JP4031981B2 - 自然災害シミュレーション装置 - Google Patents
自然災害シミュレーション装置 Download PDFInfo
- Publication number
- JP4031981B2 JP4031981B2 JP2002357421A JP2002357421A JP4031981B2 JP 4031981 B2 JP4031981 B2 JP 4031981B2 JP 2002357421 A JP2002357421 A JP 2002357421A JP 2002357421 A JP2002357421 A JP 2002357421A JP 4031981 B2 JP4031981 B2 JP 4031981B2
- Authority
- JP
- Japan
- Prior art keywords
- building
- natural disaster
- model
- disaster simulation
- simulation apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Instructional Devices (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Description
【発明の属する技術分野】
本発明は、様々な自然災害による建物への影響を、コンピュータシミュレーションと実物模型を使って紹介することができる自然災害シミュレーション装置に関する。
【0002】
【従来の技術】
建物の設計にあたって、地震や風などの自然災害に対する構造強度の計算には、過去の自然災害による被害データや、実物モデルを用いた振動実験の結果が利用される(特許文献1参照)。さらに、コンピュータプログラムによって、建物の各部に発生する地震被害を推定する、シミュレーションの結果も利用される(特許文献2参照)。また、このシミュレーションの結果をCG(コンピュータグラフィック)を用いて紹介するシステムも知られている。
【特許文献1】
特開平05-018851号
【特許文献2】
特開2000-075040号
【0003】
【発明が解決しようとする課題】
ところで、上記のような従来の技術には、次のような解決すべき課題があった。
住みよくて快適な住宅を設計するためには、あらゆる自然災害に対して、建物がどういう影響を受けるかを予め想定したシミュレーションが必要になる。この目的のために、各種の高度なシミュレーションプログラムが開発されている。また、そのシミュレーションの結果に基づく設計上の工夫が、住宅のあらゆる部分に施されるようになった。しかしながら、実際に住宅を購入する顧客に対して、こうした設計上の工夫による効果を分かり易く説明するのは容易でない。設計上の工夫はそのまま建物の価格に反映されるから、顧客に十分な理解を得なければ、より安全な高品質な住宅の販売の促進につながらない。
【0004】
さらに、建物の所有者が、自然災害により建物がどのような影響を受けるかを知ることで、建物の維持管理に対する心構えが変わってくる。しかしながら、コンピュータシミュレーションの結果を、CG(コンピュータグラフィック)により、ディスプレイ上で表現しても実感がわかず、平面的でわかりにくいという問題がある。また、実物モデルを振動させたり、破壊させたりする実験設備を見学させるとよいが、これには大規模な見学施設が必要で、設置場所が制限されるため、例えば、住宅展示場を訪問する全ての顧客に手軽に見学をさせたり、体験をさせるのは難しいという難点があった。また、破壊実験をすると、実験費用が高額になり、住宅コストを引き上げてしまうという問題もある。
本発明は、以上の点に着目してなされたもので、実感がわくような、立体的な実物模型を使用し、コンピュータシミュレーションの結果から得られた建物への影響を表現することができる自然災害シミュレーション装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は次の構成により上記の課題を解決する。
〈構成1〉
自然災害の種類と規模を選択するための条件データを受け入れる手段と、建物を構成する各構造物に対する、上記条件データにより選択された自然災害の影響を演算処理するシミュレーション手段と、上記建物を構成する各構造物に対する自然災害の影響を、建物の縮小型実物模型上で表現するための出力データを生成する手段と、上記出力データを、上記建物の実物模型に組み込まれたアクチュエータを駆動するための駆動回路に転送するインタフェースとを備えたことを特徴とする自然災害シミュレーション装置。
【0006】
自然災害の種類としては、風水害、地震、火事、積雪等の任意のものでよい。規模は、例えば、風速とか、震度とか、積雪量といったものである。自然災害の種類と規模を選択するための条件データにより、シミュレーションのパラメータが決まる。条件データの入力方法は任意である。特定の構造の建物に対してシミュレーションを実行するとよい。一般的な構造の建物に対する解析は、モデルハウスの設計時等に終了しているからである。顧客の現在住んでいる建物や、顧客のオーダーしたもの等の、特定の構造の建物について、シミュレーションをする。縮小型実物模型とは、いわゆるミニチュアモデルのことである。ミニチュアモデルであれば、住宅展示場でも工務店のショールームでも簡単に設置できる。また、顧客の家に持参して行くこともできる。ミニチュアモデルを目で眺めながら、地震等による影響を理解するので、非常に分かり易い。自然災害の影響は、建物の構造物に、曲げ応力、圧縮方向の応力、伸長方向の応力として及ぶ。その程度を数値化して、建物を構成する各構造物ごとに、アクチュエータを駆動するための信号を生成するとよい。アクチュエータの種類は任意である。例えば、機械振動子を使用すれば、実物模型を任意の方向に任意の振幅で振動させることができる。
【0007】
〈構成2〉
構成1に記載の自然災害シミュレーション装置において、アクチュエータは、光素子からなることを特徴とする自然災害シミュレーション装置。
【0008】
自然災害の現象を実物模型上で表現するのと、その影響を表現するのとでは、表現方法が異なる。地震現象の表現ならば、実物模型を所定の振動パターンで振動させれば足りる。しかながら、その地震の結果、柱が折れたり、壁に亀裂が入ったりしたとき、その影響を実物モデルにより直接表現をするのは難しい。破壊試験ではそのつど修復が必要だし、ミニチュアモデルで影響を再現するには複雑な機構が必要になる。光素子によれば、色や光量や点滅速度等で、自然災害の影響の程度を表すことができる。これにより、実物模型を破壊せずに自然災害の影響を表現できる。なお、光素子を駆動する方法は任意である。
【0009】
〈構成3〉
構成1に記載の自然災害シミュレーション装置において、実物模型は可動支持機構により支持されており、上記実物模型の動きを検出するセンサの出力信号から、自然災害の種類と規模を選択するための条件データの一部を抽出する手段と、抽出したデータを、インタフェースを介してコンピュータに入力する手段を備えたことを特徴とする自然災害シミュレーション装置。
【0010】
例えば、実物模型を所定方向に揺すると、その方向と揺れの振幅量を抽出する。そして、揺れ方向と揺れの振幅量とをパラメータに加えたコンピュータシミュレーションを実行する。これにより、実物模型に触れながらシミュレーションの条件を指定できるという効果がある。
【0011】
〈構成4〉
構成1に記載の自然災害シミュレーション装置において、実物模型は可動支持機構により支持されており、上記実物模型を振動させる駆動装置の起動スイッチを操作したとき、自然災害の種類と規模を選択するための条件データの一部を生成する手段と、生成したデータを、インタフェースを介してコンピュータに入力する手段を備えたことを特徴とする自然災害シミュレーション装置。
【0012】
実物模型を振動させる駆動装置の構成は任意である。自然災害の種類と規模に対応していなくても構わない。実物模型に、災害が発生しているという実感がでるという効果がある。起動スイッチを操作したときに、その操作と連動して、自然災害の種類と規模を選択するための条件データの一部を生成する。条件データ。起動スイッチの構成は任意である。
【0013】
〈構成5〉
構成1に記載の自然災害シミュレーション装置において、過去の自然災害により発生した現象を、実物模型上で再現するためのデータを記憶する手段と、このデータを、上記建物の実物模型に組み込まれたアクチュエータを駆動するための駆動回路に転送するインタフェースとを備えたことを特徴とする自然災害シミュレーション装置。
【0014】
過去の自然災害で発生した現象を、実物模型上で再現し、それと合わせて、建物を構成する各構造物に対する自然災害の影響を表現すれば、より、現実性が高まる。地震等により発生する現象を、ミニチュアモデルを使って見ると、実物大のモデルよりも客観的に見ることができ、CG画像よりもはるかに分かり易いという効果がある。
【0015】
〈構成6〉
構成1に記載の自然災害シミュレーション装置において、実物模型は可動支持機構により支持されており、予め設定した振動モデルによる現象を、実物模型上で再現するためのデータを記憶する手段と、このデータを、上記建物の実物模型に組み込まれたアクチュエータを駆動するための駆動回路に転送するインタフェースとを備えたことを特徴とする自然災害シミュレーション装置。
【0016】
地震の場合に、震度や、横揺れと縦揺れの組み合わせ等による現象を再現できる、標準的なモデルを設定しておけば、簡単にデモンストレーションができる。
【0017】
〈構成7〉
構成1に記載の自然災害シミュレーション装置において、建物の実物模型に組み込まれた光素子群は、LED群から成り、上記駆動装置は、上記シミュレーションにより、一定レベル以上の影響を受けたとされた構造物を、他の構造物と区別するように、当該構造物の近傍のLEDを駆動するスイッチ回路から成ることを特徴とする自然災害シミュレーション装置。
【0018】
実物模型に組み込まれた光素子はLEDが好ましい。シミュレーションにより、一定レベル以上の影響を受けたとされた構造物を他の構造物と区別するように、例えば、LEDを点滅駆動する。点灯していないものを連続点灯させても、点灯していたものを消灯しても、一定時間おきに点滅させてもよい。LEDの発光色で区別してもよい。LEDは実物模型の構造物に一体化してもよいし、実物模型の構造物を照らすような位置に離れて配置してもよい。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を具体例を用いて説明する。
本発明では、所定の構造の建物に対する自然災害の影響を、コンピュータで解析する。建物への影響は、コンピュータのディスプレイに表示するだけでなく、建物の実物模型(ミニチュアモデル)上で表現する。自然災害の種類としては、雪や台風、地震や火事などがあげられる。シミュレーションの対象となる建物は、顧客の現在の住居やこれから顧客に販売しようとする住居が好ましい。自然災害の種類や程度は、通常、コンピュータにキーボードやマウスを用いて入力するが、下記の実施例では、建物の模型に実際に触れながら、その一部の条件を入力することができる。
【0020】
図1は、自然災害シミュレーション装置の具体例を示すブロック図である。
図の建物の模型1は、シミュレーションの対象となるもので、所定の設計に基づいて組み立てられたミニチュアモデルである。サイズは、テーブルの上に乗せて見ることができる程度のものが好ましい。建物の模型1の基礎3の部分は、台5の上にスプリング6等の可動支持機を用いて支持している。従って、建物の模型1は基礎3とともに台5の上で、前後左右に自由に振動させることができる。なお、このスプリング6は、建物を支える地盤に相当するものなので、スプリングの長さや弾性係数をその土地に合わせて調整できるようにしてもよい。たとえばコイルスプリングと板ばねを組み合わせたものや、ダンパーなどを一体化したものにして、現実に近い弾性体地盤モデルを作成することもできる。地盤補強前のモデルと地盤補強後のモデルを用意して、交換可能にしておき、比較実験を見せることができれば、デモンストレーションの効果がある。
【0021】
一方、建物を構成する各構造物に対する自然災害の影響を、コンピュータで演算処理するために、図示したような機能ブロックを用意する。これらの機能ブロックは、コンピュータの内部に収容されたもので、CPU(中央演算処理)11と条件データ受入手段12とシミュレーション手段13と駆動出力データ生成手段14とディスプレイ20等を備える。また、記憶装置15には、自然災害再現データ16と設計図面データ17が記憶されている。自然災害再現データ16は、定型化されたモデル化された自然災害や、過去に発生した実際の自然災害を具体的に建物の模型1上で再現するためのデータである。設計図面データ17は、模型1の設計の基礎となったデータである。建物の構造物の機械強度等のデータを含むため、例えば、図示しないネットワークを介して、建物設計用のCADデータ等を利用してもよい。
【0022】
模型1の側面と下面に配置したセンサ41と42は、建物の自然災害の種類や程度を入力するための手段、即ち、条件データを入力するための手段として利用される。センサ41と42は、建物の基礎3の三次元方向の動きを検出する、例えば、光学マウスと同様の構成のものを利用する。センサ41は、基礎3の側面に対向するように配置されている。センサ42は、基礎3の下面に対向するように配置されている。センサ41、42の直前に配置された基礎3が振動すると、その二次元方向の動きを光学マウスの原理で検出する。センサ41と42の出力信号は、位置センサインタフェース44を通じて取得される。これが、条件データ受入手段12により、受け入れられて、建物の揺れ方向や振幅などを選択する条件データとされる。
【0023】
スイッチボード27も、条件データを入力するための手段として利用される。スイッチボード27には、多数のスイッチ29が設けられている。図にはその一部のみを示した。表示28は、そのスイッチ29を押した時に入力される条件データの内容を示す。スイッチ29を押すと、スイッチボード27の内部で一定の条件データが生成される。あるいは、条件データと対応するコードデータが生成される。これが、条件選択ボタンインタフェース48を通じてコンピュータの内部に受け入れられる。例えば、震度4と表示されたスイッチ29を押すと、条件データ受入手段12が、震度4の地震の影響を演算処理するようにシミュレーション手段に通知する。
【0024】
加振機43は、条件データにより選択された自然災害を再現したり、その影響を建物の模型1に反映させるためのアクチュエータである。加振機43は、例えば、鉄心を電気信号によって振動させるソレノイドコイル等から構成される。この加振機43は、例えば、加振機インタフェース45を通じて、コンピュータにより駆動制御されることが好ましい。しかしながら、簡単なパターンの振動であれば、タイマやスイッチ回路のみで制御することもできる。コンピュータにより駆動制御する場合には、駆動信号は、駆動出力データ生成手段14により生成される。
【0025】
風力計6と風向計7も、加振機43と同様の目的で設けたアクチュエータである。図の実施例の装置では、地震のような自然災害の他、台風や火事等の自然災害についてのシミュレーションも実行する。風についていえば、建物の模型1に風をあてても、その影響はわかりにくい。従って、風の強さと方向が感覚的に理解できるようにした。風力計6と風向計7とは、風力風向計インタフェース46を通じてコンピュータにより駆動制御される。駆動信号は、加振機43と同様に、駆動出力データ生成手段14により生成される。
【0026】
LED基板49も、加振機43と同様の目的で設けたアクチュエータである。地震や台風や火事のような自然災害により、建物が被害を受けた状況を建物の模型上で表現する手段として、光学的な手段を利用する。火事などの場合には、LEDの色や点滅方法により、近隣の建物等の情報と、模型の建物の、損傷の程度を表現できる。同時に、ディスプレイにより、模型の建物各部の表面温度や、室内の被害状況を表示することができる。模型1に実際に力を加えて折り曲げたり破壊したりすると、シミュレーションのつど模型を新たに作り直さなければならない。LED基板49は、建物の模型1の構造物を発光させたり着色することにより、光学的にその損傷の程度を表現する。その構造は、後の実施例で詳細に説明する。LED基板49は、LED基板インタフェース47を通じてコンピュータにより駆動制御される。駆動信号は、加振機43と同様に、駆動出力データ生成手段14により生成される。なお、ディスプレイ20は、この装置の操作用画面や、上記のアクチュエータを駆動する根拠となるシミュレーションの結果を表示するためのものである。
【0027】
図2は、自然災害シミュレーション装置の具体的な外観を示す斜視図である。
図に示すように、この装置は、ディスプレイ20とコンピュータ本体21とマウス22やキーボード23を備える。これは、パーソナルコンピュータやワークステーションなどで実現するとよい。台5の上に乗せられた建物の模型1は、インタフェースケーブル24や25を通じてコンピュータ本体21に接続されている。インタフェースケーブル24や25は、模型1からコンピュータ本体21に向かって条件データを転送し、コンピュータ本体21から模型1に向かって、アクチュエータ駆動制御信号を転送する機能を持つ。
【0028】
スイッチボード27は、建物の模型1の手前に配置されており、ボタンスイッチ29を操作することにより任意の条件データを選択できるようになっている。顧客が手軽にシミュレーションを起動できるように、コンピュータのキーボード23とは別に設けた。しかしながら、マウス22やキーボード23を用いて、全ての条件データを選択できるようにしても構わない。また、シミュレーションの結果、建物のどの部分にどのような影響があるか、どのような力が建物の各部に加わるか、といった結果を出力するために、後で説明するようなLED基板が用いられる。このために、例えば、建物1の屋根31を取り外すことができるようにしてある。もちろん、建物の外壁を全て透明にしても構わない。図のようにして、建物の模型1の部屋32を上から眺めると、その壁34、36や柱35、あるいは窓33に、例えば、地震による大きなストレスが加わった時、これらが個別に発光したり、着色される。こうして、自然災害による影響が具体的に建物の模型1の上で認識できるように表現される。
【0029】
図3は、位置センサやアクチュエータの具体例を示し、(a)は位置センサの主要部斜視図、(b)は加振機の側面図、(c)は加振機の斜視図、(d)は風力計と風向計の主要部側面図である。
(a)において、建物の模型の基礎3の側面に、センサ41の発する光ビーム51が照射されている。センサ41はこの反射光を検出して、基礎3がZ−Y平面上で前後左右に振動する時、その移動方向と移動量を検出する。建物の模型の基礎3の底面に、センサ42の発する光ビーム53が照射されている。センサ42はこの反射光を検出して、基礎3がX−Y平面上で前後左右に振動する時、その移動方向と移動量を検出する。例えば、図2に示した建物の模型1に手を触れて、任意の方向に揺すると、建物に対して地震や風の力がその方向に加わった場合の影響を、シミュレーション手段が計算する。即ち、センサ41や42を用いれば、例えば、地震の揺れの方向や台風による風の方向などを建物の模型1に触れながら指定して、その結果を条件データとしてコンピュータに入力することができる。また、揺れの程度によって、自身や風の強度を指定することも可能である。このことから、図2において、建物の模型1は、台5の上に、実際の建物の建設場所を考慮しながら固定されることが好ましい。
【0030】
(b)と(c)に示した加振機43は、上下に積み重ねられた2台のソレノイドコイル52と55からなる。このソレノイドコイル52と55とは、いずれも可動鉄心に支持された台54と56を備える。ソレノイドコイル52に振動電流を供給すると、可動鉄心がコイルの軸方向に振動する。その出力を台54に伝える。これにより、台54が、例えば、X軸方向に振動する。また、台54の上に固定されたソレノイドコイル55は、同様にして台56をY軸方向に振動させる。ソレノイドコイル52によってX軸方向の振動の周期と振幅を決定する。また、ソレノイドコイル55によってY軸方向の振動の周期と振幅とを決定する。こうして、台5の上に可動支持された基礎3を、X−Y平面上で自由に振動させることができる。また、図示していないが、垂直軸(Z軸)と平行なソレノイドコイルを持つ加振機を追加すれば、方向の(c)に示したようにZ軸方向の可振も可能である。
【0031】
(d)において、風力計6は、軸65により回転する。この軸65の下端には、プーリ67が固定されている。このプーリ67は、モータ69とプーリ68と伝達ベルト70によって回転される。即ち、モータ69に風速に相当する信号を加えれば、風速に応じて風力計6が回転する。風力計6が早く回転している時は、強い風が建物の模型に当たっているという状態を表現できる。また、風向計7は軸66を介してステッピングモータ71に接続されている。ステッピングモータ71は、風向計7を任意の方向に向ける。従って、風がどの方向に吹いている、ということをこの風向計で表すことができる。モータ69とステッピングモータ71の駆動信号は、図1に示した風力風向計インタフェース46から受け入れられる。
【0032】
図4は、シミュレーションの方法を説明するための説明図である。
例えば、図2に示したディスプレイ20に、図のような画面80を表示する。ここで、特定の地震の再現を要求するものとする。まず、スイッチボード27に設けられたスイッチ29を選んで、地震の震度を選択する。なお、現実に過去に発生した地震を再現するデータを選択するようにしてもよい。具体的には、過去にその土地で起きた地震、その他の地域で起きた地震、これから起こりうるであろう地震を再現するデータをデータベースに登録しておく。そのいずれかを選択させるようにしてもよい。条件データ受け入れ手段1により、この結果が受け入れられてテキストボックス81に表示される。また、方向検出ボタン85をクリックしてフォーカスさせた状態で建物の模型1を手で揺することによって、その地震の揺れ方向を選択する。揺れ方向というのは、横波の方向であり、震源地の方角を指定することと同様である。図の例では、東西方向というようにテキストボックス82に表示される。
【0033】
このように条件データがコンピュータに受け入れられた後、スタートボタン85がマウス22を用いてクリックされると、その条件データをシミュレーション手段13が取り込んで、建物の設計図面データ17に基づいて、実際のシミュレーションを行う。なお、予め自然災害再現データ16が用意されているから、その影響は予め計算をしておくことができる。従って、複雑な演算処理無しに、例えば、演算テーブル等によりその地震による建物の構造物への影響を求めることができる。建物の模型1は、設計図面データ通りに組み立てられたミニチュアモデルである。その設計図面データに基づき、建物の柱や壁などの構造物に対し、条件データ通りの地震が発生した時、どのようなレベルの曲げ応力やねじれ応力が加わるかを計算する。
【0034】
設計図面データ中には、予め行った構造計算の結果に基づく、建物の各構造物の耐力を示すデータが含まれている。この耐力に対し、地震などによって加わった応力の割合を計算する。これによって危険率を求める。例えば、100キログラムの応力に耐えることができる耐力を持つ柱に対し、80キログラムの応力が加わった場合には、80%という計算を行う。100キログラムの耐力を持つ柱に30キログラムの応力が加わった場合には、危険率が30%とする。このパーセンテージが高いほど構造物が被害を受ける率が高まる。具体的には後で説明をするが、その危険率をLEDの点滅によって表現するために、LEDの単位時間あたりの点滅回数を求める。さらに、指定された条件データで地震などの災害の状態を再現するために、加振機のX−Y方向およびZ−Y方向の振動周期と振幅を求める。これによって、加振機43を駆動する。従って、震度が指定され、揺れ方向が指定されて、シミュレーションが実行されると、実際に建物の模型がその方向に一定の震度で揺れるように動作する。そして、その間の時間を使って、各構造物への影響を計算する。こうして、ある柱や壁には、非常に高い応力が加わっているとか、ある壁は十分に強度が高く安全であるといったことが一目瞭然にわかるようにLEDを点滅させる。
【0035】
図5は、LEDを用いた自然災害の影響を表現する機構の説明図で、(a)は、LED基板とその上に配置された建物の模型の構造物の斜視図、(b)はその駆動回路のブロック図である。
LED基板49には、一定間隔で碁盤の目のように配列されたLED92が搭載されている。基板49の上に配置される模型が例えば、実物の20分の1のモデルであれば、各LED92は、それぞれ約20ミリ間隔で配列される。実際の建物の、柱等の構造物は、例えば910ミリメートルの間隔を基準にして配置設計されること多いからである。これにより、建物の設計が変わっても同一のLED基板49を使用することができる。即ち、シミュレーションの対象となる建物の模型が変わっても、駆動出力データ生成手段14のパラメータの変更のみで対応することができる。これらのLED92は、(b)に示すような駆動回路によって駆動される。この駆動回路のうち、レジスタ101とP/S変換回路102は、コンピュータの内部にある。シリアルインタフェース103は、RS232Cケーブルや、USBケーブルである。レジスタ104とLEDスイッチ105は基板49上に搭載されている。
【0036】
CPU11は、全てのLEDを個々にオンするかオフするかというLED点滅制御信号を生成する。その信号がレジスタ101に記憶される。このレジスタ101の内容は、CPU11により一定の周期で書き換えられる。レジスタ101中の信号は、P/S変換回路102によってシリアル信号に変換されて、シリアルインタフェース103を通じてLED基板49のレジスタ104に転送される。基板49に設けられたコネクタ93は、シリアルインタフェース103の一部を構成する。LEDスイッチ105は、レジスタ104に記憶できるデータのビット数と同数のスイッチ群を有する。レジスタ104に例えば、"00110000"というデータが記憶されているときには、LEDスイッチ105は、3番目と4番目のスイッチをオンし、他のスイッチをオフにする。各スイッチは、基板49上の対応するLEDをオンオフ制御する。レジスタ101中のデータが一定周期で書き換えられるたびに、各LEDの状態が変更される。
【0037】
以上のようにして、LED点滅制御信号を周的に連続的に書き換えることによって、全てのLED92をそれぞれ任意のタイミングでオンさせたり、オフさせたりする制御を行うことが可能になる。このようなLED基板49の上に建物の模型を配置する。建物の模型の各構造物、例えば、この図に示す柱37、39や壁38は、いずれもアクリルなどの透明樹脂により構成される。ちょうど柱37の真下にあるLEDが点灯すると、柱37はそのLEDによって発光する。壁38の下側にある複数のLEDのいずれかが点灯すると、壁38が発光する。LEDが点滅したり、それぞれ別々の色で発光すれば、構造物の外観から、どの構造物に対し、どのような大きさの力が加わっているかといった影響を肉眼で立体的に認識できる。これは、CG画面を見るよりもはるかに分かり易い。
【0038】
図6(a)は自然災害再現データの具体例、(b)はLEDの点滅制御信号の具体例、(c)は構造物の温度上昇表現方法の具体例、(d)は被害発生確率の表現方法の具体例説明図である。
まず、(a)に示す自然災害再現データの振動モデルは、数値データを図解したものであり、縦軸に振幅、横軸に時間を示すものである。この振動モデルは、一定時間一定のレベルで横揺れが発生し、その後横揺れを含む大きな縦揺れが発生し、しばらく間隔を置いて、余震に相当する縦揺れが発生する、といったパターンのデータである。このようなデータが自然災害再現データ16として、図1に示した記憶装置15に記憶されている。これは、理論的に生成された振動モデルであるが、例えば、シミュレーションの対象となる建物の建設地で、過去に発生した自然災害の状態を、可能な限り忠実に再現した振動モデルを多数記憶しておくことが好ましい。同様の地震や台風等が再び発生する確率が高いからである。
【0039】
シミュレーション手段13が、シミュレーションによる構造物への影響計算を行うには、精密な自然災害再現データが必要である。しかしながら、建物の模型を駆動する自然災害再現データは、建物を微妙に振動させてもそれの違いがわかりにくいから、実際の自然災害の特徴点のみを取り出した、より簡単な信号とするのが好ましい。条件データとしては、地震の場合は、震度と震源地の方向があげられる。また、キーボードなどを用いて震源地の深さなどを指定することもできる。台風の場合には、横風の方向と風力などを指定するとよい。火災の場合には、何メートル離れた場所で火災が発生した時、建物の各部がどのような影響を受けるかといったシミュレーションを行うとよい。また、建物の内部で出火した場合に、どのように火がまわるかといったシミュレーションも可能である。これにより、避難路の確認もできる。また、地震の場合には、地盤の構成を条件データとして入力できる。
【0040】
上記の例では、柱と壁を建物の構造物の例として、自然災害の影響を計算したが、窓ガラスや瓦なども対象にするとよい。構造物に対しては、圧縮応力や曲げ応力やひっぱり力などによる影響を計算する。ガラスの場合には、ガラスが割れるまでの力が加わったかどうかが最も重要になる。壁の場合には、ひび割れが発生するかどうかという点が重要になる。瓦の場合には、屋根から落下するか破損するような衝撃が加わるかどうかが問題となる。また、家具について、どの向きに配置された家具が倒れるか、どのように移動するか、といった計算をすることも好ましい。上記のようなシミュレーションの結果を見ることによって、例えば、家具をどこにどのようにどの向きに配置するのが最適かということがわかる。しかも、一般論でなく、自宅の模型を使用してシミュレーションをすれば、具体的な対策を直接知ることができ、非常に効果的である。さらに、中古住宅を購入する顧客に対して、その住宅の強度や安全度を予め確認するための貴重なアドバイスができる。
【0041】
また、地震が発生した時、建物の中のどの場所に隠れたらいちばんよいかなどがわかる。
即ち、建物の中で、地震や台風などの自然災害に対し、最も安全な場所はどこかが一目瞭然になる。例えば、何年か住み続けた現在の家をシミュレーションの対象として、その結果に基づいて、災害発生時の復旧費用の計算や、補強のためのリフォーム設計などを行うようにするとよい。そして、性能の高い建物と通常の建物との差を明確にし、建設費用の差や保険費用の差、あるいは災害発生時の復旧費用の差などを明確にすることによって、顧客に対し、高い品質の建物建設を勧めることが可能になる。
【0042】
図6の(b)は、自然災害の建物の各構造物に対する影響をLEDの点滅で表現したとき、各LEDに供給するLED点滅制御信号の一例を示す。各構造物に加わる応力を分子とし、構造物の耐力を分母とした時、例えば、90%以上の場合、LEDを連続点灯させる。即ち、LEDが連続点灯している構造物は、極めて破損する棄権率が高いということがわかる。応力/耐力が70から89%の範囲では、LEDは、0.5秒間点灯し、0.5秒間消灯するという動作を、周期的に繰り返す。また、応力/耐力が50%〜69%の範囲では、LEDは、4分の1秒間点灯し、4分の1秒間消灯し、再び4分の1秒間点灯し、次いで4分の1秒間消灯する、といった動作を、周期的に繰り返す。応力/耐力が30〜49%の範囲では、LEDは、8分の1秒間点灯し、8分の3秒間消灯する、といった動作を、周期的に繰り返す。29%以下の場合には、LEDは点灯しない。
【0043】
このように、LED点滅制御信号のデューティ比を選択して、壊れやすい構造物と比較的安全な構造物とを区別することができる。(c)では、火事などによる構造物の影響を、LEDの点灯色で区別する方法を示している。各構造物の温度上昇を分子とし、耐熱温度を分母として、その割合を計算している。温度上昇/耐熱温度が90%以上の場合には、LEDが赤色に点灯し、温度上昇/耐熱温度が40%から89%の場合にはLEDが黄色に点灯する。即ち、赤く光っている構造物は、ある距離で火事が発生した場合、高い温度になり、焼損する恐れがある。その他の部分は比較的安全であるといった結論がわかる。
【0044】
雪による影響は、主に各構造物に対する雪の重量に基づく応力である。これは、図6(b)に示した表現で影響を表すことができる。また、建物には、様々な原因によって、被害が発生する危険率が高い部分と低い部分とがある。シミュレーションの結果、例えば、屋根の継ぎ目とか窓の多い壁面などに被害が発生する確率が高いと判断された場合にはその結果を表現することが好ましい。図6(d)では、被害発生確率というデータを生成し、例えば、発生確率が90%以上の部分は赤、40%から89%の部分は黄色、39%以下の部分は青、といった発光色で、各部を表現する。建物の中で、特に特定の圧力に弱い部分や、風や雨に弱い部分、熱に弱い部分等を区別して表現できれば、非常に分かり易いものになる。
【0045】
なお、図6に示した表現方法の情報は、コンピュータのディスプレイ20に表示するとよい。また、この例では、これらの表現を全てLEDの点滅制御で行うため、分かり易く、しかも何度も同じ状態を再現でき、部品の破損もない、という効果がある。また、上記のような条件データは、例えば、建物の模型をデジタイザの上に乗せたり、あるいは建物の模型にジョイスティックを連結するようにして入力することも可能である。
【0046】
上記の例では、LED基板49の上に一定の間隔でLED92をマトリクス上に配置し、その上に透明な構造物を使用した建物の模型を置くようにしたので、LEDの点滅によってそのLEDのすぐ上に配置された構造物が発光し、例えば、応力の高く加わった構造物とそれ以外の構造物を肉眼で区別できる。LEDの光照射方向が拡散しないようにするには、レンズの付いたLEDを使用すればよい。また、建物の模型による立体的な表現のため、非常に分かり易いし、建物の模型の構造を自由に選択できる。2階建ての建物の場合は、光ファイバのような光ガイドを用いて、該当するLEDから構造物まで、光を導けばよい。従って、建物の模型を、実際に建設することを予定されている任意の実物のミニチュアモデルにすることができる。LED基板49の上に乗せる建物の模型の構造を変更してもその構造物の配置に応じて該当するLEDのみを点滅させたり、発光色を変更する。これによって自由に自然災害による影響をそのまま表現できる。従って、点灯させるLEDをプログラムのパラメータを変更する程度の処理で、どのような構造の建物も同様にシミュレーションをすることが可能になる。
【0047】
また、建物を振動させる機構についても、基礎3の部分を共通の構造にして、その上に任意の構造の建物の模型を乗せるようにすれば、基礎3や加振機43等の構成はそのままで、どのような建物についても任意の方向に振動を加えることができる。また、上記の例では、XY平面内で建物を振動させるようにしたが、YZ平面内で建物を振動させるように、既に説明したものと同様の機構の加振機を取り付けるようにしてもよい。さらに、建物の模型を振動させる場合に、実際の自然災害の状態を忠実に再現しようとしても限界がある。従って、建物の模型を振動させる場合には、簡単な加振機とタイマなどを用いた機構にして、コンピュータ制御を行わず、構成を簡単にして、コストダウンを図ることもできる。なお、コンピュータと建物の模型との間の距離が十分に短ければ、条件データは、コンピュータのキーボード23やマウス22を用いて全て入力できるようにし、スイッチボード27などを設けなくても構わない。
【0048】
図7は、本発明の装置の具体的な動作フローチャートである。
最後に、このフローチャートを用いて、本発明の装置の具体的な操作方法と動作を説明する。まず、始めに、図2に示したコンピュータのディスプレイ20に、条件データを入力するための画面80(図4)を表示する(ステップS1)。条件データは、図2に示したボタン29を操作したり、あるいは、模型1を手で動かして入力する(ステップS2)。また、キーボード23やマウス22を用いて入力してもよい。これにより、入力画面に、例えば、指定震度が表示される(ステップS3)。さらに、模型1を揺することによって検出された位置センサの信号がコンピュータに入力する(ステップS4)。これにより、その揺れ方向が条件データ入力画面に表示される(ステップS5)。
【0049】
次に、条件データ入力画面80中のスタートボタン86をクリックすると、ステップS6からステップS7に進む。ステップS7では、シミュレーション手段13が条件データに従ったシミュレーションを実行する。その結果は、ディスプレイ20に表示される他、シミュレーション手段13から駆動出力データ生成手段14に転送される。そして、ステップS8でLED駆動データが生成されて、基板49に送信される。これにより、模型1の各構造物が所定のモードで発光し、自然災害の影響を表示できる。
【0050】
ステップS9からステップS12は、条件選択ボタンを押して、過去の自然災害を再現する動作を示す。まず、ステップS9で、条件選択ボタン29により地震の震度や風向、風速などを入力する。また、例えば、ディスプレイ20に表示された過去の自然災害の1つを選択してもよい。条件データ受入手段12は、この選択信号を認識し、ステップS10で、自然災害再現データ16を検索して、該当する台風や地震などのデータを読み取る。駆動出力データ生成手段14は、ステップS11で、この自然災害を再現するための加振機駆動データを生成し、加振機インタフェース45を通じて加振機43に送信する。また、ステップS12で、風力風向計駆動データを生成し、これを風力風向計インタフェース46を介して送信する。これにより、模型1に振動が与えられて、風力計や風向計が動作し、実際にその自然災害の状況が再現できる。
【0051】
本発明は以上の実施例に限定されない。自然災害の影響を光学的に表現するには、建物の各部にLEDを埋め込むようにしても構わない。また、建物の模型を1軒ずつ個別に振動させる例を示したが、地盤模型上に建てられた近隣の複数の建物を、地盤ごと振動させるようにして、地域全体の被害状況を見せることもできる。また、例えば、高いビルに隣接しているときは、風の方向や強さがどうなるかも解析対象に含めることができる。さらに、隣接する建物の倒壊による被害予測もすることができる。火災の場合は、類焼の危険性も解析することができる。こうした結果を利用して、例えば、住宅メーカーは、顧客が注文した構造と、メーカー側で推薦する構造との比較をすることで、高品質住宅は、保険料が安くなり、万一の場合の修理代も安くなるという説明をすることができる。さらに、例えば、その建物の土地に合わせた春夏秋冬の一年間の自然現象を、気象データをもとに記録して、これを再現できるデータを作成すると、各顧客の建物が四季を通じてどのような自然の影響をうけるかを実感させられるシミュレーションが可能になる。顧客の住宅が海岸沿いだったり、積雪が多いところだったりすると、特にシミュレーションの効果が高い。このシミュレーションの結果に基づいて、顧客の建物の最適設計をし、顧客を満足させる高品質住宅が提供できる。
【0052】
なお、上記の演算処理装置にインストールされたコンピュータプログラムは、それぞれ独立したプログラムモジュールを組み合わせて構成してもよいし、全体を一体化したプログラムにより構成してもよい。コンピュータプログラムにより制御される処理の全部または一部を同等の機能を備えるハードウエアで構成しても構わない。また、上記のコンピュータプログラムは、既存のアプリケーションプログラムに組み込んで使用してもよい。上記のような本発明を実現するためのコンピュータプログラムは、例えばCD−ROMのようなコンピュータで読み取り可能な記録媒体に記録して、任意の情報処理装置にインストールして利用することができる。また、ネットワークを通じて任意のコンピュータのメモリ中にダウンロードして利用することもできる。
【図面の簡単な説明】
【図1】自然災害シミュレーション装置の具体例を示すブロック図である。
【図2】自然災害シミュレーション装置の具体的な外観を示す斜視図である。
【図3】位置センサやアクチュエータの具体例を示し、(a)は位置センサの主要部斜視図、(b)は加振機の側面図、(c)は加振機の斜視図、(d)は風力計と風向計の主要部側面図である。
【図4】シミュレーションの方法を説明するための説明図である。
【図5】LEDを用いた自然災害の影響を表現する機構の説明図で、(a)は、LED基板とその上に配置された建物の模型の構造物の斜視図、(b)はその駆動回路のブロック図である。
【図6】(a)は自然災害再現データの具体例、(b)はLEDの点滅制御信号の具体例、(c)は構造物の温度上昇表現方法の具体例、(d)は被害発生確率の表現方法の具体例説明図である。
【図7】本発明の装置の具体的な動作フローチャートである。
【符号の説明】
1 建物の模型
3 基礎
5 台
6 風力計
7 風向計
11 CPU
12 条件データ受入手段
13 シミュレーション手段
14 駆動出力データ生成手段
15 記憶装置
16 自然災害再現データ
17 設計図面データ
20 ディスプレイ
44 位置センサインタフェース
45 加振機インタフェース
46 風力風向計インタフェース
47 LED基板インタフェース
48 条件選択ボタンインタフェース
Claims (7)
- 自然災害の種類と規模を選択するための条件データを受け入れる手段と、
前記条件データにより選択された自然災害による、建物に加わる振動と建物を構成する各構造物に加わる応力を演算処理するシミュレーション手段と、
前記シミュレーション手段の演算処理の結果を受け入れて、前記建物に加わる振動を表現する駆動信号と、前記建物を構成する各構造物に加わる応力を表現する駆動信号とを生成する駆動出力データ生成手段と、
前記建物の縮小型実物模型を支持するための基礎の部分に設けられ、一定の間隔で光素子をマトリクス状に配置した基板と、
前記基礎の部分を支持する可動支持機構と、
前記駆動出力データ生成手段の生成した前記建物に加わる振動を表現する駆動信号を受け入れて、前記基礎の部分と前記建物の縮小型実物模型とを振動させる加振機と、
前記駆動出力データ生成手段の生成した前記建物を構成する各構造物に加わる応力を表現する駆動信号を受け入れて、応力の加わった構造物とそれ以外の構造物を肉眼で区別できるように、前記各光素子を、個別に点滅させもしくは別々の色で発光させるスイッチとを備えたことを特徴とする自然災害シミュレーション装置。 - 請求項1に記載の自然災害シミュレーション装置において、
前記建物の縮小型実物模型は、透明な構造物を使用して構成されたことを特徴とする自然災害シミュレーション装置。 - 請求項2に記載の自然災害シミュレーション装置において、
前記スイッチは、透明樹脂からなる構造物の直下の光素子を駆動し当該構造物を発光させて、構造物に加わる応力を表現することを特徴とする自然災害シミュレーション装置。 - 請求項1または2に記載の自然災害シミュレーション装置において、
該当する光素子から構造物まで光素子の光を導く光ガイドを備えたことを特徴とする自然災害シミュレーション装置。 - 請求項1乃至4のいずれかに記載の自然災害シミュレーション装置において、
前記駆動出力データ生成手段は、前記建物の各構造物の耐力に対するその構造物に加わった応力の割合から危険率を求め、その危険率に対応するLEDの単位時間あたりの点滅回数を求めて、前記建物を構成する各構造物に加わる応力をそれぞれ異なる点滅回数で表現する駆動信号を生成することを特徴とする自然災害シミュレーション装置。 - 請求項1乃至4のいずれかに記載の自然災害シミュレーション装置において、
前記駆動出力データ生成手段は、被害が発生する危険率が高い部分と低い部分とを、それぞれ異なる発光色で区別するように、前記建物を構成する各構造物に加わる応力を表現する駆動信号を生成することを特徴とする自然災害シミュレーション装置。 - 請求項1乃至6のいずれかに記載の自然災害シミュレーション装置において、
前記基板上に複数の建物の縮小型実物模型を配置したことを特徴とする自然災害シミュレーション装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002357421A JP4031981B2 (ja) | 2002-12-10 | 2002-12-10 | 自然災害シミュレーション装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002357421A JP4031981B2 (ja) | 2002-12-10 | 2002-12-10 | 自然災害シミュレーション装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004191522A JP2004191522A (ja) | 2004-07-08 |
JP4031981B2 true JP4031981B2 (ja) | 2008-01-09 |
Family
ID=32757425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002357421A Expired - Fee Related JP4031981B2 (ja) | 2002-12-10 | 2002-12-10 | 自然災害シミュレーション装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4031981B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170065858A (ko) * | 2015-12-04 | 2017-06-14 | (주)동호전자 | 지진 시뮬레이터 시스템 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008262966A (ja) * | 2007-04-10 | 2008-10-30 | Rohm Co Ltd | 発光ダイオード駆動装置 |
JP5972547B2 (ja) * | 2011-09-20 | 2016-08-17 | 株式会社構造計画研究所 | 振動解析装置、振動解析方法及び振動解析プログラム |
JP6046291B1 (ja) * | 2016-03-25 | 2016-12-14 | 一般社団法人中部地域づくり協会 | 液状化現象試験装置 |
CN108122473A (zh) * | 2018-01-18 | 2018-06-05 | 浙江大学城市学院 | 一种模拟不同震级地震发生时沙土液化现象的试验装置 |
CN108898801B (zh) * | 2018-09-07 | 2020-12-29 | 佛山科学技术学院 | 一种安全教育用地震模拟警报装置 |
CN109830165B (zh) * | 2019-02-25 | 2023-11-21 | 中南大学 | 组合式城市灾害模拟实验装置 |
CN115472072B (zh) * | 2022-08-05 | 2024-06-21 | 湖北工业大学 | 一种路堤模型多种地质灾害作用模拟装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0518851A (ja) * | 1991-07-11 | 1993-01-26 | Mitsubishi Heavy Ind Ltd | 耐震耐風複合実験装置 |
JP3476877B2 (ja) * | 1993-11-12 | 2003-12-10 | カヤバ工業株式会社 | 起震装置 |
JPH09212078A (ja) * | 1996-01-31 | 1997-08-15 | Hitachi Denshi Ltd | 教育システム |
JP2846867B2 (ja) * | 1996-11-28 | 1999-01-13 | ナショナル住宅産業株式会社 | 家屋の空気流通の展示装置 |
JP3670126B2 (ja) * | 1997-12-01 | 2005-07-13 | 積水ハウス株式会社 | 地震に対する建物の振動視認装置 |
JP3171829B2 (ja) * | 1998-08-19 | 2001-06-04 | 株式会社エヌ・シー・エヌ | 建築構造の強度表示装置及び建築構造の強度表示プログラムを記録した記録媒体 |
JP2002162893A (ja) * | 2000-11-29 | 2002-06-07 | Tokyo Gas Co Ltd | 訓練シナリオ情報提供システム、サーバ、記録媒体 |
JP3834472B2 (ja) * | 2000-11-30 | 2006-10-18 | 積水ハウス株式会社 | 免震構造体験装置 |
-
2002
- 2002-12-10 JP JP2002357421A patent/JP4031981B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170065858A (ko) * | 2015-12-04 | 2017-06-14 | (주)동호전자 | 지진 시뮬레이터 시스템 |
KR101872331B1 (ko) * | 2015-12-04 | 2018-07-31 | (주)동호전자 | 지진 시뮬레이터 시스템 |
Also Published As
Publication number | Publication date |
---|---|
JP2004191522A (ja) | 2004-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107170041B (zh) | 一种共享式实验室虚拟仿真方法和系统 | |
Liagkou et al. | Realizing virtual reality learning environment for industry 4.0 | |
KR102222983B1 (ko) | 가상 현실 환경에서의 향상된 교육 및 훈련을 제공하는 시스템 및 방법 | |
CN102171744B (zh) | 焊接仿真器 | |
JP3745802B2 (ja) | 画像生成/表示装置 | |
Froehlich et al. | Investigating virtual reality headset applications in construction | |
JP4031981B2 (ja) | 自然災害シミュレーション装置 | |
KR102048349B1 (ko) | 가상현실을 이용한 안전체험기구 | |
CN108665754A (zh) | 基于虚拟现实的户外安全演练方法及系统 | |
KR20210085266A (ko) | 국가직무능력표준(ncs) 기반 건설기계 로우더 실습교육 시스템 및 이를 이용한 실습방법 | |
CN103106816A (zh) | 可移动建筑抗震性能动态仿真分析仪 | |
Yang et al. | Research on virtual haptic disassembly platform considering disassembly process | |
CN106781777A (zh) | 一种虚实结合的建筑学教学系统 | |
CN109189217A (zh) | 一种基于vr技术的工程验收模拟方法 | |
CN102663917A (zh) | 盾构机培训系统 | |
CN113050449A (zh) | 一种有缆水下作业机器人仿真系统 | |
JP2002108196A (ja) | 避難仮想体験システム | |
CN102646360A (zh) | 测井过程实验教学演示装置及演示方法 | |
CN111223373A (zh) | 基于vr的输电线路检修培训系统及方法 | |
Wang et al. | Heavy equipment operator training via virtual modeling technologies | |
CN101188070B (zh) | 听障学生学习计算机程序设计语言的仿真教学系统 | |
CN214670480U (zh) | 一种基于压力传感的展示互动系统 | |
JPH11161148A (ja) | 地震に対する建物の振動視認装置 | |
JP2009251416A (ja) | 太陽光発電システムの解説装置 | |
JP2009146433A (ja) | 耐震性能提示システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070704 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070928 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071022 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131026 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |