JP4011139B2 - 塩素含有供給ガスからの高純度の塩素の分離方法 - Google Patents

塩素含有供給ガスからの高純度の塩素の分離方法 Download PDF

Info

Publication number
JP4011139B2
JP4011139B2 JP26216296A JP26216296A JP4011139B2 JP 4011139 B2 JP4011139 B2 JP 4011139B2 JP 26216296 A JP26216296 A JP 26216296A JP 26216296 A JP26216296 A JP 26216296A JP 4011139 B2 JP4011139 B2 JP 4011139B2
Authority
JP
Japan
Prior art keywords
chlorine
column
gas
adsorption
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26216296A
Other languages
English (en)
Other versions
JPH09132401A (ja
Inventor
ヴァッツェンベルガー オットー
プフェッフィンガー ヨアヒム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JPH09132401A publication Critical patent/JPH09132401A/ja
Application granted granted Critical
Publication of JP4011139B2 publication Critical patent/JP4011139B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0743Purification ; Separation of gaseous or dissolved chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/141Fractional distillation or use of a fractionation or rectification column where at least one distillation column contains at least one dividing wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/20Improvements relating to chlorine production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Gas Separation By Absorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスの混合物から塩素を分離するための方法および回収するための方法に関する。
【0002】
【従来の技術】
有機化合物を塩素化する過程で、大量の塩化水素が形成されるということは公知である。例えば、フォームおよびコーティングのための原料塩基を形成するイソシアネートの製造は、製品1トン当たり0.5〜10tの塩化水素の形成を必然的に伴っている。
【0003】
前記プロセスガスまたは他のプロセスガスまたはフラッシングガスからの塩素の再利用は、種々の方法で意図されている。電気分解の場合、例えば塩化水素は、まず第一に水性の塩化水素酸に変換され、次に電気分解により塩素と水素とに分解され、この場合、塩素は、濃縮された形で得られる。
【0004】
他方、電気分解よりもエネルギーの点で更に有利な方法で、塩化水素が、ディーコン法の変法の1つによって酸化され、塩素と水とになる場合には、10〜50容量%の塩素含量を有する塩素ガスの希薄な流れだけが得られる。次に、化学薬品の生産が99重量%以上の高純度を有する乾燥塩素を必要とするので、この希薄な流れは後処理されなければならない。
【0005】
従って、希薄な塩素ガス流から高純度の分離画分を生じさせることが可能であるのと同程度に大量の塩素を分離するための試みは多数行われていた。
【0006】
例えば、塩素は、乾燥ガス流の凝縮によって分離することができる(図1、Ullmanns Encyclopaedia der techn. Chemie、Chlor [chlorine]、第A6巻(1986年)、第399〜481頁を参照のこと)。塩素の凝縮温度は、圧力に依存しているので(図2を参照のこと)、凝縮は、経済的な理由から、安全の理由のため5〜10バールを上回ってはならない圧力下で実施される。
【0007】
しかしながら、前記圧力では、塩素は、低い塩素濃度のガスから、殊に流出ガス3中の現行法定放出値が観察される場合には、低温凝縮によって経済的に凝縮することはできない。前記の場合、ガス流は、流出ガス3中で(0.16Paの部分圧に相応する)5mg/m3の塩素濃度を超えることがないような程度に、−130℃以下に冷却されなければならない。このことは、冷却エネルギーの極めて高い投入量を用いてのみ達成することができ、従って、不経済である。従って、大規模工業的な使用のためには、凝縮は、有利に95%を上回る極めて高い塩素含量を有する塩素ガス流からの塩素の分離のための分離法もしくは精製法だけが存在する。こうして、流出ガス3中の残留塩素は、従来技術により、例えばガス洗浄によって除去される。
【0008】
NaOHおよび/またはNa2/SO3を用いる、残留塩素を除去するためのこの種のガス洗浄は、例えば欧州特許第0406675号明細書中に記載されている。しかしながら、化学的ガス洗浄は、塩素の再使用の可能性を排除し、更に規則的な供給により廃棄処分を必要とする塩の相応する量を生じる。もう1つの変法は、吸着法を用いる塩素の取得からなる。吸着法の場合、塩素含有供給ガス1は、適当な方法で、常法によれば充填材料(バール・サドル、ラッシヒリング等)かまたは適当なカラム・トレイを備えた吸着カラムC1の塔底部に送り込まれる。吸着剤、例えばCCl4、ヘキサクロロブタジエン、種々の部分的に塩素化されたかもしくは過塩素化されたプロパンまたはS2Cl2(化学的ガス洗浄:S2Cl2+Cl2 → 2SCl2)は、塩素含有供給ガスへの向流中で送り込まれ、かつガス流から塩素を吸着する。吸着は、0.5〜1バールまたは加圧下で、有利に5〜10バールで実施される。カラム塔頂部での吸着剤4の供給温度は、それぞれの吸着剤の作用として、カラム塔頂部での流出ガス2中の残留塩素含量が必要とされた限界以下であるような程度に選択されている。吸着カラムの選択された温度がより高い場合には、流出ガス2からの残留塩素の除去は、上記のように残留塩素ガス洗浄器の手段を必要とする。
【0009】
塩素負荷された吸着剤3は、吸着カラムC1の塔底部1で取り出され、かつ脱着カラムC2の中に送り込まれる、ここで、吸着剤によって吸着された塩素が加熱および/または圧力低下によって吸着剤から排出される。塩素を含有していない吸着剤4は、脱着カラムの塔底部で取り出され、冷却され、かつ吸着カラムを通して再利用される。脱着カラムの塔頂部で取り出された塩素5の部分は、凝縮され、かつ返送流としてカラムの中に返送される。
【0010】
脱着カラムから取り出された塩素5は、供給ガスからの凝縮不可能なガス成分の僅かな割合および更に、脱着カラムの塔頂部での圧力条件および温度条件に応じて、相対的に大量の吸着剤を含有しておらず、その結果、達成することができる純度は、大多数の使用には不十分であり、従って、取得された塩素の付加的な精製が必要とされる。
【0011】
典型的な吸着脱着法は、米国特許第5308383号明細書中に記載されている。前記の特徴は、実験式C734-nCln(式中、nは、1〜3である)で示される特殊な吸着剤、例えば3,4−ジクロロベンゾトリフロリドの使用である。前記吸着剤の使用の利点は、米国特許第5308383号明細書によれば、ガス88mg/kgだけの低い吸着損失並びにCCl4に比べてオゾン破壊能力が不足していることである。更に、米国特許第5308383号明細書には、上記吸着剤とクロロホルムとの組合せが特に適していると記載されている。しかしながら次に、クロロホルムがオゾン破壊能力を有しているので、クロロホルムの損失を制限するために、−4℃の吸着剤オーバーヘッド温度を設定することが必要である。
【0012】
塩素の吸着は、常用の吸着剤中、例えばCCl4中で、物理的溶解によって生じることは公知である。前記処理工程は、相対的に任意のものであるので、また、供給ガス中の他のガス成分の一定の割合が吸着される。結果として、得られた塩素は、凝縮されているけれども、他のガス成分および吸着剤で汚染されており、他の精製、例えば低温蒸留を施さなければならない。
【0013】
図4は、下流方向での低温蒸留を用いる吸着/脱着法の系統図を示している。吸着カラムC1中では、適当な吸着剤4が、塩素含有供給流1からの量的な塩素のガス洗浄のために使用されている。負荷された吸着剤3は、脱着カラムC2中に送り込まれ、そこで、塩素は、吸着剤を加熱することによって排出され、かつ塔頂部で留去される。再生された吸着剤4は、冷却され、かつ吸着カラムC1のために再利用される。
【0014】
脱着カラムC2の塔頂部から取り出された塩素ガス5は、既に記載されたように、低い純度であり、従って、例えば低温蒸留カラムC3中で抽出凝縮によって精製されなければならない。凝縮不可能なガス6は、なお少量の塩素を含有しており、従って、塩素吸着カラムC1の中へ返送される。
【0015】
前記方法の欠点は、吸着剤が塔頂部で出てこないような程度に脱着カラムが操作される場合にのみ、前記吸着剤が、“高沸点溶剤”として、低温蒸留カラムの塔底部の中、従って取り出された塩素7の中に送り込まれるので、高い純度の塩素7を取り出すことができることである。
【0016】
HCl酸化のためのシェル−ディーコン法によれば(The Chemical Engineer,(1963年)第224〜232頁)、塩素は、吸着剤としてのCCl4を使用する吸着/脱着法によって分離される。N2、O2およびCO2(主要量)中で27〜48%の塩素含量を有する供給ガスから、塩素は、約1.5バールおよび約11℃のオーバーヘッド温度で吸着カラム中でガス洗浄される。吸着液からの塩素の遊離は、脱着カラム中、約65.5℃のオーバーヘッド温度、約11バールの圧力下で行われる。遊離された塩素は、加圧下に塔頂部に取り付けられた水コンデンサー中で部分的な凝縮によって精製される。該水コンデンサー中になお存在する凝縮されなかった塩素および他のガス成分は、吸着カラムに返送されている。1つの同様の変法は、米国特許第4394367号明細書中に記載されている。
【0017】
米国特許第22271056号明細書には、CCl4の放出を防ぐために、吸着カラムの上方部分での活性炭の層の設置が提案されている。欠点は、活性炭には、限られた吸着能力しかなく、後に交換されなければならないということである。
【0018】
吸着および引き続く脱着によって塩素を分離するための代替え案は、欧州特許第0329385号明細書中に記載されており、かつ図5中に示されている。前記の変法の場合、約10〜30重量%の塩素濃度を有する最初の塩素含有供給ガス1は、該供給ガスに塩素脱着段階からの塩素2(塩素約90重量%)が添加されている。これは、塩素の濃度を供給流3の中で、明らかに50重量%を上回るよう増大させる。前記ガス流3は、5〜9バールに圧縮され、次に、1つまたはそれ以上の段階で冷却され、その結果、存在する塩素の大部分が凝縮されている。凝縮された塩素は、溶解された異質のガスを分離するために、低温蒸留カラムC1に送り込まれる。精製されかつ前記のようにして分離された塩素9は、再使用することができる。低温蒸留カラムC1からの凝縮不可能なガス7は、なお塩素を含有しており、従って、前記の凝縮物6からの凝縮不可能なガス流と組み合わされ、かつ脱着カラムC2の中に送り込まれ、この中で、塩素は、凝縮不可能なガス成分から吸着によって分離される。負荷された吸着剤11は、塩素を抽出するための沸騰によって、脱着カラムC3中で再生される。前記の段階で脱着された塩素2は、低い純度(塩素約90重量%)である。該塩素2は、同様に吸着在中に溶解していた凝縮不可能なガスの相対的に多くの量を含有している。この塩素流2は、塩素含有供給ガス1に添加される。
【0019】
この方法は、その他の点では、不経済な大量の塩素が、連続的に、吸着段階/脱着段階および凝縮段階の間を循環しなければならないので、明らかに10容量%を上回る塩素含量を有する塩素含有ガス流1から塩素を回収するためにのみ有利に使用することができる。
【0020】
もう1つの欠点は、脱着カラムC3からの塩素の豊富なガス混合物2が少量の吸着剤を含有しているので、この方法が、高純度の塩素を得るのに適していないことである。供給ガス1へのガス混合物の添加は、吸着剤が凝縮区間の中へ送り込まれ、この区間を介して、低温蒸留段階へ送り込まれ、ここで、該吸着剤が、高沸点成分として、塩素と一緒にカラムの塔底部から取り出されることを意味する。更に、前記変法のエネルギーの損失は、凝縮不可能な全ガス成分が、低い塩素凝縮温度に冷却されなければならないということである。
【0021】
欧州特許出願公開第0518553号明細書には、塩素を分離するための低温蒸留とそれに続く真空圧力変動吸着(vacuum pressure swing adsorption)が記載されている。
【0022】
供給ガス1は、圧縮され、図6に示されているように、まず第一に、塩素不含の流出ガス3で冷却され、次に、凝縮または低温蒸留C1に送り込まれ、ここで、存在する塩素の2の部分が純粋な液体の形で塔底部で取り出される。残留する塩素含有ガス4は、塔頂部を介してカラムC1を離れ、かつ真空圧力変動吸着(VPSA)コンテナC2の中に送り込まれる。吸着コンテナC2a〜C2c中では、残留ガスからの塩素の吸着分離が、約4〜11バールおよび0〜150℃、有利に周囲温度で交互に行われている。1〜60kPaの減圧で真空を引き続き使用することによって、交互に、吸着、高度に濃縮された塩素5は、吸着体塔から得られる。吸着された塩素の脱着に続いて、吸着コンテナは、新たな充填のために再使用可能である。採用することができる吸着剤は、合成もしくは天然のゼオライト(X、Y、L、ZSM)または非ゼオライト多孔質酸化物および有利に炭素を基礎とする吸着剤、例えば活性炭および炭素モレキュラーシーブである。
【0023】
しかしながら、前記の方法は、吸着コンテナ中になお存在するガス相が、ガス流4の全てのガス状成分を含有しており、塩素だけでなくガスの他の成分も、同様に部分的に吸着されているので、供給ガスから高純度の形での塩素の全てを得るには不適当である。真空が使用される場合、前記の成分は、脱着する塩素と一緒に、吸着コンテナから出てくる塩素流5の中へ送り込まれる。
【0024】
凝縮/低温分離段階からの塩素2だけが、純粋な形で得られる。しかしながら、技術的および経済的に制限された冷却温度のために、この塩素2は、流入ガスの塩素濃度に左右されて制限された割合だけが存在する。
【0025】
VPSAから純粋な形で全ての塩素を得るためには、分離された塩素5は、他の精製段階を施されなければならない。
【0026】
更に、VPSAの前に凝縮/低温蒸留を行うことには、得られた全ての塩素含有供給ガス流が高い塩素凝縮圧(5〜20バール)に圧縮されかつ相応する塩素凝縮温度に冷却されなければならないという欠点がある。
【0027】
【発明が解決しようとする課題】
従って、本発明の課題は、塩素含有ガス流から塩素を分離するための方法を見出すことであり、この方法を用いて、塩素を、徹底的かつ高純度の形で分離することができ、かつこの方法は、エネルギー的に最適化されており、最小限の装置を用いて実施することができ、この方法の場合に、塩素分離装置を後にする流出ガスは、吸着剤を含有せず、かつ塩素をほとんど含有していない。
【0028】
【課題を解決するための手段】
前記課題は、不活性吸着剤を用いる塩素の吸着および吸着剤/塩素混合物を脱着蒸留カラムに供給することにより吸着段階から取り出された吸着剤/塩素混合物からの塩素の下流方向への脱着によって、塩素含有供給ガスから高純度の塩素を分離するための方法により解決されることが見出され、この方法は、塩素分離カラムの塔頂部と脱着蒸留カラムの上部および脱着蒸留カラムの下部と塩素分離カラムの塔底部とがガスおよび液体の双方の側で互いに接続しているようにして塩素分離カラムに接続されている脱着蒸留カラム中で脱着蒸留を実施することからなり、この場合、吸着剤/塩素混合物は、専ら、脱着蒸留カラムに供給され、かつ高純度の塩素は、塩素分離カラムの中央部から取り出されている。
【0029】
【発明の実施の形態】
本発明の好ましい実施態様が以下に記載されており、かつ図面により説明されている。
【0030】
図1は、塩素分離単位装置の系統図を示し;
図2は、塩素の露点曲線を示し;
図3は、塩素回収のための吸着/脱着装置を示し;
図4は、図3の場合に塩素の精製蒸留を用いる装置としての系統図を示し;
図5は、全体の処理の系統図を示し;
図6は、圧力変動吸着を用いる塩素回収装置の系統図を示し;
図7は、塩素側カラムを有する塩素回収装置の系統図を示し;
図8は、分割カラムを有する塩素回収装置の系統図を示し;
図9は、図8に相応する流出ガス処理単位装置の系統図を示し;
図10は、圧力変動吸着の下流方向での低温蒸留を用いる塩素回収装置の系統図を示す。
【0031】
本発明の有利な実施態様の場合、脱着蒸留は、塩素分離カラムとしての側カラムを有する脱着蒸留カラム中で実施される。
【0032】
本発明による方法のもう1つの有利な実施態様の場合、脱着蒸留カラムおよび塩素分離カラムは、1つのカラムに結合され、該カラムの一部には、分割装置、例えば隔壁があり、該隔壁は、縦方向に作用し、かつ該隔壁は、カラムの交差部を供給部および取り出し部に分割し、この場合、塩素/吸着剤混合物は、供給部に入れられ、かつ液体塩素は、取り出し部から取り出される。
【0033】
本発明による方法の特に有利な実施態様の場合、室温で、10ミリバール未満、有利に1ミリバール未満の蒸気圧である、有利な不活性洗浄液を用いて吸着段階から出てくるガス流のガス洗浄と、蒸留カラム中で0.1〜5バール、有利に1〜2バールの圧力で再生のための負荷された洗浄液の蒸留とによって、塩素吸着剤は、塩素吸着段階から出てくる流出ガスから分離され、この場合、洗浄液は、塔底部で取り出され、かつ有利にガス洗浄段階に返送され、かつ塔頂部を離れる排ガスは、塩素吸着段階に送り込まれる。本発明によれば、適当な吸着法(例えば、活性炭上での塩素およびCCl4の吸着)を用いて、吸着カラムの流出ガスから残留塩素および/または残留吸着剤の除去を実施することも可能である。
【0034】
塩素含有ガス流から塩素を分離するためのもう1つの本発明の解決策は、圧力変動吸着を用いてガス流から塩素を徹底的にかまたはほぼ完全に分離し、圧力変動吸着からの高度に塩素を含有するガスを1〜20バール、有利に5〜10バールの圧力に圧縮し、次に、有利に低温蒸留を施し、純粋な形での塩素を、蒸留カラムの塔底部生成物として分離し、かつ蒸留カラムの塔頂部生成物を、圧力変動吸着の供給ガスに返送することからなる。
【0035】
本発明による方法は、以下の利点を得られるようにする:
− 最小限の装置およびエネルギー投入量を用いる、塩素含有ガス流からの塩素の徹底的な分離。このことは、特に、ディーコン法による酸素を用いるHClの酸化の場合に製造されているものとしての高度に希釈された塩素ガス流からの塩素の回収に使用されている。
【0036】
− 分離された塩素は、高純度であり、かつこの製造法に再利用することができる。
【0037】
− 例えば、塩素は、イソシアネート製造の場合に必要とされているホスゲンの製造のために再使用することができる。
【0038】
− 塩素吸着剤は、真空圧力変動吸着の場合には全く必要とされないかまたは処理の際に、環境への損失なしに残留する。
【0039】
高純度の塩素を得るための本発明による方法の有利な形態は、図7中に示されている。供給ガス1は、適当な方法で、常法によれば充填材料(バール・サドル、ラッシヒリング等)かまたは適当なカラム・トレイを備えた吸着カラムC1の底部に送り込まれる。吸着剤4は、向流中で、塩素含有供給ガスに送り込まれ、かつガス流の塩素を吸着し、該ガス流は、引き続き、吸着カラムの塔頂部を介して流出ガス2として装置から出ていく。塩素負荷された吸着剤3は、脱着蒸留カラムC2の中に送り込まれ、該脱着蒸留カラム中で、塩素は再度留去され、かつ塩素を含有しない吸着剤4は、脱着蒸留カラムの塔底部で取り出され、冷却され、かつ吸着カラムに再利用される。脱着蒸留カラムC2の下部から、上記は取り出され、かつ側カラム、塩素分離カラムC3の塔底部の中に送り込まれている。脱着蒸留カラムC2の上部から、液体が取り出され、かつ側カラムC3の塔頂部に送られている。側カラムC3から取り出された上記は、液体の取り出し部の位置で、脱着蒸留カラムC2の中に返送され、一方で、側カラムの塔底部で取り出された材料は、上記の取り出し位置で、脱着蒸留カラムの中に返送されている。高純度の形での液体塩素6は、残留ガスおよび吸着剤を含有しておらず、側カラムの中間の部分から取り出すことができる。負荷された吸着剤3中に同時に溶解した残留ガス成分は、少量の塩素とともに、塔頂部5を介して脱着蒸留カラムを離れ、かつ吸着カラムC1の中に返送されている。
【0040】
高純度の塩素を得るための本発明による方法の特に有利な実施態様は、図8中に示されている。塩素は、図7中で示されているように、吸着カラムC1を用いて、供給ガスから分離され、かつ脱着蒸留カラムC2中で、吸着剤から再度留去されている。脱着蒸留カラムは、分割されたカラムとして形成されている。これは、原理的には、脱着蒸留カラムの中への、図7中に記載された側カラム、塩素分離カラムの結合に相応している。隔壁によって分離されたカラムの領域では、濃度特性曲線は、側カラム中のものと同様に設定されている。高純度の液体塩素6が取り出すことができるような最適の高さは、負荷された吸着剤の組成およびカラムの配置による関数である。隔壁の高さは、5個以上の理論段でなければならないが、しかし、全体の高さ、脱着蒸留カラムの作用部分の有利に10〜90%、特に有利に60〜70%の高さを上回ってはならない。このことは、塩素分離カラムが側カラムの形であったとしても適用される。隔壁の上および下で、2個のカラムは、互いにガス側および液体側で接続されている。側カラムの代わりに分割されたカラムを使用することによって、分離装置は、1個の単位装置を減らされ、かつエネルギーの点で相当の節約が可能である。
【0041】
図8により分離された高純度の塩素ばかりでなく、吸着カラムからの流出ガス2が、なお存在する限り、任意の吸着剤から除去される本発明による方法の他の特に有利な実施態様は、図9中に示されている。
【0042】
吸着カラムC1の塔頂部から導かれている流出ガス2は、なお若干の塩素吸着剤、例えばCCl4を含有しいてもよく、該塩素吸着剤は、適当な洗浄液9、例えばシスデカリンもしくはトランスデカリンまたは他の適当な高沸点物質を用いて、吸着カラムC3中で完全にガス洗浄される。吸着カラムC3からの清浄なガス7は、環境に放出することができ、かつO2を用いるHClの酸化のための処理に返送することができる。下流方向の脱着カラムC4中では、塩素吸着剤は、負荷された洗浄液8から再度留去され、洗浄液は、塔底部生成物9として取り出され、冷却され、かつ吸着段階C3に返送される。得られた塔頂部生成物10は、ガス混合物であり、該ガス混合物は、吸着カラムC1に、例えば流れ5と一緒に送り込まれる。
【0043】
高純度の塩素の回収のためのもう1つの本発明方法によれば、真空圧力変動(V-PSA)は、図10中に示されているように、塩素含有流入ガスから塩素を分離するために使用されている。供給ガス1は、第一に圧縮される。残留ガスからの塩素の分離は、コンテナC2aからC2c中で吸着によって周期的に行われる。真空の非周期的使用によって、高度に濃縮された塩素5は、吸着塔から得られる。付着している塩素の脱着後に、吸着塔は、新たな充填のために再度使用可能である。吸着コンテナ中のガス相は、なお流入ガスのガス状成分を含有している。真空が使用される場合には、前記の成分は、脱着された塩素と一緒に、吸着コンテナから出てくる塩素流5の中に送り込まれ、該塩素流は圧縮され、次に冷却後に、低温蒸留段階C3に送り込まれる。この段階で、なお存在している望ましくないガス状成分は、留去される。高純度の塩素6は、カラムの塔底部から、液体の形で取り出すことができる。塔頂部で取り出された残留ガス2は、なお塩素を含有しており、かつV-PSA段階に返送されている。しかしながら、この残留ガス流は、極少量である。
【0044】
【実施例】
比較例 C1:
吸着−脱着(図3による方法)
700kPaの圧力および0℃の温度で、Cl217.1重量%、HCl0.5重量%およびN2+O282.4重量%の組成を有する塩素含有ガス流を、100l/hの容量流量(=ガス1.1kg/h;=Cl20.2kg/h)で、吸着カラムに供給した。吸着カラムは、40mmの内径および1.3mの全体の高さであった。使用されたカラム内部構造物は、1.0mの床高さで5×5mmのポールリングであった。液体CCl4を、カラムの塔頂部で、−20℃の温度および2.7kg/hの速度で供給した。塩素負荷された吸着剤を、40mmの内径、1.5mの全体の高さおよびパールリング(5×5mm)の1.3mの床を有する脱着カラムに送り込んだ。700kPaの圧力、160℃の塔底部温度および16℃のオーバーヘッド温度で、脱着カラムから得られた塔頂部生成物は、約92重量%の純度を有する塩素ガスであった。ガスおよび液体中の個々の成分の濃度は、表1中に示されている。
【0045】
【表1】
Figure 0004011139
【0046】
得られた塩素ガスは、僅かに約92重量%の純度であり、従って、もう1つの精製段階(蒸留)に送り込まなければならない。吸着カラムからの排ガスは、なお付加的に、塩素0.4重量%、CCl41.0重量%を含有している。
【0047】
例 1:
側カラム中での塩素の精製蒸留を用いる吸着および脱着(図7による方法)
700kPaの圧力および0℃の温度で、Cl217.1重量%、HCl0.5重量%およびN2+O282.4重量%の組成を有する塩素含有ガス流100l/hの容量流量(=1.0kg/h)で、脱着蒸留カラムからの返送ガス流と一緒に、吸着カラムに供給した。吸着カラムは、40mmの内径および1.3mの全体の高さであった。使用されたカラム内部構造物は、1.0mの床高さで5×5mmのポールリングであった。−20℃の温度を有する液体CCl4を、3.0kg/hの速度でカラム塔頂部に供給した。塩素負荷された吸着剤を、40mmの内径、1.5mの全体の高さおよびパールリング(5×5mm)の1.3mの床を有する脱着蒸留カラムの中間の部分に供給した。700kpaの圧力、160℃の塔底部温度および5℃のオーバーヘッド温度で、得られた塔頂部生成物は、約78重量%の純度を有する塩素ガスであり、これを、吸着カラムの供給ガス流の中に返送した。蒸気を、脱着蒸留カラム0.35m(塔底部から計算した)の高さで除去し、液体を1.15m(塔底部から計算した)の高さで除去し、双方を側カラム、40mmの内径、1.0mの全体の高さおよび充填材料(パールリング5×5mm)の床0.8m塩素分離カラムに供給した。液体の形での塩素を、前記の側カラムの中央部から取り出した。側カラムの塔底部生成物および塔頂部生成物を、特別な取り出し部トレイで、脱着蒸留カラムに供給した。ガスおよび液体中の個々の成分の濃度は、表2中に示されている。
【0048】
【表2】
Figure 0004011139
【0049】
例 2:
分割されたカラム中での吸着および脱着(図8による方法)
Cl217.1重量%、HCl0.5重量%およびN2+O282.4重量%の組成を有する塩素含有ガス流を、700kPa、0℃で、100l/hの容量流量(=1.0kg/h)で、脱着蒸留カラムからの返送ガス流と一緒に、吸着カラムに供給した。吸着カラムは、40mmの内径および1.3mの全体の高さだった。使用されたカラム内部構造物は、1.0mの床高さで5×5mmのポールリングであった。液体CCl4を、カラムの塔頂部で、−20℃の温度および3.0kg/hの速度で供給した。塩素負荷された吸着剤を、40mmの内径、1.5mの全体の高さおよびパールリング(5×5mm)の床1.3mを有する脱着蒸留カラムの中間の部分に供給した。前記カラムは、0.35m〜1.15m(それぞれ塔底部から計算した)の充填材高さで垂直な隔壁を有している。700kPaの圧力、160℃の塔底部温度および5℃のオーバーヘッド温度で、得られた塔頂部生成物波、約78重量%の純度を有する塩素ガスであり、これを、吸着カラムの供給ガス流の中に返送した。液体の形での塩素を、脱着蒸留カラムの中間の部分から、供給部分と反対の隔壁の側で取り出した。ガスおよび液体中の個々の成分の濃度は、表3中に示されている。
【0050】
【表3】
Figure 0004011139
【0051】
例 3:
塩素吸着剤の吸着分離(図9による方法)
塩素吸着カラムからの流出ガス2を、0.84kg/hの速度および−15℃の温度で、CCl42.0重量%、Cl20.4重量%および残留ガス(N2+O2、HClの痕跡)98.6重量%の組成で、パールリングで充填された吸着カラムC3の中に送り込んだ。カラムは、30mmの内径および1.0mのパールリング高さであった。20℃で冷たいシス−デカリンを、洗浄液として、カラムの塔頂部で、0.12kg/hの速度で供給し、これによって、塩素吸着剤CCl4を、650kPaの作業圧力でガス洗浄して、1ppm未満の残留含量に減少させた。負荷された洗浄液を、充填材料を含有する蒸留カラムの中間の部分に送り込んだ。蒸留カラムは、50mmの内径および1.5mの全体の高さ(充填材量の高さ)であった。使用された充填材料は、パールリング5×5mmからなるものであった。100kPaの圧力、200℃の塔底部温度および−35℃のオーバーヘッド温度で、得られた塔底部生成物は、99.9重量%を上回る純度を有するシス−デカリンであり、これを、20℃に冷却後に、ガス洗浄器に返送した。得られた塔頂部生成物は、Cl22.6重量%、CCl493.8重量%および残留ガス(N2+O2、HCl)3.5重量%を含有するガス流であり、これを、吸着段階に送り込んだ。ガスおよび液体中の個々の成分の濃度は、表4中に示されている。
【0052】
【表4】
Figure 0004011139
【0053】
例 4:
真空圧力変動吸着と引き続く低温分離(図10による方法)
25℃で加圧下(500kPa)に、Cl217重量%および不活性ガス(N2+O2)83重量%の組成を有する温かい塩素含有ガスを、ゼオライトを基礎とする吸着剤で充填された吸着体の床を導通させた。負荷(空間速度=120h-1)を、出てくるガスが塩素を含有していないような程度に選択した。負荷の継続時間波、8分間だった。塩素漏出を回避するために、吸着体床を完全には負荷しなかった。負荷の終了後に、塩素含有ガス流を、第二の吸着体床に切り換えた。第一の吸着体床を、引き続き、粗製塩素の線に降下させ、次に真空ポンプを用いて放圧して2kPaの圧力にした。加圧下に、貯蔵された塩素の脱着を最大にするために約5分間保持した。吸着体床から取り出された粗製塩素(80〜90容量%)を、800kPaに圧縮し、25℃に冷却し、かつオーバーヘッド温度が−50℃である塩素凝縮カラムの中に送り込んだ。99.0重量%を上回る塩素を含有する液体塩素を、カラムの塔底部で取り出した。塩素凝縮カラムの塔頂部で取り出された残留ガスを、吸着体床の供給流に送り込む。
【図面の簡単な説明】
【図1】塩素分離単位装置を示す系統図。
【図2】塩素の露点曲線を示す線図。
【図3】塩素回収のための吸着/脱着装置を示す系統図。
【図4】図3の場合に塩素の精製蒸留を用いる装置を示す系統図。
【図5】全体の処理を示す系統図。
【図6】圧力変動吸着を用いる塩素回収装置を示す系統図。
【図7】塩素側カラムを有する塩素回収装置を示す系統図。
【図8】分割カラムを有する塩素回収装置を示す系統図。
【図9】図8に相応する流出ガス処理単位装置を示す系統図。
【図10】圧力変動吸着の下流方向での低温蒸留を用いる塩素回収装置を示す系統図。
【符号の説明】
C1、C2、C3 カラム

Claims (2)

  1. 不活性吸着剤を使用することによる塩素の吸着および吸着剤/塩素混合物を脱着蒸留カラムに供給することにより吸着段階から取り出された吸着剤/塩素混合物からの塩素の下流方向への脱着によって、塩素含有供給ガスから高純度の塩素を分離するための方法において、塩素分離カラムの塔頂部と脱着蒸留カラムの上部および脱着蒸留カラムの下部と塩素分離カラムの塔底部が、互いにガスおよび液体の双方の側で接続しているように塩素分離カラムに接続されている脱着蒸留カラム中で脱着蒸留を実施し、この場合、吸着剤/塩素混合物は、専ら、脱着蒸留カラムに供給され、かつ高純度の塩素は、塩素分離カラムの中央部から取り出されることを特徴とする、塩素含有供給ガスからの高純度の塩素の分離法。
  2. 塩素含有ガス流から純粋な塩素を分離するための方法において、塩素含有ガス流に、まず、圧力変動吸着を施し、圧力変動吸着からの塩素含有ガスを、1〜20バール、有利に5〜10バールの圧力に圧縮し、次に、低温蒸留を施し、この場合、塩素は、蒸留カラムの塔底部生成物として純粋な形で分離され、かつ蒸留カラムの塔頂部生成物は、圧力変動吸着の供給ガス流の中に返送されることを特徴とする、塩素含有ガス流からの純粋な塩素の分離法。
JP26216296A 1995-10-04 1996-10-02 塩素含有供給ガスからの高純度の塩素の分離方法 Expired - Fee Related JP4011139B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19536976A DE19536976A1 (de) 1995-10-04 1995-10-04 Verfahren zur selektiven Abtrennung und Wiedergewinnung von Chlor aus Gasgemischen
DE19536976.9 1995-10-04

Publications (2)

Publication Number Publication Date
JPH09132401A JPH09132401A (ja) 1997-05-20
JP4011139B2 true JP4011139B2 (ja) 2007-11-21

Family

ID=7774017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26216296A Expired - Fee Related JP4011139B2 (ja) 1995-10-04 1996-10-02 塩素含有供給ガスからの高純度の塩素の分離方法

Country Status (9)

Country Link
US (1) US5788743A (ja)
EP (1) EP0767138B1 (ja)
JP (1) JP4011139B2 (ja)
KR (1) KR100464899B1 (ja)
CN (2) CN1329288C (ja)
DE (2) DE19536976A1 (ja)
ES (1) ES2144182T3 (ja)
MY (1) MY123056A (ja)
TW (1) TW328912B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10234908B4 (de) * 2002-07-31 2013-10-24 Basf Se Verfahren zur Herstellung von Chlor aus einem (Chlor)kohlenwasserstoffe enthaltenden Chlorwasserstoffstrom
US6709485B1 (en) * 2002-12-04 2004-03-23 Olin Corporation Process of removing carbon dioxide from a chlor/alkali plant tail gas stream
EP1899040A2 (en) * 2005-06-22 2008-03-19 Advanced Technology Materials, Inc. Apparatus and process for integrated gas blending
CN100361891C (zh) * 2005-12-19 2008-01-16 李安民 一种氯化副产物盐酸中游离氯的去除和回收利用的方法
DE102006023581A1 (de) * 2006-05-19 2007-11-22 Bayer Materialscience Ag Verfahren zur Abtrennung von Chlor aus dem Produktgas eines HCI-Oxidationsprozesses
CN101343040B (zh) * 2008-08-22 2010-04-07 山东聊城中盛蓝瑞化工有限公司 一种液氯闪蒸提纯生产工艺
JP2011084422A (ja) * 2009-10-14 2011-04-28 Shin-Etsu Chemical Co Ltd 水素ガス回収システムおよび水素ガスの分離回収方法
MY156181A (en) * 2011-10-11 2016-01-15 Hong In Chemical Co Ltd Method and system for producing high-purity hydrogen chloride
DE102011087654A1 (de) * 2011-12-02 2013-06-06 Bayer Materialscience Aktiengesellschaft Verfahren zur Herstellung von Isocyanaten
CN103832975B (zh) * 2014-01-24 2015-10-28 上海方纶新材料科技有限公司 从含氯和氧的混合气中回收氯气和氧气的方法
JP6203654B2 (ja) * 2014-01-28 2017-09-27 住友精化株式会社 塩化水素精製方法および塩化水素精製装置
CN103816768B (zh) * 2014-02-26 2016-01-20 重庆海洲化学品有限公司 从生产氯甲烷或四氯乙烯尾气中回收氯化氢的方法及系统
CN105344206A (zh) * 2015-11-11 2016-02-24 天津天清环保科技股份有限公司 一种工业废气中VOCs的处理方法及装置
EP3431859A1 (de) 2017-07-21 2019-01-23 Covestro Deutschland AG Verfahren zur leckage-sicheren speicherung von verflüssigtem chlor
EP3488914A1 (en) * 2017-11-28 2019-05-29 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. A method and an apparatus for separating chlorine gas from a gaseous anode outlet stream of an electrochemical reactor
WO2021113039A1 (en) * 2019-12-05 2021-06-10 Exxonmobil Research And Engineering Company Dividing wall column separator with intensified separations
WO2022203646A1 (en) * 2021-03-21 2022-09-29 Dice James Lamar Paradice process system
CN113398719A (zh) * 2021-06-15 2021-09-17 山东东岳氟硅材料有限公司 一种回收尾氯中氯气的装置及方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA615106A (en) * 1961-02-21 Hooker Chemical Corporation Purification of hydrogen chloride
US1617305A (en) * 1926-04-19 1927-02-08 Mathieson Alkali Works Inc Recovery of chlorine
US2271056A (en) * 1939-07-27 1942-01-27 Air Reduction Oxidation of hydrogen chloride
US2765873A (en) * 1948-10-12 1956-10-09 Diamond Alkali Co Method of purifying chlorine
US2540905A (en) * 1949-07-27 1951-02-06 Pittsburgh Plate Glass Co Recovery of chlorine
US2750002A (en) * 1953-11-24 1956-06-12 Hooker Electrochemical Co Method for chlorine recovery
US2822889A (en) * 1955-09-26 1958-02-11 Diamond Alkali Co Chlorine purification
US2934167A (en) * 1955-10-12 1960-04-26 Thiokol Chemical Corp Purification of boron trichloride
US2800197A (en) * 1955-12-09 1957-07-23 Nat Distillers Chem Corp Chlorine recovery
US2868325A (en) * 1956-02-29 1959-01-13 Cathala Marie Edouard Joseph Method of extraction of chlorine from gaseous mixtures
BE568078A (ja) * 1957-07-31
US3029575A (en) * 1958-11-03 1962-04-17 Exxon Research Engineering Co Chlorine separation process
NL286349A (ja) * 1962-12-05
NL294494A (ja) * 1963-06-24 1900-01-01
NL125296C (ja) * 1965-01-20 1900-01-01
US3881893A (en) * 1972-12-04 1975-05-06 Dow Chemical Co Chlorine recovery with aqueous hydrochloric acid
US4394367A (en) * 1982-03-11 1983-07-19 Shell Oil Co. Process for recovery of chlorine from hydrogen chloride
IL89280A0 (en) * 1988-02-16 1989-09-10 Mitsui Toatsu Chemicals Industrial process for the separation and recovery of chlorine
CN1027313C (zh) * 1988-02-16 1995-01-04 三井东压化学株式会社 从含氯和二氧化碳的气体混合物中除去氯的方法
US5254323A (en) * 1988-02-16 1993-10-19 Mitsui Toatsu Chemicals, Incorporated Industrial process for the separation and recovery of chlorine
DE3921714A1 (de) * 1989-07-01 1991-01-10 Hoechst Ag Verfahren zur selektiven absorption von chlor aus co(pfeil abwaerts)2(pfeil abwaerts)-haltigen abgasen
BR9007125A (pt) * 1989-12-16 1992-01-28 Mitsui Toatsu Chemicals Processo para concentrar cloro gasoso
US5296017A (en) * 1991-05-28 1994-03-22 Mitsui Toatsu Chemicals, Inc. Method and apparatus for concentrating chlorine gas
EP0518553B1 (en) * 1991-06-06 1996-09-04 MITSUI TOATSU CHEMICALS, Inc. Method and apparatus for industrially preparing chlorine
US5308383A (en) * 1993-06-21 1994-05-03 Occidental Chemical Corporation Method for separating chlorine from a mixture of gases
US5500035A (en) * 1993-08-09 1996-03-19 Uop Pressure swing adsorption process for chlorine plant offgas
US5376164A (en) * 1993-08-09 1994-12-27 Uop Pressure swing adsorption process for chlorine plant offgas
US5437711A (en) * 1993-12-16 1995-08-01 Occidental Chemical Corporation Method of purifying chlorine-containing gases

Also Published As

Publication number Publication date
CN1590279A (zh) 2005-03-09
DE19536976A1 (de) 1997-04-10
US5788743A (en) 1998-08-04
DE59604163D1 (de) 2000-02-17
KR970020938A (ko) 1997-05-28
CN1329288C (zh) 2007-08-01
JPH09132401A (ja) 1997-05-20
CN1158213C (zh) 2004-07-21
KR100464899B1 (ko) 2005-04-06
CN1155512A (zh) 1997-07-30
EP0767138A1 (de) 1997-04-09
MY123056A (en) 2006-05-31
ES2144182T3 (es) 2000-06-01
EP0767138B1 (de) 2000-01-12
TW328912B (en) 1998-04-01

Similar Documents

Publication Publication Date Title
JP4011139B2 (ja) 塩素含有供給ガスからの高純度の塩素の分離方法
US7683223B2 (en) Method for purifying hydrogen chloride
US7837767B2 (en) Processes for removing organic components from gases containing hydrogen chloride
KR101374952B1 (ko) (클로로)탄화수소 및 포스겐을 포함하는 염화수소스트림으로부터 (클로로)탄화수소 무함유 염화수소 및포스겐 무함유 (클로로)탄화수소를 회수하는 방법
JP4921489B2 (ja) 塩素の製造方法
JP5036862B2 (ja) ガスストリームから有機化合物を除去する再生式吸着方法
EP0518553B1 (en) Method and apparatus for industrially preparing chlorine
HU219385B (en) Process and device for cleaning vinyl chloride
JP2726771B2 (ja) 塩素の工業的製造方法
JP2531249B2 (ja) 塩化水素ガスの精製方法
CA2131583A1 (en) Process for the production of ethanol and isopropanol
US20220219981A1 (en) Methods for removing water from iodine (i2)
US20070154376A1 (en) Purification of sulfuryl fluoride
JP2726770B2 (ja) 塩素の工業的製造方法
JP2002321906A (ja) ハロゲン化水素の吸着による分離法
JPS62121615A (ja) ガス分離方法
TH29430B (th) การแยกจำเพาะและการนำกลับมาใช้ใหม่ของคลอรีนจากแก๊สผสม
JPH07100323A (ja) 空気分離方法
TH27345A (th) การแยกจำเพาะและการนำกลับมาใช้ใหม่ของคลอรีนจากแก๊สผสม

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees