JP3796101B2 - Foreign object inspection apparatus and method - Google Patents

Foreign object inspection apparatus and method Download PDF

Info

Publication number
JP3796101B2
JP3796101B2 JP2000199446A JP2000199446A JP3796101B2 JP 3796101 B2 JP3796101 B2 JP 3796101B2 JP 2000199446 A JP2000199446 A JP 2000199446A JP 2000199446 A JP2000199446 A JP 2000199446A JP 3796101 B2 JP3796101 B2 JP 3796101B2
Authority
JP
Japan
Prior art keywords
foreign matter
foreign
pixels
data
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000199446A
Other languages
Japanese (ja)
Other versions
JP2002014055A (en
Inventor
茂 阿部
裕之 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2000199446A priority Critical patent/JP3796101B2/en
Publication of JP2002014055A publication Critical patent/JP2002014055A/en
Application granted granted Critical
Publication of JP3796101B2 publication Critical patent/JP3796101B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、異物検査装置および方法、特に、被検査面上の微小異物や凹凸傷やスクラッチなどの欠陥を高感度で検出する異物検査装置および方法に関し、例えば、半導体ウェハ(以下、ウェハという)、マスク、レチクル、ガラス基板などの表面に付着した異物や凹凸傷やスクラッチなどの欠陥を検出して、その異物や欠陥のサイズ(粒径)、形状などを検査する異物検査装置および方法に関するものである。
【0002】
【従来の技術】
半導体集積回路(例えば、IC)などの製造過程において、ウェハの表面、あるいは半導体領域、絶縁領域、電極、配線などを形成する各種パターンに異物が付着すると、ICの性能が劣化するため、パターン形成後に異物検査装置によってウェハ表面の異物有無の検査がなされる。
【0003】
ところで、ICを高歩留りで製造するためには、ウェハ表面に付着した異物を検出して、その異物のサイズ(粒径)、形状などを検査し、各種半導体製造装置や工程の清浄度を定量的に把握し、製造プロセスを的確に管理する必要がある。従来、異物のサイズ、形状などを検査する異物検査装置として、例えば、特開平11−51622号公報に示された装置がある。
【0004】
上記の従来知られた異物検査装置は、ウェハ表面にレーザ光を斜方照射し、該ウェハ表面の付着異物の凹凸による散乱光を検出し、該散乱光の検出データに基づきウェハ上のパターンの同一性を判定して、該パターン以外を異物として検出する。次に、異物を検出した部分を撮像装置により撮像し、該撮像装置による画像データから異物画像を抽出し、該抽出異物画像に基づき異物のサイズ、形状を測定する。しかしながら、上記の異物検査装置においては、異物検査後に、異物部分を撮像装置により撮像し、該撮像装置の画像データから抽出した抽出異物画像に基づいて異物のサイズ、形状を測定するため、撮像装置の動作時間分、ウェハの異物有無の検査を行うことができなくなることから、スループットが低下してしまう。
【0005】
【発明が解決しようとする課題】
本発明は、上記の点に鑑みて為されたものであり、被検査物表面の異物検査にあたって異物のサイズ(粒径)を判定もしくは推定できる異物検査装置および方法を提供することを目的とする。また、被検査物表面の異物検査にあたって異物の形状を判定もしくは推定できる異物検査装置および方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に係る異物検査装置は、被検査物表面の状態を光学的に検出し、複数画素からなる検出データを出力する検出手段と、前記検出データに基づき前記被検査物表面の異物を判定し、異物抽出データを出力する異物判定手段と、前記異物抽出データを所定画素数からなる単位領域毎にグループ分けし、各グループ毎に該グループ内の異物とみなされる画素数を計数する演算手段と、前記演算手段で求めた各グループ毎の異物画素数に基づき、当該グループに対応する単位領域における異物のサイズを推定する判定処理を行う判定手段とを具えることを特徴とする。これによれば、1つの単位領域内に存在する異物を1つの異物とみなしてそのサイズを推定することができるので、パターン認識などの複雑な処理を行うことなく、極めて簡単な構成で異物のサイズ(粒径)を判定もしくは推定できる。
【0007】
本発明は、上記のような装置の発明として構成することができるのみならず、方法の発明として構成することができる。すなわち、本発明に係る異物検査方法は、被検査物表面の状態を光学的に検出し、複数画素からなる検出データを出力する工程と、前記検出データに基づき前記被検査物表面の異物を判定し、異物抽出データを出力する工程と、前記異物抽出データを所定画素数からなる単位領域毎にグループ分けし、各グループ毎に該グループ内の異物とみなされる画素数を計数する工程と、前記各グループ毎の異物画素数に基づき、当該グループに対応する単位領域における異物のサイズを推定する判定処理を行う工程とを含むことを特徴とする。このような構成の異物検査方法においても、1つの単位領域内に存在する異物を1つの異物とみなしてそのサイズを推定することができるので、パターン認識などの複雑な処理を行うことなく、異物のサイズ(粒径)を判定もしくは推定できる。
【0008】
また、本発明に係る異物検査装置は、被検査物表面の状態を光学的に検出し、複数画素からなる検出データを出力する検出手段と、前記検出データに基づき前記被検査物表面の異物を判定し、異物抽出データを出力する異物判定手段と、前記異物抽出データを所定画素数からなる単位領域毎にグループ分けし、各グループ毎に該グループ内の異物とみなされる画素数を計数する演算手段と、前記各グループ毎の前記異物抽出データの前記各単位領域における各画素毎の異物検出レベルの和を算出する手段と、前記異物検出レベルデータの和と前記異物画素数の相関性に基づき、当該グループに対応する単位領域における異物の形状を推定する判定手段とを具えることを特徴とする。これによれば、1つの単位領域内に存在する異物を1つの異物とみなしてその形状を推定することができるので、パターン認識などの複雑な処理を行うことなく、極めて簡単な構成で異物の形状を判定もしくは推定できる。
【0009】
本発明は、上記のような装置の発明として構成することができるのみならず、方法の発明として構成することができる。すなわち、本発明に係る異物検査方法は、被検査物表面の状態を光学的に検出し、複数画素からなる検出データを出力する工程と、前記検出データに基づき前記被検査物表面の異物を判定し、異物抽出データを出力する工程と、前記異物抽出データを所定画素数からなる単位領域毎にグループ分けし、各グループ毎に該グループ内の異物とみなされる画素数を計数する工程と、前記各グループ毎の前記異物抽出データの前記各単位領域における各画素毎の異物検出レベルの和を算出する工程と、前記異物検出レベルデータの和と前記異物画素数の相関性に基づき、当該グループに対応する単位領域における異物の形状を推定する工程とを含むことを特徴とする。このような構成の異物検査方法においても、1つの単位領域内に存在する異物を1つの異物とみなしてその形状を推定することができるので、パターン認識などの複雑な処理を行うことなく、異物の形状を判定もしくは推定できる。
【0010】
【発明の実施の形態】
以下、添付図面に従って本発明に係る異物検査装置および方法を説明する。
図1において、異物検査装置Aは、ウェハ1を載置するXY移動機構2と、光ビーム照射手段3と、駆動制御手段4と、受光光学系5と、散乱光検出センサ6と、異物判定部7と、グルーピング処理部8と、メモリ9と、CPU10とを有する。ウェハ1は、図1(a)に示すように、回路パターンを形成したICチップ1aを表面に多数有するパターン付ウェハであり、XY移動機構2のXYテーブル2a上に固定されている。ウェハ1の表面には所定の低角度で光ビーム照射手段3(例えばレーザ光照射手段)からスポット状のレーザ光Lが斜方照射される。XY移動機構2は、XYテーブル2aが駆動制御手段4によりX方向およびY方向に移動されることによって、レーザ光Lに対しICチップ1a領域全域を走査させる。ウェハ1の表面にレーザ光Lが斜方照射されると、該ウェハ1表面の図示しない付着異物および回路パターンから暗視野下の散乱光が発生する。詳しくは、ウェハ1表面の平滑面に付着異物や回路パターンがあると、その付着異物や回路パターンの凹凸によってレーザ光Lが乱反射して散乱する。付着異物や回路パターンで乱反射した散乱光は受光光学系5の図示しない集光レンズによって散乱光検出センサ6に集光される。
【0011】
散乱光検出センサ6は、レーザ光Lの走査方向(図示の例ではY方向)にライン状に配列した多数の各画素(固体撮像光電変換素子)を有し、該各画素が受光光学系5を介して散乱光を受光し、所定の複数画素(例えば8画素)からなるデジタルの検出データD1を異物判定部7に出力する。異物判定部7では、散乱光検出センサ6からの検出データD1に基づいてウェハ1上の異物を判定し、異物抽出データD2をグルーピング処理部8に画素毎に出力する。すなわち、散乱光検出センサ6の各画素からの検出データD1と、先に取り込んだ隣のICチップ1aの同一位置でのチップデータとを照合し、不一致の場合に該検出データを異物抽出データD2としてグルーピング処理部8に画素毎に出力する。すなわち、回路パターンは隣合うチップで同一のため、検出データD1の不一致部分が異物に相当し、回路パターンを排除した異物のみを示す異物抽出データD2を得る。例えば、異物抽出データにおいて、異物とみなされない画素のレベルは“0”であり、異物とみなされる画素はその散乱光の検出レベルに応じたレベルを得る。グルーピング処理部8では、検出画素計数部8bによって異物判定部7からの異物抽出データD2を所定画素数(例えば8×8画素)からなる単位領域毎にグループ分けし(図1(c)参照)、各グループ毎に該グループ内の検出画素数N(図示の例では黒塗り部分の都合6画素)を1個の異物Pの面積とみなして計数する。レベル最大値検出部8aでは、各グループ毎の異物抽出データD2の各画素毎の異物検出レベル(輝度レベル)を比較し、異物検出レベルの最大値Mを検出することで、その最大値Mを1個の異物Pの輝度情報としてみなす。図1(c)の例では、異物Pとみなされる6個の各画素のレベルが3,1,5,8,4,2であり、座標(4,4)のレベル“8”が最大値Mである。グルーピング処理部8は、上記の最大値検出処理および検出画素計数処理を実行するために構成された所要のハードウェア回路からなっており、これらの処理をリアルタイムに実行し、その最大値M(図1(c)の例では“8”)と検出画素数N(図1(c)の例では“6”)をメモリ9に格納する。CPU10は、グルーピング処理部8で求めた各グループ毎の検出画素数Nに基づき、当該グループに対応する単位領域における異物Pのサイズを推定する判定処理を行う。すなわち、CPU10では、メモリ9から検出画素数Nを取り込み、下記の(1)式で異物Pの面積Sを求め、(2)式に示すように異物Pを1つの円とみなして、その半径rを求める。なお、uは1画素に相当する面積である。
u(1画素の面積)×N(検出画素数)=S…(1)
S=u×N≒πr2 …(2)
∴r=√〔(u×N)/π〕
を算出する。例えば、u=4平方ミクロンとすると、図1(c)の場合、N=6であるから、上記の(2)式よりr=2.8ミクロンを算出する。このようにCPU10により推定された判定処理結果は例えば異物マップやヒストグラムなどの表示方法により図示しない表示手段(例えばディスプレイユニットやプリンタなど)に表示することができる。更に、必要に応じて、その算出結果と検査条件(レーザ光Lのパワー、ND(Neutral Density )フィルタ、偏光板)および予め粒径がわかっている不図示のPLS標準粒子(校正用標準粒子)の結果とを用いて、ウェハ1上に存在する異物Pの実際の粒径を求める。詳しくは、粒径を異にする多種類のPLS標準粒子について、レーザ光Lのパワー、NDフィルタおよび偏光板などの条件を変えて反射強度を測定したデータを記憶させておき、実際の異物検査で得られた算出結果と比較して、異物Pの実際の粒径を求める。なお、NDフィルタおよび偏光板は、例えば受光光学系5に設けられる。NDフィルタは、散乱光の透過率を適宜調整して散乱光検出センサ6で受光する散乱光を適度に減衰させることにより該散乱光検出センサ6の飽和を防止する。偏光板は、散乱光に含まれる所定の偏向成分(例えばS偏向成分)をカットし、他の偏向成分(例えばP偏向成分)を散乱光検出センサ6で受光できるようにするために使用される。
【0012】
図2に本発明に係る異物検査装置および方法の他の実施例を示す。なお、前述した異物検査装置と共通する部分には同じ符号を付して、その説明を省略する。本実施例の異物検査装置Aは、図2(a)に示すように、グルーピング処理部8において、レベル最大値検出部8aに代えて、異物レベル算出部8cが設けてある。異物レベル算出部8cでは、各グループ毎の異物抽出データD2の各画素毎の異物検出レベルの総和ΣQを求める。図1(c)の例では、異物Pとみなされる6個の各画素の異物検出レベルが3,1,5,8,4,2であり、それらの異物検出レベルの和“23”が総和ΣQである。グルーピング処理部8は、上記の異物レベル算出処理および検出画素計数処理を実行するために構成された所要のハードウェア回路からなっており、これらの処理をリアルタイムに実行し、その総和ΣQ(図1(c)例では“23”)と検出画素数N(図1(c)の例では“6”)をメモリ9に格納する。CPU10では、グルーピング処理部8で求めた各グループ毎の異物検出レベルの総和ΣQと検出画素数Nの相関性に基づき、当該グループに対応する単位領域における異物Pの形状を推定する判定処理を行う。散乱光測定方式の場合、画素単位の異物の凹凸が大きいほど検出レベルが大きく、異物が平坦なものほど検出レベルが小さい。このような画素単位の異物検出レベルの大小傾向から全体的な異物の形状(塊状であるか、又は平坦状であるか)をある程度類推することができる。また、複数画素からなる単位領域内における画素単位の異物の集まり具合や分散具合もしくは隣接した画素単位の異物同士の凹凸関係もしくは平坦さなどに応じて、該単位領域内の異物検出レベルの合計レベルがその異物画素数に対して相関性をもってくる。CPU10は、上記の散乱光測定方式における異物検出レベルの合計レベルと異物画素数の相関性に基づいて異物の形状を設定した異物形状判定テーブル10a(図2(b)参照)を用いて異物Pの形状を判定する。すなわち、CPU10は、メモリ9から異物検出レベルデータの総和ΣQと検出画素数Nを取り込み、異物形状判定テーブル10aの所定の検出画素数Nに対応する異物検出レベルの総和ΣQが所定のしきい値Rよりも小さい場合に平坦状異物と判定し、その異物検出レベルの総和ΣQが該しきい値Rよりも大きい場合には塊状異物と判定する。このようにCPU10により推定された判定処理結果は例えば異物マップやヒストグラムなどの表示方法により図示しない表示手段(例えばディスプレイユニットやプリンタなど)に表示することができる。なお、異物形状判定テーブル10aの特性はこれに限らない。また、異物レベル算出部8cでは、異物検出レベルの総和を求めたが、これに限らず、異物検出レベルの平均値を求めてもよい。その場合、異物形状判定テーブルを設けることなく、異物検出レベルの平均値とメモリから得る異物検出レベルとを単に比較するだけで異物の形状を推定もしくは判定することが可能となる。
【0013】
上述の各実施例に示した異物検査装置Aは、異物判定部7において、散乱光検出センサ6の検出データD1と比較されるチップデータに代えて、ICチップの設計パターンデータや標準パターンデータを用いてもよい。また、散乱光検出センサ6としては、ラインセンサに代えて、エリアセンサまたは撮像管などを用いてもよい。また、上述の実施例ではパターン付ウェハについて記述したが、パターンなしであってもよい。
【0014】
【発明の効果】
以上のとおり、本発明によれば、1つの単位領域内に存在する異物を1つの異物とみなしてそのサイズを推定することができるので、パターン認識などの複雑な処理を行うことなく、極めて簡単な構成で異物のサイズ(粒径)を判定もしくは推定できるという優れた効果を奏する。また、1つの単位領域内に存在する異物を1つの異物とみなしてその形状を推定することができるので、パターン認識などの複雑な処理を行うことなく、極めて簡単な構成で異物の形状を判定もしくは推定できるという優れた効果を奏する。
【図面の簡単な説明】
【図1】 本発明に係る異物検査装置の一実施例を示し、(a)は本例の異物検査装置の概要構成を示す概略図、(b)は同装置のデータ処理部のブロック図、(c)はデータ処理部での異物判定データの一例を示す図。
【図2】 本発明に係る異物検査装置の他の実施例を示し、(a)は本例の異物検査装置のデータ処理部のブロック図、(b)は異物形状判定テーブルの一例を示す図。
【符号の説明】
A 異物検査装置
1 ウェハ
3 光ビーム照射手段
6 散乱光検出センサ
7 異物判定部
8 グルーピング処理部
8a レベル最大値検出部
8b 検出画素計数部
8c 異物レベル算出部
9 メモリ
10 CPU
10a 異物形状判定テーブル
[0001]
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foreign substance inspection apparatus and method, and more particularly to a foreign substance inspection apparatus and method for detecting a minute foreign substance on a surface to be inspected and defects such as uneven scratches and scratches with high sensitivity, for example, a semiconductor wafer (hereinafter referred to as a wafer). Concerning foreign substance inspection apparatus and method for detecting foreign matter adhering to the surface of masks, reticles, glass substrates, etc., defects such as uneven scratches and scratches, and inspecting the size (particle size), shape, etc. of the foreign matter and defects It is.
[0002]
[Prior art]
In the manufacturing process of semiconductor integrated circuits (for example, ICs), if foreign matter adheres to the wafer surface or various patterns that form semiconductor regions, insulating regions, electrodes, wiring, etc., IC performance deteriorates, so pattern formation Later, the foreign matter inspection apparatus inspects the presence or absence of foreign matter on the wafer surface.
[0003]
By the way, in order to manufacture ICs with a high yield, foreign matter adhering to the wafer surface is detected, the size (particle size) and shape of the foreign matter are inspected, and the cleanliness of various semiconductor manufacturing equipment and processes is quantified. It is necessary to grasp the situation and manage the manufacturing process properly. Conventionally, as a foreign substance inspection apparatus for inspecting the size and shape of a foreign substance, for example, there is an apparatus disclosed in Japanese Patent Laid-Open No. 11-51622.
[0004]
The conventionally known foreign matter inspection apparatus irradiates laser light obliquely on the wafer surface, detects scattered light due to unevenness of the attached foreign matter on the wafer surface, and detects the pattern on the wafer based on the detection data of the scattered light. The identity is determined, and other than the pattern is detected as a foreign object. Next, a part where a foreign object is detected is imaged by an imaging device, a foreign object image is extracted from image data obtained by the imaging device, and the size and shape of the foreign object are measured based on the extracted foreign object image. However, in the foreign matter inspection apparatus, the foreign matter portion is imaged by the imaging device after the foreign matter inspection, and the size and shape of the foreign matter are measured based on the extracted foreign matter image extracted from the image data of the imaging device. Since the inspection for the presence or absence of foreign matters on the wafer cannot be performed for the operation time, the throughput is lowered.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and an object of the present invention is to provide a foreign substance inspection apparatus and method that can determine or estimate the size (particle size) of a foreign substance in the foreign substance inspection on the surface of an object to be inspected. . It is another object of the present invention to provide a foreign object inspection apparatus and method that can determine or estimate the shape of a foreign object when inspecting the surface of an object to be inspected.
[0006]
[Means for Solving the Problems]
The foreign matter inspection apparatus according to the present invention optically detects the state of the surface of the inspection object and outputs detection data consisting of a plurality of pixels, and determines the foreign matter on the surface of the inspection object based on the detection data. A foreign substance determination means for outputting foreign substance extraction data; a calculation means for grouping the foreign substance extraction data into unit areas each having a predetermined number of pixels and counting the number of pixels regarded as foreign substances in the group for each group; And determining means for performing determination processing for estimating the size of a foreign substance in a unit region corresponding to the group based on the number of foreign substance pixels for each group obtained by the computing means. According to this, since it is possible to estimate the size of a foreign substance existing in one unit area as one foreign substance, it is possible to estimate the size of the foreign substance with a very simple configuration without performing complicated processing such as pattern recognition. The size (particle size) can be determined or estimated.
[0007]
The present invention can be configured not only as a device invention as described above, but also as a method invention. That is, the foreign matter inspection method according to the present invention includes a step of optically detecting the state of the surface of the inspection object and outputting detection data composed of a plurality of pixels, and determining the foreign matter on the surface of the inspection object based on the detection data. A step of outputting foreign matter extraction data; a step of grouping the foreign matter extraction data into unit regions each having a predetermined number of pixels; and a step of counting the number of pixels regarded as foreign matters in the group for each group; And a step of performing a determination process for estimating the size of a foreign substance in a unit region corresponding to the group based on the number of foreign substance pixels for each group. Even in the foreign substance inspection method having such a configuration, since the size of a foreign substance existing in one unit area can be estimated as one foreign substance, and the size of the foreign substance can be estimated without performing complicated processing such as pattern recognition. Can be determined or estimated.
[0008]
The foreign matter inspection apparatus according to the present invention optically detects the state of the surface of the inspection object and outputs detection data consisting of a plurality of pixels, and the foreign matter on the surface of the inspection object based on the detection data. Foreign matter determination means for determining and outputting foreign matter extraction data, and calculation for grouping the foreign matter extraction data into unit areas each having a predetermined number of pixels, and counting the number of pixels regarded as foreign matters in the group for each group A means for calculating a sum of the foreign substance detection levels for each pixel in each unit region of the foreign substance extraction data for each group, and a correlation between the sum of the foreign substance detection level data and the number of foreign substance pixels. And determining means for estimating the shape of the foreign matter in the unit area corresponding to the group. According to this, since it is possible to estimate the shape of a foreign substance existing in one unit area as one foreign substance, it is possible to estimate the foreign substance with a very simple configuration without performing complicated processing such as pattern recognition. The shape can be determined or estimated.
[0009]
The present invention can be configured not only as a device invention as described above, but also as a method invention. That is, the foreign matter inspection method according to the present invention includes a step of optically detecting the state of the surface of the inspection object and outputting detection data composed of a plurality of pixels, and determining the foreign matter on the surface of the inspection object based on the detection data. A step of outputting foreign matter extraction data; a step of grouping the foreign matter extraction data into unit regions each having a predetermined number of pixels; and a step of counting the number of pixels regarded as foreign matters in the group for each group; Based on the step of calculating the sum of the foreign object detection levels for each pixel in each unit region of the foreign object extraction data for each group, and the correlation between the sum of the foreign object detection level data and the number of foreign object pixels, And a step of estimating the shape of the foreign matter in the corresponding unit region. Even in the foreign substance inspection method having such a configuration, since the foreign substance existing in one unit area can be regarded as one foreign substance and the shape thereof can be estimated, the foreign substance can be obtained without performing complicated processing such as pattern recognition. Can be determined or estimated.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a foreign substance inspection apparatus and method according to the present invention will be described with reference to the accompanying drawings.
In FIG. 1, a foreign matter inspection apparatus A includes an XY moving mechanism 2 on which a wafer 1 is placed, a light beam irradiation means 3, a drive control means 4, a light receiving optical system 5, a scattered light detection sensor 6, and a foreign matter determination. Unit 7, grouping processing unit 8, memory 9, and CPU 10. As shown in FIG. 1A, the wafer 1 is a patterned wafer having a large number of IC chips 1 a on which a circuit pattern is formed on the surface, and is fixed on an XY table 2 a of an XY moving mechanism 2. The surface of the wafer 1 is obliquely irradiated with a spot-shaped laser beam L from a light beam irradiation unit 3 (for example, a laser beam irradiation unit) at a predetermined low angle. The XY moving mechanism 2 scans the entire region of the IC chip 1a with respect to the laser light L when the XY table 2a is moved in the X direction and the Y direction by the drive control means 4. When the laser beam L is obliquely irradiated on the surface of the wafer 1, scattered light in the dark field is generated from adhering foreign matter and a circuit pattern (not shown) on the surface of the wafer 1. Specifically, if there is an attached foreign matter or circuit pattern on the smooth surface of the wafer 1, the laser beam L is irregularly reflected and scattered by the unevenness of the attached foreign matter or circuit pattern. The scattered light irregularly reflected by the adhering foreign matter or the circuit pattern is condensed on the scattered light detection sensor 6 by a condensing lens (not shown) of the light receiving optical system 5.
[0011]
The scattered light detection sensor 6 has a large number of pixels (solid-state imaging photoelectric conversion elements) arranged in a line in the scanning direction of the laser light L (the Y direction in the illustrated example). The scattered light is received via, and digital detection data D1 composed of a predetermined plurality of pixels (for example, 8 pixels) is output to the foreign matter determination unit 7. The foreign matter determination unit 7 determines foreign matter on the wafer 1 based on the detection data D1 from the scattered light detection sensor 6, and outputs the foreign matter extraction data D2 to the grouping processing unit 8 for each pixel. That is, the detection data D1 from each pixel of the scattered light detection sensor 6 is collated with the chip data at the same position of the adjacent IC chip 1a previously captured, and when there is a mismatch, the detection data is converted into the foreign matter extraction data D2. To the grouping processing unit 8 for each pixel. That is, since the circuit pattern is the same between adjacent chips, the non-matching portion of the detection data D1 corresponds to the foreign matter, and foreign matter extraction data D2 indicating only the foreign matter from which the circuit pattern is excluded is obtained. For example, in the foreign matter extraction data, the level of a pixel that is not regarded as a foreign matter is “0”, and the pixel that is regarded as a foreign matter obtains a level corresponding to the detection level of the scattered light. In the grouping processing unit 8, the detection pixel counting unit 8b groups the foreign matter extraction data D2 from the foreign matter determination unit 7 into unit areas each having a predetermined number of pixels (for example, 8 × 8 pixels) (see FIG. 1C). For each group, the number of detected pixels N in the group (in the illustrated example, six pixels in black) is counted as the area of one foreign matter P. In the level maximum value detection unit 8a, the foreign matter detection level (luminance level) of each pixel of the foreign matter extraction data D2 for each group is compared, and the maximum value M is detected by detecting the maximum value M of the foreign matter detection level. It is regarded as luminance information of one foreign matter P. In the example of FIG. 1C, the level of each of the six pixels regarded as the foreign matter P is 3, 1, 5, 8, 4, 2, and the level “8” of the coordinates (4, 4) is the maximum value. M. The grouping processing unit 8 includes a required hardware circuit configured to execute the above-described maximum value detection process and detection pixel counting process, and executes these processes in real time, and the maximum value M (see FIG. In the example of 1 (c), “8”) and the number of detected pixels N (“6” in the example of FIG. 1C) are stored in the memory 9. The CPU 10 performs a determination process for estimating the size of the foreign matter P in the unit area corresponding to the group based on the number of detected pixels N for each group obtained by the grouping processing unit 8. That is, the CPU 10 fetches the number of detected pixels N from the memory 9, obtains the area S of the foreign matter P by the following equation (1), regards the foreign matter P as one circle as shown in the following equation (2), and calculates its radius. Find r. Note that u is an area corresponding to one pixel.
u (area of one pixel) × N (number of detected pixels) = S (1)
S = u × N≈πr 2 (2)
∴r = √ [(u × N) / π]
Is calculated. For example, if u = 4 square microns, in the case of FIG. 1 (c), N = 6, so r = 2.8 microns is calculated from the above equation (2). Thus, the determination processing result estimated by the CPU 10 can be displayed on a display unit (not shown) (for example, a display unit or a printer) by a display method such as a foreign matter map or a histogram. Further, if necessary, the calculation results and inspection conditions (power of laser light L, ND (Neutral Density) filter, polarizing plate) and PLS standard particles (not shown) with known particle diameters (calibration standard particles) And the actual particle size of the foreign matter P existing on the wafer 1 is obtained. Specifically, for various types of PLS standard particles with different particle sizes, the data of the reflection intensity measured by changing the power of the laser beam L, the ND filter, the polarizing plate, etc. are stored, and the actual foreign matter inspection is performed. The actual particle size of the foreign matter P is obtained by comparison with the calculation result obtained in step (1). The ND filter and the polarizing plate are provided in the light receiving optical system 5, for example. The ND filter prevents saturation of the scattered light detection sensor 6 by appropriately adjusting the transmittance of the scattered light and appropriately attenuating the scattered light received by the scattered light detection sensor 6. The polarizing plate is used for cutting a predetermined deflection component (for example, S deflection component) included in the scattered light and allowing the scattered light detection sensor 6 to receive another deflection component (for example, P deflection component). .
[0012]
FIG. 2 shows another embodiment of the foreign matter inspection apparatus and method according to the present invention. In addition, the same code | symbol is attached | subjected to the part which is common in the foreign material inspection apparatus mentioned above, and the description is abbreviate | omitted. As shown in FIG. 2A, the foreign matter inspection apparatus A according to the present embodiment includes a foreign matter level calculation unit 8c in the grouping processing unit 8 instead of the level maximum value detection unit 8a. The foreign substance level calculation unit 8c calculates the total ΣQ of the foreign substance detection levels for each pixel of the foreign substance extraction data D2 for each group. In the example of FIG. 1C, the foreign matter detection levels of the six pixels regarded as the foreign matter P are 3, 1, 5, 8, 4 and 2, and the sum “23” of these foreign matter detection levels is the total sum. ΣQ. The grouping processing unit 8 is composed of required hardware circuits configured to execute the above-described foreign matter level calculation processing and detection pixel counting processing, and executes these processing in real time, and the total ΣQ (FIG. 1). (C) “23” in the example) and the number of detected pixels N (“6” in the example of FIG. 1C) are stored in the memory 9. The CPU 10 performs determination processing for estimating the shape of the foreign matter P in the unit region corresponding to the group based on the correlation between the total foreign matter detection level ΣQ for each group obtained by the grouping processing unit 8 and the number N of detected pixels. . In the case of the scattered light measurement method, the detection level increases as the unevenness of the foreign matter in pixel units increases, and the detection level decreases as the foreign matter is flatter. From such a tendency of the level of detection of foreign matter in units of pixels, the overall shape of foreign matter (whether it is a block shape or a flat shape) can be estimated to some extent. Also, the total level of foreign matter detection level in the unit area according to the degree of gathering or dispersion of the foreign matter in pixel units in the unit area consisting of a plurality of pixels or the unevenness or flatness of the foreign matter in adjacent pixel units Has a correlation with the number of foreign pixels. The CPU 10 uses the foreign object shape determination table 10a (see FIG. 2B) in which the shape of the foreign object is set based on the correlation between the total level of the foreign object detection level and the number of foreign object pixels in the scattered light measurement method. Determine the shape. That is, the CPU 10 fetches the total ΣQ of foreign substance detection level data and the number of detected pixels N from the memory 9, and the total ΣQ of foreign substance detection levels corresponding to the predetermined number of detected pixels N of the foreign object shape determination table 10a is a predetermined threshold value. When it is smaller than R, it is determined as a flat foreign material, and when the total ΣQ of the foreign material detection levels is larger than the threshold value R, it is determined as a massive foreign material. Thus, the determination processing result estimated by the CPU 10 can be displayed on a display unit (not shown) (for example, a display unit or a printer) by a display method such as a foreign matter map or a histogram. The characteristics of the foreign object shape determination table 10a are not limited to this. In addition, the foreign substance level calculation unit 8c calculates the total of the foreign substance detection levels. However, the present invention is not limited to this, and an average value of the foreign substance detection levels may be obtained. In this case, it is possible to estimate or determine the shape of the foreign object by simply comparing the average value of the foreign object detection level and the foreign object detection level obtained from the memory without providing a foreign object shape determination table.
[0013]
In the foreign matter inspection apparatus A shown in each of the above-described embodiments, the foreign matter determination unit 7 uses IC chip design pattern data and standard pattern data instead of the chip data to be compared with the detection data D1 of the scattered light detection sensor 6. It may be used. As the scattered light detection sensor 6, an area sensor or an imaging tube may be used instead of the line sensor. In the above-described embodiments, the patterned wafer has been described.
[0014]
【The invention's effect】
As described above, according to the present invention, it is possible to estimate the size of a foreign object existing in one unit area as a single foreign object, and thus it is extremely simple without performing complicated processing such as pattern recognition. With such a configuration, it is possible to determine or estimate the size (particle size) of the foreign matter. In addition, since the shape of a foreign object existing in one unit area can be estimated as a single foreign object, the shape of the foreign object can be estimated without complicated processing such as pattern recognition. Alternatively, it has an excellent effect that it can be estimated.
[Brief description of the drawings]
FIG. 1 shows an embodiment of a foreign substance inspection apparatus according to the present invention, (a) is a schematic diagram showing a schematic configuration of the foreign substance inspection apparatus of this example, (b) is a block diagram of a data processing unit of the apparatus, (C) is a figure which shows an example of the foreign material determination data in a data processing part.
2A and 2B show another embodiment of the foreign matter inspection apparatus according to the present invention, wherein FIG. 2A is a block diagram of a data processing unit of the foreign matter inspection apparatus of the present embodiment, and FIG. 2B is a view showing an example of a foreign matter shape determination table; .
[Explanation of symbols]
A Foreign substance inspection apparatus 1 Wafer 3 Light beam irradiation means 6 Scattered light detection sensor 7 Foreign substance determination part 8 Grouping processing part 8a Level maximum value detection part 8b Detection pixel counting part 8c Foreign substance level calculation part 9 Memory 10 CPU
10a Foreign object shape determination table

Claims (6)

被検査物表面の状態を光学的に検出し、複数画素からなる検出データを出力する検出手段と、
前記検出データに基づき前記被検査物表面の異物を判定し、異物抽出データを出力する異物判定手段と、
前記異物抽出データを所定画素数からなる単位領域毎にグループ分けし、該グループ分けされたグループ毎に、該グループ内に異物が存在する場合には、該異物とみなされる異物画素数を計数する演算手段と、
該演算手段で求めたグループ毎の異物画素数に基づき、当該グループ毎の前記単位領域における異物のサイズを推定する判定処理を行う判定手段とを具える異物検査装置。
Detecting means for optically detecting the state of the surface of the object to be detected and outputting detection data comprising a plurality of pixels;
Foreign matter determination means for determining foreign matter on the surface of the inspection object based on the detection data and outputting foreign matter extraction data;
Grouping the foreign substance extracted data for each unit region composed of a predetermined number of pixels, for each group, which are the grouping, when a foreign object is present within the group, to count the number of foreign matters of pixels that are considered the foreign body Computing means;
A foreign matter inspection apparatus comprising: determination means for performing determination processing for estimating the size of foreign matter in the unit region for each group based on the number of foreign matter pixels for each group obtained by the calculation means.
記グループ毎の前記異物とみなされる画素毎の異物検出レベルに基づき前記各単位領域における代表的異物検出レベルデータを生成する手段を更に具える請求項1に記載の異物検査装置。Foreign substance inspection apparatus according to claim 1 comprising before further means for generating a representative foreign object detection level data in each of the unit area based on the foreign object detection level for each pixel which is regarded as the foreign matter Kigu each loop. 被検査物表面の状態を光学的に検出し、複数画素からなる検出データを出力する検出手段と、
前記検出データに基づき前記被検査物表面の異物を判定し、異物抽出データを出力する異物判定手段と、
前記異物抽出データを所定画素数からなる単位領域毎にグループ分けし、該グループ分けされたグループ毎に、該グループ内に異物が存在する場合には、該異物とみなされる異物画素数を計数し、さらに前記異物とみなされる画素毎の異物検出レベルデータの和を算出する演算手段と、
前記異物検出レベルデータの和と前記異物画素数の相関性に基づき、当該グループ毎の前記単位領域における異物の形状を推定する判定手段とを具える異物検査装置。
Detecting means for optically detecting the state of the surface of the object to be detected and outputting detection data comprising a plurality of pixels;
Foreign matter determination means for determining foreign matter on the surface of the inspection object based on the detection data and outputting foreign matter extraction data;
The foreign matter extracted data grouped into a unit for each region composed of a predetermined number of pixels, for each group, which are the grouping, when a foreign object is present within the group, counted the number of foreign matters of pixels that are considered the foreign body And a calculation means for calculating the sum of the foreign matter detection level data for each pixel regarded as the foreign matter,
A foreign matter inspection apparatus comprising: a determination unit that estimates a shape of a foreign matter in the unit region for each group based on a correlation between the sum of the foreign matter detection level data and the number of foreign matter pixels.
被検査物表面の状態を光学的に検出し、複数画素からなる検出データを出力する工程と、
前記検出データに基づき前記被検査物表面の異物を判定し、異物抽出データを出力する工程と、
前記異物抽出データを所定画素数からなる単位領域毎にグループ分けし、該グループ分けされたグループ毎に、該グループ内に異物が存在する場合には、該異物とみなされる異物画素数を計数する工程と、
記グループ毎の異物画素数に基づき、当該グループ毎の前記単位領域における異物のサイズを推定する判定処理を行う工程とを含む異物検査方法。
A step of optically detecting the state of the surface of the inspected object and outputting detection data comprising a plurality of pixels;
Determining foreign matter on the surface of the object to be inspected based on the detection data, and outputting foreign matter extraction data;
Grouping the foreign substance extracted data for each unit region composed of a predetermined number of pixels, for each group, which are the grouping, when a foreign object is present within the group, to count the number of foreign matters of pixels that are considered the foreign body Process,
Before based on the number of foreign matters of pixels per Kigu loop, particle inspection method comprising the step of performing determination processing for estimating the size of the foreign matter in the unit area for each the group.
前記グループ毎の前記異物とみなされる画素毎の異物検出レベルに基づき前記各単位領域における代表的異物検出レベルデータを生成する工程を更に含む請求項4に記載の異物検査方法。The foreign matter inspection method according to claim 4, further comprising generating representative foreign matter detection level data in each unit region based on a foreign matter detection level for each pixel regarded as the foreign matter for each group. 被検査物表面の状態を光学的に検出し、複数画素からなる検出データを出力する工程と、
前記検出データに基づき前記被検査物表面の異物を判定し、異物抽出データを出力する工程と、
前記異物抽出データを所定画素数からなる単位領域毎にグループ分けし、該グループ分けされたグループ毎に、該グループ内に異物が存在する場合には、該異物とみなされる異物画素数を計数し、さらに前記異物とみなされる画素毎の異物検出レベルデータの和を算出する工程と、
前記異物検出レベルデータの和と前記異物画素数の相関性に基づき、当該グループ毎の 前記単位領域における異物の形状を推定する工程とを含む異物検査方法。
A step of optically detecting the state of the surface of the inspected object and outputting detection data comprising a plurality of pixels;
Determining foreign matter on the surface of the object to be inspected based on the detection data, and outputting foreign matter extraction data;
The foreign matter extracted data grouped into a unit for each region composed of a predetermined number of pixels, for each group, which are the grouping, when a foreign object is present within the group, counted the number of foreign matters of pixels that are considered the foreign body A step of calculating a sum of foreign matter detection level data for each pixel further regarded as the foreign matter;
Wherein the sum of the foreign object detection level data based on the correlation of the number of foreign matters of pixels, particle inspection method comprising the step of estimating the shape of the foreign substance in the unit area for each the group.
JP2000199446A 2000-06-30 2000-06-30 Foreign object inspection apparatus and method Expired - Lifetime JP3796101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000199446A JP3796101B2 (en) 2000-06-30 2000-06-30 Foreign object inspection apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000199446A JP3796101B2 (en) 2000-06-30 2000-06-30 Foreign object inspection apparatus and method

Publications (2)

Publication Number Publication Date
JP2002014055A JP2002014055A (en) 2002-01-18
JP3796101B2 true JP3796101B2 (en) 2006-07-12

Family

ID=18697462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000199446A Expired - Lifetime JP3796101B2 (en) 2000-06-30 2000-06-30 Foreign object inspection apparatus and method

Country Status (1)

Country Link
JP (1) JP3796101B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638226A (en) * 2019-02-14 2020-09-08 深圳中科飞测科技有限公司 Detection method, image processor and detection system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115245A (en) * 2012-12-12 2014-06-26 Tokyo Electron Ltd Defect inspection method for substrate, defect inspection device for substrate, program, and computer storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638226A (en) * 2019-02-14 2020-09-08 深圳中科飞测科技有限公司 Detection method, image processor and detection system
CN111638226B (en) * 2019-02-14 2021-08-31 深圳中科飞测科技股份有限公司 Detection method, image processor and detection system

Also Published As

Publication number Publication date
JP2002014055A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
US7711177B2 (en) Methods and systems for detecting defects on a specimen using a combination of bright field channel data and dark field channel data
US6661912B1 (en) Inspecting method and apparatus for repeated micro-miniature patterns
US20120294507A1 (en) Defect inspection method and device thereof
EP2198279B1 (en) Apparatus and method for detecting semiconductor substrate anomalies
WO2012035852A1 (en) Defect inspection method and device thereof
JP3329805B2 (en) Automatic visual inspection device and visual inspection method
JPWO2010052934A1 (en) Evaluation apparatus and evaluation method
WO2020105319A1 (en) Defect inspection device and defect inspection method
JP3938227B2 (en) Foreign object inspection method and apparatus
US6097428A (en) Method and apparatus for inspecting a semiconductor wafer using a dynamic threshold
JP6424143B2 (en) Inspection methods and templates
JP3431567B2 (en) Defect inspection device and inspection method
US9933370B2 (en) Inspection apparatus
JP3796101B2 (en) Foreign object inspection apparatus and method
JP4594833B2 (en) Defect inspection equipment
JP4052733B2 (en) Foreign matter inspection method for patterned wafer
JP2001281178A (en) Defect detecting method, manufacturing method of semiconductor device, and defect detector
JP4427980B2 (en) Mark position detection method
JP2004151622A (en) Inspecting apparatus of mask defect and method for inspecting mask defect
JP2021025889A (en) Determination method for sensitivity change of tdi(time delay integration) sensor, pattern inspection method, and pattern inspection device
JP2002174602A (en) Method and device for detecting defect of gray tone mask
JP2003057193A (en) Foreign matter checking apparatus
JP2898669B2 (en) Defect inspection equipment
JP3166320B2 (en) Method and apparatus for inspecting foreign matter in resist coating film
KR102124034B1 (en) method of detecting size and feature of micro defect using optical tester

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3796101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

EXPY Cancellation because of completion of term