JP4023532B2 - Underground continuous wall and its construction method - Google Patents

Underground continuous wall and its construction method Download PDF

Info

Publication number
JP4023532B2
JP4023532B2 JP2002047855A JP2002047855A JP4023532B2 JP 4023532 B2 JP4023532 B2 JP 4023532B2 JP 2002047855 A JP2002047855 A JP 2002047855A JP 2002047855 A JP2002047855 A JP 2002047855A JP 4023532 B2 JP4023532 B2 JP 4023532B2
Authority
JP
Japan
Prior art keywords
vibration
wall
gap
shaped steel
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002047855A
Other languages
Japanese (ja)
Other versions
JP2003247244A (en
Inventor
浩之 能條
賢治 木村
泰育 福田
友之 梅田
政浩 松井
正人 矢部
孝雄 中島
隆史 鈴木
達郎 塩原
勇男 熊谷
維子 六部
昇一 樫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Original Assignee
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp filed Critical Toda Corp
Priority to JP2002047855A priority Critical patent/JP4023532B2/en
Publication of JP2003247244A publication Critical patent/JP2003247244A/en
Application granted granted Critical
Publication of JP4023532B2 publication Critical patent/JP4023532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、地下構造物を構築する際に、当該地下構造物に隣接する地下鉄や道路からの振動を遮断するために設けられる、地中連続壁とその構築方法、及びその方法に使用する掘削機に関する。
【0002】
【従来の技術】
従来、音響ホールやオペラ座等のように、周囲の騒音を嫌う地下構造物を構築する際には、隣接する地下鉄や自動車道等からの振動を遮断する、高性能の防振構造が必要となる。その防振構造は、例えば、図12(A),(B)に示すように、地下鉄のボックスカルバート21若しくは道路・鉄道等に近接して山留め壁22が構築され、建築予定地を根切りした後に、所望箇所に防振ゴム等の防振材24が前記山留め壁22に固設され、その後、本設のコンクリート躯体23が構築される。こうして、本設のコンクリート躯体23の外周壁23aと前記山留め壁22との間に防振材24が配設されている構成が知られている(特開平8−41869号)。
【0003】
【発明が解決しようとする課題】
しかしながら、上記の防振構造では、掘削深度を深くし、また、防振材を山留め壁の構築後に行っているので、工期が長くなりコストも嵩むものとなる。更に、高性能の防振構造が要求されるので、施工性も難しくなるという課題がある。本発明に係る地中連続壁とその構築方法、及び掘削機は、このような課題を解消するために提案されたものである。
【0004】
【課題を解決するための手段】
本発明に係る地中連続壁の上記課題を解決するための要旨は、地中連続壁に設けられて外防水に兼用される防振手段が防振壁と間隙用防振壁とでなり、その防振壁が、金属製框体と、該框体に貼着された防振ゴムとからなり、前記金属製框体は、鉛直方向に立設してウェブ面を対向配置にした一対のH型鋼と、該一対のH型鋼の片側のフランジ間に横架されるフレームとでなり、前記フレーム側に前記防振ゴムが貼着され、前記一対のH型鋼のうち横方向に設けられる削孔に隣接する隣接部側のH型鋼には、そのH型鋼のウェブにL字型の位置決めフレームが鉛直方向に略全長に亘り固着され、このL字型位置決めフレームと当該H型鋼の片側のフランジとの間隙が間隙用防振壁を埋設するためのガイド部となるとともに、前記L字型位置決めフレームと当該H型鋼の他側のフランジとの間隙が掘削機用のガイド部となっており、前記間隙用防振壁は防振ゴムを複数枚積層してフレームに取り付けられてなり、該間隙用防振壁が前記防振壁の片方のH形鋼における前記間隙用防振壁埋設用のガイド部にその端部を嵌合させて横方向に突出するように取り付けられて前記防振手段が構成され、地盤の削孔に間隙をおいて隣接する防振壁間において対向するH形鋼のウェブの前記間隙防振壁用のガイド部の間に前記間隙用防振壁が埋設されて、防振手段が地盤に掘削された孔に横方向に連続して埋設されていることである。
【0007】
本発明に係る地中連続壁の構築方法の上記課題を解決するための要旨は、地中連続壁用と外防水用とに兼用される防振手段が防振壁と間隙用防振壁とでなり、その防振壁が、金属製框体と、該框体に貼着された防振ゴムとからなり、前記金属製框体は、鉛直方向に立設してウェブ面を対向配置にした一対のH型鋼と、該一対のH型鋼の片側のフランジ間に横架されるフレームとでなり、前記フレーム側に前記防振ゴムが貼着され、前記一対のH型鋼のうち横方向に設けられる削孔に隣接する隣接部側のH型鋼には、そのH型鋼のウェブにL字型の位置決めフレームが鉛直方向に略全長に亘り固着され、このL字型位置決めフレームと当該H型鋼の片側のフランジとの間隙が間隙用防振壁を埋設するためのガイド部となるとともに、前記L字型位置決めフレームと当該H型鋼の他側のフランジとの間隙が掘削機用のガイド部となっており、前記間隙用防振壁は防振ゴムを複数枚積層してフレームに取り付けられてなり、該間隙用防振壁が前記防振壁の片方のH形鋼における前記間隙用防振壁埋設用のガイド部にその端部を嵌合させて横方向に突出するように取り付けられて前記防振手段が構成され、掘削機により地盤を掘削し、この掘削した孔内に前記防振壁を埋設し、その後、前記孔の隣接部において掘削機用のガイド手段であるガイド部にガイドされながら前記掘削機で前記孔に重複させることなく連続して地盤を掘削し、この隣接部に削孔された孔内に防振手段を、先に埋設した前記防振壁における間隙用防振壁のガイド部に当該防振手段における間隙用防振壁の端部を嵌装させてガイドさせながら横方向に連続させて埋設させ、その後、前記掘削機による連続した地盤の掘削と前記埋設された防振手段の間隙用防振壁のガイド部に次の防振手段における間隙用防振壁の端部を嵌装させて横方向に連続させる防振手段の埋設とを繰り返して外防水を兼用する地中連続壁を構築することである。
【0010】
本発明に係る地中連続壁とその構築方法とによれば、地中連続壁の内部に防振手段が埋設されているので、建物周囲の地下鉄や道路・鉄道からの振動が有効に遮断される。また、掘削深度が深い場合でも、地中連続防振壁が山留め壁の外側に配設され、振動源に近い位置で振動を遮断し、防振手段による防振効果が高性能に発揮される。
【0011】
また、前記防振手段が、鉛直方向に直交する横方向に連続して設けられるので、地下構造物の外防水の役目を果たすことになる。更に、防振手段には、隣接部の地盤を掘削する掘削機用のガイド手段が設けられているので、従来のように一つ置きに掘削機を移動させて施工する手間が省け、隣接部に連続して掘削することができるとともにガイドされて掘削機の位置決めも容易になる。また、この防振手段には、隣接部の削孔に埋設する防振手段用のガイド手段が設けられているので、防振手段の埋設作業が効率的になる。
【0013】
本発明に係る地中連続壁の構築方法では、山留め壁を構築する前に、若しくは、山留め壁である連続壁の構築と共に、隣接部に連続して削抗し防振手段を埋設し防振壁を構築していくので、山留め壁の構築後にその内側に防振手段を設ける従来方法よりも、本発明の構築方法は手間が掛からず工期短縮となる。更に、壁掘削機の移動時間が短縮されて手間が掛からない。
【0014】
また、防振壁を、山留め壁の外側に、若しくは、山留め壁に埋設させて連続壁を構築するので、山留め壁の内側に防振手段を施工していた従来例に比べて、構造物の有効面積が拡がって、土地の有効活用が図れる。
【0016】
【発明の実施の形態】
次に、本発明に係る地中連続壁とその構築方法、及び掘削機について図面を参照して説明する。なお、発明の理解の容易のため従来例に対応する部分には従来例と同一符号を付けて説明する。
【0017】
本発明の地中連続壁1は、地下構造物の周囲にある地下鉄や道路・鉄道からの振動を遮断するために構築されるものであり、その構造は、図1に示すように、掘削機Aにより地盤に掘削した削孔2のソイルセメント3に、防振手段である防振壁4及び間隙用防振壁4aを埋設して構築するものである。
【0018】
また、図2に示すように、地下鉄21の深度が深いため、その隣接地に防振壁を構築するには掘削深度を深くしなければならない場合には、前記防振手段をソイルセメント3に埋設した地中連続防振壁1aを構築し、その内側に山留め壁22を構築して、これらの地中連続防振壁1aと山留め壁22とで地中連続壁1と成し、更にその内側に本設の躯体23を構築するものである。
【0019】
前記防振手段である防振壁4及び間隙用防振壁4aは、防振ゴムを複数枚積層したもので構成されている。よって、防振壁4を埋設した連続壁は、鉛直方向に直交した横方向(以下、単に横方向という)に連続したものなので、図1に示す地中連続壁1、若しくは図2に示す地中連続防振壁1aは、本設の躯体23にとっての防振壁となるとともに、外防水としての地中連続外防水壁ともなるものである。
【0020】
かかる地中連続壁1の構築方法について説明する。まず、地盤掘削の前に、防振手段を形成する。防振壁4は、図3乃至図5に示すように、鉛直方向に立設してウェブ面5aを対向配置にした一対のH型鋼5と、該H型鋼5のフランジ5b間に鉛直方向に適宜間隔を置いて溶接によって横架される鋼製のフレーム6と防振ゴム添接板6a(図5参照)で、矩形状の框体が形成される。
【0021】
前記フレーム6側に、複数枚(図示の一実施例では4枚)の防振ゴム7を積層したものを、鋼製フレーム8で挟装して、ボルト9a・ナット9bで固定して貼着させる。ウェブ面5aの外側には、L字型の位置決めフレーム10が鉛直方向に略全長に亘り溶接され固定されている。また、図3(A)に示すように、間隙用防振壁4aは、防振壁4を横方向に連続させるために設けられるものである。当該間隙用防振壁4aは防振ゴム7を複数枚積層してフレーム6,8に挟装されボルト9a・ナット9bで取り付けられてなり、該間隙用防振壁4aが前記防振壁4の片方のH形鋼5における前記間隙用防振壁埋設用のガイド部にその端部を嵌合させて横方向に突出するように取り付けられて、防振手段が構成されている。
【0022】
前記位置決めフレーム10が、図3(A)に示すように、右側のH型鋼5のウェブ面に設けられるのは、隣接部の間隙用防振壁4aを受け入れるためであり、同時に、当該隣接部の間隙用防振壁4aが鉛直方向に埋設される作業時の、ガイド手段であるガイド部10aとなるものである。この位置決めフレーム10は、後述の掘削機用のガイド手段であるガイド部10bも形成する。
【0023】
図3(B)において示す防振壁4は、間隙用防振壁4aを設けていないものであり、これは、掘削工事で最初に削孔された孔に埋設させるものである。左側の隣接部に削孔が存在しないからである。
【0024】
また、前記框体において、鉛直方向に数十mと長く形成しなければならない場合は、連結するために、図4及び図6に示すように、ボルト孔11aが穿孔された連結板11でもってボルト・ナットで首尾連接するものである。
【0025】
更に、図4に示すように、前記框体の下部(鉛直方向に起立させた際の下端部)には、ソイルセメント3へ没入させる際の抵抗力を軽減させるため、尖塔状で金属製の先導部材12が設けられている。なお、当該下部の保護のためとしては、先導部材12を尖塔状にしなくても、硬質金属製のコ字型の枠体でもよい。
【0026】
次に、本発明に用いる掘削機Aは、図7に示すように、同時に回転駆動させる3軸オーガを備えた3連の削孔機である。この掘削機Aにおいて、3軸オーガの途中に、図7及び図8に示すように、掘削残土となる残土部14の存在を無くすためのサイドカッター13が設けられ、更に、該カッター13の片側には、横方向に突出させた被ガイド部15が設けられている。
【0027】
前記被ガイド部15は、図8乃至図9に示すように、防振壁4におけるH型鋼5のウェブ面5aに、位置決め用フレーム10によって形成されたガイド部10a,10bに遊嵌され、鉛直方向にガイドされるとともに、半固化状の、若しくは、固化状態のソイルセメント3を掘削していくものである。
【0028】
このような、掘削機Aを用意して、地盤の掘削を行う。図1に示すように、STEP1において、前記被ガイド部15を設けていない通常の3連の削孔機で、ガイド定規に設けたマーキング等で先端のヘッド部を位置決めし、3連オーガを回転駆動させて地盤に孔を穿孔する。
【0029】
前記掘削された孔内には、オーガ先端部(ヘッド部)から吐出・注入されるセメント系懸濁液(セメントミルク)により、該セメントミルクと土とが混ざってソイルセメント3となって充満する。該ソイルセメント3が固化する前に、予め作成してある防振壁4を埋設する。
【0030】
前記防振壁4は、図3(B)において示す、間隙用防振壁4aの無いものである。前記STEP1での削孔2内に防振壁4を埋設させるには、掘削機におけるタワーを利用してクレーンで略垂直に吊り上げ、防振ゴム7を外側に向け先導部材12を下にして、最初は自重で貫入させ、その後はモンケン等で押し込み、埋設させるものである。掘削深度が深いときには、図10(A),(B)に示すように、連結板11で適宜にボルト・ナットで連結しながら、防振壁4を埋設させるものである。
【0031】
そして、STEP1の削孔2において、ソイルセメント3が、半固化した後に、若しくは、固化した後に、STEP2で、図1において右方向を削孔方向として、隣接部を連続して掘削する。STEP1におけるソイルセメント3と、隣接部のSTEP2におけるソイルセメント3とが、混濁しなければ良いものである。
【0032】
このSTEP2からは、被ガイド部15を有した本発明の掘削機Aを使用する。即ち、図8乃至図9に示すように、被ガイド部15を、前記STEP1で埋設完了した防振壁4のガイド部10a,10bに沿わせるように位置決めし、3連オーガを回転駆動させて穿孔を開始する。防振壁4のガイド部10a,10bに沿って鉛直方向にガイドされる前記被ガイド部15により、半固化若しくは固化したソイルセメント3が削られるとともに、隣接部の地盤に孔が穿孔される。
【0033】
そして、このSTEP2における削孔2のソイルセメント3が固化する前に、図3(A)に示す、間隙用防振壁4aを有する防振壁4を、その自重若しくはモンケン等で削孔2に埋設させる。この際に、前記間隙防振壁4aの防振ゴム7の左端部を、前記ガイド部10aに嵌装させて鉛直方向にガイドされるようにする。こうして、位置決めフレーム10を設けることで形成されたガイド部10a,10bにより、前記防振壁4がスムーズにソイルセメント3中へ貫入され埋設されるものである。
【0034】
このように、被ガイド部15を有する掘削機Aにより、図1に示すように、削孔方向に穿孔し、防振壁4を埋設していくものであるが、掘削機Aによる地盤の穿孔作業は、図11(A)に示すように、削孔方向に沿って、隣接部にほぼ重複することなく連続して穿孔作業を行うことができる。よって、3回掘削すると合計9個の孔ができる。
【0035】
これに対して、図11(B)に示すように、従来の掘削機による穿孔作業では、3回目の掘削が1回目と2回目とに跨って行われるので、合計7個の孔ができる。穿孔作業を繰り返すことで、この進行速度の差は益々拡大する。このように、本発明では、削孔方向への進行が、従来の穿孔作業の進行速度よりも早く、工期の短縮となるものである。
【0036】
こうして、地盤の掘削と防振壁4の埋設を繰り返して、防振壁4を埋設した図1に示すように地中連続壁1、若しくは、地中連続防振壁1aと山留め壁22とからなる図2に示す地中連続壁1を構築するものである。この地中連続壁1により、構築する地下構造物に近接した地下鉄等からの振動の影響を、防振壁4からなる防振手段によって排除することができるものである。
【0037】
なお、図1に示す地中連続壁1において、防振効果が十分に見込まれる場合には、間隙用防振壁4aを省いて施工しても良い。この場合には、防振壁4が連続しないので、外防水として兼用させることはできない。
【0038】
【発明の効果】
上記説明したように、本発明に係る地中連続壁は、地中連続壁に設けられて外防水に兼用される防振手段が防振壁と間隙用防振壁とでなり、その防振壁が、金属製框体と、該框体に貼着された防振ゴムとからなり、前記金属製框体は、鉛直方向に立設してウェブ面を対向配置にした一対のH型鋼と、該一対のH型鋼の片側のフランジ間に横架されるフレームとでなり、前記フレーム側に前記防振ゴムが貼着され、前記一対のH型鋼のうち横方向に設けられる削孔に隣接する隣接部側のH型鋼には、そのH型鋼のウェブにL字型の位置決めフレームが鉛直方向に略全長に亘り固着され、このL字型位置決めフレームと当該H型鋼の片側のフランジとの間隙が間隙用防振壁を埋設するためのガイド部となるとともに、前記L字型位置決めフレームと当該H型鋼の他側のフランジとの間隙が掘削機用のガイド部となっており、前記間隙用防振壁は防振ゴムを複数枚積層してフレームに取り付けられてなり、該間隙用防振壁が前記防振壁の片方のH形鋼における前記間隙用防振壁埋設用のガイド部にその端部を嵌合させて横方向に突出するように取り付けられて前記防振手段が構成され、地盤の削孔に間隙をおいて隣接する防振壁間において対向するH形鋼のウェブの前記間隙防振壁用のガイド部の間に前記間隙用防振壁が埋設されて、防振手段が地盤に掘削された孔に横方向に連続して埋設されていて、防振壁を地下鉄等の振動源に近接させて配設されるので、当該振動源からの振動の影響を効果的に抑制することができる。更に、防振壁が、連続壁に埋設され、若しくは、山留め壁の外側に構築されるようになり、土地の有効面積が拡大して土地の有効活用が図れると言う優れた効果を奏するものである。
【0039】
前記防振手段は、鉛直方向に直交する横方向に連続して設け、外防水に兼用されるものであるので、地下構造物の外防水を構築する手間が大幅に省くことができてコスト低減となるものである。
【0040】
前記防振手段が、金属製框体と、該框体に貼着された防振材とからなり、前記框体の一部に隣接部の地盤を掘削する掘削機用のガイド手段が設けられているので、掘削機が隣接する地盤を連続して掘削することができるようになり、削孔進度が増して、工期の短縮となると言う優れた効果を奏するものである。
【0041】
前記防振手段が、金属製框体と、該框体に貼着された防振材とからなり、前記框体の一部に隣接部の削孔に埋設する防振手段用のガイド手段が設けられているので、防振手段を削孔に埋設させる作業がスムーズに遂行できると言う優れた効果を奏するものである。
【0042】
前記防振手段の框体は、鉛直方向に立設してウェブ面を対向配置にした一対のH型鋼と、該H型鋼のフランジ間に横架されるフレームとでなり、前記一対のH型鋼のうち隣接部側のH型鋼には、掘削機用のガイド部または防振手段用のガイド部が設けられているので、H型鋼を利用して簡易に框体を作成することができる。
【0043】
本発明の地中連続壁の構築方法は、地中連続壁用と外防水用とに兼用される防振手段が防振壁と間隙用防振壁とでなり、その防振壁が、金属製框体と、該框体に貼着された防振ゴムとからなり、前記金属製框体は、鉛直方向に立設してウェブ面を対向配置にした一対のH型鋼と、該一対のH型鋼の片側のフランジ間に横架されるフレームとでなり、前記フレーム側に前記防振ゴムが貼着され、前記一対のH型鋼のうち横方向に設けられる削孔に隣接する隣接部側のH型鋼には、そのH型鋼のウェブにL字型の位置決めフレームが鉛直方向に略全長に亘り固着され、このL字型位置決めフレームと当該H型鋼の片側のフランジとの間隙が間隙用防振壁を埋設するためのガイド部となるとともに、前記L字型位置決めフレームと当該H型鋼の他側のフランジとの間隙が掘削機用のガイド部となっており、前記間隙用防振壁は防振ゴムを複数枚積層してフレームに取り付けられてなり、該間隙用防振壁が前記防振壁の片方のH形鋼における前記間隙用防振壁埋設用のガイド部にその端部を嵌合させて横方向に突出するように取り付けられて前記防振手段が構成され、掘削機により地盤を掘削し、この掘削した孔内に前記防振壁を埋設し、その後、前記孔の隣接部において掘削機用のガイド手段であるガイド部にガイドされながら前記掘削機で前記孔に重複させることなく連続して地盤を掘削し、この隣接部に削孔された孔内に防振手段を、先に埋設した前記防振壁における間隙用防振壁のガイド部に当該防振手段における間隙用防振壁の端部を嵌装させてガイドさせながら横方向に連続させて埋設させ、
その後、前記掘削機による連続した地盤の掘削と前記埋設された防振手段の間隙用防振壁のガイド部に次の防振手段における間隙用防振壁の端部を嵌装させて横方向に連続させる防振手段の埋設とを繰り返して外防水を兼用する地中連続壁を構築する構築方法なので、防振手段を設ける工期と削孔作業の工期がそれぞれ従来よりも大幅に短縮されると言う優れた効果を奏するものである。
【0044】
また、防振手段の一端側に掘削機用のガイド手段が設けられ、該ガイド手段に掘削機の被ガイド部を沿わせながら、隣接部の掘削を行うこと、更に、防振手段の一端側に隣接部の防振手段用のガイド手段が設けられ、該ガイド手段に隣接部の防振手段の被ガイド部を沿わせながら、当該隣接部の防振手段を削孔に埋設させるので、作業効率が向上して工期短縮となる。
【0045】
更に、防振手段の框体に設けられた掘削機用及び間隙用防振壁用のガイド手段が側方に設けられているので、削孔方向へ重複することなく連続して隣接の地盤を掘削することができるとともに、間隙用防振壁をスムーズに貫入させることが可能となり、連続した防振壁及び外防水壁を構築できるようになって、振動を高性能に遮断し、地下水の地下構造物内への浸透を防ぐとともに、連続壁の工期短縮が図られると言う優れた効果を奏するものである。
【図面の簡単な説明】
【図1】本発明に係る地中連続壁の構築方法を示す説明図である。
【図2】同本発明に係る地中連続壁で、外側の地中連続防振壁と内側の山留め壁とからなる場合の連続壁の断面図である。
【図3】同本発明に係る地中連続壁における防振壁の平面図(A),(B)である。
【図4】同本発明に係る地中連続壁における防振壁の側面図である。
【図5】図4におけるB部の拡大側面図である。
【図6】連結板の正面図(A)と、使用状態の平面図(B)である。
【図7】本発明に係る掘削機Aの正面図である。
【図8】本発明に係る地中連続壁の構築方法の説明図である。
【図9】図8におけるC部の拡大説明図である。
【図10】本発明に係る地中連続壁の構築方法を説明する説明図(A),(B)である。
【図11】本発明による削孔方法と、従来例による削孔方法とを説明する各説明図(A),(B)である。
【図12】従来例に係る地中連続壁の構造を示す断面図(A),(B)である。
【符号の説明】
1 地中連続壁、 1a 地中連続防振壁、
2 削孔、 3 ソイルセメント、
4 防振壁、 4a 間隙用防振壁、
5 H型鋼、 5a ウェブ面、
5b,5c フランジ、 6 フレーム、
6a 防振ゴム添接板、 7 防振ゴム、
8 フレーム、 9a, ボルト、
9b ナット、 10 位置決めフレーム、
10a ガイド部、 10b ガイド部、
11 連結板、 11a ボルト孔、
12 先導部材、 13 サイドカッター、
14 残土部、 15 被ガイド部、
21 地下鉄、 22 山留め壁、
23 本設のコンクリート躯体。
[0001]
BACKGROUND OF THE INVENTION
The present invention provides, for example, an underground continuous wall, a construction method thereof, and a method for constructing an underground structure, which are provided to block vibration from a subway or a road adjacent to the underground structure. Related to excavators.
[0002]
[Prior art]
Conventionally, when constructing underground structures that do not like ambient noise, such as acoustic halls and opera houses, a high-performance anti-vibration structure that blocks vibration from adjacent subways and motorways is required. Become. For example, as shown in FIGS. 12 (A) and 12 (B), the anti-vibration structure has a mountain retaining wall 22 in the vicinity of a subway box culvert 21 or a road / railway. Later, a vibration isolating material 24 such as a vibration isolating rubber is fixed to the retaining wall 22 at a desired location, and then a concrete concrete frame 23 is constructed. Thus, there is known a configuration in which the vibration isolator 24 is disposed between the outer peripheral wall 23a of the concrete concrete frame 23 and the retaining wall 22 (Japanese Patent Laid-Open No. Hei 8-41869).
[0003]
[Problems to be solved by the invention]
However, in the above-mentioned vibration-proof structure, the excavation depth is deepened and the vibration-proofing material is performed after the construction of the retaining wall, so that the construction period becomes long and the cost increases. Furthermore, since a high-performance anti-vibration structure is required, there is a problem that workability becomes difficult. The underground continuous wall, the construction method thereof, and the excavator according to the present invention have been proposed to solve such problems.
[0004]
[Means for Solving the Problems]
The gist for solving the above-mentioned problem of the underground continuous wall according to the present invention is that the vibration isolation means provided on the underground continuous wall and also used for external waterproofing is a vibration isolation wall and a vibration isolation wall for a gap. The anti-vibration wall is composed of a metal casing and an anti-vibration rubber adhered to the casing, and the metal casing is erected in a vertical direction and has a pair of web surfaces facing each other. An H-shaped steel and a frame horizontally mounted between flanges on one side of the pair of H-shaped steels. The anti-vibration rubber is attached to the frame side, and the cutting provided in the lateral direction of the pair of H-shaped steels. An H-shaped steel adjacent to the hole has an L-shaped positioning frame fixed to the H-shaped steel web in the vertical direction over substantially the entire length, and the L-shaped positioning frame and the flange on one side of the H-shaped steel. The L-shaped positioning is used as a guide portion for embedding the anti-vibration wall for the gap. Gap between the other side of the flange of the frame and the H-section steel has a guide portion for an excavator, the gap for anti-isolating wall becomes attached to the frame by stacking a plurality of vibration-proof rubber, the gap The anti-vibration means is attached to the guide portion for embedding the anti-vibration wall for the gap in the H-shaped steel on one side of the anti-vibration wall so that the end of the anti-vibration wall protrudes laterally. The gap anti-vibration wall is buried between the guide portions for the gap anti-vibration wall of the H-shaped steel web facing each other between the anti-vibration walls adjacent to each other with a gap in the ground drilling hole. The vibration isolating means is continuously embedded in the lateral direction in the hole excavated in the ground .
[0007]
The gist for solving the above-mentioned problem of the construction method of the underground continuous wall according to the present invention is that the vibration isolating means used for both the underground continuous wall and the outer waterproofing is the anti-vibration wall and the anti-vibration wall for the gap. The vibration-proof wall is composed of a metal case and a vibration- proof rubber adhered to the case, and the metal case is erected in the vertical direction so that the web surface is opposed to the case. A pair of H-shaped steels and a frame that is horizontally mounted between flanges on one side of the pair of H-shaped steels, and the anti-vibration rubber is attached to the frame side, and the horizontal direction of the pair of H-shaped steels. An L-shaped positioning frame is fixed to the H-shaped steel adjacent to the drilled hole on the H-shaped steel web over the entire length in the vertical direction, and the L-shaped positioning frame and the H-shaped steel The gap between the flange on one side serves as a guide portion for embedding the vibration isolating wall for the gap, and the L-shaped Gap between the other side of the flange-decided Me frame and the H-section steel has a guide portion for an excavator, the gap for anti-isolating wall becomes attached to the frame by stacking a plurality of vibration-proof rubber, The gap anti-vibration wall is attached to the guide part for embedding the anti-vibration wall for the gap in one H-shaped steel of the anti-vibration wall so that the end of the anti-vibration wall protrudes laterally. A vibration means is constructed, the ground is excavated by an excavator, the vibration isolation wall is embedded in the excavated hole, and then guided by a guide portion that is a guide means for the excavator in an adjacent portion of the hole The excavator continuously excavates the ground without overlapping the hole, and the vibration isolating means is embedded in the anti-vibration wall previously embedded in the hole drilled in the adjacent portion. The end of the anti-vibration wall for the gap in the anti-vibration means is fitted to the guide part While the guide Te laterally is embedded by continuous, then a gap in the next vibration isolation means in the guide portion of the gap for the anti-isolating wall drilling and the buried anti-vibration unit of the ground continuous by the excavator It is to construct an underground continuous wall that is also used for external waterproofing by repeatedly embedding an anti-vibration means that is fitted in an end portion of the anti-vibration wall and is continuous in the lateral direction .
[0010]
According to the underground continuous wall and the construction method thereof according to the present invention, the vibration isolation means is embedded in the underground continuous wall, so that vibrations from the subway, roads and railways around the building are effectively cut off. The In addition, even when the excavation depth is deep, the underground continuous anti-vibration wall is arranged outside the retaining wall, blocking vibration at a position close to the vibration source, and the anti-vibration effect by the anti-vibration means is demonstrated with high performance .
[0011]
Moreover, since the said vibration isolating means is continuously provided in the horizontal direction orthogonal to a perpendicular direction, it will play the role of external waterproofing of an underground structure. Furthermore, since the vibration isolating means is provided with guide means for excavators that excavate the ground of the adjacent portion, it is possible to save the trouble of moving the excavator every other place as in the prior art. In addition, the excavator can be positioned easily while being guided. Further, since the vibration isolating means is provided with guide means for the vibration isolating means to be embedded in the adjacent hole, the embedding work of the vibration isolating means becomes efficient.
[0013]
In the construction method of the underground continuous wall according to the present invention, before the retaining wall is constructed, or along with the construction of the continuous wall that is the retaining wall, the anti-vibration means is continuously embedded in the adjacent portion and the vibration isolating means is embedded. Since the wall is constructed, the construction method according to the present invention requires less labor and shortens the construction period than the conventional method in which the anti-vibration means is provided inside the retaining wall after the construction of the retaining wall. Furthermore, the movement time of the wall excavator is shortened, so that no labor is required.
[0014]
In addition, since the continuous wall is constructed by burying the vibration isolating wall outside the mountain retaining wall or embedded in the mountain retaining wall, compared to the conventional example in which the vibration isolating means is constructed inside the mountain retaining wall. Effective area can be expanded and land can be used effectively.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, the underground continuous wall, its construction method, and the excavator according to the present invention will be described with reference to the drawings. In order to facilitate understanding of the invention, portions corresponding to the conventional example are denoted by the same reference numerals as those of the conventional example.
[0017]
The underground continuous wall 1 of the present invention is constructed to block vibration from a subway, a road and a railroad around an underground structure, and the structure is an excavator as shown in FIG. The soil cement 3 of the drilling hole 2 excavated in the ground by A is constructed by embedding a vibration isolation wall 4 and a gap vibration isolation wall 4a as vibration isolation means.
[0018]
In addition, as shown in FIG. 2, since the depth of the subway 21 is deep, when the excavation depth has to be deepened in order to construct a vibration isolation wall in the adjacent area, the vibration isolation means is replaced with the soil cement 3. The buried underground vibration isolating wall 1a is constructed, and the retaining wall 22 is constructed inside thereof. The underground continuous vibration isolating wall 1a and the retaining wall 22 form the underground continuous wall 1, and further The main housing 23 is constructed on the inner side.
[0019]
The anti-vibration wall 4 and the anti-vibration wall 4a for the gap, which are the anti-vibration means, are configured by laminating a plurality of anti-vibration rubbers. Therefore, the continuous wall in which the anti-vibration wall 4 is embedded is continuous in the horizontal direction orthogonal to the vertical direction (hereinafter simply referred to as the horizontal direction), so the underground continuous wall 1 shown in FIG. 1 or the ground shown in FIG. The middle continuous vibration-proof wall 1a serves as a vibration-proof wall for the main housing 23 and also serves as an underground continuous outer waterproof wall as an external waterproof.
[0020]
The construction method of the underground continuous wall 1 will be described. First, a vibration isolating means is formed before ground excavation. As shown in FIGS. 3 to 5, the anti-vibration wall 4 is vertically disposed between a pair of H-shaped steel 5 standing in the vertical direction and having the web surface 5 a opposed thereto, and a flange 5 b of the H-shaped steel 5. A rectangular frame is formed by a steel frame 6 and a vibration-proof rubber attachment plate 6a (see FIG. 5) that are horizontally mounted by welding at appropriate intervals.
[0021]
A laminate of a plurality of (four in the illustrated example) anti-vibration rubbers 7 on the frame 6 side is sandwiched by a steel frame 8 and fixed by bolts 9a and nuts 9b. Let On the outside of the web surface 5a, an L-shaped positioning frame 10 is welded and fixed over the entire length in the vertical direction. As shown in FIG. 3A, the anti-vibration wall 4a for the gap is provided to make the anti-vibration wall 4 continuous in the lateral direction. The gap anti-vibration wall 4a is formed by laminating a plurality of anti-vibration rubbers 7, sandwiched between frames 6 and 8, and attached with bolts 9a and nuts 9b. An anti-vibration means is constructed by fitting the end portion of the guide portion for embedding the anti-vibration wall for the gap in one of the H-shaped steels 5 so as to protrude laterally.
[0022]
As shown in FIG. 3A, the positioning frame 10 is provided on the web surface of the right H-shaped steel 5 in order to receive the vibration isolation wall 4a for the adjacent portion, and at the same time, the adjacent portion. The gap anti-vibration wall 4a becomes a guide portion 10a which is a guide means at the time of the work of being buried in the vertical direction. The positioning frame 10 also forms a guide portion 10b which is a guide means for an excavator described later.
[0023]
The anti-vibration wall 4 shown in FIG. 3B is not provided with the anti-vibration wall 4a for the gap, and this is embedded in the hole first drilled by excavation work. This is because there is no drilling hole in the left side adjacent portion.
[0024]
Further, in the case where the casing has to be formed to be several tens of meters long in the vertical direction, in order to connect, as shown in FIGS. 4 and 6, the connecting plate 11 having a bolt hole 11a drilled is used. Successful connection with bolts and nuts.
[0025]
Furthermore, as shown in FIG. 4, in the lower part (the lower end part when standing upright in the vertical direction) of the casing, in order to reduce the resistance force when immersing into the soil cement 3, it is a spire-like metal A leading member 12 is provided. In order to protect the lower portion, a U-shaped frame made of hard metal may be used instead of the leading member 12 having a spire shape.
[0026]
Next, as shown in FIG. 7, the excavator A used in the present invention is a triple drilling machine including a three-axis auger that is driven to rotate simultaneously. In this excavator A, as shown in FIGS. 7 and 8, a side cutter 13 is provided in the middle of the three-axis auger so as to eliminate the presence of the remaining soil portion 14 that becomes the excavated residual soil. Is provided with a guided portion 15 projecting in the lateral direction.
[0027]
As shown in FIGS. 8 to 9, the guided portion 15 is loosely fitted to guide portions 10 a and 10 b formed by the positioning frame 10 on the web surface 5 a of the H-shaped steel 5 in the vibration isolation wall 4. The soil cement 3 that is guided in the direction and is semi-solidified or solidified is excavated.
[0028]
Such excavator A is prepared and the ground is excavated. As shown in FIG. 1, in STEP 1, the head portion at the tip is positioned with a marking or the like provided on a guide ruler with a normal triple drilling machine not provided with the guided portion 15, and the triple auger is rotated. Drive to drill holes in the ground.
[0029]
The excavated hole is filled with soil cement 3 by mixing the cement milk and soil with a cement-based suspension (cement milk) discharged and injected from the tip of the auger (head portion). . Before the soil cement 3 is solidified, an anti-vibration wall 4 prepared in advance is embedded.
[0030]
The anti-vibration wall 4 has no gap anti-vibration wall 4a as shown in FIG. In order to embed the anti-vibration wall 4 in the drilling hole 2 in the STEP 1, the tower in the excavator is used to lift the anti-vibration wall substantially vertically, with the anti-vibration rubber 7 facing outward and the leading member 12 facing down, At first, it penetrates with its own weight, and then it is pushed in with monken etc. and buried. When the excavation depth is deep, as shown in FIGS. 10 (A) and 10 (B), the vibration isolation wall 4 is embedded while appropriately connecting with the connecting plate 11 with bolts and nuts.
[0031]
Then, after the soil cement 3 is semi-solidified or solidified in the drilling hole 2 in STEP 1, the adjacent portion is continuously excavated in STEP 2 with the right direction as the drilling direction in FIG. 1. The soil cement 3 in STEP 1 and the soil cement 3 in STEP 2 in the adjacent portion are good as long as they are not turbid.
[0032]
From this STEP2, the excavator A of the present invention having the guided portion 15 is used. That is, as shown in FIGS. 8 to 9, the guided portion 15 is positioned so as to be along the guide portions 10a and 10b of the vibration isolating wall 4 which has been embedded in STEP 1, and the triple auger is driven to rotate. Start drilling. The guided portion 15 guided in the vertical direction along the guide portions 10a and 10b of the vibration proof wall 4 cuts the semi-solidified or solidified soil cement 3 and drills a hole in the ground of the adjacent portion.
[0033]
Then, before the soil cement 3 of the hole 2 in the STEP 2 is solidified, the anti-vibration wall 4 having the anti-vibration wall 4a for the gap shown in FIG. To be buried. At this time, the left end portion of the vibration isolating rubber 7 of the gap vibration isolating wall 4a is fitted to the guide portion 10a so as to be guided in the vertical direction. Thus, the anti-vibration wall 4 is smoothly penetrated into the soil cement 3 and embedded by the guide portions 10a and 10b formed by providing the positioning frame 10.
[0034]
In this way, as shown in FIG. 1, the excavator A having the guided portion 15 drills in the drilling direction and embeds the vibration isolation wall 4. As shown in FIG. 11 (A), the work can be continuously performed along the drilling direction without substantially overlapping the adjacent portion. Therefore, a total of nine holes are made when excavated three times.
[0035]
On the other hand, as shown in FIG. 11B, in the drilling work by the conventional excavator, the third excavation is performed across the first and second times, so that a total of seven holes are formed. By repeating the drilling operation, the difference in the traveling speed is further increased. As described above, in the present invention, the progress in the drilling direction is faster than the progress speed of the conventional drilling work, and the construction period is shortened.
[0036]
Thus, the excavation of the ground and the embedding of the anti-vibration wall 4 are repeated, and the anti-vibration wall 4 is embedded, as shown in FIG. 1, from the underground continuous wall 1 or the underground continuous anti-vibration wall 1a and the retaining wall 22. The underground continuous wall 1 shown in FIG. 2 is constructed. The underground continuous wall 1 can eliminate the influence of vibration from a subway or the like close to the underground structure to be constructed by the vibration isolation means including the vibration isolation wall 4.
[0037]
In addition, in the underground continuous wall 1 shown in FIG. 1, when the anti-vibration effect is fully expected, the gap anti-vibration wall 4a may be omitted. In this case, since the vibration-proof wall 4 is not continuous, it cannot be used as an external waterproof.
[0038]
【The invention's effect】
As described above, in the underground continuous wall according to the present invention, the anti-vibration means provided on the underground continuous wall and also used for external waterproofing is the anti- vibration wall and the anti-vibration wall for the gap. The wall is made of a metal casing and a vibration- proof rubber adhered to the casing, and the metal casing is a pair of H-shaped steels that are erected in the vertical direction and whose web surfaces face each other. And a frame that is horizontally mounted between the flanges on one side of the pair of H-shaped steels, and the anti-vibration rubber is adhered to the frame side, and adjacent to the drilling holes provided in the lateral direction of the pair of H-shaped steels. to the adjacent side of the H-shaped steel, the positioning frame L-shaped in the web of the H-section steel is secured over substantially the entire length in the vertical direction, the gap between one side flange of the L-shaped positioning frame and the H-section steel Becomes a guide part for embedding the vibration isolating wall for the gap, and the L-shaped positioning frame Gap between the other side of the flange of the H-section steel has a guide portion for an excavator, the gap for anti-isolating wall becomes attached to the frame by stacking a plurality of vibration-proof rubber, the gap for anti The vibration isolating means is constituted by attaching a vibration wall to the guide portion for embedding the vibration isolating wall for the gap in one of the H-shaped steels of the vibration isolating wall and projecting the end portion in a lateral direction. The gap anti-vibration wall is embedded between the gap anti-vibration wall guide portions of the H-shaped steel web facing each other between the adjacent anti-vibration walls with a gap in the ground hole. Since the vibration means is continuously embedded in the hole excavated in the ground in the horizontal direction and the vibration isolation wall is placed close to the vibration source such as a subway, the effect of vibration from the vibration source is effective. Can be suppressed. Furthermore, the anti-vibration wall is embedded in the continuous wall or is constructed outside the mountain retaining wall, and the effective area of the land can be expanded and the land can be effectively used. is there.
[0039]
The anti-vibration means is provided continuously in the transverse direction perpendicular to the vertical direction and is also used for external waterproofing, so that it is possible to greatly reduce the trouble of constructing the external waterproofing of underground structures and reduce costs. It will be.
[0040]
The anti-vibration means comprises a metal case and a vibration-proof material adhered to the case, and a guide unit for an excavator for excavating the ground of an adjacent portion is provided in a part of the case. As a result, the excavator can continuously excavate the adjacent ground, and an excellent effect is obtained that the drilling progress is increased and the construction period is shortened.
[0041]
The anti-vibration means comprises a metal case and an anti-vibration material attached to the case, and a guide means for the anti-vibration means embedded in a hole in an adjacent portion in a part of the case. Since it is provided, there is an excellent effect that the work of embedding the vibration isolating means in the drilling hole can be performed smoothly.
[0042]
The frame of the vibration isolating means is composed of a pair of H-shaped steels standing in the vertical direction and having the web surfaces facing each other, and a frame horizontally mounted between the flanges of the H-shaped steels. Of these, the H-shaped steel on the adjacent portion side is provided with a guide portion for an excavator or a guide portion for vibration isolation means, so that a housing can be easily created using the H-shaped steel .
[0043]
According to the construction method of the underground continuous wall of the present invention, the vibration isolating means used for both the underground continuous wall and the outer waterproofing is composed of the vibration isolating wall and the anti-vibration wall for the gap. and manufacturing rail body consists of a vibration-proof rubber adhered to the該框body, the metal frame body has a pair of H-shaped steel with a web surface facing erected vertically, the pair An adjacent frame side adjacent to a drilling hole provided in a lateral direction of the pair of H-shaped steels, wherein the anti-vibration rubber is attached to the frame side, and the frame is placed between flanges on one side of the H-shaped steel. In the H-shaped steel, an L-shaped positioning frame is fixed to the H-shaped steel web in the vertical direction over substantially the entire length, and the gap between the L-shaped positioning frame and the flange on one side of the H-shaped steel prevents gaps. It becomes a guide part for embedding the vibration wall, and the other side of the L-shaped positioning frame and the H-shaped steel Gap between the flange has a guide portion for an excavator, the gap for anti-isolating wall becomes attached to the frame by stacking a plurality of vibration-proof rubber, the is the gap for anti-isolating wall proof isolating wall The anti-vibration means is constructed by fitting the end part of the guide part for embedding the anti-vibration wall for the gap in one of the H-shaped steels so as to project laterally, and the ground is removed by an excavator. Excavating, burying the anti-vibration wall in the excavated hole, and then being guided by a guide portion that is a guide means for an excavator in an adjacent portion of the hole without overlapping the hole with the excavator The ground is excavated continuously , the vibration isolating means is inserted into the hole drilled in the adjacent portion, and the gap anti-vibration means in the anti-vibration means is provided in the guide portion of the anti-vibration wall in the anti-vibration wall previously embedded. continuous of laterally while guiding by fitted the ends of the isolating wall It was buried Te,
After that, the excavator continuously excavates the ground and inserts the end portion of the gap anti-vibration wall in the next anti-vibration means into the guide portion of the gap anti-vibration wall of the embedded anti-vibration means. It is a construction method that builds a continuous underground wall that is also used for waterproofing by repeating the installation of vibration isolation means that are continuously connected to each other, so the construction period for providing vibration isolation means and the work period for drilling work are significantly shortened compared to the conventional method. This is an excellent effect.
[0044]
Further, a guide means for the excavator is provided at one end side of the vibration isolating means, and the adjacent portion is excavated while keeping the guided portion of the excavator along the guide means, and further, one end side of the vibration isolating means. Is provided with a guide means for the vibration isolating means of the adjacent part, and the vibration isolating means of the adjacent part is embedded in the drilling hole while the guided part of the vibration isolating means of the adjacent part is placed along the guide means. Efficiency is improved and construction period is shortened.
[0045]
Furthermore, since the guide means for the excavator and the anti-vibration wall for the gap provided in the frame of the anti-vibration means are provided on the side, the adjacent ground can be continuously connected without overlapping in the drilling direction. As well as being able to excavate, it is possible to smoothly penetrate the anti-vibration wall for the gap, and it is possible to construct a continuous anti-vibration wall and an outer waterproof wall, so that the vibration is cut off with high performance and the underground water underground This prevents the penetration into the structure and has an excellent effect that the construction period of the continuous wall can be shortened.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a construction method of an underground continuous wall according to the present invention.
FIG. 2 is a cross-sectional view of the continuous wall in the case of the underground continuous wall according to the present invention, comprising an outer underground continuous anti-vibration wall and an inner mountain retaining wall.
FIGS. 3A and 3B are plan views (A) and (B) of an anti-vibration wall in the underground continuous wall according to the present invention. FIGS.
FIG. 4 is a side view of the vibration isolating wall in the underground continuous wall according to the present invention.
5 is an enlarged side view of a portion B in FIG.
FIG. 6 is a front view (A) of a connecting plate and a plan view (B) in use.
FIG. 7 is a front view of an excavator A according to the present invention.
FIG. 8 is an explanatory diagram of a method for constructing an underground continuous wall according to the present invention.
FIG. 9 is an enlarged explanatory diagram of a C part in FIG. 8;
FIGS. 10A and 10B are explanatory views (A) and (B) for explaining the underground continuous wall construction method according to the present invention.
FIGS. 11A and 11B are explanatory views (A) and (B) for explaining a drilling method according to the present invention and a conventional drilling method.
FIGS. 12A and 12B are cross-sectional views (A) and (B) showing the structure of the underground continuous wall according to the conventional example.
[Explanation of symbols]
1 underground continuous wall, 1a underground continuous anti-vibration wall,
2 drilling holes, 3 soil cement,
4 Anti-vibration wall, 4a Anti-vibration wall for gap,
5 H steel, 5a web surface,
5b, 5c flange, 6 frame,
6a Anti-vibration rubber attachment plate, 7 Anti-vibration rubber,
8 frames, 9a, bolts,
9b Nut, 10 Positioning frame,
10a guide part, 10b guide part,
11 connecting plate, 11a bolt hole,
12 leading member, 13 side cutter,
14 Remaining soil part, 15 Guided part,
21 subway, 22 mountain retaining wall,
23 A concrete concrete frame.

Claims (2)

地中連続壁に設けられて外防水に兼用される防振手段が防振壁と間隙用防振壁とでなり、その防振壁が、金属製框体と、該框体に貼着された防振ゴムとからなり、
前記金属製框体は、鉛直方向に立設してウェブ面を対向配置にした一対のH型鋼と、該一対のH型鋼の片側のフランジ間に横架されるフレームとでなり、
前記フレーム側に前記防振ゴムが貼着され、
前記一対のH型鋼のうち横方向に設けられる削孔に隣接する隣接部側のH型鋼には、そのH型鋼のウェブにL字型の位置決めフレームが鉛直方向に略全長に亘り固着され、
このL字型位置決めフレームと当該H型鋼の片側のフランジとの間隙が間隙用防振壁を埋設するためのガイド部となるとともに、前記L字型位置決めフレームと当該H型鋼の他側のフランジとの間隙が掘削機用のガイド部となっており、
前記間隙用防振壁は防振ゴムを複数枚積層してフレームに取り付けられてなり、該間隙用防振壁が前記防振壁の片方のH形鋼における前記間隙用防振壁埋設用のガイド部にその端部を嵌合させて横方向に突出するように取り付けられて前記防振手段が構成され、
地盤の削孔に間隙をおいて隣接する防振壁間において対向するH形鋼のウェブの前記間隙防振壁用のガイド部の間に前記間隙用防振壁が埋設されて、防振手段が地盤に掘削された孔に横方向に連続して埋設されていること、
を特徴とする地中連続壁。
The anti-vibration means that is provided on the underground continuous wall and is also used for external waterproofing is the anti-vibration wall and the anti-vibration wall for the gap, and the anti- vibration wall is attached to the metal case and the case. Made of anti-vibration rubber ,
The metal casing is composed of a pair of H-shaped steels standing in the vertical direction and having web surfaces facing each other, and a frame horizontally placed between flanges on one side of the pair of H-shaped steels,
The anti-vibration rubber is attached to the frame side,
Of the pair of H-shaped steels, the L-shaped positioning frame is fixed to the H-shaped steel adjacent to the drilling hole provided in the lateral direction on the H-shaped steel web in the vertical direction over substantially the entire length,
The gap between the L-shaped positioning frame and the flange on one side of the H-shaped steel serves as a guide portion for embedding a vibration isolation wall for the gap, and the L-shaped positioning frame and the flange on the other side of the H-shaped steel The gap is a guide part for the excavator,
The gap anti-vibration wall is formed by laminating a plurality of anti-vibration rubbers and attached to a frame, and the gap anti-vibration wall is used for embedding the gap anti-vibration wall in one H-shaped steel of the anti-vibration wall. The anti-vibration means is constructed by fitting the end of the guide portion so as to protrude laterally,
An anti-vibration means for the gap is embedded between the guide portions for the anti-vibration wall of the H-shaped steel web facing each other between the anti-vibration walls adjacent to each other with a gap in the ground hole. Is embedded continuously in the hole excavated in the ground in the lateral direction,
Underground continuous wall characterized by.
地中連続壁用と外防水用とに兼用される防振手段が防振壁と間隙用防振壁とでなり、その防振壁が、金属製框体と、該框体に貼着された防振ゴムとからなり、前記金属製框体は、鉛直方向に立設してウェブ面を対向配置にした一対のH型鋼と、該一対のH型鋼の片側のフランジ間に横架されるフレームとでなり、前記フレーム側に前記防振ゴムが貼着され、前記一対のH型鋼のうち横方向に設けられる削孔に隣接する隣接部側のH型鋼には、そのH型鋼のウェブにL字型の位置決めフレームが鉛直方向に略全長に亘り固着され、このL字型位置決めフレームと当該H型鋼の片側のフランジとの間隙が間隙用防振壁を埋設するためのガイド部となるとともに、前記L字型位置決めフレームと当該H型鋼の他側のフランジとの間隙が掘削機用のガイド部となっており、
前記間隙用防振壁は防振ゴムを複数枚積層してフレームに取り付けられてなり、該間隙用防振壁が前記防振壁の片方のH形鋼における前記間隙用防振壁埋設用のガイド部にその端部を嵌合させて横方向に突出するように取り付けられて前記防振手段が構成され、
掘削機により地盤を掘削し、この掘削した孔内に前記防振壁を埋設し、
その後、前記孔の隣接部において掘削機用のガイド手段であるガイド部にガイドされながら前記掘削機で前記孔に重複させることなく連続して地盤を掘削し、
この隣接部に削孔された孔内に防振手段を、先に埋設した前記防振壁における間隙用防振壁のガイド部に当該防振手段における間隙用防振壁の端部を嵌装させてガイドさせながら横方向に連続させて埋設させ、
その後、前記掘削機による連続した地盤の掘削と前記埋設された防振手段の間隙用防振壁のガイド部に次の防振手段における間隙用防振壁の端部を嵌装させて横方向に連続させる防振手段の埋設とを繰り返して外防水を兼用する地中連続壁を構築すること、
を特徴とする地中連続壁の構築方法。
The anti-vibration means used for both the underground continuous wall and the outer waterproofing is the anti-vibration wall and the anti-vibration wall for the gap, and the anti- vibration wall is attached to the metal case and the case. and consists of a rubber cushion, the metal frame body is laterally placed on the web surface erected in a vertical direction and a pair of H-shaped steel was opposed, between one side of the flanges of the pair of H-type steel The anti-vibration rubber is affixed to the frame side, and the H-shaped steel on the adjacent portion side adjacent to the drilling hole provided in the lateral direction of the pair of H-shaped steels is attached to the H-shaped steel web. An L-shaped positioning frame is fixed over the entire length in the vertical direction, and a gap between the L-shaped positioning frame and the flange on one side of the H-shaped steel serves as a guide portion for embedding the vibration isolating wall for the gap. , The gap between the L-shaped positioning frame and the flange on the other side of the H-shaped steel Has become a de part,
The gap anti-vibration wall is formed by laminating a plurality of anti-vibration rubbers and attached to a frame, and the gap anti-vibration wall is used for embedding the gap anti-vibration wall in one H-shaped steel of the anti-vibration wall. The anti-vibration means is constructed by fitting the end of the guide portion so as to protrude laterally,
Excavating the ground with an excavator, burying the anti-vibration wall in the excavated hole,
Then, excavating the ground continuously without overlapping the hole with the excavator while being guided by a guide portion that is a guide means for excavator in the adjacent portion of the hole,
The anti-vibration means is fitted in the hole cut in the adjacent portion, and the end portion of the anti-vibration wall for the gap in the anti-vibration means is fitted in the guide portion of the anti-vibration wall for the gap in the anti-vibration wall previously embedded. And let it be embedded in the horizontal direction while being guided,
After that, the excavator continuously excavates the ground and inserts the end portion of the gap anti-vibration wall in the next anti-vibration means into the guide portion of the gap anti-vibration wall of the embedded anti-vibration means. Constructing a continuous underground wall that is also used for waterproofing by repeatedly burying the vibration isolation means
The construction method of the underground continuous wall characterized by this.
JP2002047855A 2002-02-25 2002-02-25 Underground continuous wall and its construction method Expired - Fee Related JP4023532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002047855A JP4023532B2 (en) 2002-02-25 2002-02-25 Underground continuous wall and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002047855A JP4023532B2 (en) 2002-02-25 2002-02-25 Underground continuous wall and its construction method

Publications (2)

Publication Number Publication Date
JP2003247244A JP2003247244A (en) 2003-09-05
JP4023532B2 true JP4023532B2 (en) 2007-12-19

Family

ID=28660809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002047855A Expired - Fee Related JP4023532B2 (en) 2002-02-25 2002-02-25 Underground continuous wall and its construction method

Country Status (1)

Country Link
JP (1) JP4023532B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4852900B2 (en) * 2005-06-14 2012-01-11 株式会社大林組 Wall panel joint structure, underground continuous wall construction method, and underground continuous wall
JP2007046398A (en) * 2005-08-12 2007-02-22 Takenaka Komuten Co Ltd Composite underground wall having vibration-isolation effect, its construction method and horizontal multi-spindle type ground improvement device
JP5561863B2 (en) * 2010-11-22 2014-07-30 大成建設株式会社 Anti-vibration structure

Also Published As

Publication number Publication date
JP2003247244A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
CN1837506B (en) Construction method for excavating box-shape structure over an operating tunnel
GB2492890A (en) Constructing a diaphragm wall with a guide tube
JP4990206B2 (en) Structure of underground structure and its construction method
JP4023532B2 (en) Underground continuous wall and its construction method
JPH06116942A (en) Construction method of critical sheathing wall
JP3893056B2 (en) Construction method of underground structure
JP4485006B2 (en) Construction method for underground structures
KR20080021574A (en) The unit metal tubing constructing system for the railroad track and the road underground driveway
JP3904881B2 (en) Construction method of existing roadbed surface support
JP4440152B2 (en) Construction method of underground penetrating body and steel shell element therefor
JP3898112B2 (en) Caisson connection method
JPS622116B2 (en)
JP5167578B2 (en) Construction method for underground structures
JP4349570B2 (en) Construction method of division box and underground level crossing
JP2527486B2 (en) Construction method of earth retaining wall for underground structure
JP5377693B2 (en) Structure of underground structure
JP2004316125A (en) Work execution method for large sectional tunnel and deformed section shield machine
JP7084515B1 (en) Construction method of underground structure
JP4082663B2 (en) Method of building the foundation of the place where the building is built
JP2022128667A (en) Continuous pile and forming method thereof
JP2006299694A (en) Element method using protective steel plates
JP5223090B2 (en) Tunnel construction method
JP4749914B2 (en) Partition facility construction structure and partition facility construction method in the approach part of underpass tunnel
JPH11336469A (en) Underground tunnel and constructing method thereof
JP2002180413A (en) Support structure of lining plate and lining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4023532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141012

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141012

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees