JP4020979B2 - 液晶表示素子の駆動回路 - Google Patents

液晶表示素子の駆動回路 Download PDF

Info

Publication number
JP4020979B2
JP4020979B2 JP30732392A JP30732392A JP4020979B2 JP 4020979 B2 JP4020979 B2 JP 4020979B2 JP 30732392 A JP30732392 A JP 30732392A JP 30732392 A JP30732392 A JP 30732392A JP 4020979 B2 JP4020979 B2 JP 4020979B2
Authority
JP
Japan
Prior art keywords
voltage
signal
circuit
electrode
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30732392A
Other languages
English (en)
Other versions
JPH0627899A (ja
Inventor
克則 山崎
聡 矢田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP30732392A priority Critical patent/JP4020979B2/ja
Priority to KR1019930005521A priority patent/KR100297860B1/ko
Priority to US08/061,890 priority patent/US5442370A/en
Publication of JPH0627899A publication Critical patent/JPH0627899A/ja
Application granted granted Critical
Publication of JP4020979B2 publication Critical patent/JP4020979B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は液晶表示装置に関するもので、詳しくは表示むらの改善に関するものである。
【0002】
【従来の技術】
液晶表示装置の液晶パネルは、液晶パネルを構成する走査電極及び信号電極に液晶表示装置内の電源回路で発生する異なった電圧で構成された電圧波形(以後、駆動電圧波形と言う。)を供給することで駆動、表示が行われる。そして、液晶パネルが表示する内容に応じてこれらの駆動電圧波形は変化する。
【0003】
ここで、液晶パネルが容量性の負荷であり走査電極及び信号電極が電気抵抗を持っていることから走査電極及び信号電極に印加する電圧波形によって、走査電極及び信号電極に印加する電圧波形に歪が生じ、これによって表示にむらが発生すると言った問題があった。
【0004】
この問題について、筆者等が出願した特開平2−89号公報等で提示したような駆動電圧波形に補正電圧を付け加えて歪を矯正する方法が知られていた。
【0005】
【発明が解決しようとする課題】
しかし、特開平2−89号公報等で提示した方法は表示むらを著しく低減できるが、これを行う際に予め補正量を計算するための回路を必要としていたため、液晶表示装置が複雑なものになり小型軽量化が難しくなっていた。
【0006】
本発明はかかる問題を鑑みてなされたものであり、走査電極及び信号電極に印加する電圧波形に生じる歪は走査電極上の電圧に対する信号電極上の電圧の変化の総和で規定されることに着目し、さらにこの電圧の変化の総和に応じた電流が電源回路に流れることから、これらの電圧の変化または電流の変化を監視することによって液晶パネル内での走査電極または信号電極に発生する歪を推定して、この歪を相殺する補正電圧を駆動電圧波形に付け加えることによって、表示むらを解消しようとするもので、その目的は表示むらを簡素な回路構成によって解消し表示品位の高い表示装置及び見やすい表示装置を搭載した小型軽量化した電子機器を提供することにある。
【0007】
【課題を解決するための手段】
本発明の液晶表示装置の駆動回路は、複数の走査電極に選択電圧、非選択電圧を順次印加する走査電極駆動回路と、複数の信号電極に表示すべき階調を特定するための信号電圧を印加する信号電極駆動回路とを設けた液晶表示素子の駆動回路であって、少なくとも2つの走査電極群に分けられた前記複数の走査電極について、ある走査電極群に属する走査電極に順次選択電圧が印加される期間、他の走査電極群に属する所定の走査電極を指定し、その走査電極に印加される非選択電圧を出力する指定手段と、前記指定手段から出力される非選択電圧について、その歪を検出する検出手段と、前記検出手段により検出される歪に基づき非選択電圧を補正して補正信号を生成する補正信号生成手段とを有し、前記補正信号を前記走査電極駆動回路に供給することにより、前記歪に起因する表示むらを抑制することを特徴とする。
【0008】
また、本発明の他の液晶表示装置の駆動回路は、複数の走査電極に選択電圧、非選択電圧を順次印加する走査電極駆動回路と、複数の信号電極に表示すべき階調を特定するための信号電圧を印加する信号電極駆動回路とを設けた液晶表示素子の駆動回路であって、少なくとも2つの走査電極群に分けられた前記複数の走査電極について、ある走査電極群に属する走査電極に順次選択電圧が印加される期間、他の走査電極群に属する所定の走査電極を指定し、その走査電極に印加される非選択電圧を出力する指定手段と、前記指定手段から出力される非選択電圧について、その歪を検出する検出手段と、前記検出手段により検出される歪に基づき信号電圧を補正して補正信号を生成する補正信号生成手段とを有し、前記補正信号を前記信号電極駆動回路に供給することにより、前記歪に起因する表示むらを抑制することを特徴とする。
【0009】
【発明の実施の形態】
[実施例1]本発明の駆動方法を実施例を用いてさらに詳しく説明する。ここで、まず液晶パネルの信号電極の配列方向に発生する表示むらを解消する場合について説明する。
【0010】
図1は本実施例の構成を示す図である。図で、10は液晶パネルで液晶層(図示せず。)を挟持する一対の基板101、102からなり一方の基板101には走査電極Y1〜Y6、他方の基板102には信号電極X1〜X6が形成されている。ここで、走査電極Y1〜Y6、信号電極X1〜X6はそれぞれ6本と少ないがこれは説明を簡単にするためで、通常これよりはるかに多い。
【0011】
11はXドライバであり、111〜113はその内部構成要素でそれぞれ6ビットのシフト・レジスタ回路、6ビットのラッチ回路、6ビットの4回路1接点のアナログ・スイッチ回路である。なお、ビット数は液晶パネル10の信号電極の数である。
【0012】
12はYドライバであり、121、122はその内部構成要素でそれぞれ6ビットのシフト・レジスタ回路、6ビットの4回路1接点のアナログ・スイッチ回路である。なお、ビット数は液晶パネル10の走査電極の数である。そして、データ信号、CK信号、LP信号、DI信号、FR信号が外部より取り込まれる。以上の構成は従来技術の構成と同じである。
【0013】
13は電源回路で、液晶パネルを駆動するのに必要な6レベルの電圧を、電圧V0−電圧V1=電圧V1−電圧V2=電圧V3−電圧V4=電圧V4−電圧V5(=Vとおく。)で、電圧V0−電圧V5=n・V(nは正数で、通常10前後。)となる関係を持つ電圧V0〜V5を発生させる場合に、131は電圧分割回路で、5本の抵抗器R1、R2、R3、R4、R5からなり、抵抗器R1、R2、R4、R5はRなる抵抗値を持ち、R3は(n−4)Rなる抵抗値を持つ。この電圧分割回路131の両端に、即ち図で抵抗器R1の上と抵抗器R5の下にそれぞれ電圧V0、電圧V5を印加すると各抵抗器R1とR2、R2とR3、R3とR4、R4とR5間にそれぞれ電圧V1、V2、V3、V4が分割されて発生する。
【0014】
OP1〜OP4は電圧分割回路11が発生した電圧V1、V2、V3、V4をインピーダンスを下げて出力するボルテージ・ホロワ回路である。このボルテージ・ホロワ回路OP1〜OP4は、一般的には演算増幅回路によって構成されている。
【0015】
132は基準電圧切り替えスイッチで、FR信号に応じて電圧V1と電圧V4のいずれかを切り替えて出力するスイッチである。
【0016】
133は入力電圧切り替え制御回路で、Yドライバが走査電極Y1からY3のいずれかに選択電圧を出力している間に”0”を、走査電極Y4からY6のいずれかに選択電圧を出力している間に”1”となるスイッチ制御信号134を出力する回路である。この回路はLP信号をクロック信号、DI信号をリセット信号とした計数回路とこの計数回路の結果の大小を比較する比較回路等で容易に形成することが出来るので、特に図示して説明することは省略する。
【0017】
135は入力電圧切り替えスイッチで、スイッチ制御信号134が”1”の時にYドライバ12が走査電極Y2に出力する電圧を、”0”の時にY5に出力する電圧波形を選択して出力する。
【0018】
136は差動増幅回路で、基準電圧切り替えスイッチ21と入力電圧切り替えスイッチから出力された電圧の差を出力する。
【0019】
137〜140は電圧加算回路で、それぞれ外部から供給される電圧及びボルテージ・ホロワ回路OP2、OP3が出力する電圧V0、V2、V3、V5に差動増幅回路136が出力する電圧を加算した電圧をそれぞれ電圧V0’、V2’、V3’、V5’として出力する。ここで電圧加算回路137〜140の具体的な一構成例を図2に示す。図で端子Vrefは基準電圧を入力する端子で図1の電圧V0、V2、V3、V5のいずれかが入力する。図2で端子Vinは差動増幅回路136の出力する電圧を入力する。201は抵抗器、202はコンデンサで微分回路を形成し、203は演算増幅回路によるボルテージ・ホロワ回路である。端子Voutはボルテージ・ホロワ回路203の出力で図1の電圧V0’、V2’、V3’、V5’と対応する。ここで、図2で端子Vinに入力する差動増幅回路136の出力する電圧はほぼ微分波形に近いのでこの電圧を抵抗201とコンデンサ202からなる微分回路の端子Vinに接続することによって、近似的に端子Vrefの電圧に端子Vinの電圧を加えた電圧をボルテージ・ホロワ回路203から出力することが出来る。
【0020】
そして、図1で電圧V0、V1、V4、V5はYドライバ12に供給され、電圧V0’、V2’、V3’、V5’はXドライバ11に供給される。ここで、Yドライバ12に供給する電圧V5、V1及びXドライバ11に供給する電圧V0’、V2’をそれぞれ第1の電圧群の選択電圧、非選択電圧、点灯電圧、非点灯電圧と呼び、電圧V0、V4、V5’、V3’をそれぞれ第2の電圧群の選択電圧、非選択電圧、点灯電圧、非点灯電圧と呼ぶ。
【0021】
以上の構成となっている。なお、各回路間の接続については図により明確なので説明を省略する。そして図3に示すように、データ信号、CK信号、LP信号、DI信号が外部から供給される。
【0022】
ここで、動作を説明する。
【0023】
まず、Xドライバ11は図3に示すCK信号に同期して表示内容を決めるデータ信号をシフト・レジスタ回路111に順次取り込み、シフトする。そして、シフト・レジスタ回路111に液晶パネル10の信号電極数と同じ数だけデータを取り込むと、図3に示すLP信号に同期してシフト・レジスタ回路111の各ビットの内容がラッチ回路112の各ビットに取り込まれる。レベル・シフタ回路113はラッチ回路112に取り込んだ内容とFR信号に応じた電圧を出力する。即ち、ラッチ回路112に取り込んだ各ビットの内容が点灯を示す(以後、”1”とする。)場合には点灯電圧を出力し、内容が非点灯を示す(以後、”0”とする。)場合には非点灯電圧を出力する。そして、FR信号が第1の電圧群を選択することを示す(以後、”0”とする。)場合については第1の電圧群を出力し、FR信号が第2の電圧群を選択することを示す(以後、”1”とする。)場合については第2の電圧群を出力する。
【0024】
Yドライバ12はLP信号に同期して選択する走査電極を決める図に示すDI信号をシフト・レジスタ回路121に順次取り込み、シフトする。レベル・シフタ回路122はラッチ回路121に取り込んだ内容とFR信号に応じた電圧を出力する。即ち、ラッチ回路112に取り込んだ各ビットの内容が選択を示す場合には選択電圧を出力し、内容が非選択を示す場合には非選択電圧を出力する。そして、FR信号が”0”の場合については第1の電圧群を出力し、FR信号が”1”の場合については第2の電圧群を出力する。
【0025】
ここで、入力電圧切り替え制御回路133は入力電圧切り替えスイッチを、選択電圧が走査電極Y1からY3に印加する期間では、Yドライバ12が走査電極Y5に出力する電圧を差動増幅回路136に出力し、選択電圧が走査電極Y4からY6に印加する期間では、Yドライバ12が走査電極Y2に出力する電圧を差動増幅回路136に出力する。よって、常にFR信号に応じて電圧V1とV4が切り替わる電圧波形に歪が重畳された電圧を136に出力する。
【0026】
この時、132は基準電圧切り替えスイッチはFR信号に応じて電圧V1とV4のいずれかを差動増幅回路136に出力する。
【0027】
従って、差動増幅回路136はYドライバ12が走査電極Y2もしくはY5に出力する電圧波形の歪分のみが出力される。
【0028】
この歪分を電圧加算回路137〜140で、電圧V0、V2、V3、V4に加算して電圧V0’、V2’、V3’、V4’としてXドライバ11に出力する。
【0029】
以上の動作を行う。
【0030】
従って、非選択電圧(V1またはV4)の印加する走査電極上の電圧に歪(これをVeとする。)が発生すると、走査電極上の電圧はVc+Veとなる。この時、信号電極上の電圧は電圧V0、V1またはV3、V5にVeを加えた電圧V0’、V2’またはV3’、V5’になる。従って、走査電極と信号電極の電圧差は、
V0’−V1=(V0+Ve)−(V1+Ve)=V
V1−V2’=(V1+Ve)−(V2+Ve)=V
V3’−V4=(V3+Ve)−(V4+Ve)=V
V4−V5’=(V4+Ve)−(V5+Ve)=V
となって、歪の大きさ向きの如何にかかわらず常に差は一定となる。よって、液晶パネル10の各ドットに印加する実効電圧に差異が無くなって表示むらが無くなる。これを図4に示す。図4は液晶パネル10がある表示を行った時の電圧V0〜電圧V2及び電圧V0’〜V2’及び走査電極Y2ないしY5に出力するYドライバ12の出力波形の一部分を示す図である。
【0031】
図で破線の401〜402は電圧V0〜V2を示し、実線の404、406は電圧V0’、V2’を示し、実線の405は走査電極Y2ないしY5に出力するYドライバ12の出力波形を示す。そして、407、408はそれぞれ電圧V0’、V2’とYドライバ12の出力波形405の電圧差を示す。なお、401〜403は見やすいように少しずらして表示してある。ここで、Yドライバ12の出力波形405が歪んで、電圧変動が発生するとこれに追従して404と406即ち電圧V0’とV1’も電圧が変動する。これによって、電圧差407、408は歪によらずに常に一定となる。ここでは、第1の電圧群について説明したが、第2の電圧群についても同様となる。
【0032】
Yドライバ12の出力する電圧波形の歪分をXドライバ11に供給する電圧に単に付け加えたが、Yドライバ12の出力する電圧波形の歪より液晶パネル10の内部の方がより大きく歪むのでこの分を考慮してXドライバ11に供給する電圧に付け加える電圧を大きめにしても良い。これは差動増幅回路136の利得を適当な値に設定することによって容易に設定出来る。そして、この場合には検出した歪に対して必ずしも線形に大きくする必要はない。
【0033】
なお参照する走査電極をここではY2とY5としたが、勿論これに限定するものはなく、いずれの場所の走査電極についてでも良い。また、複数の走査電極についての歪を平均化して用いても良い。
【0034】
以上述べたように走査電極上の電圧変動を検出して信号電極上の電圧もこれに対応して変動させることによって、容易で簡素に表示むらを解消することが出来た。
【0035】
[実施例2]実施例1では、信号電極の駆動電圧波形に補正電圧を付け加える方法を示したが、走査電極の駆動電圧波形に補正電圧を付け加えることも容易で同様の効果を得られる。この例を説明する。図5は本実施例の構成の一例を示す図である。
【0036】
図で、53が電源回路で、電源回路53内の531〜533以外は図1と同じもので同じ動作をするので同番号を付して説明を省略する。
【0037】
531は差動増幅回路で、基準電圧切り替えスイッチ21と入力電圧切り替えスイッチから出力された電圧の差を極性を反転して出力する。
【0038】
532と533は図1の電圧加算回路137〜140と同じ回路構成を持つ電圧加算回路で、ボルテージ・ホロワ回路OP1、OP4が出力する電圧V1、V4に差動増幅回路531が出力する電圧を加算した電圧をそれぞれ電圧V1’、V’として出力する。
【0039】
そして、図1で電圧V0、V1’、V4’、V5はYドライバ12に供給され、電圧V0、V2、V3、V5はXドライバ11に供給される。ここで、Yドライバ12に供給する電圧V5、V1’及びXドライバ11に供給する電圧V0、V2がそれぞれ第1の電圧群の選択電圧、非選択電圧、点灯電圧、非点灯電圧となり、電圧V0、V4’、V5、V3がそれぞれ第2の電圧群の選択電圧、非選択電圧、点灯電圧、非点灯電圧となる。
【0040】
以上の構成となっているので、非選択電圧(V1またはV4)の印加する走査電極上の電圧に歪(これをVeとする。)が発生しようとすると、即ち走査電極上の電圧がVc+Veとなろうとする時、電圧加算器532、533は−Veの電圧を電圧V1またはV4に加えるので発生しようとする歪がほぼ相殺される。従って、走査電極上の非選択電圧には歪が殆ど無くなって、表示むらが無くなる。
【0041】
Yドライバ12の出力する電圧波形の歪より液晶パネル10の内部の方がより大きく歪むのでこの分を考慮してYドライバ12に供給する電圧に付け加える補正電圧を大きめにしても良い。これは差動増幅回路531の利得を適当な値に設定することによって容易に設定出来る。そして、この場合には検出した歪に対して必ずしも線形に大きくする必要はない。
【0042】
以上述べたように走査電極上の電圧変動を検出して、走査電極上の電圧をこれに対応して変動させることでも、表示むらを解消することが出来た。
【0043】
また、実施例1と実施例2を組み合わせて信号電極及び走査電極の駆動電圧波形の両方に補正電圧を加えても同様の効果がある。
【0044】
参考例1]他の参考例を示す。実施例1、2では特定の走査電極に出力するYドライバの出力波形の歪でXドライバあるいはYドライバに供給する電圧を変化させることによって表示むらを解消した。ここで、筆者が出願した特開平2−89号公報で詳しく説明してあるが、簡単に言えば各信号電極の走査電極に対する電圧の変化の総和で、Yドライバの出力波形ないし走査電極上の電圧波形の歪が規定されている。従って、液晶パネルの走査電極が形成されている基板上に電圧検出電極を形成し、この電圧検出電極を信号電極と液晶層によって容量結合させ、信号電極の電圧変化の総和を検出し、この結果より、走査電極上の歪を推定してXドライバに供給する電圧を変化させてもよい。
【0045】
これを、図6を用いてさらに詳しく説明する。図6はこの参考例の構成を示す。図で液晶パネル10aと電源回路63以外は図1の構成と同じであり説明を省略する。
【0046】
図6で液晶パネル10aは図1の液晶パネル10の基板101上に新たに電圧検出電極YDを付け加えたものである。電圧検出電極YDは図に示すように信号電極X1〜X6の全てに対向するように設けてある。ここで、信号電極X1からX6上の電圧変化による走査電極上に発生させる影響が各信号電極毎に異なる場合には、電圧検出電極YDの幅は一様でなくとも良く、例えば左から右になるに従って広くなるように形成しても良い。
【0047】
図6で63は電源回路で、631〜633以外の構成要素は図1の電源回路13と同じなので説明を省略する。631は抵抗器で液晶パネル10a上に設けた電圧検出電極YDとこれに対向する信号電極X1〜X6からなるコンデンサとで微分回路を形成する。632はボルテージ・ホロワ回路で電圧検出電極YDに発生する電圧をインピーダンスを下げて出力する。このボルテージ・ホロワ回路632は必ずしも1倍の増幅率で無く任意倍の非反転増幅器であっても良い。633はスイッチ回路で抵抗器631の一端に加える電圧(以後、基準電圧と言う)を電圧V1と電圧V4のいずれかに切り替えるスイッチである。即ち、Yドライバが非選択電圧として電圧V1を用いている時には電圧V1を、電圧V4を用いている時は電圧V4を抵抗器631の一端に加える。以上の構成となっているので、ボルテージ・ホロワ回路632は各信号電極X1〜6の電圧の変化の総和に応じた電圧変動を発生するから、この電圧変動を用いて電圧加算回路137〜140で電圧V0’、V2’、V3’、V5’を発生する。
【0048】
以上の構成と動作をする。
【0049】
従って、実施例1と同様の動作をするから同様の効果を得るとともに、駆動方法が電圧平均化法でない場合、例えば特開昭60−247224号公報等で提示されている2値の電圧で異なった形状の電圧波形が走査電極に印加させて駆動する方法で液晶パネルを駆動した場合に、各走査電極の電圧波形が個々に異なった形状をしている為に、走査電極走査電極の歪を直接検出することが難しいので、電圧検出電極によって走査電極上の歪を推定するこの参考例の方法が有効である。
【0050】
なお、スイッチ回路63は、Yドライバ12が用いる非選択電圧が電圧V1とV4の2つの電圧を用いることによって必要となっている。即ち、Yドライバ12の出力する非選択電圧に対する信号電極上の電圧変化の総和を検出する際にYドライバ12が出力する非選択電圧が電圧V1(4)からV4(1)に切り替わる時(FR信号が変化する時)に抵抗器631の一端に加える基準電圧も変更する必要があるからである。従って、Yドライバを非選択電圧を共通化し、非選択電圧を基準として、選択電圧を絶対値が同じ正負電圧の組(必ずしも1組である必要はない。)で動く構成として、Xドライバも同様に絶対値の同じ正負電圧(必ずしも1組である必要はない)で動く構成にすることによって、電圧V1とV4を切り替える比較的高耐圧のスイッチ回路633は不要となり、また抵抗器631の一端に加える基準電圧の値は任意の一定電圧で良くなる。例えば、基準電圧を電圧V0とV5の中点の電圧に設定しても良い。
【0051】
さらに、図6のYドライバ12と同等のFR信号が変化すると非選択電圧が電圧V1(4)からV4(1)に切り替わる構成のYドライバであっても、FR信号が変化する時に補正電圧を強制的に発生させないような回路(例えば、抵抗器631を短絡する低耐圧のスイッチ)構成にすることによっても、スイッチ回路633は不要となり、また抵抗器631の一端に加える基準電圧の値は任意の一定電圧で良くなる。
【0052】
また、本参考例では信号電極の駆動電圧波形に補正電圧を付け加えているが、ボルテージ・ホロワ回路632が出力する電圧の極性を反転させる反転増幅回路を設け、この出力電圧を補正電圧として、これを走査電極の駆動電圧波形に付け加えることによって、実施例2と同じ効果が得られる。
【0053】
参考例2]また、さらにYドライバの出力波形ないし走査電極上の電圧波形の歪は、Yドライバ及び走査電極に電流が流れることによって発生する。そして、この電流はYドライバを介して電源回路に流入する。従って、この電源回路に流れる電流を検出することによって、歪を推定出来る。これによって、Xドライバに供給する電圧を変化さてもよい。
【0054】
これを、図7を用いてさらに詳しく説明する。図7はこの参考例の構成を示す。図で電源回路73以外は図1の構成と同じであり説明を省略する。さらに図6の電源回路73で、抵抗器731、732、差動増幅回路733、734以外の構成要素は図1の電源回路13と同じなので説明を省略する。抵抗器731、732は電流検出抵抗で微小な抵抗値を持ち、この抵抗器に流れる電流に比例した電圧を抵抗器の両端に発生させる。差動増幅回路733、734はそれぞれ抵抗器731、732の両端に発生する電圧差を電圧加算回路に出力する。この電圧差に基づいて電圧加算回路137〜140で電圧V0’、V2’、V3’、V5’を発生する。以上の構成と動作をする。
【0055】
従って、実施例1と同様の動作をするから同様の効果を得るとともに、実施例1で必要であった基準電圧切り替えスイッチ132、入力電圧切り替え制御回路133、入力電圧切り替えスイッチ135が不要となりより回路を簡素化できる。
【0056】
また、差動増幅回路733、734の出力する電圧の極性を反転した電圧を補正電圧として、これを走査電極の駆動電圧波形に付け加えることによって実施例2と同じ効果が得られる。
【0057】
なお、本参考例では非選択電圧の電流を検出する方法を示したが、各信号電極が走査電極上の駆動電圧波形(非選択電圧)に発生する歪は各信号電極に印加する電圧が点灯電圧から非点灯電圧、非点灯電圧から点灯電圧に切り替わるときの各信号電極に流れる電流の総和に他ならないから、例えば図7のXドライバ11に供給される点灯電圧、非点灯電圧の電流を微小な値の抵抗器等で各々検出しそれを足し合わせることによっても走査電極上の駆動電圧波形(非選択電圧)に発生する歪を推定することが出来、これによって補正電圧を作ることも容易に出来、同様の効果が得られる。
【0058】
参考例3]実施例1〜2、及び参考例1〜2では液晶パネルの信号電極の配列方向に発生する表示むらを解消した。ここで、次に液晶パネルの走査電極の配列方向に発生する表示むら(以後、この表示むらを横糸引きと言う。)を解消する参考例を示す。この横糸引きは、筆者が出願した特開平2−89号公報で詳しく説明してあるが、簡単に言えば各走査電極上の表示ドットがより多く点灯することによってこの走査電極上の表示ドットが作るコンデンサの容量が大きくなって走査電極の駆動電圧波形が非選択電圧から選択電圧に切り替わる時により多くなまる為にその走査電極上の表示ドットに印加する実効電圧が小さくなって横糸引きが発生する。即ち、選択電圧に切り替わる時の波形のなまり量によって横糸引きが規定される。
【0059】
従って、液晶パネルの信号電極が形成されている基板上に電圧検出電極を形成し、この電圧検出電極を信号電極と液晶層によって容量結合させ、走査電極の電圧変化の総和を検出し、この結果より、走査電極上のなまりを推定してYドライバに供給する選択電圧を変化させることによって、この表示むらを解消出来る。
【0060】
これを、図8を用いてさらに詳しく説明する。図8はこの参考例の構成を示す。図で液晶パネル10bと電源回路83以外は図1の構成と同じであり説明を省略する。
【0061】
図8で液晶パネル10bは図1の液晶パネル10の基板102上に新たに電圧検出電極XDを付け加えたものである。電圧検出電極XDは図に示すように走査電極Y1〜Y6の全てに対向するように設けてある。
【0062】
図8で83は電源回路で、831〜833以外の構成要素は図1の電源回路13と同じなので説明を省略する。831は反転増幅回路でボルテージ・ホロワ回路632が出力する電圧を反転する。832、833は加算器で図1の加算器137と同じ回路構成と機能をする。
【0063】
以上の構成となっている。ここで、液晶パネル10bが走査電極Y3上の表示ドットが多く点灯し、他の走査電極上の表示ドットが少なく点灯しているような表示を行う場合のボルテージ・ホロワ回路632が出力する電圧と各走査電極上の電圧波形を模式的に図9に示す。図で901はボルテージ・ホロワ回路632が出力する電圧波形、902〜904は各々走査電極Y2〜Y4上の電圧波形を示す。なお、902〜904は仮りに走査電極の駆動波形に補正電圧を付け加えないとした場合の電圧波形である。ここで、電圧波形901は全ての走査電極Y1〜6の電圧波形の変化の総和となり、図では走査電極Y2〜4に順次選択電圧が切り替わって印加する部分を示している。
【0064】
図9で示すように、走査電極Y2からY3に選択電圧が印加する走査電極が切り替わる時は走査電極Y3上の電圧波形903は大きくなまって選択電圧になるので、ボルテージ・ホロワ回路632が出力する電圧901もこれとほぼ同じ大きさの大きな微分波形を発生する。そして、走査電極Y3からY4に選択電圧が印加する走査電極が切り替わる時は走査電極Y4上の電圧波形904は殆どなまらずに選択電圧になるので、ボルテージ・ホロワ回路632が出力する電圧901も小さな微分波形を発生する。
【0065】
ここで、ボルテージ・ホロワ回路632の出力は反転増幅回路831で極性反転されて、これを補正電圧として加算器832、833で選択電圧に付け加える。
【0066】
従って、走査電極Y3上の電圧波形903は大きくなまって選択電圧になろうとする時は、より大きな補正電圧が付け加えられた選択電圧が印加するので、実際にはより早く選択電圧に達するように矯正される。
【0067】
よって、各走査電極上の表示ドットの点灯している数によらずにほぼ非選択電圧から選択電圧に切り替わる時のなまり方はほぼ同じになって、横糸引きを防止することが出来る。
【0068】
参考例4]さらに、Yドライバの出力波形ないし走査電極上の電圧波形の歪は、Yドライバ及び走査電極に電流が流れることによって発生するから、ある走査電極に選択電圧が印加する時にこの走査電極上の表示ドットが多く点灯している場合に多い場合に電圧波形は大きくなまるが、これはより多くの電流がこの走査電極に流れているのに他ならない。従って、この走査電極に流れる電流、言い替えれば電源回路の選択電圧を発生する部分に流れる電流を検出することによって、歪を推定出来る。これによって、Yドライバに供給する電圧を変化させてもよい。
【0069】
これを、図10を用いてさらに詳しく説明する。図10はこの参考例の構成を示す。図で電源回路103以外は図7の構成と同じであり説明を省略する。さらに図10の電源回路103で、抵抗器1031、1032、差動増幅回路1033、1034、加算器1035、1036以外の構成要素は図7の電源回路73と同じなので説明を省略する。抵抗器1031、1032は電流検出抵抗で微小な抵抗値を持ち、この抵抗器に流れる電流に比例した電圧を抵抗器の両端に発生させる。差動増幅回路1033、1034はそれぞれ抵抗器1031、1032の両端に発生する電圧差を任意倍した電圧をそれぞれ電圧加算回路に出力する。これらの電圧差を電圧加算回路1035、1036は電圧V0、V5にそれぞれ加算して電圧V0’、V5’を発生する。以上の構成と動作をする。
【0070】
従って、ある走査電極に選択電圧が印加する時にこの走査電極上の電圧波形が大きくなまろうとする時に、抵抗器1031、1032には大きな電流が流れるので、電圧V0’、V5’は非選択電圧に対して電圧V0、V5より大きな絶対値の電圧となる。従って、この走査電極上の電圧波形の大きななまりが解消される。これによって、参考例3と同様の効果が得られる。
【0071】
参考例5参考例1では液晶パネルの走査電極が形成されている基板上に電圧検出電極を1本形成し、この電圧検出電極を信号電極と液晶層によって容量結合させ、信号電極の電圧変化の総和を検出し、この結果より、走査電極上の歪を推定してXドライバに供給する電圧を変化させていた。しかし、走査電極数が多くなると、言い替えれば各信号電極の長さが長くなると、各信号電極のXドライバに近い部分と遠い部分とで電圧変化の度合いが異なってしまい、正確に走査電極上の歪を推定するのが難しい場合がある。このような場合には電圧検出電極を複数本形成しこれらの電圧検出電極が検出する電圧を各々適宜重み付けして、言い替えればこれらの電圧を変数とするある適当な関数とした補正電圧を発生させてこれによって信号電圧の駆動波形にこの補正電圧を付け加えれば良い。
【0072】
これを、図11を用いてさらに詳しく説明する。図11はこの参考例の構成を示す。図で液晶パネル10cと電源回路113以外は図1の構成と同じであり説明を省略する。
【0073】
図11で液晶パネル10cは図1の液晶パネル10の基板101上に新たに電圧検出電極YD1、2をそれぞれ図に示すように信号電極X1〜X6の全てに対向するように上下の両辺部に設けてある。ここで、信号電極X1からX6上の電圧変化による走査電極上に発生させる影響が各信号電極毎に異なる場合には、電圧検出電極YDの幅は一様でなくとも良く、例えば左から右になるに従って広くなるように形成しても良い。
【0074】
図11で1130は電源回路で、6311、6312、6321、6322と1131〜1134以外の構成要素は図1の電源回路13と同じなので説明を省略する。6311と6312は抵抗器でそれぞれ電圧検出電極YD1、2がこれに対向する信号電極X1〜X6からなるコンデンサとで微分回路を形成する。6321、6322はボルテージ・ホロワ回路で電圧検出電極YD1、2に発生する電圧をそれぞれインピーダンスを下げて出力する。なお、この回路は必ずしも1倍の増幅率でなく任意の倍率の非反転増幅器であっても構わない。1131〜1134は加算器で電圧V0、V2、V3、V5に2つのボルテージ・ホロワ回路6321、2が出力する電圧を加算して、それぞれ電圧V0’、V2’、V3’、V5’を発生する。
【0075】
以上の構成と動作をする。ここで、加算器1131〜1134の一構成例を図12に示す。図で、1201は抵抗器、1202、1203はコンデンサで2入力の微分回路を形成し、1204は演算増幅回路によるボルテージ・ホロワ回路である。また端子Vin1、2はそれぞれ図11のボルテージ・ホロワ回路6321、2の出力する電圧を入力し、端子Vrefは電圧V0、V2、V3、V5のいずれかの電圧を入力する。図12の端子Voutはボルテージ・ホロワ回路203の出力で図11の電圧V0’、V2’、V3’、V5’と対応する。ここで、図12で端子Vinに入力するボルテージ・ホロワ回路6321、2の出力する電圧はほぼ微分波形に近いのでこれらの電圧を抵抗1201とコンデンサ1202、1203からなる微分回路の端子Vin1、2に接続することによって、近似的に端子Vrefの電圧に端子Vin1、2の電圧を加えた電圧をボルテージ・ホロワ回路1204から出力することが出来る。
【0076】
ここで、コンデンサ1202、1203の静電容量を同じにすると結果的に端子Vin1、2の電圧を均等に重み付けされた補正電圧となり、言い替えれば平均化されたものとなる。またこの2つのコンデンサの静電容量を異なった値、例えばコンデンサ1202より1203の静電容量を大きくすることによって、電圧検出電極YD2の電圧変化の補正電圧に対する寄与を大きくすることが出来る。
【0077】
これらのコンデンサ1202、1203の静電容量は実験等で容易に設定することが出来る。また、コンデンサ1202、1203の静電容量を同じに設定しておき図11の電圧検出電極YD1よりYD2を例えば幅広くすることによって、同じよう補正電圧に対する寄与を大きくすることが出来る。
【0078】
従って、参考例1と同様の動作をし、さらに電圧検出電極を複数本化することによって、走査電極上の駆動波形に発生する歪をより正確に検出することができるので、より表示むらを解消することが出来た。
【0079】
なお、参考例1に対する参考例3と同様に、複数の電圧検出基板を信号電極が形成されている基板上に走査電極Y1〜Y6の全てに対向するように左右の両辺部に設けて、電源部を同様の回路構成にすることによって、横糸引きについても本参考例と同様の効果が得られる。
【0080】
参考例6参考例5では液晶パネルの走査電極が形成されている基板上に電圧検出電極を複数本形成し、これらの電圧検出電極に発生する電圧を複数の変数とした関数の電圧を1つの補正電圧として用いたが、例えば液晶パネルの左側の信号電極の駆動電圧波形の変化の総和と右側の信号電極の駆動電圧波形の変化の総和とが全く異なる場合にはこれらの信号電極に異なった補正電圧を加えた方がより表示むらを解消することが出来る。従って、複数の電圧検出電極から得られる電圧変化から複数の補正電圧を発生させて、これらの補正電圧について、ある補正電圧を発生させる電圧検出電極が交差する信号電極あるいは走査電極毎の駆動電圧波形にその補正電圧を個別に付け加えることによって、さらに表示むらを改善出来る。これを図13を用いてさらに詳しく説明する。図13に本参考例の一構成例を示す。
【0081】
図でYドライバ12は図1のYドライバと同じ構成と動作をするので説明を省略する。
【0082】
図13で10dは液晶パネルで、図1の液晶パネル10の基板101上に新たに電圧検出電極YD1、2が図に示すようにお互いに突き合わされて信号電極X1〜X6の一部に各々対向するように上辺部に設けてある。ここで、電圧検出電極YD1、2の突き合わせ部分は本参考例では楔状となってある信号電極(本参考例では信号電極X2〜X5)と共有して交差している。しかし、必ずしも突き合わせ部が同じ信号電極と共有して交差する必要は無い。さらに2つの電圧検出電極YD1、2は分離してなくとも良い。即ち、短絡させてあっても良い。
【0083】
11L、11M、11RはXドライバで、図1のXドライバ11と内部の各回路の構成ビット数が異なっている以外は同じ構成と動作をする。そして、これらのXドライバ11L、11M、11Rにはそれぞれ異なった電圧構成の電圧が供給されて、この電圧によって各々駆動電圧波形を出力する。
【0084】
133は電源回路で、1331〜1333以外の構成と動作は図11の電源回路1130と同じなので説明を省略する。
【0085】
1331、1333は加算器群で図2で示される加算器からなり電圧V0、V2、V3、V5に対応して設けられている。
【0086】
1332は加算器群で、この加算器は図12で示される加算器からなり電圧V0、V2、V3、V5に対応して設けられている。
【0087】
加算器群1331、1332、1333の出力する電圧はそれぞれXドライバ11L、11M、11Rに供給される。
【0088】
以上の構成となっているので、電圧検出電極YD1には信号電極X1〜5までの駆動電圧波形の電圧変化の総和が発生する。ここで、電圧検出電極YD1の先端部は楔状となっているので、信号電極X1からX5へ向かう程、駆動電圧波形の電圧変化の重み付けが小さくなっている。同様に電圧検出電極YD2にも信号電極X1〜5までの駆動電圧波形の電圧変化の総和が発生するが、信号電極X5からX1へ向かう程、駆動電圧波形の電圧変化の重み付けが小さくなっている。
【0089】
従って、ボルテージ・ホロワ回路6321は主に液晶パネル10dの左側の信号電極の駆動電圧波形の電圧変化の総和を出力し、ボルテージ・ホロワ回路6322は主に右側の信号電極の駆動電圧波形の電圧変化の総和を出力する。
【0090】
ここで、ボルテージ・ホロワ回路6321の出力電圧は補正電圧として加算器群1331に供給され、加算器群1331の出力はXドライバ11Lに供給される。同様にボルテージ・ホロワ回路6322の出力電圧は補正電圧として加算器群1333に供給され、加算器群1333の出力はXドライバ11Rに供給される。そして、ボルテージ・ホロワ回路6321、6322の出力を2つの補正電圧として加算器群1332に供給し、加算器群1332はこの2つの補正電圧を平均化した補正電圧を付け加えた電圧をXドライバ11Mに出力する。
【0091】
以上の動作をするので、液晶パネル10dの左側の信号電極の駆動電圧波形にはこの左側の信号電極の駆動電圧波形の変化に多く重み付けされた駆動電圧波形の変化の総和による補正電圧が付け加わり、左側の信号電極の駆動電圧波形には右側の信号電極の駆動電圧波形の変化に多く重み付けされた補正電圧が加わり、中央部では左右の平均化した補正電圧が加わることになる。
【0092】
従って、各信号電極の駆動電圧波形には略最適な補正電圧が個々に付け加わってより一層表示むらを解消することが出来た。
【0093】
なお、本参考例では加算器群1331、1333を図2で示される加算器としたが、図12で示される加算器とし、加算器群1332と同様にボルテージ・ホロワ回路6321、6322の2つの出力を入力して、この2つの入力電圧の寄与分を図12のコンデンサ1202と1203の静電容量で適宜設定して、出力しても良い。
【0094】
また、本参考例では異なった補正電圧の数を3としたがこれは液晶パネルの大きさ等で適宜増減しても構わない。
【0095】
さらに、本参考例では電圧検出電極を用いた方法を示したが、例えば図13のXドライバ11L、M、Rの各々について、これらのXドライバに供給される点灯電圧、非点灯電圧の電流をそれぞれ微小な値の抵抗器等で各々検出しそれを足し合わせることによっても本参考例と同じような複数の補正電圧を得ることが出来、これを用いて同様の補正を行うことによって、本参考例と同様の効果が得られる。
【0096】
以上、述べたように付け加える補正電圧を信号電極の液晶パネルの位置するところによって異なった補正電圧とすることで、より一層表示むらを解消することが出来た。
【0097】
参考例7参考例6では液晶パネルの走査電極が形成されている基板上に電圧検出電極を複数本形成し、これらの電圧検出電極に発生する電圧を複数の変数とした関数の電圧を3つの補正電圧として用いたが、例えば電圧検出電極を1本形成し、この電圧検出電極に発生する電圧をから3つの補正電圧を発生させ、個別の信号電極の駆動電圧波形にある1つの補正電圧を付け加えても良い。例えば、筆者等の実験で液晶パネルの走査電極の駆動電圧波形を印加する端子が左側にある場合には、1本の電圧検出電極から得られた電圧を小さく増幅した補正電圧を液晶パネルの左側に位置する信号電極に、大きく増幅した補正電圧を液晶パネルの右側に位置する信号電極に、付け加えることによって表示むらがより解消することが実験的に解った。これを図14に示す。図14は本参考例の一構成例を示す。
【0098】
図で10aは液晶パネル、12はYドライバで図6と同じ構成となっており、また11L、M、RはXドライバで図13と同じ構成となっている。
【0099】
さらに143は電源回路で1431〜1433以外は図6の電源回路63と同じ構成となっている。そこで、これらの説明は省略する。
【0100】
図14で1431〜1433は加算器群でそれぞれ図2に示す加算器で構成されている。但し、図2のコンデンサ202の容量は加算器群1431では小さく、1433では大きく、1432ではその間の値をとるようになっている。
【0101】
即ち、端子Vinに加わる電圧が同じでも、付け加えられる補正電圧が加算器群1431が一番小さく、次に1432、そして1433が最も大きくなるように設定されている。
【0102】
以上の構成となっているので、電圧検出電極から得られた電圧から複数の補正電圧を発生させることが出来、走査電極の駆動端子から遠い信号電極程大きな補正電圧が駆動電圧波形に付け加えることができるので、より一層表示むらを解消することが出来た。
【0103】
参考例8参考例1等では電圧検出電極の形状について、特に詳しく触れなかったが液晶パネルの形状によっては、電圧検出電極の形状を変えることによってより一層表示むらを解消することが出来る。これを図15を用いて説明する。図15は液晶パネルの構成を示す図である。本図は図14の液晶パネル10aと各電極の形状が異なる以外は同じである。ここで、走査電極Y1〜Y6の形状は液晶パネル10aと同じ形状をしており、信号X1〜X6は上下交互に駆動電圧が供給される端子が形成されている。(図15ではX1、3、5と奇数番号の信号電極が上にこの端子が形成されている。)ここで、電圧検出電極YDは上辺部分に各信号電極と交差するように形成されている。そして、電圧検出電極YDは奇数番号の信号電極と交差する部分では幅が狭く、偶数番号の信号電極と交差する部分では幅が広くなるように形成されている。
【0104】
以上のような形状に電圧検出電極YDを形成してある。
【0105】
これによって、駆動電圧が印加する端子が近い信号電極と電圧検出電極YDの容量結合は小さくなり、駆動電圧が印加する端子が遠い信号電極と電圧検出電極YDの容量結合は大きくなる。よって、電圧検出電極YDの位置で、減衰の少ない奇数番号の信号電極上の駆動電圧波形の変化によって小さな重み付けで電圧検出電極YDに微分電圧を発生させ、減衰の大きな偶数番号の信号電極上の駆動電圧波形の変化は大きな重み付けで電圧検出電極YDに微分電圧を発生させる。
【0106】
よって、電圧検出電極YDに対して、駆動電圧波形を印加する端子が遠い信号電極と近い信号電極の電圧変化を均等に電圧検出電極YDが取り込むことが出来る。これによって、より正確に走査電極上に発生する歪を推測出来、ひいてはより正確な補正電圧を発生することが出来るのでより一層表示むらを解消出来る。
【0107】
参考例9参考例1等では電圧検出電極が検出した電圧を一定の倍率で増幅した電圧を補正電圧としていた。ここで、電圧検出電極と対向する信号電極との電圧差は概ね0Vである。しかし、実際の走査電極と対向する信号電極との電圧差は実効電圧で数V程度である。液晶は一般に印加する実効電圧が大きくなるとその誘電率が大きくなる。このことは液晶パネルの表示ドットが多く点灯することによって、液晶パネルが作るコンデンサの静電容量が大きくなることを意味する。従って、信号電極の駆動波形の電圧変化の総和が同じでも、より多くの歪を各走査電極上の駆動電圧波形に発生させる。しかし、電圧検出電極と対向する信号電極との容量結合の度合いは表示の如何によらず一定なので、表示の点灯ドット数の多少によって、補正電圧が不足することになる。よって、表示の点灯ドット数の多少によって補正電圧の量を増減することにより、点灯ドット数の如何によらず表示むらのない表示が行える。これを、図16で説明する。図16は本参考例の一構成例を示す。図で電源回路163と点灯ドット数計数回路164以外の構成は図6の構成と同じであり説明を省略する。図16の164は点灯ドット数計数回路で計数回路1641とラッチ回路1642からなる。計数回路1641はCK信号に同期してデータ信号が"1"の時カウント・アップしDI信号に同期して計数値をラッチ回路1642に取り込ませると同時に計数値を0にして再び計数を開始する。ラッチ回路1642の出力は電源回路163の可変増幅器1631に取り込まれる。
【0108】
163は電源回路で1631以外の構成は図6の構成と同じであり説明を省略する。1631は可変増幅器で点灯ドット数計数回路164の数値が大きくなると増幅率が大きくなる増幅回路である。この回路の一構成例を図17に示す。
【0109】
図で171は演算増幅器、172〜175は抵抗器で173は174の半分の抵抗値、174は175の半分の抵抗値を持つ。176〜178はスイッチ回路で各々抵抗器172〜175に並列に接続されている。これらの抵抗とスイッチ回路は本参考例では3個となっているがこの数は適宜増減しても構わない。Vref、Vin端子にはそれぞれ図16のスイッチ回路603の出力、ボルテージ・ホロワ回路632の出力が接続してある。従って、抵抗172の抵抗値と抵抗器173と175の間の抵抗値の比によった増幅率を持つ非反転増幅回路が形成されてVref端子の電圧を基準にVin端子に入力された電圧がこの増幅率で増幅されて出力される。ここで、スイッチ回路176〜178は点灯ドット数計数回路164が出力する複数ビットのバイナリの数値でオン/オフ制御される。即ち、バイナリ数値が"1"の場合にオフ、"0"の場合にオンになる。また、上位の数値がスイッチ回路178の制御を行い、下位の数値がスイッチ回路176の制御を行う。これにより、数値が大きくなると抵抗器173と175の間の抵抗はこれに比例して大きくなる。従って、点灯ドット数が多くなると増幅率が大きくなる。
【0110】
以上の構成となっているので、液晶パネル10aの表示ドットが多く点灯すると補正電圧も大きくなって、点灯ドット数の如何によらず表示むらのない表示が行える。
【0111】
参考例10参考例2では電源回路73中の非選択電圧(V1、V4)に流れる電流を検出することによって、Xドライバ11に供給する電圧に補正電圧を付け加えたが、Yドライバ12に供給する電圧に補正電圧を付け加えても良い。これを図18を用いて説明する。図18は本参考例の具体的な一構成例を示す。図で電源回路183以外は図1の構成と同じであり、説明を省略する。さらに電源回路183中の141、OP2、OP3はそれぞれ図1の同番号と同じものである。1810、1840は、それぞれ電圧V1、V4に補正電圧を付け加える電圧補正回路であり、電圧分割回路131とYドライバ12の間に設けられてある。電圧補正回路1810、1840は同じ回路構成となっており、図19に電圧補正回路1810、1840の具体的な一構成例を示す。ここで、以下、参考例10〜14に於いて、FR信号に応じて非選択電圧が電圧V1が使用される期間について説明を行うが、電圧V4が使用される期間についても同様である。図19で、Vin端子は電圧V1(あるいはV4)を入力する端子である。1911は電流検出用の抵抗器であり、非選択電圧が印加される走査電極に流れる電流の総和に比例した電圧がその両端に発生する。この電圧は演算増幅器1913、抵抗器1914、1915によって構成される反転増幅回路1912に印加する。反転増幅回路1912の増幅率を抵抗器1914、1915の抵抗値により適当な値に設定することによって、反転増幅器1912の出力する電圧(これをVdとする)を過渡電流の影響で歪んだ非選択電圧が印加された走査電極上の電圧とほぼ等しくすることが出来る。演算増幅器1916は演算増幅器1916の反転入力に印加された電圧V1’と非反転入力に印加されたVin端子からの電圧を等電圧とする電圧(これをVcとする)をYドライバ12に出力する。
【0112】
以上の構成と動作をするので、過渡電流が流れる場合にも非選択電圧が印加した走査電極上の電圧と電圧V1(あるいは電圧V4)は常に同じ電圧に保たれる。
【0113】
以上、述べたように電源回路中の非選択電圧(電圧V1とV4)に流れる電流を検出し、Yドライバ12に供給する非選択電圧に補正電圧を付け加えることによって、非選択電圧が印加した走査電極上の電圧の変動を抑えることが出来、実施例1と同様、容易で簡素に表示むらを解消することが出来た。
【0114】
参考例11参考例10の電圧補正回路1810、1840の回路構成は図19で示した構成である必要は無く、他の回路構成でも構わない。ここで、図20に電圧補正回路の他の回路構成の一例を示す。図20の1911〜1916についてはそれぞれ図19の同番号に対応している。2017はコンデンサで、抵抗器1914との組み合わせで反転増幅回路1912の時定数τ1を設定する。同様に、2018、2019はそれぞれ抵抗器、コンデンサで演算増幅回路1916の時定数τ2を設定する。
【0115】
以上の構成となっており、これら、時定数τ1、τ2と参考例10で前述した増幅率の値を適当な値に設定することによって、電圧V1(あるいはV4)に過渡電流が流れた時にも、非選択電圧が印加した走査電極上の電圧の1LP信号周期当たりの実効電圧値を電圧V1と等しくすることが出来、参考例10と同様の効果がある。さらに、増幅回路1913、1916の出力電圧の単位時間当たりの電圧変化量は小さくなるので、スルー・レートの低い安価な演算増幅器を用いることが出来、また回路の安定性も向上させることが出来た。なお、本参考例では電源回路内を流れる非選択電圧の電流を検出する場合について述べたが、選択電圧の電流を検出する場合、さらに電圧検出電極を用いて補正電圧を発生させる場合にも同様の回路構成をとることによって、同様の効果が得られる。
【0116】
参考例12参考例10、11等では電源回路中に流れる電流を微小な抵抗を持つ抵抗器で検出したが、電流検出に必ずしも抵抗器を使用する必要は無く、他の素子を用いても良い。ここで、図19の電圧補正回路1910、1940の電圧補正回路の代わりとして、図21に他の素子としてトランスを用いた場合の電圧補正回路の具体的な一構成例を示す。図21の演算増幅回路1916は図19の同番号のものと同じである。2120はトランスで、1次巻線2121と2次巻線2122からなる。ここで、1次巻線2121と2次巻線2122の巻数の比を適当な値にすることによって、参考例10と同様の効果が得られた。さらには構成要素数を少なく出来た。
【0117】
ここで、本参考例にさらに抵抗器とコンデンサを付け加えた他の電圧補正回路の構成例を図22に示す。図22で2223、2224の抵抗器、コンデンサが図21の電圧補正回路に付け加わっている。この付け加わった抵抗器、コンデンサによって、演算増幅回路1916の時定数τ2が設定され、参考例11と同じ効果が得られた。
【0118】
参考例13参考例10〜12等ではいわばほぼリアル・タイムにYドライバ12に供給する非選択電圧を変化させたが、例えば前述の参考例10に於いて、電圧補正回路1810、1840を図23に示す電圧補正回路にすることによって、参考例10と同じ効果が得られると共に電圧補正回路の動作を安定にすることが出来る。即ち、図23に示すように反転増幅回路1912と演算増幅回路1916との間にスイッチト・キャパシタ回路やCCD等の遅延素子2325を挿入することによって、補正電圧を同LP信号周期内で一定時間遅らせて非選択電圧に付け加え、これをYドライバ12に供給しても参考例10と同じ効果が得られるとともに、非リアル・タイムのフィード・バックがあるために、補正電圧回路が発振しずらくなって、安定した動作が得られる。この遅延素子を挿入することは例えば、参考例11、12でも適用することが出来、同様の効果が得られる。
【0119】
参考例14]1LP周期ごとに、LP1周期開始時、あるいは開始後所定の時間が経過した時に現れる電源回路中の非選択電圧に流れる瞬間電流値、あるいはピーク電流値を検出し、検出された電流値に応じた補正電圧を同LP周期の期間の一定な補正電圧として、非選択電圧(V1あるいはV4)に付け加えても良い。これを、図24で説明する。図24は図18の電圧補正回路の構成を示す図である。1911〜1915は図19の同番号と同じものである。図24で、2426はサンプル&ホールド回路で、LP信号あるいはLP信号を所定の時間だけ遅らせた信号によって、過渡電流に対応して反転増幅回路1913より出力する電圧Vdを演算増幅回路1916の出力電圧Vcを基準として、サンプルし、ホールドする回路である。即ちdV=Vd−Vcなる電圧をホールドする。
【0120】
従って、演算増幅回路1916の非反転入力にはVc+dVが印加するので、V1(V4)−dVなる一定の電圧が同LP期間出力される。
【0121】
以上の動作をし、ホールドされた電圧Vdは、非選択電圧が印加した走査電極上の電圧の1LP周期当たりの実効電圧−V1(V4)に比例するから、反転増幅回路1912の増幅率を適当な値に設定することによって、過渡電流が発生する時にも、非選択電圧が印加した走査電極上の電圧の1LP周期当たりの実効電圧を電圧V1(V4)に等しくすることが可能になり、参考例10と同様の効果が得られた。
【0122】
なお、本参考例では電源回路内を流れる非選択電圧の電流を検出する場合について述べたが、選択電圧の電流を検出する場合、さらに電圧検出電極を用いて補正電圧を発生させる場合にも同様の回路構成をとることによって、同様の効果が得られる。
【0123】
参考例15]前述の参考例14ではYドライバ12に供給する非選択電圧に付け加える補正電圧を変化させることにより、非選択電圧が印加された走査電極上の電圧あるいは電圧実効値の補正を行ったが、詳細については述べないが、例えば、参考例14と同様に電源回路の非選択電圧の電流を検出して、この検出した電流値に応じた時間だけ所定の補正電圧を付け加えることによっても参考例14と同様の効果が得られる。また、これは参考例14と同様に選択電圧の電流を検出する場合、さらに電圧検出電極を用いて補正電圧を発生させる場合にも同様の回路構成をとることによって、同様の効果が得られる。
【0124】
変形例]いままで、走査電極、信号電極ともに一方の端から駆動電圧波形を印加する構造の液晶パネルについてのみ述べてきたが、走査電極、信号電極のいずれかあるいは両方について両方の端駆動電圧波形を印加する構造の液晶パネルについても上述の実施例を適応出来る。又、電圧検出電極を設けて補正電圧を発生する参考例においては、電圧検出電極の電圧を取り出す端子も一方の端だけではなく両端から検出するような回路構成、あるいは走査電極、信号電極の駆動電圧端子のある側と反対側に電圧検出電極の端子を形成しても良い。さらに電圧検出電極は上下左右どの辺の近くに形成しても良く、表示に差し支えなければ例えば中央部分に形成してもよい。
【0125】
さらに実施例、及び参考例の内の幾つかを複合して用いることも容易で、例えば参考例1参考例3を複合することによって縦糸引きと横糸引きの両方の表示むらを解消することが出来る。
【0126】
さらにまた、上記実施例、及び参考例では1対の基板上に1組の複数の信号電極及び複数の走査電極がお互い交差して表示ドットを作る液晶パネルの場合について説明したが、1対の基板上に2組の複数の信号電極及び2組の複数の走査電極がお互い、各組毎に交差して表示ドットを作る液晶パネル、いわゆる2画面駆動の液晶パネルについても、それぞれの画面に応じた補正電圧をそれぞれの画面を駆動するXないしYドライバの電源電圧に付け加えることによって、同様の効果が得られる。そして、この時、一方の画面を駆動するXないしYドライバに供給するFR信号を反転した信号を他方の画面を駆動するXないしYドライバに供給するFR信号として、供給することによって回路構成を一部共有化出来、回路構成を簡素化出来る。即ち、一方の画面が選択、非選択、点灯、非点灯電圧としてV0(5)、V4(1)、V5(0)、V3(2)を用いる時に、他方の画面はV5(0)、V1(4)、V0(5)、V2(3)を用いるので、例えば、非選択電圧に補正電圧を付け加える方法の場合に、一方の画面がV1を用いる時に、V1に一方の画面の表示に応じた補正電圧を付け加え、この画面を駆動するYドライバに供給すると同時に、V4に他方の画面の表示に応じた補正電圧を付け加え、この画面を駆動するYドライバに供給することが出来る。従って、補正電圧回路を共有することが出来る。
【0127】
なお、本明細書では説明を簡単にする為に主に電圧平均化駆動方法を例に説明してきたが、走査電極に選択電圧が印加する期間中に信号電極に印加する電圧が変化する駆動方法(例えば、点灯電圧と非点灯電圧が印加する時間が増減する、いわゆるパルス幅変調による階調表示方法)、複数の走査電極に同時に選択電圧を印加する駆動方法、走査電極あるいは信号電極に多くの電圧レベルからなる駆動電圧波形を供給して駆動する方法等についても上述の実施例は表示むらを解消する効果がある。
【0128】
表示機能を必要とする電子機器例えばパーソナルコンピュータ,ワードプロセッサー,電子手帳等に実施例1または2のいずれか表示装置を用いることによって電子機器の表示品質を向上させることが出来る。
【0129】
【発明の効果】
以上述べたように、液晶表示装置系のある部分の電圧変化あるいは電流変化を検出することによって、液晶パネルの電極上に発生する歪を想定し、これによって補正電圧を発生させて、この補正電圧を駆動電圧波形に付け加えることによって容易に表示むらを改善出来た。即ち、表示データから歪量を計算する回路が不要となって、極めて簡素な回路構成で高品位の表示をする液晶表示装置を提供することが出来、さらにこの表示装置を用いた電子機器の表示部が高品位となり、また小型軽量化を図ることができた。そして、液晶表示装置系のある部分の電圧変化あるいは電流変化を検出することによって、液晶パネルの電極上に発生する歪を想定し、これによって補正電圧を発生させるので、液晶パネルを駆動する駆動方法を問わずに表示むらを改善することが出来るようになった。
【図面の簡単な説明】
【図1】 実施例1の液晶表示装置の構成を示す図。
【図2】 実施例1の電圧加算回路の具体的な一構成例を示す図。
【図3】 実施例1の液晶表示装置を駆動する信号の電圧波形を示す図。
【図4】 実施例1の動作を説明する電圧波形を示す図。
【図5】 実施例2の液晶表示装置の具体的な一構成例を示す図。
【図6】 参考例1の液晶表示装置の具体的な一構成例を示す図。
【図7】 参考例2の液晶表示装置の具体的な一構成例を示す図。
【図8】 参考例3の液晶表示装置の具体的な一構成例を示す図。
【図9】 参考例3の動作を説明する電圧波形を示す図。
【図10】 参考例4の液晶表示装置の具体的な一構成例を示す図。
【図11】 参考例5の液晶表示装置の具体的な一構成例を示す図。
【図12】 参考例5の電圧加算回路の具体的な一構成例を示す図。
【図13】 参考例6の液晶表示装置の具体的な一構成例を示す図。
【図14】 参考例7の液晶表示装置の具体的な一構成例を示す図。
【図15】 参考例8の液晶パネルの具体的な一構成例を示す図。
【図16】 参考例9の液晶表示装置の具体的な一構成例を示す図。
【図17】 参考例9の可変増幅器の具体的な一構成例を示す図。
【図18】 参考例10の液晶表示装置の具体的な一構成例を示す図。
【図19】 参考例10の電圧補正回路の具体的な一構成例を示す図。
【図20】 参考例11の電圧補正回路の具体的な一構成例を示す図。
【図21】 参考例12の電圧補正回路の具体的な一構成例を示す図。
【図22】 参考例12の他の電圧補正回路の具体的な一構成例を示す図。
【図23】 参考例13の電圧補正回路の具体的な一構成例を示す図。
【図24】 参考例14の電圧補正回路の具体的な一構成例を示す図。
【符号の説明】
10は液晶パネル
101、102は一対の基板
Y1〜Y6は走査電極
X1〜X6は信号電極
11は信号電極駆動回路(Xドライバ)
111はシフト・レジスタ回路
112はラッチ回路
113はアナログ・スイッチ回路
12は走査電極駆動回路
121はシフト・レジスタ回路
122はアナログ・スイッチ回路
13は電源回路
131は電圧分割回路
R1〜R5は抵抗器
OP1〜OP4はボルテージ・ホロワ回路
132は基準電圧切り替えスイッチ
133は入力電圧切り替え制御回路
134は入力電圧切り替え制御信号
135は入力電圧切り替えスイッチ
136は差動増幅回路
137〜140は電圧加算回路
電圧V0、V5は外部から供給される電圧
データ信号、CK信号、LP信号、DI信号、FR信号は液晶表示装置を駆動
する信号

Claims (2)

  1. 複数の走査電極に選択電圧、非選択電圧を順次印加する走査電極駆動回路と、複数の信号電極に表示すべき階調を特定するための信号電圧を印加する信号電極駆動回路とを設けた液晶表示素子の駆動回路であって、
    少なくとも2つの走査電極群に分けられた前記複数の走査電極について、ある走査電極群に属する走査電極に順次選択電圧が印加される期間、他の走査電極群に属する所定の走査電極を指定し、その走査電極に印加される非選択電圧を出力する指定手段と、
    前記指定手段から出力される非選択電圧について、その歪を検出する検出手段と、
    前記検出手段により検出される歪に基づき非選択電圧を補正して補正信号を生成する補正信号生成手段とを有し、
    前記補正信号を前記走査電極駆動回路に供給することにより、前記歪に起因する表示むらを抑制することを特徴とする表示素子の駆動回路。
  2. 複数の走査電極に選択電圧、非選択電圧を順次印加する走査電極駆動回路と、複数の信号電極に表示すべき階調を特定するための信号電圧を印加する信号電極駆動回路とを設けた液晶表示素子の駆動回路であって、
    少なくとも2つの走査電極群に分けられた前記複数の走査電極について、ある走査電極群に属する走査電極に順次選択電圧が印加される期間、他の走査電極群に属する所定の走査電極を指定し、その走査電極に印加される非選択電圧を出力する指定手段と、
    前記指定手段から出力される非選択電圧について、その歪を検出する検出手段と、
    前記検出手段により検出される歪に基づき信号電圧を補正して補正信号を生成する補正信号生成手段とを有し、
    前記補正信号を前記信号電極駆動回路に供給することにより、前記歪に起因する表示むらを抑制することを特徴とする表示素子の駆動回路。
JP30732392A 1987-08-13 1992-11-17 液晶表示素子の駆動回路 Expired - Lifetime JP4020979B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP30732392A JP4020979B2 (ja) 1992-05-14 1992-11-17 液晶表示素子の駆動回路
KR1019930005521A KR100297860B1 (ko) 1992-05-14 1993-03-31 액정디스플레이장치
US08/061,890 US5442370A (en) 1987-08-13 1993-05-14 System for driving a liquid crystal display device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP4-122145 1992-05-14
JP12214492 1992-05-14
JP4-122144 1992-05-14
JP12214592 1992-05-14
JP30732392A JP4020979B2 (ja) 1992-05-14 1992-11-17 液晶表示素子の駆動回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002131994A Division JP3520870B2 (ja) 1992-05-14 2002-05-07 液晶表示装置及びその電源回路

Publications (2)

Publication Number Publication Date
JPH0627899A JPH0627899A (ja) 1994-02-04
JP4020979B2 true JP4020979B2 (ja) 2007-12-12

Family

ID=27314404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30732392A Expired - Lifetime JP4020979B2 (ja) 1987-08-13 1992-11-17 液晶表示素子の駆動回路

Country Status (2)

Country Link
JP (1) JP4020979B2 (ja)
KR (1) KR100297860B1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3110618B2 (ja) * 1994-08-02 2000-11-20 シャープ株式会社 液晶表示装置
KR100700415B1 (ko) * 1998-09-19 2007-03-27 엘지.필립스 엘시디 주식회사 액티브 매트릭스 액정표시장치
US7002542B2 (en) 1998-09-19 2006-02-21 Lg.Philips Lcd Co., Ltd. Active matrix liquid crystal display
JP2001188515A (ja) 1999-12-27 2001-07-10 Sharp Corp 液晶表示装置およびその駆動方法
KR100806906B1 (ko) 2001-09-25 2008-02-22 삼성전자주식회사 액정 표시 장치와 이의 구동 장치 및 구동 방법
JP3755505B2 (ja) 2002-04-03 2006-03-15 セイコーエプソン株式会社 電気光学装置及び電子機器
WO2009078222A1 (ja) * 2007-12-17 2009-06-25 Fuji Electric Holdings Co., Ltd. 有機elパッシブマトリックス素子の駆動装置及びその方法
JP7110853B2 (ja) * 2018-09-11 2022-08-02 セイコーエプソン株式会社 表示ドライバー、電気光学装置、電子機器及び移動体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2906057B2 (ja) * 1987-08-13 1999-06-14 セイコーエプソン株式会社 液晶表示装置

Also Published As

Publication number Publication date
JPH0627899A (ja) 1994-02-04
KR940005975A (ko) 1994-03-22
KR100297860B1 (ko) 2001-10-24

Similar Documents

Publication Publication Date Title
JP3583356B2 (ja) アクティブマトリクス型の液晶表示装置およびデータ信号線駆動回路、並びに、液晶表示装置の駆動方法
KR100348644B1 (ko) 중간 탭을 구비하는 전압 증배기
US5537129A (en) Common electrode driving circuit for use in a display apparatus
JP2912480B2 (ja) 表示装置の駆動回路
JP4020979B2 (ja) 液晶表示素子の駆動回路
KR100582940B1 (ko) 교란된 용량성 회로를 위한 보상방법 및 디스플레이 스크린
JP3910579B2 (ja) 表示装置用駆動装置及びそれを用いた表示装置
JP3520870B2 (ja) 液晶表示装置及びその電源回路
KR100485508B1 (ko) 액정 디스플레이 장치와 그 구동 방법
KR19980019080A (ko) 액정 표시 장치 및 이 액정 표시 장치의 구동회로(liquid crystal display apparatus and driving circuit for the same)
KR101365837B1 (ko) 액정표시장치 및 그의 구동방법
KR100229622B1 (ko) 액정표시장치의 크로스-토크 보상회로
JP4503445B2 (ja) 電圧レベル増幅機能付きバッファ回路および液晶表示装置
JPH02129618A (ja) アクティブマトリクス形液晶表示装置
JP4142136B2 (ja) 液晶表示装置
JPS5834492A (ja) 液晶表示素子の駆動回路
KR101326582B1 (ko) 액정표시장치
KR100389023B1 (ko) 액정표시장치의 감마전압 보정 방법 및 장치
KR20050104757A (ko) 액정표시장치용 감마전압 발생회로와 이를 채용한구동드라이버 및 그 구동방법
JPH10268257A (ja) 液晶表示装置
JPH11183871A (ja) 液晶ディスプレイ装置
JPH0950003A (ja) 液晶表示装置
JP2728876B2 (ja) 表示装置
JPH0922274A (ja) 液晶表示装置
JP3469787B2 (ja) 液晶表示装置及びその駆動用電源回路

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5