JP4033528B2 - 光バースト受信装置および方法 - Google Patents

光バースト受信装置および方法 Download PDF

Info

Publication number
JP4033528B2
JP4033528B2 JP27471197A JP27471197A JP4033528B2 JP 4033528 B2 JP4033528 B2 JP 4033528B2 JP 27471197 A JP27471197 A JP 27471197A JP 27471197 A JP27471197 A JP 27471197A JP 4033528 B2 JP4033528 B2 JP 4033528B2
Authority
JP
Japan
Prior art keywords
circuit
level
logic
threshold
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27471197A
Other languages
English (en)
Other versions
JPH11112439A (ja
Inventor
裕之 延原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27471197A priority Critical patent/JP4033528B2/ja
Priority to DE69833584T priority patent/DE69833584T2/de
Priority to EP98105010A priority patent/EP0909046B1/en
Priority to US09/044,971 priority patent/US6115163A/en
Publication of JPH11112439A publication Critical patent/JPH11112439A/ja
Application granted granted Critical
Publication of JP4033528B2 publication Critical patent/JP4033528B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/695Arrangements for optimizing the decision element in the receiver, e.g. by using automatic threshold control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • H04B10/6931Automatic gain control of the preamplifier

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光バースト受信装置に関する。
マルチメディア技術の発展に伴い、光ファイバを用いた光通信が急速に普及しつつある。特に、これまでは幹線系での光通信の普及が主体であったが、これからは、FTTH(Fiber To The Home)の実現のために、加入者系での光通信への展開が主体となる。ここに言う加入者系とは、個々の加入者(ユーザ)に止まらず、ローカル・エリア・ネットワーク等も含むものである。なお、本発明において述べる加入者系とは、さらに、2以上のコンピュータ間で通信を行うような系まで含み得るものである。
【0002】
上記加入者系は、例えばPON(Passive Optical Network)伝送システムにおいては、局側装置と1本の共用光ファイバ伝送路を介して接続する光分岐器(スターカプラ)と、この光分岐器に個別光ファイバ伝送路を介してそれぞれ接続する複数の加入者側装置とから構成される。ここに局側装置から各加入者側装置への下り方向光伝送は、連続的にセル信号を送信することにより行い、一方、複数の加入者側装置から局側装置への上り方向光伝送は、各加入者側装置毎に予め割り当てたタイムスロットをそれぞれ用い時分割で、固定ビット長のセル単位に、各加入者毎のセル信号をバースト状に送信することにより行う。
【0003】
後者の上記上り方向光伝送について見ると、局側装置は、各加入者側装置内の光送信装置からセル信号をバースト的に受信することになる。本発明は、局側装置内において、上記のバースト的なセル信号を受信するための光バースト受信装置について述べるものである。この光バースト受信装置は、上記個別光ファイバ伝送路の伝送損失がそれぞれ異なることに起因して、タイムスロット毎に受信光レベルの異なるセル信号を受信することになり、そのためのATC(Automatic Threshold Control)およびAGC(Automatic Gain Control)が重要な課題となる。
【0004】
【従来の技術】
例えば上記のPON伝送システムに用いられる、局側装置内の光バースト受信装置として、下記i)およびii)の制御方式に基づく光バースト受信回路が既に発表されている。
i)第1は、高速のレベル検出回路を利用した、高速ATC/AGC方式、
ii)第2は、PON伝送システムにおける主要な情報の1つであるシーケンス制御情報(後述)を利用した、システムATC/AGC方式、である。
【0005】
図10は本発明が適用される伝送システムの一例を概略的に示す図であり、前述したPON伝送システムである。
本図において、1は局側装置であり、図中右側に示す他の局側装置1と連携して、幹線系を構成する。一方、図中左側に示す複数の加入者側装置(No. 1,No. 2…No. n)5と連携して加入者系を構成する。本発明は、後者の加入者系に関連する。
【0006】
この加入者系では、局側装置1から各加入者側装置5への下り方向光伝送と、その逆の、各加入者側装置5から局側装置1への上り方向光伝送とが行われる。本発明は、後者の上り方向光伝送に関連する。
この上り方向光伝送は、各加入者側装置5内の光伝送装置(図中、電気/光変換器“E/O”にて示す)6および、上記下り方向光伝送との相互干渉を防ぐためのフィルタ機能をも備えた波長分割多重器(WDM;Wavelength Division Multiplexer)7から、セル信号CLを送信することにより行う。セル信号CLは、個別光ファイバ伝送路8と、光分岐器(スターカプラSC:Star Coupler)4と、複数の加入者側装置5に共通の共用光ファイバ伝送路9とを経て、局側装置1に到達する。この共用光ファイバ伝送路9上では、各加入者側装置5からのセル信号CLがバースト状に伝送される。なお、局側装置1から各加入者側装置5への下り方向伝送においては、連続的なセル信号列が伝送路9および8に送出される。
【0007】
上記上り方向光伝送において、局側装置1に到達したバースト状のセル信号CLは、この局側装置1内の波長分割多重器(WDM)3を介して、受信装置(光/電気変換器“O/E”にて示す)2にて受信され、各セル信号CLに含まれるデータの論理“1”および“0”が識別される。本発明は、この受信装置2について述べるものであり、これを光バースト受信装置と称する。光セル信号をバースト的に受信する装置だからである。
【0008】
図11は高速ATC/AGC方式による光バースト受信装置の回路構成を示す図であり、この方式に対比されるもう一方の方式であるシステムATC/AGC方式による光バースト受信装置の回路構成については後述の図13に示す。ただし、図11および13において、AGCの系統については記載を省略する。
図11を参照すると、高速ATC/AGC方式による光バースト受信装置10は、まずその入力段において、各加入者側装置5からのバースト状光セル信号CLを受信してこれを電気信号に変換する受光素子11を有する。
【0009】
受光素子11からのバースト状電気セル信号は、前置増幅回路12にて低雑音の出力信号に変換された後、バッファ13を介して、一方では主増幅回路18の第1入力Iに印加され、他方では閾値制御回路14に入力される。この閾値制御回路14からの出力は、閾値として、主増幅回路18の第2入力IIへ印加される。この閾値は、第1入力Iへ印加された、前置増幅回路12からの出力信号(ディジタル信号)CLoutの論理“1”および“0”を、主増幅回路18にて識別する際の参照電圧となる。
【0010】
この参照電圧としての閾値レベルを生成するのが閾値制御回路14であり、“1”レベル検出回路15と、“0”レベル検出回路16と、1/2電圧発生回路17とからなる。“1”レベル検出回路15は、上記出力信号CLoutの論理“1”のレベルを検出し、“0”レベル検出回路16は、該信号CLoutの論理“1”のレベルを検出する。そして、“1”および“0”レベル検出回路15および16からの各検出レベルの中央値、すなわち“1”レベルと“0”レベルの中間の値が、上記1/2電圧発生回路17より、上記閾値として主増幅回路18に与えられる。ここに、主増幅回路18において、閾値を超えた信号CLoutは論理“1”と識別され、閾値を超えない信号CLoutは論理“0”と識別され、さらに、増幅されて整形された相補的なディジタル出力(“1”/“0”)となる。なお、このディジタル出力は、例えば後段の、ビット同期のためのリタイミング回路(図示せず)に供給される。
【0011】
上記“1”レベル検出回路15および“0”レベル検出回路16は基本的には同一の構成を有し、図示するとおり、差動アンプ(DA1,DA0)と、ダイオード(D1,D0)と、コンデンサ(C1,C0)と、バッファ(BUF1,BUF0)とからなる。ダイオードD1とダイオードD0とは相互に逆極性で接続され、それぞれ“1”レベルのチャージおよび“0”レベルのチャージをコンデンサC1およびC0に対して行う。ここに、コンデンサC1の一端は、コンデンサC0の一端側に接続されており、“0”レベルの変動に追従して“1”レベルも変動するようになっている。この追従の様子は、図12より明らかである。
【0012】
図12は図11の受信装置10内における要部の波形を示し、(A)は閾値制御回路14内の要部の波形、(B)は主増幅回路18からの出力波形をそれぞれ示す図である。
同図(A)において、波形“0”は、“0”レベル検出回路16の出力波形、これに追従してレベルシフトする波形“1”は、“1”レベル検出回路15の出力波形である。そして、これら波形“0”と波形“1”の中間値を、上記閾値として生成する1/2電圧発生回路17の出力波形を同図中、THとして示す。
【0013】
図12において、波形“0”および波形“1”が徐々に下降しているのは、出力信号CLoutの先頭の部分(いわゆるプリアンブルと呼ばれる“1”と“0”の交番ビット列)が、その出力信号CLoutの本体部分に対し、レベルが上昇するという性質があるからである(後述)。また、同図中の“リセット”は、セル信号とセル信号との間のガード領域を利用して上記コンデンサC1およびC0をリセットすることを表している。
【0014】
図13はシステムATC/AGC方式による光バースト受信装置の回路構成を示す図である。なお、全図を通して、同様の構成要素については同一の参照番号または記号を付して示す。したがって、本図に示す光バースト受信装置20をなす構成のうち、受光素子11、前置増幅回路12、バッファ13、“1”レベル検出回路15(15′),“0”レベル検出回路16(16′)、主増幅回路18(18′)については、図11で説明したとおりである。
【0015】
図13に示す、システムATC/AGC方式による光バースト受信装置に特徴的な回路構成は、メモリ/演算回路21であり、また、このメモリ/演算回路21との連携のために必要なA/D変換器25(25′),A/D変換器26(26′)およびD/A変換器27(27′)をさらに含んでなる閾値制御回路24(24′)である。なお、閾値制御回路が参照番号24および24′で示すように2系統あり、主増幅回路も参照番号18および18′で示すように2系統あるのは、例えば奇数番目のセルの出力信号CLoutと偶数番目のセルの出力信号CLoutを、第1の系統(24,18)と第2の系統(24′,18′)で交互に切り換えて動作させ一方の系統からの出力を選択回路28によって選択することにより、各系統の動作速度を半減させるためである。したがって、上記の2系統による構成は、システムATC/AGC方式の原理とは直接関係がない。
【0016】
システムATC/AGC方式の原理を端的に表すのは、メモリ/演算回路21の存在である。メモリ/演算回路21は、各加入者毎にメモリ領域を有し、各加入者から送信された第(j−1)番目(j=1,2,3,4…)のセル信号に対応する出力信号CLoutの論理“1”のレベルをa、論理“0”のレベルをbとして、それぞれ加入者毎のメモリ領域に記憶する。そして、各加入者毎に、第j番目のセル信号に対応する出力信号CLoutの論理“1”および“0”の、主増幅回路18(18′)での識別に用いる閾値THは、各加入者における直前(第(j−1)番目)のセル信号に対応する出力信号CLoutについてメモリ/演算回路に記憶されている、上記aおよびbの値から演算により求める。この演算により得られた図中の値C(=(a+b)/2)を現在受信中の(第j番目の)出力信号CLoutの論理“1”,“0”の識別に用いる。この値Cは、上記値aおよびbの中間値に相当し、図12(A)のレベルTHに対応する。このように現在の出力信号CLoutの論理“1”,“0”の識別に用いる閾値として、直前の出力信号CLoutにおいて得ている、論理“1”のレベルと論理“0”のレベルとから演算(c=(a+b)/2)により求めるので、このシステムATC/AGC方式は、前述した高速ATC/AGC方式に比べて低速動作で済むという利点がある。
【0017】
【発明が解決しようとする課題】
本発明に係る光バースト受信装置は、公知の現象である、フォトダイオードの“低周波数応答”に起因する後述の問題点を克服することを意図しているので、この低周波数応答について予め説明しておく。
図14の(A)は低周波数応答の影響がない場合、(B)は低周波数応答の影響がある場合の、出力信号CLoutの波形をそれぞれ示す図である。
【0018】
図14の(A)および(B)において、横軸は時間を表し、縦軸は出力信号CLoutの論理“1”および“0”のレベルを表す。
既述したPON伝送システムでは、局側装置1において既述のシーケンス制御情報を有している。このシーケンス制御情報は、どのタイムスロットではどの加入者(i…k…)からのセル信号を送信させる、というシーケンスを制御するための情報であり、各加入者はこのシーケンス制御情報を予め受信して、自身からのセル信号の送信タイミングが割り当てられる。図14の(A)および(B)では、加入者k(加入者i以外の加入者)→加入者i→加入者k→加入者i→…というシーケンスで、局側装置1内の光バースト受信装置(2,10,20)が、各加入者からのセル信号をバースト的に受信している例を示している。同一の加入者iについては、論理“1”のレベルがほぼ同じであるのに対し、異なる加入者k(k=1,2,3…)については、論理“1”のレベルはまちまちである。この理由は、図10に示すとおり、光分岐器(SC)4 と各加入者側装置5とを接続するそれぞれの個別光ファイバ伝送路8の長さ等が異なるため、各個別光ファイバ伝送路8毎に伝送損失が異なるからである。
【0019】
また図中のOHは、各出力信号CLout対応の入力セル信号を構成するビットフォーマットのうちのオーバーヘッド領域を表し、既述のプリアンブルを含む。このオーバーヘッド領域OHに続くのが、本来のデータ情報や宛先情報を収容するためのペイロード領域PLである。さらに図中のGDはガードタイムを表し、隣接するセル相互での衝突を防ぐためのスペースである。
【0020】
まず図14の(A)について見ると、出力信号CLoutの各波形には何ら波形異常が見られない。これは、(A)が低周波数応答の影響がない場合だからである。ここに低周波数応答とは、既述の受光素子11をなすフォトダイオードに固有の現象であり、フォトダイオードの内部で生ずる電界が小さい領域、あるいはそのような電界が生じていない領域において受けた光(セル信号)により生成された電子および正孔は、長い時定数(例えば1〜100μs)をもって消滅するという事実に基づいて生ずる現象である。
【0021】
かかる低周波数応答の影響がある場合、図14の(A)で示した一連の出力信号CLoutは、同図の(B)で示すように、特異な波形をもって現れる。特異な波形とは、第1に図示するように、バースト的に現れる出力信号CLoutの論理“0”のレベルが徐々に持ち上がることであり、第2に、その出力信号CLoutの直後にガードタイムGDをおいてすぐ出現する後続の出力信号CLoutにあっては、その立上がり部分(OH)が吊り上げられてそれ以後徐々に本来の“0”のレベルに落ち着く(すそ引き)ことである(図12の(A)参照)。さらに第3には、論理“1”のレベルが大きい出力信号CLout程、上記の持ち上がり傾向およびすそ引き傾向が大きく現れることである。本発明は、低周波数応答に起因して、図14の(B)に示す特異波形を伴う出力信号CLoutを処理するための技法について述べるものである。
【0022】
図15は高速ATC/AGC方式による光バースト受信装置において使用される閾値を示す図である。すなわち、図11に示す光バースト受信装置において用いる閾値(主増幅回路18の第2入力II)は、図15の点線TH1で示すように変化する。特に、同図中の右側に示す2つの出力信号CLoutのように、大きな“1”レベルで現れたセルの直後に続くセルの先頭に見られる大きなすそ引きの部分においても、その閾値TH1も忠実に追従し、論理“1”および“0”の両レベル(図12の(A)のTH参照)の中間値が確保されており、これは大きな利点である。
【0023】
ところが逆に不利点もある。図15を参照すると、ガードタイムGDが大であり、オーバーヘッド領域も大であることである。このことは、PON伝送システム全体の伝送効率という観点からするときわめて不利である。このようにGDが大、OHも大となる理由は次のとおりである。
図11の回路構成のもとでは、各セル信号CLを受光する毎に、その受光の前に、電気出力信号CLoutの論理“1”および“0”の各レベルを検出する“1”レベル検出回路15および“0”レベル検出回路16を初期状態に戻しておかなければならない。つまりこれら回路15および16内の各コンデンサC1およびC0をリセットしておかなければならない(図12(A)の“リセット”参照)。そしてこのリセットは、実際にセル信号CLを受光する前のガードタイムGDのスペースで十分に完了しておかなければならない。この結果、ガードタイムGDは大になってしまう。
【0024】
また、“1”および“0”レベル検出回路15および16は、上記のリセットの都度、コンデンサC1およびC0のチャージを初めから行うので、このチャージのための上記のプリアンブル(論理“1”と“0”の交番ビット)の長さを長くとらなければならない。このプリアンブルは、各出力信号CLoutの先頭に含まれている。この結果、オーバーヘッド領域OHは大になってしまう。
【0025】
図16はシステムATC/AGC方式による光バースト受信装置において使用される閾値を示す図である。すなわち、図13に示す光バースト受信装置において用いる閾値(主増幅回路18の第2入力II)は、図16の点線TH2で示すように変化する。
ところで、図16から明らかなように、システムATC/AGC方式のもとでは、ガードタイムGDも小さいし、オーバーヘッド領域OHも小さい。したがって、PON伝送システム全体の伝送効率はきわめて良い。これは、上述した高速ATC/AGC方式にはない大きな利点である。
【0026】
このように、GDもOHも小さくすることができるのは、上述した高速ATC/AGC方式による場合と異なり、ガードタイムGDにおける上述したリセット動作もオーバーヘッド領域OHにおける上述したチャージ動作も不要となるからである。なぜなら、システムATC/AGC方式のもとでは、各加入者iについて見ると、この加入者iに関する現在(第j番目)受信中の出力信号CLoutの識別に用いる閾値は、この加入者iに関する直前(第(j−1)番目)の出力信号CLoutをもとに得て記憶していた閾値を流用するからである。これは、異なる加入者相互間では、それぞれが用いる閾値のレベルは異なるが、個々の加入者iについてだけ見ると、第(j−1)番目のセル信号CLと第j番目のセル信号CLとの間では、そのレベルに関し殆んど変化はないことに着目したものである。
【0027】
ところがこのシステムATC/AGC方式の場合には不利点もある。これは図16の右端のセルについて示すとおり、閾値TH2による論理の識別が困難になる部分が生じてしまうことであり、受信不能という問題をもたらす。また受信不能にまでは至らなかったとしても、符号誤り率(BER)の劣化という問題をもたらす。
【0028】
したがって本発明は上記問題点に鑑み、周波数応答に起因する受信不能あるいは符号誤り率の劣化を生じさせることなく、高い伝送効率を維持することを可能にする光バースト受信装置および方法を提供することを目的とするものである。
【0029】
【課題を解決するための手段】
図1は本発明に基づく光バースト受信装置の原理ブロック図である。本発明の光バースト受信装置30は、図13に示したシステムATC/AGC方式の光バースト受信装置20と同様に、受光素子11と、前置増幅回路12と、“1”レベル検出回路15および“0”レベル検出回路16からなる閾値制御回路14と、主増幅回路18とを有すると共に、前述のメモリ/演算回路(21)とは異なるメモリ/演算回路31と、新規な加算回路32とを含んでなる。すなわち、本発明に係る光バースト受信装置30は、(i)各加入者iから送信されるセル信号CLを受信した受光素子11からの出力を増幅する前置増幅回路12と、
(ii)前置増幅回路12からの出力信号CLoutと閾値TH3(図2)とを差動入力とし、この閾値TH3を参照電圧として出力信号CLoutの論理“1”または“0”を識別しさらに増幅して出力する主増幅回路18と、
(iii )出力信号CLoutの論理“1”のレベルおよび論理“0”のレベルをそれぞれ検出する“1”レベル検出回路15および“0”レベル検出回路16を有する閾値制御回路14と、
検出された論理“1”のレベルおよび論理“0”のレベルに関するレベル値を、各加入者iから送信されるセル信号CLを受信する毎に更新して当該加入者に割り当てたメモリ領域に記憶するメモリ/演算回路31と、を備えると共に、
メモリ/演算回路31は、閾値制御回路14からの論理“1”のレベルAj および論理“0”のレベルBj を入力とし、これらレベルの差分のほぼ半分の値C(=(Aj-1 −Bj-1 )/2)を演算により得て上記のレベル値として出力し、閾値制御回路14は、現在受信中の出力信号CLout(j)について“0”レベル検出回路16により検出された論理“0”のレベルと、上記のメモリ領域に記憶されているレベル値とを加算する加算回路32をさらに含み、この加算回路32からの加算値(TH3)を、閾値TH3として、主増幅回路18の第2入力IIに印加するように構成してなる。
【0030】
図2は本発明に係る光バースト受信装置において使用する閾値を示す図であり、この閾値が上記のTH3である。上記本発明に係る構成によれば、従来のシステムATC/AGC方式の場合における、図16の○印で示す受信不能の問題は解決される。なぜなら、加入者iからの出力信号CLoutにおける先頭部分においても、閾値TH3は、論理“1”および“0”の各レベルのほぼ中間値となっているからである。
【0031】
しかも、図2に表すとおり、ガードタイムGDとオーバーヘッド領域OHは共に小さく、図16で説明した、従来のシステムATC/AGC方式による利点はそのまま維持されている。
上記の本発明に係る閾値TH3の生成原理は、図16に示す従来の閾値TH2の生成原理とは全く異なり、以下のとおりである。
【0032】
従来の閾値TH2は、図13に示すcのように、c=(a+b)/2で求めている。つまり、第(j−1)番目のセル信号CLについての論理“1”のレベル(a)と論理“0”のレベル(b)とを加算した値(a+b)を求め、それを半分にして、現在の第j番目のセル信号CLについての閾値TH2(=(a+b)/2)としている。
【0033】
これに対し、本発明の閾値TH3は、第(j−1)番目のセル信号CLについての論理“1”のレベル(Aj-1 )と論理“0”のレベル(Bj-1 )のレベル差(Aj-1 −Bj-1 )、すなわち振幅を求め、それを半分にして、その振幅の半分の値Cである(Aj-1 −Bj-1 )/2を求める。そして、現在受信中の第j番目のセル信号についての出力信号Bj に対して、その差分の半分の値Cである(Aj-1 −Bj-1 )/2を、加算回路32にて重畳し、閾値TH3(=C+Bj )を得ている。これにより、出力信号CLoutの先頭部分では、すそ引き部分のBj がそのままTH3に反映し、TH3はその先頭部分においても追従可能となっている。
【0034】
図3は本発明に係る光バースト受信方法を表すフローチャートであり、前述した光バースト受信装置の動作は、本図に表す方法としても把握することができる。
ステップS1:光のセル信号CLを受光素子11に受けて、電気の出力信号CLoutを生成する。
【0035】
ステップS2:出力信号CLoutの論理“1”のレベルと論理“0”のレベルとを検出する(閾値制御回路14)。
ステップS3:検出された論理“1”のレベルAj-1 と論理“0”のレベルBj-1 を記憶する(メモリ/演算回路31のメモリ領域)。
ステップS4:記憶されている論理“1”のレベルAj-1 と論理“0”のレベルBj-1 の差分の半分の値Cを求める(メモリ/演算回路31での演算)。
【0036】
ステップS5:現在受信中の出力信号CLoutについて検出された論理“0”のレベルBj と、上記の差分の半分の値Cとを加算して閾値TH3を生成する(加算回路32)。
ステップS6:閾値TH3を用いて、現在受信中の出力信号CLoutの論理“1”または“0”を識別する。
【0037】
【発明の実施の形態】
図4は本発明の要部を具体的に表す図である。図1の構成における、“1”レベル検出回路15および“0”レベル検出回路16からなる閾値制御回路14と、メモリ/演算回路31と、加算回路32の部分を表しているが、図4では、実際の例としてA/D変換器25および26と、D/A変換器27が描かれている。
【0038】
検出された論理“1”のレベルAj (アナログ)および論理“0”のレベルBj (アナログ)は、それぞれ、A/D変換器25および26を介してディジタル値Xj およびYj に変換されて、メモリ/演算回路31内の該当メモリ領域に格納される。
今、新たにセル信号CLを受信し、対応する第j番目の出力信号CLoutが閾値制御回路14に入力されると、メモリ/演算回路31は、同一加入者より直前に入力された第(j−1)番目のセル信号に対応する出力信号CLout(j−1)についてのディジタル値Xj-1 およびYj-1 を読み出し、さらにその中間値(ディジタル)Zj-1 を演算して、Zj-1 =(Xj-1 −Yj-1 )/2を得る。
【0039】
中間値Zj-1 は、D/A変換器27によりアナログ値Cに変換される。C=(Aj-1 −Bj-1 )/2である。さらに加算回路32において、現在受信中の出力信号CLoutより検出した、このCLoutの論理“0”のレベルBj と、上記Cとを加算して閾値TH3を得る。TH3=C+Bj である。
図5は本発明に係る光バースト受信装置の第1実施例を示す図であり、分圧回路34と第1スイッチ回路35を設けたことを特徴とする。すなわち、閾値制御回路14はさらに、“1”レベル検出回路15および“0”レベル検出回路16からの各出力電圧の和のほぼ半分の電圧を出力する分圧回路34と、この分圧回路34からの出力電圧または加算回路32からの加算値を選択して主増幅回路18に出力する第1スイッチ回路35とを含む。
【0040】
第1スイッチ回路35は、既述のメモリ領域にレベル値が記憶されていない初期時において、この分圧回路34からの出力電圧を選択して出力する。
PON伝送システムにおいては、システムの初期立ち上げという操作が重要である。局側装置1は、複数の加入者の各々に対し、どの加入者はどのタイムスロットで送信しなければならないというシーケンス制御情報を用意しなければならない。このシーケンス制御情報を用意するときに、最も重要な情報は、各加入者毎の遅延時間である。この遅延時間は、局から発出したセル信号が各加入者に到達し、再び戻って来る迄のラウンドトリップ時間を測定することによって得られる。
【0041】
この測定を行うとき、すなわちシステムの初期時には、メモリ/演算回路31内の各加入者毎のメモリ領域に、何もレベル値は記憶されていない。したがって、上記閾値TH3も当然生成することができないので、閾値制御回路14は全く動作し得ない。このため、上記のラウンドトリップ時間の測定もできないことになる。
【0042】
そこで、そのような、メモリ領域に何もセットされていないシステムの初期時には、メモリ/演算回路31によらない閾値TH3の生成が必要となる。これが上記の分圧回路34である。
分圧回路34は、“1”レベル検出回路15の検出レベル(“1”)と“0”レベル検出回路16の検出レベル(“0”)とを、2つの直列抵抗の両端に受信し、その中間接続点より両者の中間値に相当する電圧を出力する。この中間値は閾値TH3となる。
上記の第1スイッチ回路35は、システムの初期立ち上げ時(#1)か通常動作時(#2)かに応じてそれぞれ、分圧回路34からの出力か加算回路32からの出力か、いずれか一方を選択し、閾値TH3として、主増幅回路18の第2入力IIに印加する。なお、第1スイッチ回路35が、#1側をまたは#2側を選択するための信号は、既述のシーケンス制御情報によって与えることができる。
【0043】
上述のような構成を実現しようとする場合、一般的には、#1側について、“1”および“0”レベル検出回路を備え、また、#2側についても“1”および“0”レベル検出回路を備えるように構成することが考えられる。しかしながら、図5の構成によれば、#1側の“1”および“0”レベル検出回路を、#2側の“1”および“0”レベル検出回路と共用する構成としている。これは、システムの初期立ち上げ時には、通常動作時に比べて、高速性が要求されないことに着目したものである。
【0044】
この結果、#1側と#2側とでそれぞれ独立に、第1系統および第2系統の“1”および“0”レベル検出回路を設ける場合に比べて、〈1〉各系統間での相対的回路誤差が生じないという利点および〈2〉上記2つの系統を1つの系統で実現するので、回路規模を縮小でき、また低コスト化および低消費電力化が可能という利点がもたらされる。
【0045】
上述の説明は閾値制御回路14の主たる構成部分であるATC部分についてなされた。しかし、閾値制御回路14はAGC部分も含むのが現実的である。以下述べる本発明の第2実施例は、そのAGC部分の具体的構成を提案する。
図6は本発明に係る光バースト受信装置の第2実施例を示す図(その1)、
図7は同図(その2)である。
【0046】
図7を参照すると、閾値制御回路14は、主増幅回路18の増幅利得を制御する主増幅利得制御部40を設け、この主増幅利得制御部40は、主増幅回路18の増幅利得を制御する制御信号Cg を出力する増幅利得制御回路41を含み、この増幅利得制御回路41は、メモリ/演算回路31内に記憶されたレベル値Cに応じて制御される。
【0047】
増幅利得の制御(AGC)は、主増幅回路18の第1入力Iに印加される出力信号Coutの振幅に依存して行われる。通常は、入力された出力信号Coutについて、瞬時瞬時リアルタイムでその振幅の検出を行い、主増幅回路18に対して帰還するというやり方である。このやり方では、振幅の検出から帰還までの動作をきわめて高速に行わなければならず、不利である。
【0048】
ところが、ここでメモリ/演算回路31からの出力Zj-1 のうち(Xj-1 −Yj-1 )の項に着目すると、この項はまさしく出力信号Coutの振幅値(ディジタル)を示しており、同一加入者における直前のセルに関して得たこの振幅値を利用すれば、低速で上記のAGCを実行できる。
具体的には、D/A変換器27を介して得たアナログの振幅値(Aj-1 −Bj-1 )を、振幅情報として、増幅利得制御回路41に与える。そして、目的とする既述の制御信号Cg を得る。
【0049】
ところが、システムの初期時(初期立ち上げ時)には、メモリ/演算回路31内の各加入者毎のメモリ領域に、何もレベル値が記憶されていない。したがって上記のアナログ振幅値(Aj-1 −Bj-1 )も当然生成することができないので、主増幅利得制御部40は全く動作し得ない。
そこで、そのような、メモリ領域に何もセットされていないシステムの初期時にはメモリ/演算回路31によらない、出力信号Coutの振幅の検出が必要となる。
【0050】
このために、主増幅利得制御部40はさらに、閾値制御回路14にて検出した論理“1”のレベルおよび論理“0”のレベルを入力とし、これらレベルの差分により振幅情報Iaを出力する振幅検出回路42と、その振幅情報Iaまたはメモリ/演算回路31内に記憶されたレベル値Cを選択して増幅利得制御回路41に出力する第2スイッチ回路43とを含むようにする。そして、この第2スイッチ回路43は、メモリ領域31にレベル値Cが記憶されていない初期時において、振幅検出回路42からの振幅情報Iaを選択して出力するようにする。
【0051】
第2スイッチ回路43が、システムの初期時における#1側を選択するか、通常動作時における#2側を選択するかは、既述のシーケンス制御情報によって与えることができる。
上記の振幅検出回路42は、図に示すとおり、閾値制御回路14内の“1”レベル検出回路15および“0”レベル検出回路16(図6)を共用している。つまり、振幅検出回路42用に独立して、“1”レベル検出回路および“0”レベル検出回路を別途設けるということはしない。これにより、前者の場合(共用)は、後者の場合(独立に別途設ける)に比べて、〈1〉相対的な回路誤差が生じないという利点および〈2〉1つの系統(15,16)で実現するので、回路規模を縮小でき、また低コスト化および低消費電力化が図れるという利点を有する。
【0052】
図6を参照すると、閾値制御回路14は、前置増幅回路12の増幅特性を制御する前置増幅特性制御部50を設け、この前置増幅特性制御部50は、前置増幅回路12の増幅特性を制御するための前置増幅制御信号Cgpを出力する前置増幅特性制御回路51を含み、この前置増幅特性制御回路51は、メモリ/演算回路31内に記憶されたレベル値Cに応じて制御されるようにする。
【0053】
前置増幅特性の制御(AGC)は、前置増幅回路12からの出力信号Poutの振幅に依存して行われる。通常は、回路12からの出力信号Poutについて、瞬時瞬時リアルタイムでその振幅の検出を行い、前置アンプ12Aに対して帰還するというやり方である。このやり方では、振幅の検出から帰還までの動作をきわめて高速に行わなければならず、不利がある。
【0054】
ところが、ここでメモリ/演算回路31からの出力Zj-1 のうち(Xj-1 −Yj-1 )の項に着目すると、この項はまさしく、上記の出力信号Poutと相関のある出力信号Coutの振幅値(ディジタル)を示しており、同一加入者における直前のセルに関して得たこの振幅値を利用すれば、低速で上記の前置増幅特性の制御(AGC)を実行できる。
【0055】
具体的には、D/A変換器27を介して得たアナログの振幅値(Aj-1 −Bj-1 )を、振幅情報として、前置増幅特性制御回路51に与える。そして、目的とする既述の前置増幅制御信号Cgpを得る。
ところが、システムの初期時(初期立ち上げ時)には、メモリ/演算回路31内の各加入者毎のメモリ領域に、何もレベル値が記憶されていない。したがって上記のアナログ振幅値(Aj-1 −Bj-1 )も当然生成することができないので、前置増幅特性制御部50は全く動作し得ない。
【0056】
そこで、そのような、メモリ領域に何もセットされていないシステムの初期時には、メモリ/演算回路31によらない、出力信号Poutの振幅の検出が必要となる。
このために、前置増幅特性制御部50はさらに、前置増幅回路自体の自動利得を行うための自動利得制御信号ACを出力する信号振幅検出回路52と、その自動利得制御信号またはメモリ/演算回路31内に記憶されたレベル値Cを選択して前置増幅特性制御回路51に出力する第3スイッチ回路53とを含むようにする。そして第3スイッチ回路53は、既述のメモリ領域にレベル値が記憶されていない初期時において、信号振幅検出回路52からの上記の自動利得制御信号を選択して出力するようにする。
【0057】
第3スイッチ回路53が、システムの初期時における#1側を選択するか、通常動作時における#2側を選択するかは、既述のシーケンス制御情報によって与えることができる。
前置増幅特性制御回路51について見ると、これは、前置増幅回路(アンプ12A)の開ループゲイン、この前置増幅回路(アンプ12A)を構成する帰還抵抗Rf およびその前置増幅回路12の入力段に付加されるバイパス電流源19を流れるバイパス電流のうちの少なくとも1つを制御する。
【0058】
図6において、これら開ループゲイン(open loop gain)、帰還抵抗Rf およびバイパス電流の全てを同時に制御する例を示している。帰還抵抗Rf は、トランスインピーダンス形の帰還抵抗であり、FETで構成することができる。このFETのゲートに信号Cgpを印加する。また、バイパス電流を流すバイパス電流源19も、FETで構成することができ、このFETのゲートに信号Cgpを印加する。
【0059】
なお、図6では、アンプ12A、帰還抵抗Rf およびバイパス電流源19に、全て同一の前置増幅制御信号Cgpを印加するように描いているが、これは便宜上そう描いたもので、実際には、これら3種の信号Cgpの間には、位相あるいはレベルに関して相互に相違している。そのための調整手段(図示せず)は、対象となるバイパス電流源19、帰還抵抗Rf 、アンプ12Aにそれぞれ内蔵することができる。
【0060】
以上、本発明に係る閾値制御回路14およびメモリ/演算回路31について詳しく説明したが、最後に、光バースト受信装置30の全体構成について、二、三の構成例を示す。
図8は群構成にした光バースト受信装置の概略を示す図である。本図においては、一例として3群構成の閾値制御回路14−1,14−2および14−3からなる光バースト受信装置30′を示す。該装置30′は、既述の閾値制御回路14とそれぞれ同一構成を有する、少なくとも2つの閾値制御回路(14−1,14−2,14−3)を備え、これらの閾値制御回路は、前置増幅回路12とメモリ/演算回路31と前記主増幅回路18とに共通に接続し、かつ、連続して入力される複数のセル信号CLを順番に、これらの閾値制御回路14−1,14−2,14−3に割り当てて処理するようにする。
【0061】
今、仮にセル信号CLが、CL1,CL2,CL3,CL4…に入力されたとすると、
閾値制御回路14−1は、セル信号CL1,CL4,CL7,CL10…の各出力信号CLout1の処理を、担当し、
閾値制御回路14−2は、セル信号CL2,CL5,CL8,CL11…の各出力信号CLout2の処理を、担当し、
閾値制御回路14−3は、セル信号CL3,CL6,CL9,CL12…の各出力信号CLout3の処理を、担当するようにする。
【0062】
このようにすると、メモリ/演算回路31が、1つのセル信号が光バースト受信装置30′に入力されたときに行うべき4つの処理、すなわち、
〈1〉出力信号CLoutの論理“1”のレベルと論理“0”のレベルとを検出する第1処理と、
〈2〉検出された論理“1”のレベルと論理“0”のレベルを記憶する第2処理と、
〈3〉記憶されている論理“1”のレベルと論理“0”のレベルの中間値を求める第3処理と、
〈4〉現在受信中の出力信号CLoutについて検出された論理“0”のレベルと、上記の中間値とを加算して閾値TH3を生成する第4処理と、
を、単一の閾値制御回路14で実行する場合に比べて、ほぼ1/3の速度で実行すればよく、低コスト化にもつながる。
【0063】
もし、2群構成(14−1および14−2)を採用するならば、一方の閾値制御回路14−1は、奇数番目のセル信号を扱い、他方の閾値制御回路14−2は、偶数番目のセル信号を扱うようにすればよい。
各セル信号が入力される毎に、どの閾値制御回路(14−1/14−2/14−3)をアクティブにするかは、既述したシーケンス制御情報によって与えることができる。
【0064】
図9は多段構成にした光バースト受信装置の概略を示す図である。本図においては一例として3段構成の閾値制御回路14,14−1および14−2およびそれぞれに付帯するメモリ/演算回路31,31−1および31−2からなる光バースト受信装置30″が示されている。
この光バースト受信装置30″は上記の閾値制御回路14と同一構成の閾値制御回路14−1,14−2および上記の主増幅回路18と同一構成の主増幅回路18−1,18−2とからなる閾値制御/主増幅段(60)を少なくとも一段、各々に付帯するメモリ/演算回路(31−1,31−2)と共に主増幅回路18の出力側に従属接続するように構成される。
【0065】
主信号系の増幅回路、すなわち主増幅回路の入力には、いわゆるオフセット電圧が潜在することが知られている。このオフセット電圧が潜在すると、その出力パルスの幅が変動し、後段のリタイミング回路(図示せず)において信号の打ち抜きを行う際、正確にその中央を打ち抜くことが困難になる。
このようなパルス幅の変動を起こす原因となる上記のオフセット電圧を消滅ささせるために、上述の多段従属接続構成をとるようにしたのが、本図の光バースト受信装置30″である。
【0066】
【発明の効果】
以上説明したように本発明によれば、システムATC/AGC方式による光バースト受信装置において、低周波数応答に起因する、図16に示した受信不能という問題を、きわめて簡単なハードウェアの追加と、メモリ/演算回路における演算方法の変更とによって、効率よく解決することができる。
【図面の簡単な説明】
【図1】本発明に基づく光バースト受信装置の原理ブロック図である。
【図2】本発明に係る光バースト受信装置において使用する閾値を示す図である。
【図3】本発明に係る光バースト受信方法を表すフローチャートである。
【図4】本発明の要部を具体的に表す図である。
【図5】本発明に係る光バースト受信装置の第1実施例を示す図である。
【図6】本発明に係る光バースト受信装置の第2の実施例を示す図(その1)である。
【図7】本発明に係る光バースト受信装置の第2実施例を示す図(その2)である。
【図8】群構成にした光バースト受信装置の概略を示す図である。
【図9】多段構成にした光バースト受信装置の概略を示す図である。
【図10】本発明が適用される伝送システムの一例を概略的に示す図である。
【図11】高速ATC/AGC方式による光バースト受信装置の回路構成を示す図である。
【図12】図11の受信装置10内における要部の波形を示し、(A)は閾値制御回路14内の要部の波形、(B)は主増幅回路18からの出力波形をそれぞれ示す図である。
【図13】システムATC/AGC方式による光バースト受信装置の回路構成を示す図である。
【図14】(A)は低周波数応答の影響がない場合、(B)は低周波数応答の影響がある場合の、出力信号CLoutの波形をそれぞれ示す図である。
【図15】高速ATC/AGC方式による光バースト受信装置において使用される閾値を示す図である。
【図16】システムATC/AGC方式による光バースト受信装置において使用される閾値を示す図である。
【符号の説明】
1…局側装置
2…光バースト受信装置
3…波長分割多重器(WDM)
4…光分岐器(スターカプラ)
5…加入者側装置
6…光送信装置
7…波長分割多重器(WDM)
8…個別光ファイバ伝送路
9…共用光ファイバ伝送路
10…光バースト受信装置
11…受光素子
12…前置増幅回路
12A…前置アンプ
13…バッファ
14,14−1,14−2,14−3…閾値制御回路
15…“1”レベル検出回路
16…“0”レベル検出回路
17…1/2電圧発生回路
18…主増幅回路
19…バイパス電流源
20…光バースト受信装置
21…メモリ/演算回路
24,24′…閾値制御回路
25,25′…A/D変換器
26,26′…A/D変換器
27,27′…D/A変換器
28…選択回路
30,30′,30″…光バースト受信装置
31,31−1,31−2…メモリ/演算回路
32…加算回路
34…分圧回路
35…第1スイッチ回路
40…主増幅利得制御部
41…増幅利得制御回路
42…振幅検出回路
43…第2スイッチ回路
50…前置増幅特性制御部
51…前置増幅特性制御回路
52…信号振幅検出回路
53…第3スイッチ回路
60…閾値制御/主増幅段

Claims (10)

  1. 各加入者から送信されるセル信号を受信した受光素子からの出力を増幅する前置増幅回路と、
    前記前置増幅回路からの出力信号と閾値とを差動入力とし、該閾値を参照電圧として該出力信号の論理“1”または“0”を識別しさらに増幅して出力する主増幅回路と、
    前記出力信号の論理“1”のレベルおよび論理“0”のレベルをそれぞれ検出する“1”レベル検出回路および“0”レベル検出回路を有する閾値制御回路と、
    検出された前記論理“1”のレベルおよび論理“0”のレベルに関するレベル値を、各前記加入者から送信されるセル信号を受信する毎に更新して当該加入者に割り当てたメモリ領域に記憶するメモリ/演算回路と、を備えてなり、
    前記メモリ/演算回路は、前記閾値制御回路からの前記論理“1”のレベルおよび論理“0”のレベルを入力とし、これらレベルの差分のほぼ半分の値を演算により得て前記レベル値として出力し、
    前記閾値制御回路は、現在受信中の前記出力信号について前記“0”レベル検出回路により検出された論理“0”のレベルと、前記メモリ領域に記憶されている前記レベル値とを加算する加算回路をさらに含み、該加算回路からの加算値を、前記閾値として、前記主増幅回路に印加することを特徴とする光バースト受信装置。
  2. 前記閾値制御回路はさらに、前記“1”レベル検出回路および“0”レベル検出回路からの各出力電圧の和のほぼ半分の電圧を出力する分圧回路と、該分圧回路からの出力電圧または前記加算回路からの加算値を選択して前記主増幅回路に出力する第1スイッチ回路とを含み、
    前記第1スイッチ回路は、前記メモリ領域に前記レベル値が記憶されていない初期時において、前記分圧回路からの出力電圧を選択して出力する請求項1に記載の光バースト受信装置。
  3. 前記主増幅回路の増幅利得を制御する主増幅利得制御部を設け、該主増幅利得制御部は、該主増幅回路の増幅利得を制御する制御信号を出力する増幅利得制御回路を含み、該増幅利得制御回路は、前記メモリ/演算回路内に記憶された前記レベル値に応じて制御される請求項1に記載の光バースト受信装置。
  4. 前記主増幅利得制御部はさらに、前記閾値制御回路にて検出した前記論理“1”のレベルおよび論理“0”のレベルを入力とし、これらレベルの差分により振幅情報を出力する振幅検出回路と、該振幅情報または前記メモリ/演算回路内に記憶された前記レベル値を選択して前記増幅利得制御回路に出力する第2スイッチ回路とを含み、
    前記第2スイッチ回路は、前記メモリ領域に前記レベル値が記憶されていない初期時において、前記振幅検出回路からの前記振幅情報を選択して出力する請求項3に記載の光バースト受信装置。
  5. 前記前置増幅回路の増幅特性を制御する前置増幅特性制御部を設け、該前置増幅特性制御部は、該前置増幅回路の増幅特性を制御するための前置増幅制御信号を出力する前置増幅特性制御回路を含み、該前置増幅特性制御回路は、前記メモリ/演算回路内に記憶された前記レベル値に応じて制御される請求項1に記載の光バースト受信装置。
  6. 前記前置増幅特性制御部はさらに、前記前置増幅回路自体の自動利得制御を行うための自動利得制御信号を出力する信号振幅検出回路と、該自動利得制御信号または前記メモリ/演算回路内に記憶された前記レベル値を選択して前記前置増幅特性制御回路に出力する第3スイッチ回路とを含み、
    前記第3スイッチ回路は、前記メモリ領域に前記レベル値が記憶されていない初期時において、前記信号振幅検出回路からの前記自動利得制御信号を選択して出力する請求項5に記載の光バースト受信装置。
  7. 前記前置増幅特性制御回路は、
    前記前置増幅回路の開ループゲイン、該前置増幅回路を構成する帰還抵抗および該前置増幅回路の入力段に付加されるバイパス電流源を流れるバイパス電流のうちの少なくとも1つを制御する請求項5に記載の光バースト受信装置。
  8. 前記閾値制御回路とそれぞれ同一構成を有する、少なくとも2つの閾値制御回路を備え、これらの閾値制御回路は前記前置増幅回路と前記メモリ/演算回路と前記主増幅回路とに共通に接続し、かつ、連続して入力される複数の前記セル信号を順番に、これらの閾値制御回路に割り当てて処理する請求項1に記載の光バースト受信装置。
  9. 前記閾値制御回路と同一構成の閾値制御回路および前記主増幅回路と同一構成の主増幅回路からなる閾値制御/主増幅段を少なくとも一段、各々に付帯するメモリ/演算回路と共に、前記主増幅回路の出力側に従属接続する請求項1に記載の光バースト受信装置。
  10. 光のセル信号を受光素子に受けて電気の出力信号を生成するステップと、
    前記出力信号の論理“1”のレベルと論理“0”のレベルとを検出するステップと、
    検出された前記論理“1”のレベルと論理“0”のレベルを記憶するステップと、
    記憶されている前記論理“1”のレベルと論理“0”のレベルの差分のほぼ半分の値を求めるステップと、
    現在受信中の前記出力信号について検出された論理“0”のレベルと、前記差分のほぼ半分の値とを加算して閾値を生成するステップと、
    前記閾値を用いて、前記現在受信中の出力信号の論理“1”または“0”を識別するステップとからなることを特徴とする光バースト受信方法。
JP27471197A 1997-10-07 1997-10-07 光バースト受信装置および方法 Expired - Fee Related JP4033528B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27471197A JP4033528B2 (ja) 1997-10-07 1997-10-07 光バースト受信装置および方法
DE69833584T DE69833584T2 (de) 1997-10-07 1998-03-19 Vorrichtung und Verfahren zum Empfang von optischen Burstsignalen
EP98105010A EP0909046B1 (en) 1997-10-07 1998-03-19 Apparatus and method for reception of optical burst
US09/044,971 US6115163A (en) 1997-10-07 1998-03-20 Apparatus and method for reception of optical burst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27471197A JP4033528B2 (ja) 1997-10-07 1997-10-07 光バースト受信装置および方法

Publications (2)

Publication Number Publication Date
JPH11112439A JPH11112439A (ja) 1999-04-23
JP4033528B2 true JP4033528B2 (ja) 2008-01-16

Family

ID=17545512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27471197A Expired - Fee Related JP4033528B2 (ja) 1997-10-07 1997-10-07 光バースト受信装置および方法

Country Status (4)

Country Link
US (1) US6115163A (ja)
EP (1) EP0909046B1 (ja)
JP (1) JP4033528B2 (ja)
DE (1) DE69833584T2 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3042608B2 (ja) * 1997-07-23 2000-05-15 日本電気株式会社 バースト光受信回路
JP3031326B2 (ja) * 1998-02-19 2000-04-10 日本電気株式会社 バースト受信回路およびバースト受信回路の制御方法
JP3674753B2 (ja) * 1999-03-09 2005-07-20 富士通株式会社 バースト信号検出回路
WO2001067597A1 (fr) * 2000-03-06 2001-09-13 Fujitsu Limited Preamplificateur
US6744987B1 (en) * 2000-04-17 2004-06-01 Delphi Technologies, Inc Tertiary optical media interface
US6963696B1 (en) * 2001-04-30 2005-11-08 Quantum Bridge Communications, Inc. AC-coupled burst mode receiver with wide dynamic range
US7058315B2 (en) * 2001-10-09 2006-06-06 Chiaro Networks Ltd. Fast decision threshold controller for burst-mode receiver
US7385995B2 (en) * 2003-01-13 2008-06-10 Brooktree Broadband Holding, Inc. System and method for dynamic bandwidth allocation on PONs
CN1298115C (zh) * 2003-08-08 2007-01-31 中兴通讯股份有限公司 一种实现对不同输入光功率自适应的光接收装置
US7297921B2 (en) * 2003-11-21 2007-11-20 Olympus Corportion Photodetection circuit and confocal microscope that has it
CN100341261C (zh) * 2003-11-27 2007-10-03 武汉电信器件有限公司 突发模式光接收机
KR100601048B1 (ko) * 2004-04-22 2006-07-14 한국전자통신연구원 버스트 모드 패킷의 수신기 및 그 패킷의 수신 방법
US7394996B2 (en) * 2004-06-16 2008-07-01 Industrial Technology Research Institute Burst mode optical receiver and system and method therefor
JP4088679B2 (ja) 2004-08-03 2008-05-21 日本電信電話株式会社 受信方法および受信回路
CN101027859B (zh) * 2004-12-01 2011-02-02 中兴通讯股份有限公司 自适应光接收装置及其自适应光接收方法
CN100440756C (zh) * 2004-12-13 2008-12-03 华为技术有限公司 一种无源光网络及其数据通信的方法
US7865088B2 (en) 2006-05-12 2011-01-04 Alcatel Lucent Burst mode optical receiver
CN101188461B (zh) 2005-11-28 2013-09-04 阿尔卡特公司 使光接收机能够从多个光网络单元接收信号的方法和系统
DE102005056843B4 (de) 2005-11-28 2008-01-24 Prof. Dr. Horst Ziegler und Partner GbR (vertretungsberechtigter Gesellschafter: Prof. Dr. Horst Ziegler 33100 Paderborn) Verfahren und Vorrichtung zur empfängerseitigen Eliminierung von statischen oder zeitlich langsam veränderlichen Störsignalen aus Eingangsdatensignalen bei der digitalen Datenübertragung in vorgegebenem Bitraster
KR100826882B1 (ko) * 2005-12-05 2008-05-06 한국전자통신연구원 버스트 모드 광 수신기에서 디지털 자동이득제어 방법 및장치
JP2007258956A (ja) 2006-03-22 2007-10-04 Nec Electronics Corp 信号増幅回路および光受信器
US7925164B2 (en) * 2006-08-30 2011-04-12 Broadlight Ltd. Method and system for power management control in passive optical networks
US7646990B2 (en) * 2006-09-05 2010-01-12 Broadlight Ltd. Circuit for detecting optical failures in a passive optical network
JP4065892B1 (ja) * 2006-10-13 2008-03-26 株式会社日立コミュニケーションテクノロジー Ponシステムおよびそのレンジング方法
JP4340692B2 (ja) 2007-02-02 2009-10-07 株式会社日立コミュニケーションテクノロジー 受動光網システムおよびその運用方法
US7889815B2 (en) * 2007-02-13 2011-02-15 Optical Communication Products, Inc. Burst mode receiver for passive optical network
JP4983916B2 (ja) * 2007-03-30 2012-07-25 富士通オプティカルコンポーネンツ株式会社 光再生装置および光再生方法
JP4927664B2 (ja) * 2007-08-14 2012-05-09 日本電信電話株式会社 前置増幅回路
JP4650474B2 (ja) * 2007-10-17 2011-03-16 株式会社日立製作所 Ponシステムおよびそのレンジング方法
JP5013321B2 (ja) * 2008-02-04 2012-08-29 日本電気株式会社 光バースト受信器及び方法
US9276673B2 (en) 2008-04-24 2016-03-01 Commscope Technologies Llc Methods and systems for testing a fiber optic network
JP5276935B2 (ja) * 2008-09-12 2013-08-28 株式会社日立製作所 受動光網システムおよびその障害特定方法
US20100150561A1 (en) * 2008-12-12 2010-06-17 Seung-Hyun Cho Optical receiver, optical line terminal and method of recovering received signals
US8705985B2 (en) 2010-06-02 2014-04-22 Mellanox Technologies Denmark Aps Fast optical receiver for unencoded data
CN103023575B (zh) * 2012-12-31 2015-05-20 武汉华工正源光子技术有限公司 用于gpon olt的光突发接收电路
EP3208939B1 (en) 2014-10-15 2018-09-26 Fujikura Ltd. Optical receiver, active optical cable, and control method for optical receiver
JP6534187B2 (ja) * 2015-09-09 2019-06-26 日本電信電話株式会社 トランスインピーダンスアンプ回路
US11184692B2 (en) * 2020-03-13 2021-11-23 Verizon Patent And Licensing Inc. Systems and methods for measurement of optical parameters in an optical network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625347B2 (ja) * 1993-04-20 1997-07-02 日本電気株式会社 ディジタル受信器の自動オフセット制御回路

Also Published As

Publication number Publication date
US6115163A (en) 2000-09-05
EP0909046B1 (en) 2006-03-01
EP0909046A2 (en) 1999-04-14
EP0909046A3 (en) 2004-07-07
DE69833584T2 (de) 2007-02-08
DE69833584D1 (de) 2006-04-27
JPH11112439A (ja) 1999-04-23

Similar Documents

Publication Publication Date Title
JP4033528B2 (ja) 光バースト受信装置および方法
KR101009806B1 (ko) 광 수신기
CN100505592C (zh) 无源光网络中的光功率均衡器
CN101741469A (zh) 光线路终端以及光线路收发系统
US9083466B2 (en) Optical line terminal
JP2005318629A (ja) 受動型光加入者網における伝送距離による損失を補償するための光送受信機
US20110311227A9 (en) Systems and Methods for Transferring Single-Ended Burst Signal Onto Differential Lines, Especially for Use in Burst-Mode Receiver
CN103229435B (zh) 光接收器
JP2007173908A (ja) バースト光信号受信装置及びその利得設定方法
EP1935091B1 (en) Systems and methods for transferring single-ended burst signal onto differential lines, especially for use in burst-mode receiver
US20040190912A1 (en) Burst mode optical receiver
JP2005045560A (ja) 光信号受信方法、光信号受信装置、光通信装置、及び光通信システム
JP4965607B2 (ja) 利得可変増幅器および光受信装置
JPH04248727A (ja) 送信出力レベル制御回路
JP4657144B2 (ja) 光バースト信号受信回路
US7693423B2 (en) Maximising power in optical communication networks
EP1511199B1 (en) Method and system for controlling an amplifier in an optical network
JP2009027295A (ja) 信号弁別回路および光信号受信弁別回路
JPH04151918A (ja) 自動出力光量調整機能付光通信システム
JP2015065613A (ja) 通信システム、中継装置、通信方法及び中継方法
CN110233662A (zh) 多通道接收光功率监控方法及装置
JPH10224403A (ja) 光パケットスイッチ
JPS6276943A (ja) デイジタル信号の波形整形方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees