を持たせた場合について説明したが、クランク角センサに波形整形部を持たせない場合には、図9〜13に示すように説明する。
【0055】
即ち、図9に示す如く、磁気式のクランク角センサ176は、センサ体176Bに波形整形部を持たせておらず、その出力波形が、図10に示されている。センサ体に波形整形部を持たせると、センサ体が大型となり、取付スペースに制限があり、取付レイアウトが大がかりになるため、取付スペースが狭い場合には、図9に示すような波形整形部を持たないクランク角センサ176を使用する。かかる場合に、図15に示す如く、制御手段66には、センサ体176Bからの信号を波形整形する波形整形部66Gが備えられる。
【0056】
この場合、クランク角センサ176の出力波形は、クランク歯車176Aの凸部でプラス(+)電圧を出力、凹部でマイナス(−)電圧を出力する。クランク歯車176Aは、クランク軸に取り付けられており、エンジン回転数が上昇すると、図11に示すように、出力電圧も大きくなる。
【0057】
また、図9に示すクランク歯車176Aとセンサ体176Bとの取付のギャップ(GAP)Sの寸法が広くなると、出力電圧は、図11に示すように、CRVhstd(設計値)に対してCRVhlowのように、低下する。そして、このクランク角センサ176の出力は、制御手段66に入力され、この制御手段66内の波形整形部66Gで、図12に示すように波形整形される。
【0058】
ところが、クランク歯車176Aとセンサ体176Bとの取付のギャップSの寸法が広くなり、出力電圧が低下すると、図11、12に示すように、スレッショルド電圧の値を切らなくなり、波形整形が行われなくなってしまう。また、そのときのギャップSによっては、全く波形が、「0」となったり、ぎりぎりでスレッショルド電圧付近にあると、パルス数が設形値と異なるという結果になる。
【0059】
そして、アイドリング運転時のように、エンジン回転数が低い時には、異常症状を示すが、エンジン回転数が上昇してくると、正常になり、運転者や修理者に混乱を与え、故障の原因究明に多大な時間がかかり、正常な部品が不必要に交換されてしまうことになる。
【0060】
制御手段66に入力されるセンサ体176Bからの出力CRVh電圧(クランク信号電圧)をエンジン回転数毎に記録し、図13に示すように、CRVlimit(異常判定電圧)を下回った場合で、且つ、CRVh電圧(クランク信号電圧)出力がある場合には、取付不良と診断し、全くCRVh電圧(クランク信号電圧)がない場合には、断線と判定する。
【0061】
このクランク角センサ176のセンサ体176Bに波形整形部を持たせない場合には、図14に示す如く、クランク角センサ176の故障の診断が行われる。
【0062】
この故障の診断においては、上述のセンサ体に波形整形部を持たせた場合の診断と比べて、図3のステップ230後のC部分のみが異なるので、その異なる部分のみを説明する。
【0063】
つまり、図3において、ステップ230がYESの場合には、図14に示す如く、クランク角センサ176を診断する。
【0064】
先ず、クランク信号電圧(CRVh)のパルス数が、CRVh>CRVlimit1か否かを判断する(ステップ302)。
【0065】
このステップ302がNOの場合は、クランク角センサ176の取付不良であるか、低電圧ショートしているかを判断するために、先ず、CRVh>CRVminか否かを判断し(ステップ304)、このステップ304がYESの場合は、クランク角センサ176の取付不良であるとし(ステップ306)、一方、このステップ304がNOの場合は、低電圧ショートとする(ステップ308)。
【0066】
一方、前記ステップ302がYESに場合は、CRCNT>1を判断し(ステップ310)、このステップ310がNOの場合は、高電圧ショートとする(ステップ312)。
【0067】
前記ステップ306、308、312の診断後は、図5のステップ246に移行させ、ランプ等を点灯して運転者に異常を知らせ、プログラムをエンドとする(ステップ248)。
【0068】
前記ステップ310がYESの場合には、図6のE部分の手順に移行させる。
【0069】
この結果、センサ体176Bに波形整形部を持たないクランク角センサ176においても、クランキング信号(スタータ信号)の異常時に、上述の各条件中の少なくとも一つの条件を満たしたときに、正常なクランク角センサ176が誤って異常と誤診断されることがなくなり、また、クランク角センサ176の取付不良による異常時に、その取付不良と、クランク角センサ176そのものの破損や配線の断線ショート、クランク角センサ176の部品の破損による異常等とを区別することが可能となり、よって、このような不具合の発生時に、故障部位を特定することで、修理時間や異常箇所を見つけ出すための作業時間の短縮を図り、また、正常なのに異常と誤って診断されたクランク角センサ176を不必要に交換することがなくなり、部品・作業コストの低廉や、作業時間の短縮を図ることができる。
【0070】
なお、この発明は上述実施例に限定されるものではなく、種々の応用改変が可能である。
【0071】
例えば、一定毎のエンジン負荷に対応させて回転角センサの出力値を制御手段に予め記憶させ、そして、スタータ信号があったときに、回転角センサの出力値がそのときのエンジン負荷に対応しているか否かにより、回転角センサの故障診断を簡単に行うことも可能である。また、エンジン負荷に対応するような、例えば、車速等の変化量も加味し、上述の各条件とも考慮し、この車速等の変化量に比例して回転角センサの出力値があるか否かによっても、回転角センサの異常を診断することも可能である。
【0072】
【発明の効果】
以上詳細な説明から明らかなようにこの発明によれば正常な回転角センサが誤って異常と誤診断されることがなくなり、また、回転角センサの取付不良による異常時に、その取付不良と、回転角センサそのものの破損や配線の断線ショート、回転角センサの部品の破損による異常等とを区別することが可能となり、よって、このような不具合の発生時に、故障部位を特定することで、修理時間や異常箇所を見つけ出すための作業時間の短縮を図り、また、正常なのに異常と誤って診断された回転角センサを不必要に交換することがなくなり、部品・作業コストの低廉や、作業時間の短縮を図り得る。
【図面の簡単な説明】
【図1】故障診断制御のフローチャートである。
【図2】図1のA部分のフローチャートである。
【図3】図1のB部分のフローチャートである。
【図4】図3のC部分のフローチャートである。
【図5】図2、図3、図4のD部分のフローチャートである。
【図6】図4のE部分のフローチャートである。
【図7】各条件の設定値を説明する図である。
【図8】波形整形部を持ったクランク角センサの構成図である。
【図9】波形整形部を持たないクランク角センサの構成図である。
【図10】図9のクランク角センサの信号波形図である。
【図11】エンジン回転数と図9のクランク角センサの出力電圧との関係を示す図である。
【図12】図9のクランク角センサの出力電圧の波形と波形整形後の波形との関係を示す図である。
【図13】エンジン回転数とクランク角センサの出力判定電圧との関係を示す図である。
【図14】波形整形部を持たないクランク角センサの故障診断制御のフローチャートである。
【図15】故障診断制御装置のシステム構成図である。
【図16】従来における故障診断のタイムチャートである。
【図17】従来において故障診断の条件を説明する図である。
【図18】従来においてセンサの異常時のタイムチャートである。
【符号の説明】
2 内燃機関
66 制御手段
66A 燃料噴射変化量算出部
66B バッテリ電圧変化量算出部
66C 吸入空気変化量算出部
66D 吸気圧力変化量算出部
66E 故障診断部
66F タイマ
68 カム角センサ
70 吸気圧センサ
76 クランク角センサ
102 イグニションスイッチ
108 スタータスイッチ
136 クランキングスイッチ
138 エンジン回転数センサ

Claims (1)

  1. 内燃機関の一方の回転軸としてのカム軸の回転角を検出して二つのカム信号を出力するカム角センサと、前記内燃機関の他方の回転軸としてのクランク軸の回転角を検出してクランク信号を出力するクランク角センサとから構成される回転角センサを設け、イグニション信号がオンした後に前記回転角センサからの出力信号の有無によって前記回転角センサが故障か否かを診断する内燃機関の回転角センサの故障診断制御装置において、スタータ信号を検出するスタータ信号検出手段を設け、前記スタータ信号検出手段によりスタータの作動を検出し、且つエンジン負荷の変化量が設定値より大きい場合には、前記二つのカム信号を第1カム信号と第2カム信号として前記第1カム信号のパルス数と前記第2カム信号のパルス数とを計測し、前記クランク信号のパルス数を計測し、計測されたエンジン1回転あたりの前記第1カム信号のパルス数と前記第2カム信号のパルス数と前記クランク信号のパルス数の割合と、設定された正常値とを比較し、前記カム信号の異常か、前記クランク信号の異常か、前記カム角センサのハード部の異常かを判断する制御手段を設けたことを特徴とする内燃機関の回転角センサの故障診断制御装置。
JP2001308488A 2001-10-04 2001-10-04 内燃機関の回転角センサの故障診断制御装置 Expired - Fee Related JP4038650B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001308488A JP4038650B2 (ja) 2001-10-04 2001-10-04 内燃機関の回転角センサの故障診断制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001308488A JP4038650B2 (ja) 2001-10-04 2001-10-04 内燃機関の回転角センサの故障診断制御装置

Publications (2)

Publication Number Publication Date
JP2003113734A JP2003113734A (ja) 2003-04-18
JP4038650B2 true JP4038650B2 (ja) 2008-01-30

Family

ID=19127790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001308488A Expired - Fee Related JP4038650B2 (ja) 2001-10-04 2001-10-04 内燃機関の回転角センサの故障診断制御装置

Country Status (1)

Country Link
JP (1) JP4038650B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100610344B1 (ko) 2004-10-07 2006-08-10 현대자동차주식회사 차량용 엔진회전수센서 이상 판단방법
KR101605640B1 (ko) * 2014-12-30 2016-03-22 주식회사 현대케피코 캠 포지션 센서의 오진단 방지 장치 및 그 방법
WO2017065056A1 (ja) 2015-10-13 2017-04-20 株式会社デンソー 鞍乗型車両用カム角センサ異常診断装置、エンジンシステム、及び鞍乗型車両
JP6823285B2 (ja) * 2017-02-02 2021-02-03 三菱自動車工業株式会社 内燃機関の燃料噴射装置
JP7283118B2 (ja) * 2019-02-22 2023-05-30 トヨタ自動車株式会社 内燃機関の異常診断装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2864610B2 (ja) * 1990-01-26 1999-03-03 株式会社デンソー エンジン用回転角センサの故障診断装置
JP3325044B2 (ja) * 1992-05-15 2002-09-17 富士通テン株式会社 クランク角検出器の異常検出装置
JPH0681706A (ja) * 1992-09-04 1994-03-22 Hitachi Ltd 内燃機関のクランク角センサの異常検出装置
JP3904621B2 (ja) * 1995-08-29 2007-04-11 三菱電機株式会社 クランク角センサの異常検出装置
JP2001263152A (ja) * 2000-03-17 2001-09-26 Fuji Heavy Ind Ltd 可変バルブタイミング機構付エンジンにおける回転位置検出センサ系の診断装置および可変バルブタイミング機構付エンジンの制御装置

Also Published As

Publication number Publication date
JP2003113734A (ja) 2003-04-18

Similar Documents

Publication Publication Date Title
JP3741290B2 (ja) 圧力センサの故障診断制御装置
JP4335167B2 (ja) 内燃機関制御装置
US20060277907A1 (en) Malfunction detection apparatus for pressure sensor
US8074504B2 (en) Malfunction diagnosing apparatus for internal combustion engines
JP4892878B2 (ja) 燃料レベルゲージの故障診断装置
JP2007085176A (ja) 気筒別燃料噴射弁故障診断
US20060190148A1 (en) Telematic service system and method
JPH05280395A (ja) 空燃比制御系の異常検出方法
JP3871168B2 (ja) エンジン燃料供給診断装置、該診断方法および燃料供給装置
US8240298B2 (en) Abnormality diagnosis apparatus for secondary air supply assembly of internal combustion engine
JP4038650B2 (ja) 内燃機関の回転角センサの故障診断制御装置
JP4123627B2 (ja) エンジン温度検出手段の故障診断装置
US8286472B2 (en) Diagnostic system for variable valve timing control system
JP4075370B2 (ja) 大気圧検出手段の故障判定装置
JP2000328930A (ja) エンジンの触媒劣化診断装置
KR20230098962A (ko) Ehc 라인 누설 진단 방법 및 차량 배기 시스템
JP3889523B2 (ja) エンジンのフェイルセーフ装置
JP4098802B2 (ja) 内燃機関の制御装置
JP3915506B2 (ja) 吸気温度検出手段の故障判定装置
JP3754212B2 (ja) 内燃機関の警告灯故障診断装置、方法及び故障時制御方法
JPH0544581A (ja) エンジンの排気還流系の異常検出方法
JP4467783B2 (ja) 燃料温度センサの故障診断装置
JP2001173496A (ja) O2センサ診断装置
JP3890830B2 (ja) O2センサ診断装置
JP2003056394A (ja) センサの故障判定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees