JP4001681B2 - Foreign matter diameter determination method and foreign matter inspection device in foreign matter inspection device - Google Patents

Foreign matter diameter determination method and foreign matter inspection device in foreign matter inspection device Download PDF

Info

Publication number
JP4001681B2
JP4001681B2 JP25889798A JP25889798A JP4001681B2 JP 4001681 B2 JP4001681 B2 JP 4001681B2 JP 25889798 A JP25889798 A JP 25889798A JP 25889798 A JP25889798 A JP 25889798A JP 4001681 B2 JP4001681 B2 JP 4001681B2
Authority
JP
Japan
Prior art keywords
diameter
foreign matter
foreign substance
calibration curve
foreign
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25889798A
Other languages
Japanese (ja)
Other versions
JP2000088535A (en
Inventor
豊樹 神▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP25889798A priority Critical patent/JP4001681B2/en
Publication of JP2000088535A publication Critical patent/JP2000088535A/en
Application granted granted Critical
Publication of JP4001681B2 publication Critical patent/JP4001681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば、LSI製造プロセスにおいて、ウェーハにパターンを焼き付けるために用いられるレティクル/マスク、あるいは、パターンが形成された製品ウェーハ、さらには、液晶用基板などの検査対象基板の表面に、異物が付着しているか否かおよびその大きさや付着場所を特定することなどができる異物検査装置及びそれにおける異物径決定方法に関する。
【0002】
【従来の技術】
まず、図2は、例えば光散乱式の異物検査装置の光学系の一例を概略的に示すもので、この図において、1は検査対象基板(サンプル)としてのレティクルで、ベース板2上を矢印X方向に直線的に往復移動することができる検査ステージ3の上面に載置されている。4はペリクル枠である。
【0003】
5は前記検査ステージ3の移動方向Xに直交した矢印Y方向にレーザ光Lを走査させながら、これをサンプル1の表面に照射する入射光学系で、一定の偏向角を有するレーザ光Lを発する例えばHe−Neレーザ発振器6と、ビームエキスパンダ7と、レーザ光Lを走査するガルバノミラー8と、スキャニングレンズ9などからなり、サンプル1の表面に対して所定角度斜め上方から、レーザ光Lを矢印Y方向に走査照射するように構成されている。
【0004】
10A,10Bはサンプル1の表面の左半分と右半分におけるレーザ光Lの照射に基づく散乱光Rを各別に検知する左右の検出光学系で、前記入射光学系5の走査方向中間のレーザ光照射基準中心Cに対して左右両側に配置されており、それぞれ集光レンズ11と、散乱光Rに対する入射光制限用のスリット(図示していない)が形成されたスリット部材12と、例えば光電子倍増管などの光検出器13などからなる。
【0005】
上記異物検査装置においては、検査ステージ3を矢印X方向に移動させつつレーザ光Lを矢印Y方向に往復走査させながら、レーザ光Lをサンプル1の表面に照射させるのであり、そして、サンプル1表面に対するレーザ光Lの照射部に異物が存在すると、その異物によってレーザ光Lが全方向にアットランダムに散乱されて、その異物がサンプル1表面の左半分に存するときは、レーザ光Lの照射方向後方に向けて反射された一部の散乱光Rが左側の検出光学系10Aによって検出され、異物がサンプル1表面の右半分に存するときは散乱光Rが右側の検出光学系10Bによって検出されることで、サンプル1表面における異物の存在が検知される。
【0006】
【発明が解決しようとする課題】
ところで、上記図2に示すような光散乱式の異物検査装置において、サンプル1上での異物信号の二次元方向における分解能(一つの信号が代表する範囲)は、一般に、図4に示すように、走査されるレーザ光LのY方向における信号取り込み間隔Tyまたは位置分解能とレーザ光LのX方向における走査間隔Sxにより決まる。
【0007】
そして、前記信号取り込み間隔Tyおよびレーザ光の走査間隔Sxによって決まる単位の範囲(図4において符号21で示す)から得られる信号(散乱光に起因する)を1つと計数するとき、一つの異物22から得られる信号の数は、一般に複数となる。このような一つの異物22から得られる複数の信号から、異物22の大きさを求めるには、次のようにする。
【0008】
すなわち、まず、個々の信号の発生地点の距離をもとに、互いに一定の範囲内にある信号どうしは同じ異物22からの信号であると考え、これらをグループ化する。次に、それらのグループのなかで最も信号強度の高いものをそのグループの散乱光の代表値とする。そして、この代表値を、光検出器13から出力される信号の強度に基づいて異物径を求める検量線(以下、単に信号強度による検量線という)に代入し、そのグループの異物22の大きさ(異物径)を得ることができる。一方、前記グループにおける信号数、光検出器13から出力される信号数に基づいて異物径を求める検量線(以下、信号数による検量線という)に代入することにより、そのグループの異物22の大きさ(異物径)を得ることもできる。
【0009】
そして、前記信号強度による検量線が図5に示すようなものであるとする。この図において、Aは信号強度による検量線であり、横軸は信号処理回路における信号強度のダイナミックレンジを表し、0〜100の範囲とする。そして、縦軸は異物径を表し、Dp1 、Dp2 はそれぞれ最小径、最大径である。
【0010】
ところで、半導体回路の高LSI化が進むにつれて、パターンの微細化・高密度化が要求され、異物検査装置において検出すべき異物もより小さくなってきており、これに対応するため、異物の検出感度が上昇していき、この感度上昇に伴って散乱光に基づく信号を処理する系のダイナミックレンジが全体に弱い信号側、つまり、異物の小径側に移動し、図5に示した検量線Aは、信号強度が100を超えると、信号処理系が飽和してしまい、Dp2 よりも大きい径は、不定となっているこのため、より大きな異物の大きさを決定することができない。
【0011】
しかしながら、実際には、前記検出限界(上記の図5においてはDp2 )を超える大きい異物が存在する可能性は高く、また、一般には、より大きな異物の存在の方が問題となる。
【0012】
この発明は、上述の事柄に留意してなされたもので、その目的は、信号処理系のダイナミックレンジによらず、広い異物径範囲において異物径を正確に決定することができる異物検査装置における異物径決定方法(以下、単に異物径決定方法という)及び異物検査装置を提供することである。
【0013】
【課題を解決するための手段】
上記目的を達成するため、この発明に係る異物径決定方法は、検査対象基板の表面に対してレーザ光を走査しながら照射し、そのときの検査対象基板の表面からの異物による散乱光を入射させることにより、検査対象基板の表面における異物を検知する光検出器と、この光検出器から出力される信号を取り込んで処理する信号処理系とを備えている異物検査装置における異物径決定方法において、前記光検出器から出力される信号強度に基づいて異物径を求めるための検量線と、前記光検出器から出力され、発生地点が所定の範囲内である信号を一つの異物からの信号であるとして、前記所定範囲内における信号の数に基づいて異物径を求めるための検量線とを備えており、前記信号処理系の信号強度に関するダイナミックレンジの範囲においては、前記両検量線によってそれぞれ得られる異物径のうち大きい方を異物径に決定し、また、前記ダイナミックレンジを超えた範囲においては、前記ダイナミックレンジより大径側に広がったダイナミックレンジを備えた信号処理系による信号の数に基づいて異物径を求めるための検量線によって得られる径を異物径に決定することを特徴としている。
また、この発明に係る異物検査装置は、検査対象基板の表面に対してレーザ光を走査しながら照射し、そのときの検査対象基板の表面からの異物による散乱光を入射させることにより、検査対象基板の表面における異物を検知する光検出器と、この光検出器から出力される信号を取り込んで処理する信号処理系とを備えている異物検査装置において、信号強度に基づいて異物径を求めるための検量線と、前記レーザ光の走査方向における信号取り込み間隔とレーザ光の検査対象基板移動方向における走査間隔によって決まる単位の範囲から得られる散乱光信号を1とするとき、一つの異物から得られる散乱光信号の数に基づいて異物径を求めるための検量線とが備えられており、信号強度に関する信号処理系のダイナミックレンジの範囲内においては、前記両検量線によってそれぞれ得られる異物径のうち大きい方を異物径に決定し、また、前記ダイナミックレンジを超えた範囲においては、前記ダイナミックレンジより大径側に広がったダイナミックレンジを備えた信号処理系による信号の数に基づいて異物径を求めるための検量線によって得られる径を異物径に決定する手段を備えていることを特徴としている。
【0014】
上記異物径決定方法及び異物検査装置によれば、信号強度に関する信号処理系のダイナミックレンジの範囲内はもとより、これを超える範囲における異物についても正確に決定することができ、異物径を、そのきわめて小さいものからかなり大きいものまで広い異物径範囲において正確に決定することができる。
【0015】
【発明の実施の形態】
発明の実施の形態を、図面を参照しながら説明する。図1は、この発明の異物径決定方法及び装置において用いられる検量線の一例を示すもので、信号強度による検量線Aと信号数による検量線Bとを異物径をもとに同じ軸上に表している。これら二つの検量線A,Bには、次のような関係がある。すなわち、信号強度による検量線Aが信号処理回路において信号が飽和するレベルに相当する異物径Dp2 において、同一異物からの散乱光の信号数による検量線Bの評価径がほぼ一致するように設定される。つまり、検量線A,Bは、図1において符号IM で示す飽和レベルにおける検量線Aと検量線Bとがほぼ一致するような関係を有している。
【0016】
そして、信号数による検量線Bにおけるダイナミックレンジは、信号強度による検量線Aのダイナミックレンジに比べて、大径側に大きく広がっている。すなわち、この信号数による検量線Bにおけるダイナミックレンジは、信号数0から異物径を演算する演算処理部(図示していない)で割り当てられる記憶容量で制限される信号数までであって、信号処理回路のダイナミックレンジ(信号アンプやAD変換回路によって決まることが多い)より自由度が高く、実用上制限がないといえる。
【0017】
そして、この発明においては、異物の大きさを決定するに際して、次のようにする。すなわち、信号強度による検量線Aが有効な範囲、つまり、信号強度による検量線Aが飽和してないダイナミックレンジの範囲内においては、前記二つの検量線A,Bによってそれぞれ得られる異物径Da,Dbを比較し、常に大きい方をその異物の代表径とするのである。こうすれば、異物径は常に実際よりも大きめに決定されることになり、常に安全側に評価されることとなる。図1に示す例では、信号数による検量線Bによって得られる異物径Dbが常に代表径として採用されることになる。
【0018】
また、前記信号強度による検量線Aが意味をなさなくなる範囲、つまり、信号強度に関する信号処理系のダイナミックレンジを超えた大径側の範囲においては、信号強度による検量線を、図1において符号A’で示すように、一定となるようにして、信号数による検量線Bが信号強度による検量線A’が常に大きくなるようにするのである。すなわち、信号強度による検量線Aが飽和する範囲では、信号数による検量線Bによって得られる異物径Dbが常に代表径として採用されるのである。
【0019】
なお、上記図1における二つの検量線A,Bにおいては、信号強度による検量線Aが有効な範囲において、信号数による検量線Bによって得られる異物径Dbが信号強度による検量線Aによって得られる異物径Daよりも大きくなるようにしてあるが、これら二つの検量線A,Bの関係は、図3(A),(B)に示すように種々のものがあることはいうまでもない。
【0020】
【発明の効果】
この発明の異物径決定方法及び異物検査装置によれば、信号強度による検量線が有効な範囲、すなわち、信号処理のダイナミックレンジの範囲内はもとより、これを超える範囲、すなわち、大径側においても、異物径を正確に決定することができる。したがって、従来に比べて、広い異物径範囲にわたって異物の径を正確に決定することができるので、LSI製造プロセスなど異物管理を必要とする各種のプロセスにおいて、異物管理をより効率よく的確に行うことができる。
【図面の簡単な説明】
【図1】 この発明の異物検査装置における異物径決定方法において用いる検量線の一例を概略的に示す図である。
【図2】 この発明が適用される異物検査装置の光学系の構成を概略的に示す図である。
【図3】 この発明の異物検査装置における異物径決定方法において用いる検量線の他の例を概略的に示す図である。
【図4】 異物信号の二次元方向における分解能を説明するための図である。
【図5】 従来技術を説明するための図である。
【符号の説明】
1…検査対象基板、13…光検出器、L…レーザ光、R…散乱光、A…信号強度による検量線、B…信号数による検量線。
[0001]
BACKGROUND OF THE INVENTION
The present invention provides, for example, a reticle / mask used to print a pattern on a wafer in an LSI manufacturing process, a product wafer on which a pattern is formed, or a surface of an inspection target substrate such as a liquid crystal substrate. The present invention relates to a foreign matter inspection apparatus capable of specifying whether or not, and its size and place of attachment, and a foreign matter diameter determination method in the foreign matter inspection device.
[0002]
[Prior art]
First, FIG. 2 schematically shows an example of an optical system of, for example, a light scattering type foreign matter inspection apparatus. In this figure, 1 is a reticle as a substrate to be inspected (sample), and an arrow is placed on the base plate 2. It is placed on the upper surface of the inspection stage 3 that can reciprocate linearly in the X direction. Reference numeral 4 denotes a pellicle frame.
[0003]
Reference numeral 5 denotes an incident optical system that irradiates the surface of the sample 1 with the laser beam L in the direction of the arrow Y perpendicular to the moving direction X of the inspection stage 3 and emits the laser beam L having a certain deflection angle. For example, a He-Ne laser oscillator 6, a beam expander 7, a galvano mirror 8 that scans the laser light L, a scanning lens 9, and the like, and the laser light L is emitted obliquely from above the surface of the sample 1 by a predetermined angle. Scanning irradiation is performed in the arrow Y direction.
[0004]
Reference numerals 10A and 10B denote left and right detection optical systems that individually detect scattered light R based on the irradiation of the laser light L on the left half and the right half of the surface of the sample 1, and laser light irradiation in the middle of the scanning direction of the incident optical system 5 Arranged on the left and right sides with respect to the reference center C, respectively, a condensing lens 11, a slit member 12 in which a slit (not shown) for limiting incident light with respect to the scattered light R is formed, and, for example, a photomultiplier tube And the like.
[0005]
In the foreign matter inspection apparatus, the surface of the sample 1 is irradiated with the laser beam L while the inspection stage 3 is moved in the arrow X direction and the laser beam L is reciprocated in the arrow Y direction. When the foreign matter is present in the irradiated portion of the laser beam L, the laser light L is scattered at random in all directions by the foreign matter, and when the foreign matter is present on the left half of the surface of the sample 1, the irradiation direction of the laser light L A part of the scattered light R reflected backward is detected by the left detection optical system 10A, and when a foreign substance is present on the right half of the surface of the sample 1, the scattered light R is detected by the right detection optical system 10B. Thus, the presence of foreign matter on the surface of the sample 1 is detected.
[0006]
[Problems to be solved by the invention]
By the way, in the light scattering type foreign matter inspection apparatus as shown in FIG. 2, the resolution (range represented by one signal) of the foreign matter signal on the sample 1 is generally as shown in FIG. This is determined by the signal capturing interval Ty or position resolution in the Y direction of the laser beam L to be scanned and the scanning interval Sx in the X direction of the laser beam L.
[0007]
Then, when counting a signal (caused by scattered light) obtained from a unit range (indicated by reference numeral 21 in FIG. 4) determined by the signal capturing interval Ty and the laser beam scanning interval Sx, one foreign object 22 is counted. The number of signals obtained from is generally plural. In order to obtain the size of the foreign matter 22 from a plurality of signals obtained from such a single foreign matter 22, the following is performed.
[0008]
That is, first, based on the distances between the individual signal generation points, signals within a certain range of each other are considered to be signals from the same foreign substance 22, and these are grouped. Next, among those groups, the one having the highest signal intensity is set as the representative value of the scattered light of the group. Then, this representative value is substituted into a calibration curve for obtaining the foreign substance diameter based on the intensity of the signal output from the photodetector 13 (hereinafter simply referred to as a calibration curve based on the signal intensity), and the size of the foreign substance 22 in the group. (Foreign material diameter) can be obtained. On the other hand, the number of signals in said group, a calibration curve for determining the foreign substance diameter based on the number of signals output from the photodetector 13 (hereinafter, referred to as a calibration curve by the number of signals) by substituting the, of the group of the foreign matter 22 The size (foreign material diameter) can also be obtained.
[0009]
It is assumed that the calibration curve based on the signal intensity is as shown in FIG. In this figure, A is a calibration curve based on signal intensity, and the horizontal axis represents the dynamic range of signal intensity in the signal processing circuit, and is in the range of 0-100. The vertical axis represents the foreign substance diameter, and D p1 and D p2 are the minimum diameter and the maximum diameter, respectively.
[0010]
By the way, as the semiconductor circuit becomes higher in LSI, the finer and higher density of the pattern is required, and the foreign matter to be detected by the foreign matter inspection apparatus is becoming smaller. To cope with this, the foreign matter detection sensitivity As the sensitivity increases, the dynamic range of the system that processes signals based on scattered light moves to the weak signal side, that is, the small diameter side of the foreign matter, and the calibration curve A shown in FIG. When the signal intensity exceeds 100, the signal processing system is saturated, and the diameter larger than D p2 is indefinite . For this reason, the size of a larger foreign object cannot be determined.
[0011]
However, in reality, there is a high possibility that there is a large foreign object that exceeds the detection limit (D p2 in FIG. 5 above), and generally, the presence of a larger foreign object becomes a problem.
[0012]
The present invention has been made in consideration of the above-mentioned matters, and the object thereof is a foreign matter in a foreign matter inspection apparatus capable of accurately determining the foreign matter diameter in a wide foreign matter diameter range regardless of the dynamic range of the signal processing system. It is to provide a diameter determining method (hereinafter simply referred to as a foreign substance diameter determining method) and a foreign substance inspection apparatus .
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the foreign matter diameter determining method according to the present invention irradiates the surface of the substrate to be inspected while scanning the laser beam, and injects the scattered light from the foreign matter from the surface of the substrate to be inspected at that time. by, a photodetector for detecting foreign matter on the surface of the inspection target board, the foreign substance diameter determination method in the signal processing system and in which the particle inspection apparatus comprising a to process captures a signal output from the optical detector A calibration curve for obtaining a foreign substance diameter based on the signal intensity output from the photodetector, and a signal output from the photodetector and having a generation point within a predetermined range as a signal from one foreign substance. as is, the is a calibration curve for determining the foreign substance diameter based on the number of signals in a predetermined range, within the dynamic range regarding the signal strength of the signal processing system Information, wherein the larger of the foreign substance diameter respectively obtained by both calibration curves determined in foreign substance diameter, also, to the extent that exceeds the dynamic range comprises a dynamic range spread than the dynamic range larger diameter The diameter obtained by the calibration curve for obtaining the foreign substance diameter based on the number of signals obtained by the signal processing system is determined as the foreign substance diameter.
Further, the foreign matter inspection apparatus according to the present invention irradiates the surface of the inspection target substrate while scanning with laser light, and causes the scattered light caused by the foreign matter from the surface of the inspection target substrate to enter the inspection target substrate. In a foreign substance inspection apparatus comprising a photodetector for detecting foreign substances on the surface of a substrate and a signal processing system for taking in and processing signals output from the photodetectors, in order to determine the foreign substance diameter based on the signal intensity When the scattered light signal obtained from the calibration curve, the signal capture interval in the scanning direction of the laser beam and the unit range determined by the scanning interval in the moving direction of the inspection target substrate of the laser beam is 1, it is obtained from one foreign matter. And a calibration curve for determining the foreign substance diameter based on the number of scattered light signals, and within the dynamic range of the signal processing system related to signal intensity. In this case, the larger of the foreign substance diameters obtained by the both calibration curves is determined as the foreign substance diameter, and in the range exceeding the dynamic range, a dynamic range that extends to the larger diameter side than the dynamic range is provided. And a means for determining the diameter obtained by the calibration curve for obtaining the foreign substance diameter based on the number of signals from the signal processing system as the foreign substance diameter.
[0014]
According to the foreign substance diameter determination method and particle inspection apparatus, well within the range of the dynamic range of the signal processing system related to the signal strength, can also be accurately determined for foreign substance diameter in the range of greater than this, the foreign substance diameter, its It can be accurately determined over a wide range of foreign matter diameters from very small to quite large.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an example of a calibration curve used in the foreign substance diameter determination method and apparatus of the present invention. A calibration curve A based on signal intensity and a calibration curve B based on the number of signals are placed on the same axis based on the foreign substance diameter. Represents. These two calibration curves A and B have the following relationship. That is, the calibration curve A based on the signal intensity is set so that the evaluation diameters of the calibration curve B based on the number of scattered light signals from the same foreign substance substantially coincide with each other at the foreign substance diameter Dp2 corresponding to the level at which the signal is saturated in the signal processing circuit. Is done. In other words, the calibration curve A, B, the code I calibration curve in the saturation level indicated by M A and the calibration curve B has a relationship as to substantially coincide in FIG.
[0016]
The dynamic range of the calibration curve B based on the number of signals is greatly expanded toward the large diameter side compared to the dynamic range of the calibration curve A based on the signal intensity. That is, the dynamic range of the calibration curve B based on the number of signals is from the number of signals 0 to the number of signals limited by the storage capacity assigned by the arithmetic processing unit (not shown) for calculating the foreign substance diameter, It can be said that the degree of freedom is higher than the dynamic range of the circuit (which is often determined by a signal amplifier or an AD converter circuit), and there is no practical limit.
[0017]
And in this invention, when determining the magnitude | size of a foreign material, it is as follows. That is, in the range where the calibration curve A based on the signal intensity is effective, that is , within the dynamic range where the calibration curve A based on the signal intensity is not saturated, the foreign substance diameters Da, obtained by the two calibration curves A and B, respectively. Db is compared, and the larger one is always the representative diameter of the foreign material. In this way, the foreign matter diameter is always determined to be larger than the actual size, and is always evaluated on the safe side. In the example shown in FIG. 1, the foreign substance diameter Db obtained by the calibration curve B based on the number of signals is always adopted as the representative diameter.
[0018]
Further, in the range where the calibration curve A based on the signal intensity does not make sense, that is, on the large diameter side exceeding the dynamic range of the signal processing system related to the signal intensity, the calibration curve based on the signal intensity is denoted by the symbol A in FIG. As indicated by ', the calibration curve B based on the number of signals is made constant so that the calibration curve A' based on signal intensity always becomes large. That is, in the range where the calibration curve A based on the signal intensity is saturated, the foreign substance diameter Db obtained by the calibration curve B based on the number of signals is always adopted as the representative diameter.
[0019]
In the two calibration curves A and B in FIG. 1, the foreign substance diameter Db obtained by the calibration curve B based on the number of signals is obtained by the calibration curve A based on the signal strength in a range where the calibration curve A based on the signal strength is effective. Although it is made larger than the foreign substance diameter Da, it is needless to say that there are various relationships between these two calibration curves A and B as shown in FIGS. 3 (A) and 3 (B).
[0020]
【The invention's effect】
According to the foreign matter diameter determining method and foreign matter inspection device of the present invention, the calibration curve based on the signal intensity is effective, that is, within the range of the dynamic range of the signal processing system , that is, the range beyond this, that is, the large diameter side. Also, the foreign substance diameter can be accurately determined. Therefore, it is possible to accurately determine the diameter of a foreign substance over a wide range of foreign substance diameters as compared to the conventional case, so that foreign substance management can be performed more efficiently and accurately in various processes that require foreign substance management such as LSI manufacturing processes. Can do.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an example of a calibration curve used in a foreign matter diameter determination method in a foreign matter inspection apparatus of the present invention.
FIG. 2 is a diagram schematically showing a configuration of an optical system of a foreign matter inspection apparatus to which the present invention is applied.
FIG. 3 is a diagram schematically showing another example of a calibration curve used in the foreign matter diameter determining method in the foreign matter inspection apparatus of the present invention.
FIG. 4 is a diagram for explaining resolution in a two-dimensional direction of a foreign substance signal.
FIG. 5 is a diagram for explaining a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inspection board | substrate, 13 ... Photodetector, L ... Laser beam, R ... Scattered light, A ... Calibration curve by signal intensity, B ... Calibration curve by the number of signals.

Claims (2)

検査対象基板の表面に対してレーザ光を走査しながら照射し、そのときの検査対象基板の表面からの異物による散乱光を入射させることにより、検査対象基板の表面における異物を検知する光検出器と、この光検出器から出力される信号を取り込んで処理する信号処理系とを備えている異物検査装置における異物径決定方法において、
前記光検出器から出力される信号強度に基づいて異物径を求めるための検量線と、前記光検出器から出力され、発生地点が所定の範囲内である信号を一つの異物からの信号であるとして、前記所定範囲内における信号の数に基づいて異物径を求めるための検量線とを備えており、前記信号処理系の信号強度に関するダイナミックレンジの範囲においては、前記両検量線によってそれぞれ得られる異物径のうち大きい方を異物径に決定し、また、前記ダイナミックレンジを超えた範囲においては、前記ダイナミックレンジより大径側に広がったダイナミックレンジを備えた信号処理系による信号の数に基づいて異物径を求めるための検量線によって得られる径を異物径に決定することを特徴とする異物検査装置における異物径決定方法。
Photodetector that detects foreign matter on the surface of the inspection target substrate by irradiating the surface of the inspection target substrate while scanning with laser light and making the scattered light from the foreign matter from the surface of the inspection target substrate enter at that time And a foreign substance diameter determination method in a foreign substance inspection apparatus comprising a signal processing system that takes in and processes a signal output from the photodetector,
A calibration curve for obtaining a foreign substance diameter based on the signal intensity output from the photodetector, and a signal output from the photodetector and having a generation point within a predetermined range are signals from one foreign substance. as, on the basis of the number of signals within a predetermined range and a calibration curve for determining the foreign substance diameter, within the scope of the dynamic range is about the signal strength of the signal processing system, respectively, by the two calibration curves obtained The larger foreign substance diameter is determined as the foreign substance diameter, and in the range exceeding the dynamic range , based on the number of signals by the signal processing system having a dynamic range wider than the dynamic range. A foreign matter diameter determining method in a foreign matter inspection apparatus, wherein the diameter obtained by a calibration curve for determining the foreign matter diameter is determined as the foreign matter diameter.
検査対象基板の表面に対してレーザ光を走査しながら照射し、そのときの検査対象基板の表面からの異物による散乱光を入射させることにより、検査対象基板の表面における異物を検知する光検出器と、この光検出器から出力される信号を取り込んで処理する信号処理系とを備えている異物検査装置において、Photodetector that detects foreign matter on the surface of the inspection target substrate by irradiating the surface of the inspection target substrate while scanning with laser light and making the scattered light from the foreign matter from the surface of the inspection target substrate enter at that time And a foreign matter inspection apparatus comprising a signal processing system that captures and processes a signal output from the photodetector,
信号強度に基づいて異物径を求めるための検量線と、前記レーザ光の走査方向における信号取り込み間隔とレーザ光の検査対象基板移動方向における走査間隔によって決まる単位の範囲から得られる散乱光信号を1とするとき、一つの異物から得られる散乱光信号の数に基づいて異物径を求めるための検量線とが備えられており、信号強度に関する信号処理系のダイナミックレンジの範囲内においては、前記両検量線によってそれぞれ得られる異物径のうち大きい方を異物径に決定し、また、前記ダイナミックレンジを超えた範囲においては、前記ダイナミックレンジより大径側に広がったダイナミックレンジを備えた信号処理系による信号の数に基づいて異物径を求めるための検量線によって得られる径を異物径に決定する手段を備えていることを特徴とする異物検査装置。A calibration curve for obtaining a foreign substance diameter based on the signal intensity, a scattered light signal obtained from a unit range determined by a signal capturing interval in the scanning direction of the laser beam and a scanning interval in the moving direction of the inspection target substrate of the laser beam is 1 A calibration curve for determining the diameter of the foreign matter based on the number of scattered light signals obtained from one foreign matter, and within the range of the dynamic range of the signal processing system relating to the signal intensity, The larger of the foreign substance diameters obtained by the calibration curve is determined as the foreign substance diameter, and in the range exceeding the dynamic range, a signal processing system having a dynamic range that extends to the larger diameter side than the dynamic range is used. Means for determining the diameter obtained by a calibration curve for determining the diameter of a foreign substance based on the number of signals as the foreign substance diameter; Particle inspection apparatus characterized by.
JP25889798A 1998-09-11 1998-09-11 Foreign matter diameter determination method and foreign matter inspection device in foreign matter inspection device Expired - Lifetime JP4001681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25889798A JP4001681B2 (en) 1998-09-11 1998-09-11 Foreign matter diameter determination method and foreign matter inspection device in foreign matter inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25889798A JP4001681B2 (en) 1998-09-11 1998-09-11 Foreign matter diameter determination method and foreign matter inspection device in foreign matter inspection device

Publications (2)

Publication Number Publication Date
JP2000088535A JP2000088535A (en) 2000-03-31
JP4001681B2 true JP4001681B2 (en) 2007-10-31

Family

ID=17326560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25889798A Expired - Lifetime JP4001681B2 (en) 1998-09-11 1998-09-11 Foreign matter diameter determination method and foreign matter inspection device in foreign matter inspection device

Country Status (1)

Country Link
JP (1) JP4001681B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281375A (en) 2007-05-09 2008-11-20 Hitachi High-Technologies Corp Apparatus for inspecting foreign matter, and circuit for detecting the same
JP5353564B2 (en) * 2009-08-31 2013-11-27 凸版印刷株式会社 Determination condition setting method and defect inspection apparatus

Also Published As

Publication number Publication date
JP2000088535A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
US5270794A (en) Fine structure evaluation apparatus and method
KR100522209B1 (en) Method of and apparatus for automatic high-speed optical inspection of semiconductor structures and the like through fluorescent photoresist inspection
JP2008199033A (en) Foreign matter inspecting method and foreign matter inspecting apparatus
JP3087384B2 (en) Foreign matter inspection device
JP4001681B2 (en) Foreign matter diameter determination method and foreign matter inspection device in foreign matter inspection device
JP2003017536A (en) Pattern inspection method and inspection apparatus
JPH0416707A (en) Pattern recognizing method by electron beam
JPH0534128A (en) Detecting apparatus of extraneous substance
JP3142991B2 (en) Laser scanning device and image forming method
JPH06258237A (en) Defect inspection device
JP3446754B2 (en) Micro foreign matter detection method and its detection device
JP3796101B2 (en) Foreign object inspection apparatus and method
JPH07119702B2 (en) Defect inspection device and defect inspection method
JPH05129399A (en) Surface attached particle detection device
JP2968106B2 (en) Via hole inspection equipment
JP3336392B2 (en) Foreign matter inspection apparatus and method
US5796475A (en) Signal process method and apparatus for defect inspection
JPH07159333A (en) Apparatus and method for inspection of appearance
JP2970235B2 (en) Surface condition inspection device
JP2006125967A (en) Inspection device, inspection method, and manufacturing method of pattern substrate
JP2004347434A (en) Microdefect inspection apparatus and method for manufacturing circuit board
JP2830915B2 (en) Particle size distribution measuring device
JP3101773B2 (en) Wafer foreign matter inspection device
JPH03124041A (en) Dimensional check
JPH09219600A (en) Preparing method of data on inspection region

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term