JP3993658B2 - 電気自動車用バッテリの検査装置、電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法 - Google Patents

電気自動車用バッテリの検査装置、電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法 Download PDF

Info

Publication number
JP3993658B2
JP3993658B2 JP05966797A JP5966797A JP3993658B2 JP 3993658 B2 JP3993658 B2 JP 3993658B2 JP 05966797 A JP05966797 A JP 05966797A JP 5966797 A JP5966797 A JP 5966797A JP 3993658 B2 JP3993658 B2 JP 3993658B2
Authority
JP
Japan
Prior art keywords
battery
voltage
cell
inspection
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05966797A
Other languages
English (en)
Other versions
JPH10253723A (ja
Inventor
伴治 吉澤
和雄 杉崎
正己 張丘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP05966797A priority Critical patent/JP3993658B2/ja
Publication of JPH10253723A publication Critical patent/JPH10253723A/ja
Priority to JP2005315988A priority patent/JP4427503B2/ja
Priority to JP2005317293A priority patent/JP4427504B2/ja
Application granted granted Critical
Publication of JP3993658B2 publication Critical patent/JP3993658B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means

Description

【0001】
【発明の属する技術分野】
本発明は、電気自動車を駆動するための電源として使用される電気自動車用バッテリの検査装置と、電気自動車用バッテリの検査システムと、電気自動車用バッテリの検査方法に関するもので、特に、バッテリボックス内に多数のバッテリセルが直列に接続されて収容されたバッテリ組立体における各バッテリセルの両端電圧を検査する装置、バッテリ組立体の両端電圧を検査する装置、バッテリ組立体を冷却するための冷却系統における冷却用袋の水漏れを検査する装置、これらの検査装置が電気自動車用バッテリの組立ラインにおいて有機的に結合された検査システム、並びに前記検査装置の検査原理を用いて電気自動車用バッテリを検査するための検査方法に関する。
【0002】
【従来の技術】
一般に、電気自動車を駆動するための電源として、多数のバッテリセルを直列に接続して構成されたバッテリ組立体が使用されている。例えば、12Vのバッテリを用いる場合には、所望の電力を得るために9個あるいはそれ以上のバッテリセルを直列に接続して電気自動車に装填する必要があり、このため、所望の数のバッテリセルをバッテリボックスに収容した状態で床下の車体フレーム部材に吊り下げる構造が採用されている(例えば特開昭52−35023号公報参照)。
【0003】
このように、多数のバッテリセルを直列接続することから、接続される多数のバッテリセルのうち、一つでも特性の悪い(例えば電流容量が低い、電圧値が低いなど)があると、電気自動車用バッテリとしての性能及び寿命が当該特性の悪いバッテリセルによって律速されることとなる。つまり、放電時における電流容量や電圧値は、電気自動車用バッテリの性能を決定する上で重要なパラメータである。
【0004】
また、前記電気自動車用バッテリは、多数のバッテリセルがバッテリボックス内に収容されているため、使用に際して、バッテリ組立体の温度が有効な使用温度以上に上昇しやすく、このため、バッテリの性能低下が惹起されると共に、バッテリのサイクル寿命が低下するという問題が指摘されている。更に、充電時にバッテリ温度が相当に高い場合には、充電効率が下がるという問題もある。
【0005】
従って、電気自動車用バッテリを構成する場合においては、バッテリ組立体を効率よく冷却するための冷却系統の組み込みが必須となっている。
【0006】
【発明が解決しようとする課題】
ところで、電気自動車用バッテリの電圧値を計測する方法として、従来では、もっぱら市販のテスターを用いるようにしている。この場合、以下のような問題点がある。
【0007】
(1) 測定結果を確認する方法としてデジタル表示の小さな文字・数字を注意深くみる必要がある。
【0008】
(2) 検査範囲(OK/NG)を作業者の記憶に頼るため、測定ミスが発生する場合がある。
【0009】
(3) 測定に当たり、テスターの棒を直接バッテリに当てるため、作業者が高電圧に触れやすく危険である。
【0010】
(4) 測定結果を作業者が数字データとして別途用意したメモに書いてそのデータを控えておく必要がある。
【0011】
(5) 量産では検査回数が増すため、自動化が必要であるが、市販のテスターでは対応できない。
【0012】
(6) バッテリ組立体では重量が550kgあり、コンベアとインターロックをとってOK品/NG品の自動振分けを自動で行う方が作業効率がよいが、市販品のテスターでは対応できない。
【0013】
このように、従来のバッテリに対する電圧値の検査においては、量産に向けて様々な不具合があるという問題がある。
【0014】
一方、冷却系統としては、例えば、複数のバッテリセルを一冷却単位としたとき、一冷却単位ごとに冷却用を配置し、これら冷却用袋に冷却水を循環させるための導管を配管するという構成が考えられている。この場合、工場出荷前に冷却用袋の水漏れを検出し、もし水漏れがあった場合は、水漏れのない正規の冷却用袋に取り替えるという作業が必須となる。
【0015】
そこで、前記冷却用袋の水漏れ検査が必要になるが、この検査においては、市販のデジタル計(エアリークテスタ)を使用することが考えられる。しかし、この市販のデジタル計では以下のような問題がある。
【0016】
(1) 測定結果を確認する方法としてデジタル表示の小さな文字・数字を注意深くみる必要がある。
【0017】
(2) 検査範囲(OK/NG)を作業者の記憶に頼るため、測定ミスが発生する場合がある。
【0018】
(3) 測定に当たり、市販のエアリークテスタでは検査対象(ワーク)の内容積が温度等によって変化しやすい場合、誤差が大きすぎて正確な判定ができず、ワークに応じて基準値を設定し直さなければならないという煩わしさがある。
【0019】
(4) 測定結果を作業者が数字データとして別途用意したメモに書いてそのデータを控えておく必要がある。
【0020】
(5) 量産では検査回数が増すため、自動化が必要であるが、市販のデジタル計では対応できない。
【0021】
(6) バッテリ組立体では重量が550kgあり、コンベアとインターロックをとってOK品/NG品の自動振分けを自動で行う方が作業効率がよいが、市販品のテスターでは対応できない。
【0022】
このように、前記冷却系統の検査においても、前記電圧値の検査と同様に、量産に向けて様々な不具合があるという問題がある。
【0023】
本発明はこのような課題を考慮してなされたものであり、電気自動車用バッテリの量産組立に対応できる電気自動車用バッテリの検査装置、検査システム及び検査方法を提供することを目的とする。
【0024】
【課題を解決するための手段】
本発明に係る電気自動車用バッテリの検査装置は、バッテリボックス内に多数のバッテリセルが直列に接続されて収容されたバッテリ組立体における各バッテリセルの電圧を検査する電気自動車用バッテリの検査装置において、前記各バッテリセルの正極及び負極が接続される2つの端子を有し、該2つの端子に前記バッテリセルの正極及び負極が接続され、且つ、外部電源が投入されることによって前記バッテリセルの正極と負極間のセル電圧を検出するセル電圧検出手段と、前記セル電圧検出手段への前記外部電源の投入を制御する電源投入制御手段と、前記セル電圧検出手段にて検出された前記セル電圧をデジタル変換して電圧データとして出力するA/D変換器と、前記セル電圧検出手段にて検出された前記セル電圧が所定範囲内にあるかどうかを判別するセル電圧判別手段と、前記セル電圧判別手段での判別結果に応じた制御信号を出力する制御信号出力手段とを有し、前記電源投入制御手段は、複数の手動の電源用スイッチと、該複数の手動の電源用スイッチが同時にON動作されたときに、前記外部電源を前記セル電圧検出手段に投入するゲート回路とを有することを特徴とする。
ず、バッテリ組立体の組立前において、該バッテリ組立体の構成要素である各バッテリセルに対する電圧値の検査が行われる。この検査は、セル電圧検出手段における2つの端子にバッテリセルの正極及び負極が接続され、且つ、外部電源が投入されることにより行われる。そして、バッテリセルの正極及び負極に接続された2つの端子の端子間電圧は、検出電圧(セル電圧)として後段のA/D変換器及びセル電圧判別手段に供給される。
【0025】
A/D変換器は、供給された検出電圧(アナログ電圧:セル電圧)をデジタル変換してセル電圧データとして出力する。このセル電圧データは、この検査装置にバスラインを通じて接続された例えばコンピュータに供給されて、各バッテリセルの履歴管理やバッテリ組立体の履歴管理等に使用される。
【0026】
一方、セル電圧判別手段は、供給された検出電圧(セル電圧)が所定範囲内にあるかどうかを判別する。この判別結果は、後段の制御信号出力手段に供給される。該制御信号出力手段は、供給された判別結果に応じた制御信号を作成して出力する。
【0027】
この制御信号としては、例えば判別結果の内容が正常/不良の2種類である場合は、2種類の属性を有する制御信号が考えられる。具体的には、例えばバッテリセルをコンベアにて後段の組立ラインに搬送する組立システムに適用させる場合、不良と認定されたバッテリセルを搬送路から除去する内容の制御信号と、正常と認定されたバッテリセルをそのまま組立ラインに投入することを示す制御信号が考えられる。
【0028】
このように、本発明に係る電気自動車用バッテリの検査装置においては、バッテリセル単位に電圧値を検出することができ、しかも、該検出電圧(セル電圧)をデジタルデータとして出力できることから、コンピュータでのデータ処理が容易になり、また、バッテリセル単位に正常/不良の判別ができ、バッテリセルの組立ラインへの投入/排除を容易に制御することができる。
【0029】
これは、バッテリセルに対する電圧検査の全自動化を実現できることにつながり、電気自動車用バッテリの量産化に十分対応することができる。
【0030】
そして、前記構成において、前記制御信号出力手段を、前記セル電圧判別手段にて不良と判別された場合に除去指示信号を出力し、前記セル電圧判別手段にて正常と判別された場合に前記セル電圧検出手段にて検出された前記セル電圧に基づいて前記バッテリセルをグループ分けするための振分け制御信号を作成し、出力するように構成してもよい。
【0031】
これにより、まず、セル電圧判別手段にて不良と判別された場合は、制御信号出力手段から除去指示信号が出力される。この除去指示信号は、バッテリセルを組み立てラインに搬送するための例えばコンベアの制御装置において、バッテリセルをその搬送路から除去するためのトリガー信号として用いることができる。これによって、前記セル電圧判別手段にて不良と認定されたバッテリセルは、組立ラインの搬送路から除去されることになる。
【0032】
一方、セル電圧判別手段にて正常と判別された場合は、制御信号出力手段から振分け信号が出力される。この振分け信号は、例えば、セル電圧判別手段での判別基準である所定範囲を複数のグループに分け、グループ数(アドレス)に応じた信号形態を有するようにする。具体的には、あるバッテリセルの検出電圧(セル電圧)が第2グループに入る場合は、第2グループを示す信号形態の振分け信号が制御信号出力手段にて作成されて出力される。
【0033】
その結果、当該バッテリセルは搬送路から除去されずに、そのまま組立ラインに向けて搬送され、組立ラインの第2グループに投入される。これによって、組立ラインにおいて、グループ単位にバッテリセルを取り出してバッテリ組立体を組み立てることが可能となる。即ち、特性がほぼ似通ったバッテリセルにてバッテリ組立体を構成することができ、電気自動車用バッテリとした場合のバッテリ性能及び寿命の改善を図ることができる。
【0034】
次に、本発明に係る電気自動車用バッテリの検査装置は、バッテリボックス内に多数のバッテリセルが直列に接続されて収容されたバッテリ組立体の電圧を検査する電気自動車用バッテリの検査装置において、前記バッテリ組立体の正極及び負極がそれぞれ接続される2つの端子を有し、且つ、前記バッテリ組立体の正極と負極間のバッテリ電圧を検出するバッテリ電圧検出手段と、検出された前記バッテリ電圧をデジタル変換してバッテリ電圧データとして出力するA/D変換器と、検出された前記バッテリ電圧が所定範囲内にあるかどうかを判別するバッテリ電圧判別手段と、前記バッテリ電圧判別手段での判別結果に応じた制御信号を出力する制御信号出力手段と、複数の手動の接続用スイッチと、前記複数の手動の接続用スイッチが同時にON動作されたときに、前記バッテリ電圧検出手段での前記バッテリ組立体の正極及び負極と前記2つの端子との電気的接続を行うスイッチング制御回路とを有することを特徴とする。
ず、バッテリ組立体の組立後において、該バッテリ組立体に対する電圧値の検査が行われる。この検査は、バッテリ組立体の正極及び負極にそれぞれ端子を接続することにより行われる。そして、バッテリ組立体の正極及び負極に接続された2つの端子の端子間電圧は、検出電圧(バッテリ電圧)として後段のA/D変換器及びバッテリ電圧判別手段に供給される。
【0035】
A/D変換器は、供給された検出電圧(アナログ電圧:バッテリ電圧)をデジタル変換してバッテリ電圧データとして出力する。このバッテリ電圧データは、この検査装置にバスラインを通じて接続された例えばコンピュータに供給されて、バッテリ組立体の履歴管理等に使用される。
【0036】
一方、バッテリ電圧判別手段は、供給された検出電圧(バッテリ電圧)が所定範囲内にあるかどうかを判別する。この判別結果は、後段の制御信号出力手段に供給される。該制御信号出力手段は、供給された判別結果に応じた制御信号を作成して出力する。
【0037】
この制御信号としては、例えば判別結果の内容が正常/不良の2種類である場合は、2種類の属性を有する制御信号が考えられる。具体的には、例えばバッテリ組立体をコンベアにて後段の処理ラインに搬送する組立システムに適用させる場合、不良と認定されたバッテリ組立体を搬送路から除去する内容の制御信号と、正常と認定されたバッテリ組立体をそのまま後段の処理ラインに投入することを示す制御信号が考えられる。
【0038】
このように、本発明に係る電気自動車用バッテリの検査装置においては、バッテリ組立体単位に電圧値を検出することができ、しかも、該検出電圧(バッテリ電圧)をデジタルデータとして出力できることから、コンピュータでのデータ処理が容易になり、また、バッテリ組立体単位に正常/不良の判別ができ、バッテリ組立体の後段の処理ラインへの投入/排除を容易に制御することができる。
【0039】
これは、バッテリ組立体に対する電圧検査の全自動化を実現できることにつながり、電気自動車用バッテリの量産化に十分対応することができる。
【0040】
さらに、本発明においては、複数の手動の接続用スイッチが同時にON動作されない限り、バッテリ組立体の電圧検査が行われないため、検査装置の操作中に作業者が高電圧に触れるという危険性がなくなり、安全性の確保の上で非常に有利になる。
【0050】
次に、本発明に係る電気自動車用バッテリの検査システムは、バッテリボックス内に多数のバッテリセルが直列に接続されて収容されたバッテリ組立体の検査システムにおいて、前記バッテリセルの正極と負極間のセル電圧を検出するセル電圧検出手段と、検出されたセル電圧をデジタル変換してセル電圧データとして出力するA/D変換器と、検出された前記セル電圧が所定範囲内にあるかどうかを判別するセル電圧判別手段と、前記セル電圧判別手段での判別結果に応じた制御信号を出力する制御信号出力手段を具備したセル電圧検査装置と、前記セル電圧検査装置における前記制御信号出力手段からの制御信号の属性に基づいて前記バッテリセルの組立ラインへの投入/排除を切替え制御するセル搬送制御装置と、前記バッテリ組立体の正極及び負極がそれぞれ接続される2つの端子を有し、且つ、前記バッテリ組立体の正極と負極間のバッテリ電圧を検出するバッテリ電圧検出手段と、検出された前記バッテリ電圧をデジタル変換してバッテリ電圧データとして出力するA/D変換器と、検出された前記バッテリ電圧が所定範囲内にあるかどうかを判別するバッテリ電圧判別手段と、前記バッテリ電圧判別手段での判別結果が不良判別の場合に除去指示信号を出力し、前記判別結果が正常判別の場合に搬送指示信号を出力する制御信号出力手段を有するバッテリ電圧検査装置とを有し、前記バッテリ電圧検査装置は、複数の手動の接続用スイッチと、該複数の手動の接続用スイッチが同時にON動作されたときに、前記バッテリ電圧検出手段での前記バッテリ組立体の正極及び負極と前記2つの端子との電気的接続を行うスイッチング制御回路とを有することを特徴とする。
まず、バッテリ組立体の組立前において、セル電圧検査装置にてバッテリ組立体の構成要素である各バッテリセルに対する電圧値の検査が行われる。この検査は、バッテリセルの正極及び負極にそれぞれ端子を接続することにより行われる。そして、バッテリセルの正極及び負極に接続された2つの端子の端子間電圧は、検出電圧(セル電圧)として後段のA/D変換器及びセル電圧判別手段に供給される。A/D変換器は、供給された検出電圧(アナログ電圧:セル電圧)をデジタル変換してセル電圧データとして出力する。このセル電圧データは、この検査装置にバスラインを通じて接続された例えばコンピュータに供給されて、各バッテリセルの履歴管理やバッテリ組立体の履歴管理等に使用される。
【0051】
一方、セル電圧判別手段は、供給された検出電圧(セル電圧)が所定範囲内にあるかどうかを判別する。この判別結果は、後段の制御信号出力手段に供給される。該制御信号出力手段は、供給された判別結果に応じた制御信号を作成して出力する。
【0052】
前記制御信号出力手段からの制御信号は、セル搬送制御装置に供給される。該セル搬送制御装置は、供給された制御信号の属性に基づいて、バッテリセルの組立ラインへの投入/排除を切替え制御する。即ち、制御信号出力手段からは、不良と認定されたバッテリセルを搬送路から除去する内容の第1の制御信号と、正常と認定されたバッテリセルをそのまま組立ラインに投入することを示す第2の制御信号が出力される。セル搬送制御装置は、前記第1の制御信号の入力があった場合は、当該不良認定されたバッテリセルを搬送路から除去し、前記第2の制御信号の入力があった場合は、当該正常認定されたバッテリセルをそのまま組立ラインに投入する。
【0053】
このように、本発明に係る電気自動車用バッテリの検査システムにおいては、バッテリセル単位に電圧値を検出することができ、しかも、該検出電圧(セル電圧)をデジタルデータとして出力できることから、コンピュータでのデータ処理が容易になり、また、バッテリセル単位に正常/不良の判別ができ、バッテリセルの組立ラインへの投入/排除を容易に制御することができる。
【0054】
これは、バッテリセルに対する電圧検査の全自動化を実現できることにつながり、電気自動車用バッテリの量産化に十分対応することができる。
さらに、本発明は、バッテリ組立体の組立後において、該バッテリ組立体に対する電圧値の検査が前記バッテリ電圧検査装置によって行われる。この検査は、バッテリ組立体の正極及び負極にそれぞれ端子を接続することにより行われる。そして、バッテリ組立体の正極及び負極に接続された2つの端子の端子間電圧は、検出電圧(バッテリ電圧)として後段のA/D変換器及びバッテリ電圧判別手段に供給される。
A/D変換器は、供給された検出電圧(アナログ電圧:バッテリ電圧)をデジタル変換してバッテリ電圧データとして出力する。このバッテリ電圧データは、この検査装置にバスラインを通じて接続された例えばコンピュータに供給されて、バッテリ組立体の履歴管理等に使用される。
一方、バッテリ電圧判別手段は、供給された検出電圧(バッテリ電圧)が所定範囲内にあるかどうかを判別する。この判別結果は、後段の制御信号出力手段に供給される。該制御信号出力手段は、バッテリ電圧判別手段での判別結果が不良判別の場合に除去指示信号を出力し、正常判別の場合に搬送指示信号を出力する。
この場合、バッテリ組立体単位に電圧値を検出することができ、しかも、該検出電圧(バッテリ電圧)をデジタルデータとして出力できることから、コンピュータでのデータ処理が容易になり、また、バッテリ組立体単位に正常/不良の判別ができ、バッテリ組立体の後段の処理ラインへの投入/排除を容易に制御することができる。
特に、本発明は、複数の手動の接続用スイッチが同時にON動作されない限り、バッテリ電圧検査装置でのバッテリ組立体に対する電圧検査が行われないため、検査システムの操作中に作業者が高電圧に触れるという危険性がなくなり、安全性の確保の上で非常に有利になる。
【0066】
そして、前記構成において、前記バッテリ組立体の冷却系統を検査する装置であって、かつ、前記冷却系統が、前記複数のバッテリセルを一冷却単位としたとき、一冷却単位ごとに冷却用袋が配置され、これら冷却用袋に冷却水を循環させるための導管を有し、前記冷却用袋に前記冷却水の代わりにエアを前記導管を通じて供給し、前記冷却用袋内のエア圧が所定圧力となった時点で前記エアの供給を停止するエア供給手段と、前記冷却用袋内のエア圧を検出するエア圧検出手段と、検出されたエア圧をデジタル変換してエア圧データとして出力するA/D変換器と、前記エア供給手段による前記エアの供給が停止された時点から所定時間経過後のエア圧が所定範囲内にあるかどうかを判別する圧力判別手段と、不良判別の場合に除去指示信号を出力し、正常判別の場合に搬送指示信号を出力する制御信号出力手段を有する冷却系統検査装置を設置するようにしてもよい。
【0067】
これにより、バッテリ組立体の冷却系統における冷却用袋内に冷却系統検査装置のエア供給手段を通じてエアが供給される。この冷却用袋内へのエアの供給に伴って冷却用袋内のエア圧が増加するが、このエア圧の検出はエア圧検出手段を通じて行われる。そして、冷却用袋内のエア圧が所定圧力となった時点で、前記エア供給手段は冷却用袋内へのエアの供給を停止する。前記エア圧検出手段にて検出されたエア圧は後段のA/D変換器及び圧力判別手段に供給される。
【0068】
A/D変換器は、供給されたエア圧(アナログ値)をデジタル変換してエア圧データとして出力する。このエア圧データは、この検査装置にバスラインを通じて接続された例えばコンピュータに供給されて、バッテリ組立体の履歴管理等に使用される。
【0069】
一方、圧力判別手段は、供給されたエア圧、特にエア供給手段による前記エアの供給が停止された時点から所定時間経過後のエア圧が所定範囲内にあるかどうかを判別する。この判別結果は、後段の制御信号出力手段に供給される。該制御信号出力手段は、不良判別の場合に除去指示信号を出力し、正常判別の場合に搬送指示信号を出力する。
【0070】
この場合、バッテリ組立体単位に冷却系統を検査することができ、しかも、その検査結果をデジタルデータとして出力できることから、コンピュータでのデータ処理が容易になり、また、バッテリ組立体単位に正常/不良の判別ができ、バッテリ組立体の後段の処理ラインへの投入/排除を容易に制御することができる。
【0071】
また、前記構成において、前記エア供給手段を、供給前のエアの圧力が所定圧力となった段階で冷却用袋にエアを供給するように構成してもよい。この場合、冷却用袋へのエアの供給を安定に行うことができ、信頼性の高い検査結果を得ることができる。
【0072】
また、前記構成において、前記制御信号出力手段からの除去指示信号に基づいて前記バッテリ組立体を除去し、前記制御信号出力手段からの搬送指示信号に基づいて前記バッテリ組立体を後段の処理ラインに搬送するバッテリ搬送手段を設けるようにしてもよい。
【0073】
これにより、バッテリ搬送手段は、制御信号出力手段から除去指示信号が入力された場合、当該不良認定されたバッテリセルを搬送路から除去し、搬送指示信号が入力された場合は、当該正常認定されたバッテリセルを後段の処理ラインに投入するという処理を行う。
【0074】
次に、本発明に係る電気自動車用バッテリの検査方法は、バッテリボックス内に多数のバッテリセルが直列に接続されて収容された電気自動車用バッテリの検査方法において、前記各バッテリセルの正極及び負極間のセル電圧を検出し、検出された前記セル電圧をデジタル変換してセル電圧データとし、検出された前記セル電圧が所定範囲内にあるかどうかを判別し、前記判別結果に基づいて前記バッテリセルの組立ラインへの投入/排除を切替えるステップと、前記バッテリボックス内に多数のバッテリセルが直列に接続されて収容されたバッテリ組立体の正極及び負極間のバッテリ電圧を検出し、検出された前記バッテリ電圧をデジタル変換してバッテリ電圧データとし、検出された前記バッテリ電圧が所定範囲内にあるかどうかを判別するバッテリ電圧検査ステップを有し、前記バッテリ電圧検査ステップは、複数の手動の接続用スイッチを有し、該複数の手動の接続用スイッチが同時にON動作したときに初めて、前記バッテリ組立体の正極及び負極間の前記バッテリ電圧の検出が可能となる保護回路を使用することを特徴とする。
これにより、バッテリセル単位に電圧値を検出することができ、しかも、該検出電圧(セル電圧)をデジタルデータとして出力できることから、コンピュータでのデータ処理が容易になり、また、バッテリセル単位に正常/不良の判別ができ、バッテリセルの組立ラインへの投入/排除を容易に制御することができる。
さらに、バッテリ組立体単位に電圧値を検出することができ、しかも、該検出電圧(バッテリ電圧)をデジタルデータとして出力できることから、コンピュータでのデータ処理が容易になり、また、バッテリ組立体単位に正常/不良の判別ができ、バッテリ組立体の後段の処理ラインへの投入/排除を容易に制御することができる。
【0075】
これは、バッテリセルに対する電圧検査の全自動化を実現できることにつながり、電気自動車用バッテリの量産化に十分対応することができる。
また、本発明は、保護回路における複数の手動の接続用スイッチが同時にON動作されない限り、バッテリ電圧検査装置でのバッテリ組立体に対する電圧検査が行われないため、検査システムの操作中に作業者が高電圧に触れるという危険性がなくなり、安全性の確保の上で非常に有利になる。
【0084】
また、前記方法において、前記バッテリ組立体の冷却系統を検査するステップであって、かつ、前記冷却系統が、前記複数のバッテリセルを一冷却単位としたとき、一冷却単位ごとに冷却用袋が配置され、これら冷却用袋に冷却水を循環させるための導管を有し、前記冷却用袋に前記冷却水の代わりにエアを前記導管を通じて供給し、前記冷却用袋内のエア圧が所定圧力となった時点で前記エアの供給を停止し、前記冷却用袋内のエア圧を検出し、検出された前記エア圧をデジタル変換してエア圧データとし、前記エアの供給が停止された時点から所定時間経過後のエア圧が所定範囲内にあるかどうかを判別する冷却系統検査ステップを有するようにしてもよい。
【0085】
前記冷却用袋に前記冷却水の代わりにエアを前記導管を通じて供給し、前記冷却用袋内のエア圧が所定圧力となった時点で前記エアの供給を停止し、前記冷却用袋内のエア圧を検出し、検出された前記エア圧をデジタル変換してエア圧データとし、前記エアの供給が停止された時点から所定時間経過後のエア圧が所定範囲内にあるかどうかを判別する。
【0086】
この場合、バッテリ組立体単位に冷却系統を検査することができ、しかも、その検査結果をデジタルデータとして出力できることから、コンピュータでのデータ処理が容易になり、また、バッテリ組立体単位に正常/不良の判別ができ、バッテリ組立体の後段の処理ラインへの投入/排除を容易に制御することができる。
【0087】
また、前記方法において、前記冷却系統検査ステップでの処理として、供給前のエアの圧力が所定圧力となった段階で冷却用袋にエアを供給するようにしてもよい。この場合、冷却用袋へのエアの供給を安定に行うことができ、信頼性の高い検査結果を得ることができる。
【0088】
また、前記方法において、前記判別結果が不良の場合に前記バッテリ組立体を除去し、前記判別結果が正常の場合に前記バッテリ組立体を後段の処理ラインに搬送するようにしてもよい。
【0089】
【発明の実施の形態】
以下、本発明に係る電気自動車用バッテリの検査装置を、バッテリセルの電圧検査装置に適用した実施の形態例(以下、単にセル電圧検査装置と記す)と、バッテリ組立体の電圧測定装置に適用した実施の形態例(以下、単にバッテリ電圧検査装置と記す)とバッテリ組立体の冷却系統の検査装置に適用した実施の形態例(以下、単に冷却系統検査装置)を図1〜図11を参照しながら説明する。
【0090】
本実施の形態に係るセル電圧検査装置、バッテリ電圧検査装置及び冷却系統検査装置の説明に入る前に、バッテリ組立体の構成について簡単に説明する。
【0091】
図1に示すように、本実施の形態に係る各種検査装置が適用されるバッテリ組立体10は、正極12及び負極14を有する直方体状のバッテリセル16が24個用意され、これら24個のバッテリセル16が2行12列に配列されてバッテリボックス18に収容されてバッテリ組立体10が構成される。
【0092】
このとき、隣接するバッテリセル16は、正極12及び負極14の配置が逆にされて配列され、更に互いに隣接するバッテリセル16の正極12と負極14とが端子付きケーブル20を介して配線接続され、全体としてすべてのバッテリセル16が直列接続されるように構成されている。
【0093】
また、前記バッテリボックス18には、前記バッテリセル16の組立体(便宜的にセル接続体と記す)22のほかに、バッテリセル1列ごとあるいは2列ごとに冷却用袋24が配置されている。各冷却用袋24には供給用導管26及び排出用導管28を通じて冷却水が供給・循環されるようになっている。即ち、多数の冷却用袋24と供給用導管26及び排出用導管28にてバッテリ組立体10の冷却系統30が構成される。
【0094】
図2に示すように、本実施の形態に係るセル電圧検査装置40は、各バッテリセル16の正極12及び負極14が接続される2つの端子φ1及びφ2と、両端子φ1及びφ2間の電圧を検出し、アナログの検出電圧信号Vaとして出力する電圧検出回路42と、該電圧検出回路42からの検出電圧信号Vaをデジタル変換して電圧データDaとして出力するA/D変換器44と、前記検出電圧信号Vaの電圧レベルが規格範囲内にあるかどうかを判別する判別手段46と、該判別手段46での判別結果Caに応じた制御信号Saを出力する制御信号出力手段48を有して構成されている。
【0095】
特に、本実施の形態に係るセル電圧検査装置40においては、電圧検出回路42と判別手段46の組合わせ手段としてメータリレー装置50を用いるようにしている。
【0096】
図3に示すように、前記メータリレー装置50は、バッテリセル16の正極12に接触接続される第1の検査用接点φ1とバッテリセル16の負極14に接触接続される第2の検査用接点φ2を有し、2つの検査用接点φ1及びφ2間の電圧(即ち、バッテリセル16の放電電圧Va)が出力ラインを通じて後段のA/D変換器44に供給されるように配線接続されている。該前記A/D変換器44から出力される電圧データDaは、例えば中央監視制御を行うホストコンピュータ52に供給されるようになっている。
【0097】
また、このメータリレー装置50は、メータ54の目盛板56に取り付けられた2つの固定接点φ3及びφ4を有し、メータ指針58自体が可動接点となっている。2つの固定接点φ3及びφ4は、バッテリセル16の規格範囲に合わせて設定され、第1の固定接点φ3が低レベルの目盛に対応した位置に取り付けられ、第2の固定接点φ4が高レベルの目盛に対応した位置に取り付けられている。
【0098】
そして、メータ指針58が第1又は第2の固定接点φ3又はφ4に接触すると、メータ指針58が接触した固定接点φ3又はφ4から高レベル信号が出力されるようになっている。
【0099】
前記第1及び第2の固定接点φ3及びφ4の後段には、例えばフリップフロップ回路等にて構成されたホールド回路60及び62が接続されている。これらホールド回路60及び62は、リセット信号Prが入力されるまで、対応する固定接点φ3及びφ4の状態を保持するようになっている。なお、前記リセット信号Prは、例えば1つのバッテリセル16に対する検査終了時に発生する。
【0100】
図2のメータリレー装置50において、メータ指針58が第1の固定接点φ3の位置する目盛よりも低い位置にある場合は、第1及び第2の固定接点φ3及びφc4らは共に低レベル信号が出力され、メータ指針58が第1の固定接点φ3と第2の固定接点φ4の間にある場合は、第1の固定接点φ3からは高レベル信号、第2の固定接点φ4からは低レベル信号が出力される。また、メータ指針58が第2の固定接点φ4の位置する目盛よりも高い位置にある場合は、第1及び第2の固定接点φc3及びφ4からは共に高レベル信号が出力される。
【0101】
一方、制御信号出力手段48(図2参照)は、メータリレー装置50からの2つの固定接点φ3及びφ4の出力形態に基づいて後述する各種表示手段に対して制御信号を出力するデコーダ64と、メータ54からの検出電圧Vaのレベルに基づいてグループ分けのための振分けデータDfを作成する振分けデータ作成回路66と、メータ54における2つの固定接点φ3及びφ4の出力形態並びに振分けデータ作成回路66からの振分けデータに基づいて、通信データ(コードデータを含む)Dtを作成して出力する通信データ作成回路68を有する。
【0102】
前記デコーダ64は、2つの入力端子φ5及びφ6と5つの出力端子(φ7〜〜φ11)を有し、例えば以下に示す規則に従った入出力形態となるように内部結線されている。
【0103】
例えば、メータ54の第1の固定接点φ3から高レベル信号、第2の固定接点φ4から低レベル信号が出力されて、第1及び第2の入力端子φ5及びφ6に高レベル信号及び低レベル信号が供給される場合は、第1の出力端子φ7及び第3の出力端子φ9からそれぞれ高レベル信号が出力され、他の出力端子からは低レベル信号が出力される。
【0104】
第1及び第2の固定接点φ3及びφ4から共に高レベル信号が出力されて、第1及び第2の入力端子φ5及びφ6が共に高レベルとなった場合は、第2の出力端子φ8及び第4の出力端子φ10からそれぞれ高レベル信号が出力され、他の出力端子からは低レベル信号が出力される。
【0105】
第1及び第2の固定接点φ3及びφ4から共に低レベル信号が出力されて、第1及び第2の入力端子φ5及びφ6が共に低レベルとなった場合は、第2の出力端子φ8及び第5の出力端子φ11からそれぞれ高レベル信号が出力され、他の出力端子からは低レベル信号が出力される。
【0106】
前記各種出力端子のうち、第1及び第2の出力端子φ7及びφ8から出力される信号は、後述するメッセージ表示手段70に供給され、第3〜第5の出力端子φ9〜φ11から出力される信号は、後述する警報出力手段72に供給されるように配線接続されている。
【0107】
なお、前記デコーダ64の入出力形態は、あくまでも一例であり、第1及び第2の固定接点φ3及びφ4から出力されるレベルに応じて3値以上の信号を作成して出力させるようにしてもよいし、第1及び第2の固定接点φc3及びφ4の状態を示す内容を含むデジタルコードとして出力させるようにしてもよい。
【0108】
前記振分けデータ作成回路66は、以下に示す変換テーブルが格納されたメモリが内蔵されており、この変換テーブルは、グループ分けのための振分け数に相当する数のレコードが配列されて構成され、各レコードは、当該グループに属する電圧範囲が登録されている。そして、前記振分けデータ作成回路66は、第1及び第2の固定接点φ3及びφ4からそれぞれ高レベル信号及び低レベル信号が出力された場合、即ち、検出電圧Vaが規格範囲内にある場合にのみ動作し、供給された検出電圧Vaと変換テーブルに登録されている電圧範囲を比較して、当該検出電圧Vaが属するグループを判別する。この判別結果は、振分けデータ(振分けグループを示すコード)Dfとして後段の通信データ作成回路68に供給される。
【0109】
通信データ作成回路68は、メータ54における第1及び第2の固定接点φ3及びφ4から出力される信号の属性に基づいた通信データDt、例えばバッテリセル16を搬送するコンベアに対して搬送を続行するか停止するかあるいは当該バッテリセル16を除去するか等の内容を含むコンベア制御データに、バッテリセル16の検出電圧Vaが規格範囲内ある場合に、どのグループに振り分けるかを示す振分けデータ(振分けデータ作成回路66から出力されるデータ)Dfが付加された通信データDtを作成し、該通信データDtの先頭にセル用コンベア装置の制御装置(セル用コンベア制御装置)74に内蔵されている復調回路76にて同期をとるためのシンクデータが付加されて後段の変調回路78に出力するように構成されている。変調回路78は、前記通信データ作成回路68からの通信データDtに誤り訂正符号等を付加して前記セル用コンベア制御装置74に変調通信データmDtを転送する。このセル用コンベア制御装置74の処理動作については後述する。
【0110】
前記セル電圧検査装置40は、前記各種手段のほかに、操作者等に現在の処理状況を知らせるための処理状況表示手段80と、デコーダ64の第1及び第2の出力端子φ7及びφ8から出力される制御信号の属性に応じたメッセージ表示を行うメッセージ表示手段70と、デコーダ64の第3〜第5の出力端子φ9〜φ11から出力される制御信号の属性に応じた警報を出力する警報出力手段72を有する。
【0111】
前記処理状況表示手段80は、操作卓(図示せず)にある電源スイッチSWのON操作に基づいて発生する割込み信号Ssの入力に基づいて電源投入を示す状況表示を行う。この表示形態としては、ランプ点灯や液晶表示装置の画面に電源投入を示すメッセージを表示する等の形態がある。
【0112】
メッセージ表示手段70は、前記デコーダ64の第1の出力端子φ7を通じて高レベル信号が入力された場合にOKを示す表示を行い、第2の出力端子φ8を通じて高レベル信号が入力された場合にNGを示す表示を行う。これらの表示形態は、前記処理状況表示手段80と同様に、ランプ点灯や液晶表示装置の画面に対して前記表示を行う等の形態がある。
【0113】
警報出力手段72は、前記デコーダ64の第3の出力端子φ9を通じて高レベル信号が入力された場合にOKを示すブザー出力を行い、第4の出力端子φ10を通じて高レベル信号が入力された場合に高レベル超過を示すブザー出力を行い、第5の出力端子φ11を通じて高レベル信号が入力された場合に低レベル未満を示すブザー出力を行う。
【0114】
また、前記セル電圧検査装置40は、2挙動によって初めてメータリレー装置50に電源投入が行われるように電源投入制御手段82が設けられている。具体的には、操作卓(図示せず)に設置された鍵穴84に電源投入用のキー86を差し込んで例えば右回しすることにより、第1のゲート回路88が開動作し、更に、操作卓にある前記電源スイッチSWをON操作することにより、第2のゲート回路90が開動作し、この時点で初めてメータリレー装置50内に電源が投入されることになる。
【0115】
次に、前記本実施の形態に係るセル電圧検査装置40の処理動作について図4のフローチャートを参照しながら説明する。
【0116】
まず、操作卓にある鍵穴84に電源投入用のキー86を差し込んで例えば右回しして、電源投入のための第1挙動を行う(ステップS1)。この第1挙動によって第1のゲート回路88が開動作する。
【0117】
次に、操作卓にある電源スイッチSWをON操作して、電源投入のための第2挙動を行う(ステップS2)。この第2挙動によって第2のゲート回路90が開動作し、この段階で、セル電圧検査装置40に電源が投入される。また、前記第2のゲート回路90の開動作に伴って電源投入を示す割込み信号Ssが発生する。この割込み信号Ssは、後段の処理状況表示手段80に供給され、電源投入を示す表示が行われる。
【0118】
次に、メータ54の第1及び第2の検査用接点φ1及びφ2をバッテリセル16の正極12及び負極14にそれぞれ接触接続させる(ステップS3)。
【0119】
この段階で、メータリレー装置50が作動し(ステップS4)、バッテリセル16の放電電圧が検出される。検出電圧Vaは出力ラインを通じてA/D変換器44に供給されて、デジタルの電圧データDaに変換されてホストコンピュータ52に転送される(ステップS5)。ホストコンピュータ52は、転送された電圧データDaを図示しないデータRAMに論理的に割り付けられたバッファに格納する。このバッファに格納された電圧データDaは、ホストコンピュータ52内のソフトウェアを通じてデータRAMに展開されているバッテリセルに関する履歴管理テーブルの対応レコードや種々のデータ処理用格納領域に格納されて、バッテリセルの履歴管理や種々のデータ処理に供される。
【0120】
また、前記メータリレー装置50においては、前記検出電圧Vaのレベルに従ってメータ指針58が可動し、第1及び第2の固定接点φ3及びφ4から前記検出電圧Vaのレベルに応じた信号が出力される。即ち、検出電圧VaのOK/NGが判別される(ステップS6)。
【0121】
そして、検出電圧Vaが規格範囲内であれば、メータ指針58は第1の固定接点φ3のみに接触することになるため、第1及び第2の固定接点φ3及びφ4からはそれぞれ高レベル信号及び低レベル信号が出力され、これにより、メッセージ表示手段70を通じてOKを示す表示がなされ、警報出力手段72を通じてOKを示すブザー出力がなされる。
【0122】
前記検出電圧Vaが規格範囲外、例えば高レベル超過であれば、メータ指針58は第1及び第2の固定接点φ3及びφ4に接触することになるため、第1及び第2の固定接点φc3びφ4からは共に高レベル信号が出力され、これにより、メッセージ表示手段70を通じてNGを示す表示がなされ、警報出力手段72を通じて高レベル超過を示すブザー出力がなされる。
【0123】
前記検出電圧Vaが規格範囲外、例えば低レベル未満であれば、メータ指針58はいずれの固定接点φ3及びφ4にも接触しないことになるため、第1及び第2の固定接点φc3びφ4からは共に低レベル信号が出力され、これにより、メッセージ表示手段70を通じてNGを示す表示がなされ、警報出力手段72を通じて低レベル未満を示すブザー出力がなされる。
【0124】
また、前記メッセージ表示及び警報出力と同時に、通信データ作成回路68にて前記第1及び第2の固定接点φ3及びφ4から出力される信号の属性に応じた通信データDtが作成される。該通信データDtは、後段の変調回路78を通じてセル用コンベア制御装置74に出力される(ステップS7)。
【0125】
この段階で、本実施の形態に係るセル電圧検査装置40による1つのバッテリセル16についての放電電圧の検査が終了する。
【0126】
このように、本実施の形態に係るセル電圧検査装置40においては、バッテリセル単位に放電電圧Vaを検出することができ、しかも、該検出電圧Vaをデジタルデータ(電圧データDa)として出力できることから、ホストコンピュータ52でのデータ処理が容易になり、また、バッテリセル単位に正常/不良の判別ができ、バッテリセル16の組立ラインへの投入/排除を容易に制御することができる。
【0127】
これは、バッテリセル16に対する電圧検査の全自動化を実現できることにつながり、電気自動車用バッテリの量産化に十分対応することができる。
【0128】
次に、本実施の形態に係るバッテリ電圧検査装置100について図5を参照しながら説明する。
【0129】
まず、図5に模式的に示すように、バッテリ組立体10のバッテリボックス18内には、上述したように、24個のバッテリセル16が直列接続されてなるセル接続体22と、冷却用袋24、供給用導管26及び排出用導管28(共に図1参照)を有する冷却系統30に加えて、セル接続体22の正極端子φ12及び負極端子φ13と外部正極端子φ14及び外部負極端子φ15とを選択的に接続/非接続状態とするコンタクタボックス102を有する。
【0130】
該コンタクタボックス102内には、2つの外部入力端子φ16及びφ17が高レベルとなった場合に限って、2つのリレースイッチ104及び106を励磁駆動し、セル接続体22の正極端子φ12と外部正極端子φ14とを電気的に接続すると共に、セル接続体22の負極端子φ13を外部負極端子φ15に電気的に接続するスイッチング制御回路108が内蔵されている。いずれかの外部入力端子φ16又はφ17が低レベルであれば前記リレースイッチ104及び106は励磁駆動されず、セル接続体22の正極端子φ12及び負極端子φ13は開放状態とされる。
【0131】
そして、本実施の形態に係るバッテリ電圧検査装置100は、図5に示すように、前記バッテリ組立体10の正極及び負極(正確にはコンタクタボックス102の外部正極端子φ14及び外部負極端子φ15)がそれぞれ接続される2つの端子φ18及びφ19と、両端子φ18及びφ19間の電圧を検出し、アナログの検出電圧信号Vbとして出力する電圧検出回路110と、該電圧検出回路110からの検出電圧信号Vbをデジタル変換して電圧データDbとして出力するA/D変換器112と、前記検出電圧信号Vbの電圧レベルが規格範囲内にあるかどうかを判別する判別手段114と、該判別手段114での判別結果Cbに応じた制御信号Sbを出力する制御信号出力手段116と、前記コンタクタボックス102の2つの外部入力端子φ16及びφ17にそれぞれ接続される2つの手動スイッチ(第1及び第2の手動スイッチSW1及びSW2)を有して構成されている。
【0132】
前記第1及び第2の手動スイッチSW1及びSW2の操作卓上の設置位置は、一人の操作者が両手で操作しなければならない程度に互いに離間されて設置されている。従って、操作者が第1及び第2の手動スイッチSW1及びSW2を同時に操作する場合は、両手で行わなければならない。
【0133】
特に、本実施の形態に係るバッテリ電圧検査装置100においては、前記セル電圧検査装置40と同様に、電圧検出回路110と判別手段114の組合わせ手段としてメータリレー装置118を用いるようにしている。このメータリレー装置118は、図6に示すように、コンタクタボックス102の外部正極端子φ14に接続される第1の検査用接点φ18とコンタクタボックス102の外部負極端子φ15に接続される第2の検査用接点φ19を有し、2つの検査用接点φ18及びφ19間の電圧(即ち、セル接続体22の放電電圧Vb)が出力ラインを通じて後段のA/D変換器112に供給されるように配線接続されている。該前記A/D変換器112から出力される電圧データDbは、前記セル電圧検査装置40と同様にホストコンピュータ52に供給されるようになっている。
【0134】
ほかの構成、即ち、メータ54、デコーダ64や電源投入制御手段82などの構成は、上述したセル電圧検査装置40とほぼ同じであるため、対応するものについて同符号を付してその重複説明を省略し、バッテリ電圧検査装置100として異なる構成部分についてのみ説明を行う。なお、このバッテリ電圧検査装置100においては、前記セル電圧検査装置40における振分けデータ作成回路66に類する回路は存在しない。
【0135】
メータ54、デコーダ64並びに電源投入制御手段82の構成は、上述したセル電圧検査装置40の場合と同じであるが、処理状況表示手段80、通信データ作成回路68の構成が一部異なる。
【0136】
具体的には、処理状況表示手段80は、電源投入制御手段82における第2のゲート回路90からの割込み信号Ssの入力に基づいて電源投入を示す表示を行うほか、第1及び第2の手動スイッチSW1及びSW2が同時に操作された場合に、これら手動スイッチSW1及びSW2から出力される第1及び第2の割込み信号S1及びS2の入力に基づいて、高圧検査中を示す表示を行うように構成されている。
【0137】
一方、通信データ作成回路68は、セル電圧検査装置40における振分けデータ作成回路66が存在しないことから、メータ54における第1及び第2の固定接点φ3及びφ4から出力される信号の属性に基づいた通信データDt、例えばバッテリ組立体10を搬送するコンベアに対して搬送を続行するか停止するかあるいは当該バッテリ組立体を除去するか等の内容を含む通信データDtを作成する点でセル電圧検査装置40における通信データ作成回路68と異なる。
【0138】
また、前記通信データ作成回路68は、前記通信データDtの先頭にバッテリ用コンベア装置の制御装置(バッテリ用コンベア制御装置)120に内蔵されている復調回路122にて同期をとるためのシンクデータを付加して後段の変調回路78に出力する。変調回路78は、前記通信データ作成回路68からの通信データDtに誤り訂正符号等を付加して前記バッテリ用コンベア制御装置120に変調通信データmDtを転送する。
【0139】
次に、本実施の形態に係るバッテリ電圧検査装置100の処理動作について図7のフローチャートを参照しながら説明する。
【0140】
まず、操作卓にある鍵穴84に電源投入用のキー86を差し込んで例えば右回しして、電源投入のための第1挙動を行う(ステップS101)。この第1挙動によって第1のゲート回路88が開動作する。
【0141】
次に、操作卓にある電源スイッチSWをON操作して、電源投入のための第2挙動を行う(ステップS102)。この第2挙動によって第2のゲート回路90が開動作し、この段階で、メータリレー装置118に電源が投入される。また、前記第2のゲート回路90の開動作に伴って電源投入を示す割込み信号Ssが発生する。この割込み信号Ssは、後段の処理状況表示手段80に供給され、電源投入を示す表示が行われる。
【0142】
次に、メータ54における第1及び第2の検査用接点φ18及びφ19をコンタクタボックス102の外部正極端子φ14及び外部負極端子φ15にそれぞれ接続させる(ステップS103)。
【0143】
次に、2つの手動スイッチSW1及びSW2を例えば一人の操作者が両手で同時にON操作する(ステップS104)。該2つの手動スイッチSW1及びSW2に対するON操作に伴って第1及び第2の割込み信号S1及びS2が発生する。この第1及び第2の割込み信号S1及びS2は、後段の処理状況表示手段80に供給され、高圧検査中を示す表示が行われる。
【0144】
この段階で、コンタクタボックス102が作動し(ステップS105)、セル接続体22の放電電圧Vbがスイッチング制御回路108を通じてコンタクタボックス102の外部正極端子φ14及び外部負極端子φ15間に現れる。
【0145】
この段階で、メータリレー装置118が作動し(ステップS106)、セル接続体22の放電電圧、即ち、バッテリ組立体10の放電電圧Vbが検出される。検出電圧Vbは出力ラインを通じてA/D変換器112に供給されて、デジタルの電圧データDbに変換されてホストコンピュータ52に転送される(ステップS107)。ホストコンピュータ52は、転送された電圧データDbを図示しないデータRAMに論理的に割り付けられたバッファに格納する。このバッファに格納された電圧データDbは、ホストコンピュータ52内のソフトウェアを通じてデータRAMに展開されているバッテリ組立体10に関する履歴管理テーブルの対応レコードや種々のデータ処理用格納領域に格納されて、バッテリ組立体10の履歴管理(放電電圧に関する履歴等)や種々のデータ処理に供される。
【0146】
また、前記メータリレー装置118においては、前記検出電圧Vbのレベルに従ってメータ指針58が可動し、第1及び第2の固定接点φ3及びφ4から前記検出電圧Vbのレベルに応じた信号が出力される。即ち、検出電圧VbのOK/NGが判別される(ステップS108)。
【0147】
そして、検出電圧Vbが規格範囲内であれば、メータ指針58は第1の固定接点φ3のみに接触することになるため、第1及び第2の固定接点φ3及びφ4からはそれぞれ高レベル信号及び低レベル信号が出力され、これにより、メッセージ表示手段70を通じてOKを示す表示がなされ、警報出力手段72を通じてOKを示すブザー出力がなされる。
【0148】
前記検出電圧Vbが規格範囲外、例えば高レベル超過であれば、メータ指針58は第1及び第2の固定接点φ3及びφ4に接触することになるため、第1及び第2の固定接点φ3及びφ4からは共に高レベル信号が出力され、これにより、メッセージ表示手段70を通じてNGを示す表示がなされ、警報出力手段72を通じて高レベル超過を示すブザー出力がなされる。
【0149】
前記検出電圧Vbが規格範囲外、例えば低レベル未満であれば、メータ指針58はいずれの固定接点φ3及びφ4にも接触しないことになるため、第1及び第2の固定接点φ3及びφ4からは共に低レベル信号が出力され、これにより、メッセージ表示手段70を通じてNGを示す表示がなされ、警報出力手段72を通じて低レベル未満を示すブザー出力がなされる。
【0150】
また、前記メッセージ表示及び警報出力と同時に、通信データ作成回路68にて前記第1及び第2の固定接点φ3及びφ4から出力される信号の属性に応じた通信データDtが作成される。該通信データDtは、後段の変調回路78を通じてバッテリ用コンベア制御装置120に出力される(ステップS109)。
【0151】
この段階で、本実施の形態に係るバッテリ電圧検査装置100による1つのバッテリ組立体10についての放電電圧の検査が終了する。
【0152】
このように、本実施の形態に係るバッテリ電圧検査装置100においては、バッテリ組立体単位に放電電圧Vbを検出することができ、しかも、該検出電圧Vbをデジタルデータ(電圧データ)Dbとして出力できることから、ホストコンピュータ52でのデータ処理が容易になり、また、バッテリ組立体単位に正常/不良の判別ができ、バッテリ組立体10の後段の処理ラインへの投入/排除を容易に制御することができる。
【0153】
これは、バッテリ組立体10に対する電圧検査の全自動化を実現できることにつながり、電気自動車用バッテリの量産化に十分対応することができる。
【0154】
また、本実施の形態に係るバッテリ電圧検査装置100においては、2つの手動スイッチSW1及びSW2と、スイッチング制御回路108を設けて、前記2つの手動スイッチSW1及びSW2が同時にON操作されたときに、セル接続体22の放電電圧Vbがコンタクトボックス102の外部正極端子φ14及び外部負極端子φ15間に現れるようにしたので、複数の手動スイッチSW1及びSW2が同時にON操作されない限り、バッテリ組立体10の電圧検査が行われないため、検査装置100の操作中に作業者が高電圧に触れるという危険性がなくなり、安全性の確保の上で非常に有利になる。
【0155】
次に、本実施の形態に係る冷却系統検査装置150について図8を参照しながら説明する。
【0156】
この冷却系統検査装置150は、バッテリボックス18内に収容された冷却系統30における複数の冷却用袋24に対して冷却水の代わりに圧縮空気(エア)を供給用導管26と排出用導管28の二つの導管を通じて供給し、冷却用袋24内のエア圧が所定圧力となった時点でエアの供給を停止するエア供給手段152と、前記冷却系統30のエア圧を検出するエア圧検出手段154と、検出されたエア圧(検出信号Vc)をデジタル変換してエア圧データDcとして出力する第1のA/D変換器156と、前記エア供給手段152によるエアの供給が停止された時点から所定時間経過後の冷却系統30のエア圧が所定範囲内にあるかどうかを判別する圧力判別手段158と、該圧力判別手段158での判別結果Ccに応じた制御信号Scを出力する第1の制御信号出力手段160と、セル接続体22の各バッテリセル16から排出される水素ガスの量(流量積算値)を検出する水素ガス検出手段162と、該水素ガス検出手段162からの流量積算値(検出信号Vd)をデジタル変換して流量積算データDdとして出力する第2のA/D変換器164と、前記流量積算値が所定範囲内にあるかどうかを判別する水素ガス判別手段166と、該水素ガス判別手段166での判別結果Cdに応じた制御信号Sdを出力する第2の制御信号出力手段168を有して構成されている。
【0157】
特に、本実施の形態に係る冷却系統検査装置150においては、エア圧検出手段154と圧力判別手段158の組合せ手段として第1のメータリレー装置170を用い、水素ガス検出手段162と水素ガス判別手段166の組合せ手段として第2のメータリレー装置172を用いるようにしている。また、この冷却系統検査装置150においては、図9に示すように、各種手段を制御するためのコントローラ174と、前記バッテリ電圧検査装置100における電源投入制御手段82と同じ構成を有する電源投入制御手段176と、当該冷却系統検査装置150の処理状況を操作者に知らせるための処理状況表示手段178と、前記コントローラ174からの計数指示に基づいて、図示しない基準クロック発生回路(水晶発振器等)からの基準クロックを計数する第1及び第2のタイマ180及び182を有する。
【0158】
これら第1及び第2のタイマ180及び182は、予め設定された時間を前記基準クロックに基づいて計数し、更に、コントローラ174からの計数指示の入力時点から設定時間の計数終了時点にかけて高レベルとするウィンドウパルスPw1及びPw2を出力する。
【0159】
一方、エア供給手段152は、図9に示すように、工場の一次側エアを冷却系統検査装置150内に選択的に取り入れる第1の電磁弁184と、該第1の電磁弁184を通じて取り入れられたエアの圧力をアクチュエータ186からの検出値に基づいて、前記コントローラ174から供給される目標値となるようにフィードバック制御する圧力設定手段(減圧弁等)188と、該圧力設定手段188にて所定圧力に設定されたエアを後段の処理系に選択的に導くための第2の電磁弁190と、該第2の電磁弁190にて導かれたエアを外方への経路又は冷却系統30への経路に選択的に切り換えるエア切換え回路192と、コントローラ174による制御によって第1及び第2の電磁弁184及び190並びにエア切換え回路192をスイッチング制御するスイッチング制御回路194と、導管内に取り付けられ、かつ冷却系統30の圧力に応じたレベルの電気信号(例えば電圧信号)に変換する圧力センサ196を有して構成されている。
【0160】
第1のメータリレー装置170は、圧力センサ196からの電圧信号Vcが供給される第1の入力端子φ18とコントローラ174からのゼロシフト指示信号Seが供給される第2の入力端子φ19と、第1のタイマ180からのウィンドウパルスPw1が供給される第3の入力端子φ20を有し、前記第1の入力端子φ18に供給された電圧信号Vcが出力ラインを通じて後段の第1のA/D変換器156に供給されるように配線接続されている。特に、前記電圧信号Vcの第1のA/D変換器156への出力は、前記ウィンドウパルスPw1の立ち下がり時点において行われるようになっている。この第1のA/D変換器156から出力される電圧データDcは、前記バッテリ電圧検査装置100と同様にホストコンピュータ52に供給されるようになっている。
【0161】
また、この第1のメータリレー装置170は、その測定精度が±0.005kg/cm2 であって、目盛中央が0kg/cm2 とされており、メータ198の非動作状態や動作開始時においては、メータ指針200は、常時目盛中央に位置されるようになっている。
【0162】
更に、この第1のメータリレー装置170は、第2の固定接点φ22が、目盛中央から右回りに所定角度の位置、例えば0.3kg/cm2 に対応する位置に取り付けられ、第1の固定接点φ21が、目盛中央から左回りに所定角度の位置、例えば−0.01kg/cm2 以内の位置に取り付けられている。
【0163】
この第1のメータリレー装置170は、第2の入力端子φ19にゼロシフト指示信号Seが供給されると、メータ198は、メータ指針200を強制的に目盛中央に位置させるようになっている。
【0164】
第1の制御信号出力手段160(図8参照)は、第1のメータリレー装置170における第1の固定接点φ21の出力形態に基づいて第1のメッセージ表示手段202及び第1の警報出力手段204に制御信号を出力する第1のデコーダ206を有する。該第1のデコーダ206は、第1及び第2の入力端子φ23及びφ24と第1及び第2の出力端子φ25及びφ26を有し、例えば以下に示す規則に従った入出力形態となるように内部結線されている。
【0165】
まず、第1及び第2の出力端子φ25及びφ26の電位は、通常、例えば低レベルとされているが、第1の入力端子φ23に第1のタイマ180からウィンドウパルスPw1が供給されている期間において、第1の固定接点φ21を通じて第2の入力端子φ24に高レベル信号が供給された場合に、第1の出力端子φ25から高レベル信号が出力されるようになっている。
【0166】
反対に、前記ウィンドウパルスPw1が供給されている期間において、第1の固定接点φ21から高レベル信号が供給されない場合は、ウィンドウパルスPw1の立ち下がり時点において第2の出力端子φ26から高レベル信号が出力される。これら出力端子φ25及びφ26からの制御信号は、それぞれ第1及び第2の出力ラインL1及びL2を通じて後段の第1のメッセージ表示手段202及び第1の警報出力手段204にそれぞれ並列に供給されるようになっている。
【0167】
第1のメッセージ表示手段202は、第2の出力ラインL2を通じて高レベル信号が供給された場合にOKを示す表示を行い、第1の出力ラインL1を通じて高レベル信号が入力された場合にNGを示す表示を行う。同様に、第1の警報出力手段204は、第2の出力ラインを通じて高レベル信号が入力された場合にOKを示すブザー出力を行い、第1の出力ラインL1を通じて高レベル信号が入力された場合にNGを示すブザー出力を行う。
【0168】
一方、第2のメータリレー装置172は、第2のタイマ182からのウィンドウパルスPw2が供給される入力端子φ27を有するほか、水素ガスの排出導管208が配管され、該排出導管208を通じて排出されるセル接続体22からの水素ガスの流量積算値をメータ指針210にて表示するように構成されている。流量積算値は、流量積算信号Vdとして出力ラインを通じて後段の第2のA/D変換器164に供給され、該第2のA/D変換器164においてデジタル変換されて流量積算データDdとして前記ホストコンピュータ52に供給されるようになっている。特に、前記流量積算信号Vdの第2のA/D変換器164への出力は、入力端子φ27に供給されるウィンドウパルスPw2の立ち下がり時点において行われるようになっている。
【0169】
また、この第2のメータリレー装置172は、1つの固定接点φ28が、水素ガス流量積算値の規格レベルに対応する位置に取り付けられている。
【0170】
第2の制御信号出力手段168(図8参照)は、第2のメータリレー装置172の固定接点φ28の出力形態に基づいて第2のメッセージ表示手段212及び第2の警報出力手段214に制御信号を出力する第2のデコーダ216を有する。
【0171】
この第2のデコーダ216は、前記第1のデコーダ206とほぼ同様の構成を有し、第1及び第2の出力端子φ29及びφ30の電位は、通常、例えば低レベルとされているが、入力端子φ31に第2のタイマ182からウィンドウパルスPw2が供給されている期間において、固定接点φ28を通じて入力端子φ32に高レベル信号が供給された場合に、第1の出力端子φ29から高レベル信号が出力され、反対に、前記ウィンドウパルスPw2が供給されている期間において、固定接点φ28から高レベル信号が供給されない場合は、ウィンドウパルスPw2の立ち下がり時点において第2の出力端子φ30から高レベル信号が出力されるようになっている。これら出力端子φ29及びφ30からの制御信号は、それぞれ第3及び第4の出力ラインL3及びL4を通じて後段の第2のメッセージ表示手段212及び第2の警報出力手段214にそれぞれ並列に供給されるようになっている。
【0172】
また、この冷却系統検査装置150は、第1及び第2のデコーダ206及び216の後段に、これら第1及び第2のデコーダ206及び216からの各種制御信号に基づいて、通信データ(コードデータを含む)Dtを作成して出力する通信データ作成回路218を有する。
【0173】
この通信データ作成回路218は、第1及び第2のデコーダ206及び216から送出される各種制御信号の属性に基づいた通信データDt、例えばバッテリ組立体10を搬送するコンベアに対して搬送を続行するか停止するかあるいは当該バッテリ組立体10を除去するか等の内容を含む通信データDtを作成し、該通信データDtの先頭にバッテリ用コンベア制御装置120に内蔵されている復調回路122にて同期をとるためのシンクデータを付加して後段の変調回路220に出力するように構成されている。
【0174】
変調回路220は、前記通信データ作成回路218からの通信データDtに誤り訂正符号等を付加してバッテリ用コンベア制御装置120に変調通信データmDtを転送する。このバッテリ用コンベア制御装置120の処理動作については後述する。
【0175】
次に、本実施の形態に係る冷却系統検査装置150の処理動作について図10のフローチャートを参照しながら説明する。
【0176】
まず、操作卓にある鍵穴84(図9参照)に電源投入用のキー86を差し込んで例えば右回しして、電源投入のための第1挙動を行う(ステップS201)。この第1挙動によって第1のゲート回路88が開動作する。
【0177】
次に、操作卓にある電源スイッチSWをON操作して、電源投入のための第2挙動を行う(ステップS202)。この第2挙動によって第2のゲート回路90が開動作し、この段階で、冷却系統検査装置150に電源が投入される。また、前記第2のゲート回路90の開動作に伴って電源投入を示す割込み信号Ssが発生し、該割込み信号Ssはコントローラ174に供給される。
【0178】
コントローラ174は、前記割込み信号Ssの入力に基づいて、処理状況表示手段178に電源投入を示す信号を出力する。処理状況表示手段178は、コントローラ174からの前記信号の入力に基づいて電源投入を示す表示を行う。更に、コントローラ174は、前記割込み信号Ssの入力に基づいて、圧力設定手段188に対して目標値(一次側エアの所望圧力を示す値)を出力すると共に、スイッチング制御回路194に一次側エアの供給開始を示す制御信号を出力する。スイッチング制御回路194は、コントローラ174からの前記制御信号の入力に基づいて第1及び第2の電磁弁184及び190に対して開動作するためのスイッチング制御信号を出力し、同時にエア切換え回路192に対して外方への経路を選択すべき内容のスイッチング制御信号を出力する。
【0179】
これによって、工場の一次側エアは、第1の電磁弁184を通じて圧力設定手段188に供給され、該圧力設定手段188において、コントローラ174からの目標値に適合する圧力に設定される(ステップS203)。この圧力設定手段での圧力設定期間、エアは第2の電磁弁190及びエア切換え回路192を通じて外方に排出される。
【0180】
前記圧力設定手段188は、工場からの一次側エアが所定圧力に設定された時点で、コントローラ174に設定完了を示す応答信号を返送する。なお、工場から一次側エアが供給されない等の不具合があった場合は、前記圧力設定手段188は、コントローラ174に対してエラー信号を返送する。
【0181】
コントローラ174は、圧力設定手段188から設定完了を示す応答信号が供給された場合、処理状況表示手段178に対してOKを示す信号を出力し、圧力設定手段188からエラー信号が供給された場合、処理状況表示手段178に対してNGを示す信号を出力する。処理状況表示手段178は、コントローラ174からのOKを示す信号の入力に基づいて運転準備完了を示す表示を行い、コントローラ174からのNGを示す信号の入力に基づいてエア確認を示す表示を行う。
【0182】
次に、操作卓にある運転開始スイッチ222がON操作されることによって(ステップS204)、割込み信号Sfが発生し、該割込み信号Sfはコントローラ174に供給される。コントローラ174は、前記割込み信号Sfの入力に基づいて処理状況表示手段178に運転開始を示す信号を出力する。処理状況表示手段178は、コントローラ174からの運転開始を示す信号の入力に基づいて運転開始を示す表示を行う。
【0183】
また、コントローラ174は、前記運転開始スイッチ222からの割込み信号Sfの入力に基づいて、スイッチング制御回路194にエア加圧を示す制御信号を出力する。スイッチング制御回路194は、コントローラ174からの前記制御信号の入力に基づいてエア切換え回路192に対して冷却系統30への経路を選択すべき内容のスイッチング制御信号を出力する。これによって、冷却系統30へのエア加圧が開始される(ステップS205)。
【0184】
コントローラ174は、前記スイッチング制御回路194への制御信号の出力と同時に、第2のタイマ182に対して計数指示信号Sg2を出力する。第2のタイマ182は、コントローラ174からの前記計数指示信号Sg2の入力に基づいて作動し、予め設定された時間を計数する(ステップS206)。
【0185】
この段階で、第1及び第2のメータリレー装置170及び172が作動し(ステップS207)、冷却系統30のエア圧及び水素ガスの排出量が検出される。
【0186】
冷却系統30へのエア供給によって、圧力センサ196から出力される検出信号Vcのレベルが上昇し、これに伴って、メータ指針200が前記検出信号Vcのレベルに応じて目盛中央から右側に回転する。このとき、前記メータ指針200の動きが操作者によって観察されることによって、冷却系統30へのエア加圧が確認される(ステップS208)。
【0187】
そして、メータ指針200が0.3kg/cm2 を指した時点で、第2の固定接点φ22から高レベル信号が出力され、コントローラ174に供給される。コントローラ174は、前記第2の固定接点φ22からの高レベル信号の入力に基づいて、スイッチング制御回路194に加圧停止を示す制御信号を出力する。スイッチング制御回路194は、前記制御信号の入力に基づいて、エア切換え回路192に対して外方への経路を選択すべき内容のスイッチング制御信号を出力する。
【0188】
これによって、冷却系統30へのエア供給が停止されて、エアは外方に排出されることになる。即ち、エア加圧が停止され(ステップS209)、この段階で、冷却系統のエア圧はほぼ0.3kg/cm2 となる。
【0189】
前記コントローラ174は、前記第2の固定接点φ22からの高レベル信号の入力に基づいて、第1のメータリレー装置170に対してゼロシフト指示信号Seを出力すると同時に、第1のタイマ180に対して計数指示信号Sg1を出力する。第1のメータリレー装置170は、前記ゼロシフト指示信号Seの入力に基づいてメータ指針200を強制的に目盛中央に位置させる(ステップS210)。一方、第1のタイマ180は、コントローラ174からの前記計数指示信号Sg1の入力に基づいて作動し、予め設定された時間を計数する(ステップS211)。
【0190】
そして、第1のタイマ180での所定時間の計数期間において、冷却系統30のエア漏れに関するOK/NGが判別され、第2のタイマ182での所定時間の計数期間において、水素ガスの排出に関するOK/NGが判別される(ステップS212)。
【0191】
具体的には、冷却系統30にエア漏れがあった場合、第1のメータリレー装置170におけるメータ指針200は、目盛中央から左側に回転することになるが、第1のタイマ180での計数時間内において、0.01kg/cm2 以上のエア漏れがあった場合、前記メータ指針200が第1の固定接点φ21よりも左側に回転することになるため、該第1の固定接点φ21から高レベル信号が出力され、第1のメッセージ表示手段202を通じてNGを示す表示がなされ、第1の警報出力手段204を通じてNGを示すブザー出力がなされる。
【0192】
反対に、冷却系統30にエア漏れがない場合は、前記メータ指針200はほぼ目盛中央に位置することになる。この場合、第1のタイマ180の計数期間内において、第1の固定接点φ21からは高レベル信号が出力されないことから、第1のメッセージ表示手段202を通じてOKを示す表示がなされ、第1の警報出力手段204を通じてOKを示すブザー出力がなされる。
【0193】
一方、セル接続体22から水素ガスが排出される場合、第2のメータリレー装置172におけるメータ指針210は、右側に回転することになるが、第2のタイマ182での計数時間内において、水素ガスが規定以上排出された場合、前記メータ指針210が固定接点φ28よりも右側に回転することになるため、該固定接点φ28から高レベル信号が出力され、第2のメッセージ表示手段212を通じてNGを示す表示がなされ、第2の警報出力手段214を通じてNGを示すブザー出力がなされる。
【0194】
反対に、第2のタイマ182での計数時間内において、水素ガスの排出量が規定内である場合は、前記メータ指針210が固定接点φ28よりも左側に位置することになるため、第2のタイマ182の計数期間内において、固定接点φ28からは高レベル信号が出力されないことから、第2のメッセージ表示手段212を通じてOKを示す表示がなされ、第2の警報出力手段214を通じてOKを示すブザー出力がなされる。
【0195】
そして、前記第1のタイマ180からのウィンドウパルスPw1の立ち下がりに基づいて、前記第1のメータリレー装置170からの電圧信号Vcが出力ラインを通じて第1のA/D変換器156に供給されて、デジタルのエア圧データDcに変換されてホストコンピュータ52に転送される。また、前記第2のタイマ182からのウィンドウパルスPw2の立ち下がりに基づいて、前記第2のメータリレー装置172からの流量積算信号Vdが出力ラインを通じて第2のA/D変換器164に供給されて、デジタルの流量積算データDdに変換されてホストコンピュータ52に転送される(ステップS213)。ホストコンピュータ52は、転送されたエア圧データDc及び流量積算データDdを図示しないデータRAMに論理的に割り付けられたバッファに格納する。このバッファに格納された圧力データDc及び流量積算データDdは、ホストコンピュータ52内のソフトウェアを通じてデータRAMに展開されているバッテリ組立体10に関する履歴管理テーブルの対応レコードや種々のデータ処理用格納領域に格納されて、バッテリ組立体10の履歴管理(水漏れ情報及び水素ガスに関する履歴管理等)や種々のデータ処理に供される。
【0196】
また、前記メッセージ表示及び警報出力と同時に、通信データ作成回路218にて前記第1及び第2のデコーダ206及び216から出力される各種制御信号の属性に応じた通信データDtが作成される。該通信データDtは、後段の変調回路220を通じてバッテリ用コンベア制御装置120に出力される(ステップS214)。
【0197】
この段階で、本実施の形態に係る冷却系統検査装置150による1つのバッテリ組立体10についての冷却系統30の検査が終了する。
【0198】
このように、本実施の形態に係る冷却系統検査装置150においては、バッテリ組立体単位に冷却系統30を検査することができ、しかも、その検査結果をデジタルデータ(エア圧データDc及び流量積算データDd)として出力できることから、ホストコンピュータ52でのデータ処理が容易になり、また、バッテリ組立体単位に正常/不良の判別ができ、バッテリ組立体10の後段の処理ラインへの投入/排除を容易に制御することができる。
【0199】
これは、バッテリ組立体10に対する冷却系統検査の全自動化を実現できることにつながり、電気自動車用バッテリの量産化に十分対応することができる。
【0200】
特に、本実施の形態に係る冷却系統検査装置150においては、工場の一次側エアの圧力が設定圧力となった段階で冷却系統30にエアを供給するように構成するようにしたので、冷却系統30におけるすべての冷却用袋24に対してエアの供給を安定に行うことができ、信頼性の高い検査結果を得ることができる。
【0201】
次に、前記実施の形態に係るセル電圧検査装置40、バッテリ電圧検査装置100及び冷却系統検査装置150と、バッテリセル16を搬送するセル用コンベア装置250、バッテリ組立体10を搬送するバッテリ用コンベア装置252とが有機的に結合された本実施の形態に係る検査システム254について図11を参照しながら説明する。
【0202】
図11に示すように、この実施の形態に係る検査システム254のうち、セル用コンベア装置250は、前工程(バッテリセル組立工程)にて作製されたバッテリセル16をセル電圧検査装置40側に搬送するセル用コンベア256と、NGとして認定されたバッテリセル16を除去するためのNG用コンベア258と、OKとして認定されたバッテリセル16を次の検査工程に搬送するOK用コンベア260と、セル電圧検査装置40からの通信データの内容(特にOK/NG情報)に基づいて、バッテリセル16をNG用コンベア258とOK用コンベア260に振り分ける第1の振分け機構262を有して構成されている。
【0203】
前記セル用コンベア装置250の後段には、バッテリセル16をグループ毎にストックするための複数のストック設備264a〜264nが設置され、前記セル用コンベア装置250とストック設備264a〜264nとの間には、前記OK用コンベア260によって搬送されたバッテリセル16をセル電圧検査装置40からの通信データの内容(グループ情報)に基づいて対応するストック設備264a〜264nに振り分ける第2の振分け機構266が設置されている。
【0204】
前記セル用コンベア256、NG用コンベア258及びOK用コンベア260の駆動制御は、前記セル電圧検査装置40からの通信データに基づいて、セル用コンベア制御装置74によって行われ、前記第1の振分け機構262でのバッテリセル16の振分け並びに前記第2の振分け機構266でのグループ単位の振分けも前記セル用コンベア制御装置74を通じて行われる。
【0205】
各ストック設備264a〜264nの後段にはそれぞれ組立ライン268a〜268nが設置されている。各組立ライン268a〜268nには、対応するストック設備264a〜264nから所定個数(この例では24個)のバッテリセル16を取り出してバッテリ組立体10に組み立てる設備を有する。各組立ライン268a〜268nの後段には、出来上がったバッテリ組立体10を一時保管するバッテリストック設備270が設置され、該バッテリストック設備270の後段には、該バッテリストック設備270から1個ずつ取り出されたバッテリ組立体10を搬送するためのバッテリ用コンベア装置252が設置されている。
【0206】
このバッテリ用コンベア装置252は、出来上がったバッテリ組立体10を検査工程に搬送するためのバッテリ用コンベア272と、NGとして認定されたバッテリ組立体10を除去するためのNG用コンベア274と、OKとして認定されたバッテリ組立体10を次の組付け工程(車体への組付け工程)に搬送するOK用コンベア276と、バッテリ電圧検査装置100からの通信データの内容(特にOK/NG情報)に基づいて、バッテリ組立体10をNG用コンベア274とOK用コンベア276に振り分ける振分け機構278を有して構成されている。
【0207】
前記バッテリ用コンベア272、NG用コンベア274及びOK用コンベア276の駆動制御は、バッテリ用コンベア制御装置120によって行われ、前記振分け機構278でのバッテリ組立体10の振分けも前記バッテリ用コンベア制御装置120を通じて行われる。
【0208】
次に、本実施の形態に係る検査システム254の処理動作について説明する。まず、前工程であるバッテリセル組立工程にて作製されたバッテリセル16は、セル用コンベア256によってセル電圧検査装置40側に搬送される。バッテリセル16がセル電圧検査装置40での検査位置まで搬送された段階で、セル用コンベア制御装置74による制御によって、セル用コンベア256は一旦停止される。この段階からバッテリセル16に対するセル電圧検査装置40による放電電圧の検査が行われる。
【0209】
セル電圧検査装置40での検査中において、検査対象のバッテリセル16の放電電圧値(電圧データDa)がホストコンピュータ52に転送され、OK/NGの検査結果を含む変調通信データmDtがセル用コンベア制御装置74に転送される。
【0210】
前記放電電圧値のホストコンピュータ52への転送及び変調通信データmDtのセル用コンベア制御装置74への転送が完了した段階で、セル用コンベア制御装置74による制御によって、再びセル用コンベア256は駆動される。これによって、検査の終了した前記バッテリセル16は、第1の振分け機構262側に搬送される。
【0211】
第1の振分け機構262にバッテリセル16が搬送された段階で、セル用コンベア制御装置74からの制御(変調通信データmDtの解読に伴う制御)によって、OK用コンベア260あるいはNG用コンベア258に振り分けられる。NG用コンベア258に振り分けられたバッテリセル16は、該NG用コンベア258による搬送駆動によって当該検査システム254から除去される。一方、OK用コンベア260に振り分けられたバッテリセル16は、該OK用コンベア260による搬送駆動によって第2の振分け機構266に搬送される。第2の振分け機構266にバッテリセル16が搬送された段階で、セル用コンベア制御装置74からの制御によって、各ストック設備264a〜264nのうち、通信データDtに含まれるグループ番号に対応したストック設備に搬送される。
【0212】
各組立ライン268a〜268nにおいては、対応するストック設備から24個のバッテリセル16を取り出して1つのバッテリ組立体10を作製する。作製されたバッテリ組立体10は、バッテリストック設備270内に一時的に保管される。
【0213】
そして、前記バッテリストック設備270から1個ずつ取り出されたバッテリ組立体10は、バッテリ用コンベア装置252におけるバッテリ用コンベア272によって冷却系統検査装置150側に搬送される。バッテリ組立体10が冷却系統検査装置150での検査位置まで搬送された段階で、バッテリ用コンベア制御装置120による制御によって、バッテリ用コンベア272は一旦停止される。この段階からバッテリ組立体10に対する冷却系統検査装置150による冷却系統30の検査(水漏れ及び水素ガス量の検査)が行われる。
【0214】
冷却系統検査装置150での検査中において、検査対象のバッテリ組立体10のエア圧データDc及び水素ガスの流量積算データDdがホストコンピュータ52に転送され、OK/NGの検査結果を含む変調通信データmDtがバッテリ用コンベア制御装置120に転送される。なお、この例では、冷却系統検査装置150からの変調通信データmDtに含まれるOK/NG情報は、後段の振分け機構278での制御には用いられない。
【0215】
少なくとも前記エア圧データDc及び水素ガスの流量積算データDdのホストコンピュータ52への転送が完了した段階で、バッテリ用コンベア制御装置120による制御によって、再びバッテリ用コンベア272は駆動され、前記冷却系統30の検査が終了したバッテリ組立体10は、次のバッテリ電圧検査装置100側に搬送される。
【0216】
バッテリ組立体10がバッテリ電圧検査装置100での検査位置まで搬送された段階で、バッテリ用コンベア制御装置120による制御によって、バッテリ用コンベア272は一旦停止される。この段階からバッテリ組立体10に対するバッテリ電圧検査装置100による放電電圧の検査が行われる。
【0217】
バッテリ電圧検査装置100での検査中において、検査対象のバッテリ組立体10の放電電圧データDcがホストコンピュータ52に転送され、OK/NGの検査結果を含む変調通信データmDtがバッテリ用コンベア制御装置120に転送される。
【0218】
前記放電電圧データDcのホストコンピュータ52への転送及び変調通信データmDtのバッテリ用コンベア制御装置120への転送が完了した段階で、バッテリ用コンベア制御装置120による制御によって、再びバッテリ用コンベア272は駆動され、放電電圧検査の終了したバッテリ組立体10は、振分け機構278側に搬送される。
【0219】
振分け機構278にバッテリ組立体10が搬送された段階で、バッテリ用コンベア制御装置120からの制御(変調通信データmDtの解読に伴う制御)によって、OK用コンベア276あるいはNG用コンベア274に振り分けられる。NG用コンベア274に振り分けられたバッテリ組立体10は、該NG用コンベア274による搬送駆動によって当該検査システム254から除去されて修正工程に投入される。一方、OK用コンベア276に振り分けられたバッテリ組立体10は、該OK用コンベア276による搬送駆動によって後段の車体組付け工程に投入される。
【0220】
このように、本実施の形態に係る検査システム254においては、バッテリセル16に対する放電電圧検査結果(OK/NG情報)に基づいて、バッテリセル16を自動的に除去あるいは次の検査工程に振り分けることができ、検査工程の全自動化を促進させることができる。
【0221】
また、OKとして認定されたバッテリセル16をグループ分けして、それぞれ対応するストック設備に投入するようにしているため、各ストック設備ごとに設けられた組立ラインを通じ、放電特性がほぼ同じとされたバッテリセル16にて1つのバッテリ組立体10を作製することができ、電気自動車用バッテリとした場合のバッテリ性能及び寿命の改善を図ることができる。
【0222】
特に、前記検査システム254においては、グループ数に対応した数の組立ラインでの組立作業がそれぞれ並行して行われるため、納期短縮を実現することができ、しかも、各組立ラインにおいて、それぞれのグループに適合したバッテリセル16が多数直列接続されてバッテリ組立体10が作製されることになるため、バッテリ性能がよく、長寿命の電気自動車用バッテリを簡単に作製することが可能となる。
【0223】
即ち、本実施の形態に係る検査システム254におけるセル電圧検査装置40及びバッテリ電圧検査装置100は、以下に示す効果を得ることができる。
【0224】
(1) 検査範囲(OK/NG)が任意に設定できる。
【0225】
(2) 検査結果の判定が自動でできる。
【0226】
(3) 検査結果をランプ表示及びブザーで作業者に知らせることができる。
【0227】
(4) 検査結果(OK/NG)を接点出力し、自動機又はコンベアとインターロックをとり、OK品とNG品の自動振分けができる。
【0228】
(5) 検査結果(データ)をホストコンピュータ52に送りデータ管理ができる。
【0229】
(6) バッテリ電圧検査装置100においては、手動検査時において両手起動とすることができるため、高電圧との接触が無くなる。
【0230】
(7) 組立工場内にて使用でき、検査時に他の作業者に高電圧(288V)の検査中であることを知らせることができる。
【0231】
(8) 検査結果(OK/NG)を0.1V単位で任意に設定することができ、組立途中の作業不具合、例えば1個のみ逆接続されている場合や接続端子の締め忘れ等を確実に判定できる。
【0232】
(9) バッテリボックス18にコンタクタボックス102が組み込まれているため、コンタクタ作動用信号も同時に出力できる。
【0233】
また、本実施の形態に係る検査システム254における冷却系統検査装置150は、以下に示す効果を得ることができる。
【0234】
(1) 検査範囲(OK/NG)が任意に設定できる。
【0235】
(2) 検査結果の判定が自動でできる。
【0236】
(3) 検査結果をランプ表示及びブザーで作業者に知らせることができる。
【0237】
(4) 検査結果(OK/NG)を接点出力し、自動機又はコンベアとインターロックをとり、OK品とNG品の自動振分けができる。
【0238】
(5) 検査結果(データ)をホストコンピュータ52に送りデータ管理ができる。
【0239】
(6) 検査対象(冷却系統30)の内容積が温度等によって変化しやすいが、水漏れ判定時間を任意に設定することができるため、前記温度変化による誤差を吸収することができる。
【0240】
(7) 組立工場内にて使用でき、工場の一次側エアを圧力設定手段188での二段減圧等によって安定化させることができる。
【0241】
(8) 測定精度±0.005kg/cm2 の第1のメータリレー装置170を使用するようにしているため、内容積が温度等によって変化しやすく、水漏れ検査が困難な検査対象(冷却用袋24)に対応可能である。
【0242】
なお、この発明は上述の実施の形態に限らず、この発明の要旨を逸脱することなく種々の構成を採り得ることはもちろんである。
【0243】
【発明の効果】
以上説明したように、本発明に係る電気自動車用バッテリの検査装置によれば、バッテリセル単位に電圧値を検出することができ、しかも、該検出電圧をデジタルデータとして出力できることから、コンピュータでのデータ処理が容易になり、また、バッテリセル単位に正常/不良の判別ができ、バッテリセルの組立ラインへの投入/排除を容易に制御することができる。
【0244】
これは、バッテリセルに対する電圧検査の全自動化を実現できることにつながり、電気自動車用バッテリの量産化に十分対応することができるという効果が達成される。
【0245】
また、本発明に係る電気自動車用バッテリの検査装置によれば、バッテリ組立体単位に電圧値を検出することができ、しかも、該検出電圧をデジタルデータとして出力できることから、コンピュータでのデータ処理が容易になり、また、バッテリ組立体単位に正常/不良の判別ができ、バッテリ組立体の後段の処理ラインへの投入/排除を容易に制御することができる。
【0246】
これは、バッテリ組立体に対する電圧検査の全自動化を実現できることにつながり、電気自動車用バッテリの量産化に十分対応することができるという効果が達成される。
【0247】
また、本発明に係る電気自動車用バッテリの検査装置によれば、バッテリ組立体単位に冷却系統を検査することができ、しかも、その検査結果をデジタルデータとして出力できることから、コンピュータでのデータ処理が容易になり、また、バッテリ組立体単位に正常/不良の判別ができ、バッテリ組立体の後段の処理ラインへの投入/排除を容易に制御することができる。
【0248】
これは、バッテリ組立体に対する冷却系統検査の全自動化を実現できることにつながり、電気自動車用バッテリの量産化に十分対応することができるという効果が達成される。
【0249】
また、本発明に係る電気自動車用バッテリの検査システム及び検査方法によれば、バッテリセル単位の電圧値、バッテリ組立体単位の電圧値並びにバッテリ組立体単位の冷却系統を検査することができ、しかも、該検出電圧、エア圧等をデジタルデータとして出力できることから、コンピュータでのデータ処理が容易になり、また、バッテリセル単位、バッテリ組立体単位に正常/不良の判別ができ、バッテリセルの組立ラインへの投入/排除並びにバッテリ組立体の組立ラインへの投入/排除を容易に制御することができる。
【0250】
これは、バッテリセルに対する電圧検査、バッテリ組立体に対する電圧検査、バッテリ組立体に対する冷却系統の検査の全自動化を実現できることにつながり、電気自動車用バッテリの量産化に十分対応することができるという効果が達成される。
【図面の簡単な説明】
【図1】本実施の形態に係るセル電圧検査装置、バッテリ電圧検査装置及び冷却系統検査装置での検査対象であるバッテリセル、バッテリ組立体及びその冷却系統の構成を一部破断して示す分解斜視図である。
【図2】本実施の形態に係るセル電圧検査装置を示す概略構成図である。
【図3】本実施の形態に係るセル電圧検査装置の一具体例を示す構成図である。
【図4】本実施の形態に係るセル電圧検査装置の処理動作を示すフローチャートである。
【図5】本実施の形態に係るバッテリ電圧検査装置を示す概略構成図である。
【図6】本実施の形態に係るバッテリ電圧検査装置の一具体例を示す構成図である。
【図7】本実施の形態に係るバッテリ電圧検査装置の処理動作を示すフローチャートである。
【図8】本実施の形態に係る冷却系統検査装置を示す概略構成図である。
【図9】本実施の形態に係る冷却系統検査装置の一具体例を示す構成図である。
【図10】本実施の形態に係る冷却系統検査装置の処理動作を示すフローチャートである。
【図11】本実施の形態に係る検査システムを示す構成図である。
【符号の説明】
10…バッテリ組立体 16…バッテリセル
18…バッテリボックス 22…セル接続体
24…冷却用袋 26…供給用導管
28…排出用導管 30…冷却系統
40…セル電圧検査装置 42…電圧検査回路
44…A/D変換器 46…判別手段
48…制御信号出力手段 50…メータリレー装置
52…ホストコンピュータ 66…振分けデータ作成回路
68…通信データ作成回路 70…メッセージ表示手段
72…警報出力手段 74…セル用コンベア制御装置
80…処理状況表示手段 100…バッテリ電圧検査装置
102…コンタクタボックス 108…スイッチング制御回路
110…電圧検出回路 112…A/D変換器
114…判別手段 116…制御信号出力手段
SW1及びSW2…第1及び第2の手動スイッチ
118…メータリレー装置 120…バッテリ用コンベア制御装置
150…冷却系統検査装置 152…エア供給手段
154…エア圧検出手段 156…第1のA/D変換器
158…圧力判別手段 160…第1の制御信号出力手段
162…水素ガス検出手段 164…第2のA/D変換器
166…水素ガス判別手段 168…第2の制御信号出力手段
170…第1のメータリレー装置 172…第2のメータリレー装置
174…コントローラ 178…処理状況表示手段
180及び182…第1及び第2のタイマ
188…圧力設定手段 196…圧力センサ

Claims (11)

  1. バッテリボックス内に多数のバッテリセルが直列に接続されて収容されたバッテリ組立体における各バッテリセルの電圧を検査する電気自動車用バッテリの検査装置において、
    前記各バッテリセルの正極及び負極が接続される2つの端子を有し、該2つの端子に前記バッテリセルの正極及び負極が接続され、且つ、外部電源が投入されることによって前記バッテリセルの正極と負極間のセル電圧を検出するセル電圧検出手段と、
    前記セル電圧検出手段への前記外部電源の投入を制御する電源投入制御手段と、
    前記セル電圧検出手段にて検出された前記セル電圧をデジタル変換して電圧データとして出力するA/D変換器と、
    前記セル電圧検出手段にて検出された前記セル電圧が所定範囲内にあるかどうかを判別するセル電圧判別手段と、
    前記セル電圧判別手段での判別結果に応じた制御信号を出力する制御信号出力手段とを有し、
    前記電源投入制御手段は、複数の手動の電源用スイッチと、該複数の手動の電源用スイッチが同時にON動作されたときに、前記外部電源を前記セル電圧検出手段に投入するゲート回路とを有することを特徴とする電気自動車用バッテリの検査装置。
  2. 請求項1記載の電気自動車用バッテリの検査装置において、
    前記制御信号出力手段は、
    前記セル電圧判別手段にて不良と判別された場合に除去指示信号を出力し、前記セル電圧判別手段にて正常と判別された場合に前記セル電圧検出手段にて検出された前記セル電圧に基づいて前記バッテリセルをグループ分けするための振分け制御信号を作成し、出力することを特徴とする電気自動車用バッテリの検査装置。
  3. バッテリボックス内に多数のバッテリセルが直列に接続されて収容されたバッテリ組立体の電圧を検査する電気自動車用バッテリの検査装置において、
    前記バッテリ組立体の正極及び負極がそれぞれ接続される2つの端子を有し、且つ、前記バッテリ組立体の正極と負極間のバッテリ電圧を検出するバッテリ電圧検出手段と、
    検出された前記バッテリ電圧をデジタル変換してバッテリ電圧データとして出力するA/D変換器と、
    検出された前記バッテリ電圧が所定範囲内にあるかどうかを判別するバッテリ電圧判別手段と、
    前記バッテリ電圧判別手段での判別結果に応じた制御信号を出力する制御信号出力手段と、
    複数の手動の接続用スイッチと、
    前記複数の手動の接続用スイッチが同時にON動作されたときに、前記バッテリ電圧検出手段での前記バッテリ組立体の正極及び負極と前記2つの端子との電気的接続を行うスイッチング制御回路とを有することを特徴とする電気自動車用バッテリの検査装置。
  4. バッテリボックス内に多数のバッテリセルが直列に接続されて収容されたバッテリ組立体の検査システムにおいて、
    前記バッテリセルの正極と負極間のセル電圧を検出するセル電圧検出手段と、検出されたセル電圧をデジタル変換してセル電圧データとして出力するA/D変換器と、検出された前記セル電圧が所定範囲内にあるかどうかを判別するセル電圧判別手段と、前記セル電圧判別手段での判別結果に応じた制御信号を出力する制御信号出力手段を具備したセル電圧検査装置と、
    前記セル電圧検査装置における前記制御信号出力手段からの制御信号の属性に基づいて前記バッテリセルの組立ラインへの投入/排除を切替え制御するセル搬送制御装置と、
    前記バッテリ組立体の正極及び負極がそれぞれ接続される2つの端子を有し、且つ、前 記バッテリ組立体の正極と負極間のバッテリ電圧を検出するバッテリ電圧検出手段と、検出された前記バッテリ電圧をデジタル変換してバッテリ電圧データとして出力するA/D変換器と、検出された前記バッテリ電圧が所定範囲内にあるかどうかを判別するバッテリ電圧判別手段と、前記バッテリ電圧判別手段での判別結果が不良判別の場合に除去指示信号を出力し、前記判別結果が正常判別の場合に搬送指示信号を出力する制御信号出力手段を有するバッテリ電圧検査装置とを有し、
    前記バッテリ電圧検査装置は、複数の手動の接続用スイッチと、該複数の手動の接続用スイッチが同時にON動作されたときに、前記バッテリ電圧検出手段での前記バッテリ組立体の正極及び負極と前記2つの端子との電気的接続を行うスイッチング制御回路とを有することを特徴とする電気自動車用バッテリの検査システム。
  5. 請求項記載の電気自動車用バッテリの検査システムにおいて、
    前記バッテリ組立体の冷却系統を検査する装置であって、かつ、前記冷却系統が、前記複数のバッテリセルを一冷却単位としたとき、一冷却単位ごとに冷却用袋が配置され、これら冷却用袋に冷却水を循環させるための導管を有し、前記冷却用袋に前記冷却水の代わりにエアを前記導管を通じて供給し、前記冷却用袋内のエア圧が所定圧力となった時点で前記エアの供給を停止するエア供給手段と、前記冷却用袋内のエア圧を検出するエア圧検出手段と、検出されたエア圧をデジタル変換してエア圧データとして出力するA/D変換器と、前記エア供給手段による前記エアの供給が停止された時点から所定時間経過後のエア圧が所定範囲内にあるかどうかを判別する圧力判別手段と、不良判別の場合に除去指示信号を出力し、正常判別の場合に搬送指示信号を出力する制御信号出力手段を有する冷却系統検査装置が設置されていることを特徴とする電気自動車用バッテリの検査システム。
  6. 請求項記載の電気自動車用バッテリの検査システムにおいて、
    前記エア供給手段は、供給前のエアの圧力が所定圧力となった段階で冷却用袋にエアを供給することを特徴とする電気自動車用バッテリの検査システム。
  7. 請求項のいずれか1項に記載の電気自動車用バッテリの検査システムにおいて、
    前記制御信号出力手段からの除去指示信号に基づいて前記バッテリ組立体を除去し、前記制御信号出力手段からの搬送指示信号に基づいて前記バッテリ組立体を後段の処理ラインに搬送するバッテリ搬送手段を有することを特徴とする電気自動車用バッテリの検査システム。
  8. バッテリボックス内に多数のバッテリセルが直列に接続されて収容された電気自動車用バッテリの検査方法において、
    前記各バッテリセルの正極及び負極間のセル電圧を検出し、検出された前記セル電圧をデジタル変換してセル電圧データとし、検出された前記セル電圧が所定範囲内にあるかどうかを判別し、前記判別結果に基づいて前記バッテリセルの組立ラインへの投入/排除を切替えるステップと、
    前記バッテリボックス内に多数のバッテリセルが直列に接続されて収容されたバッテリ組立体の正極及び負極間のバッテリ電圧を検出し、検出された前記バッテリ電圧をデジタル変換してバッテリ電圧データとし、検出された前記バッテリ電圧が所定範囲内にあるかどうかを判別するバッテリ電圧検査ステップを有し、
    前記バッテリ電圧検査ステップは、
    複数の手動の接続用スイッチを有し、該複数の手動の接続用スイッチが同時にON動作したときに初めて、前記バッテリ組立体の正極及び負極間の前記バッテリ電圧の検出が可能となる保護回路を使用することを特徴とする電気自動車用バッテリの検査方法。
  9. 請求項記載の電気自動車用バッテリの検査方法において、
    前記バッテリ組立体の冷却系統を検査するステップであって、かつ、前記冷却系統が、前記複数のバッテリセルを一冷却単位としたとき、一冷却単位ごとに冷却用袋が配置され、これら冷却用袋に冷却水を循環させるための導管を有し、前記冷却用袋に前記冷却水の代わりにエアを前記導管を通じて供給し、前記冷却用袋内のエア圧が所定圧力となった時点で前記エアの供給を停止し、前記冷却用袋内のエア圧を検出し、検出された前記エア圧をデジタル変換してエア圧データとし、前記エアの供給が停止された時点から所定時間経過後のエア圧が所定範囲内にあるかどうかを判別する冷却系統検査ステップを有することを特徴とする電気自動車用バッテリの検査方法。
  10. 請求項記載の電気自動車用バッテリの検査方法において、
    前記冷却系統検査ステップは、供給前のエアの圧力が所定圧力となった段階で冷却用袋にエアを供給することを特徴とする電気自動車用バッテリの検査方法。
  11. 請求項10のいずれか1項に記載の電気自動車用バッテリの検査方法において、
    前記判別結果が不良の場合に前記バッテリ組立体を除去し、前記判別結果が正常の場合に前記バッテリ組立体を後段の処理ラインに搬送することを特徴とする電気自動車用バッテリの検査方法。
JP05966797A 1997-03-13 1997-03-13 電気自動車用バッテリの検査装置、電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法 Expired - Fee Related JP3993658B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP05966797A JP3993658B2 (ja) 1997-03-13 1997-03-13 電気自動車用バッテリの検査装置、電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法
JP2005315988A JP4427503B2 (ja) 1997-03-13 2005-10-31 電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法
JP2005317293A JP4427504B2 (ja) 1997-03-13 2005-10-31 電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP05966797A JP3993658B2 (ja) 1997-03-13 1997-03-13 電気自動車用バッテリの検査装置、電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法
JP2005315988A JP4427503B2 (ja) 1997-03-13 2005-10-31 電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法
JP2005317293A JP4427504B2 (ja) 1997-03-13 2005-10-31 電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2005317293A Division JP4427504B2 (ja) 1997-03-13 2005-10-31 電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法
JP2005315988A Division JP4427503B2 (ja) 1997-03-13 2005-10-31 電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法

Publications (2)

Publication Number Publication Date
JPH10253723A JPH10253723A (ja) 1998-09-25
JP3993658B2 true JP3993658B2 (ja) 2007-10-17

Family

ID=53871723

Family Applications (3)

Application Number Title Priority Date Filing Date
JP05966797A Expired - Fee Related JP3993658B2 (ja) 1997-03-13 1997-03-13 電気自動車用バッテリの検査装置、電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法
JP2005317293A Expired - Fee Related JP4427504B2 (ja) 1997-03-13 2005-10-31 電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法
JP2005315988A Expired - Fee Related JP4427503B2 (ja) 1997-03-13 2005-10-31 電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2005317293A Expired - Fee Related JP4427504B2 (ja) 1997-03-13 2005-10-31 電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法
JP2005315988A Expired - Fee Related JP4427503B2 (ja) 1997-03-13 2005-10-31 電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法

Country Status (1)

Country Link
JP (3) JP3993658B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133432A (zh) * 2019-05-10 2019-08-16 大族激光科技产业集团股份有限公司 一种电芯正负极检验设备及其方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2915320B1 (fr) * 2007-04-19 2010-10-22 Socite De Vehicules Electr Batterie electrique comprenant des modules de conditionnement thermique enrobes par une matrice structurelle
JP2009054297A (ja) * 2007-08-23 2009-03-12 Toshiba Corp 電池パック
JP2010040345A (ja) * 2008-08-06 2010-02-18 Sanyo Electric Co Ltd バッテリーシステム
JP5396094B2 (ja) * 2009-02-09 2014-01-22 三菱自動車工業株式会社 バッテリパックの検査システム
JP5234282B2 (ja) * 2009-02-09 2013-07-10 三菱自動車工業株式会社 バッテリパックの検査装置
KR101329129B1 (ko) * 2012-06-19 2013-11-14 (주)한국엘에스아이 배터리가 적용된 시스템의 양산테스트를 위한 전원 제어장치
JP5761537B2 (ja) * 2013-10-17 2015-08-12 三菱自動車工業株式会社 バッテリパックの検査システム
CN104076295B (zh) * 2014-07-22 2016-09-14 重庆大学 新能源燃料电池电动车气压值信号的实时监控方法
CN105244515B (zh) * 2015-08-27 2017-10-17 苏州市博得立电源科技有限公司 一种新型电池供电盒
KR101771014B1 (ko) * 2015-12-22 2017-08-24 한화첨단소재 주식회사 전기자동차 배터리커버의 에어리크 검출 및 검출결과의 출력을 위한 장치 및 방법
CN106707072B (zh) * 2017-03-07 2023-06-06 上海同湛新能源科技有限公司 新能源汽车下线检测的高压安全保护系统
KR102232191B1 (ko) * 2019-12-11 2021-03-25 주식회사 유라코퍼레이션 페일 세이프티 기능을 갖는 스위치 제어 시스템 및 방법
KR20220020123A (ko) * 2020-08-11 2022-02-18 주식회사 엘지에너지솔루션 배터리 셀들의 등급 판정 및 배터리 모듈에 대한 탑재 공정을 통합 수행하기 위한 배터리 셀의 공정 자동화 장치
CN113834982B (zh) * 2021-08-20 2023-06-02 南通新江海动力电子有限公司 一种芯包组在线耐久性检测装置及方式
GB2620790A (en) * 2022-07-22 2024-01-24 Autocraft Solutions Group Ltd Battery servicing system and battery servicing method
CN117269785B (zh) * 2023-11-23 2024-04-02 广东省锐驰新能源科技有限公司 一种基于数据分析的锂电池组多模式测试监管系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133432A (zh) * 2019-05-10 2019-08-16 大族激光科技产业集团股份有限公司 一种电芯正负极检验设备及其方法

Also Published As

Publication number Publication date
JPH10253723A (ja) 1998-09-25
JP4427503B2 (ja) 2010-03-10
JP2006117241A (ja) 2006-05-11
JP4427504B2 (ja) 2010-03-10
JP2006184272A (ja) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4427503B2 (ja) 電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法
JP6136679B2 (ja) 蓄電装置及び電力経路開閉装置
US20190154763A1 (en) High capacity battery balancer
US6236226B1 (en) Test method and system for uninterruptible power supply
EP1146345A1 (en) Multiplex voltage measurement apparatus
CN103323809A (zh) 一种电能表测试设备
JP4827624B2 (ja) バッテリ劣化監視システム
KR20120027575A (ko) 항공기용 전자부품의 휴대용 시험장치
US7804427B1 (en) Device and method for automatic reset of encoder
JP2004336970A (ja) 無停電電源装置
JP2694345B2 (ja) 検査装置
JP4872766B2 (ja) 無停電電源設備
JP2782601B2 (ja) 電源制御障害分離指示装置
US20130173080A1 (en) Programmable controller system
JP6365725B2 (ja) 蓄電装置及び電力経路開閉装置
JPH10189059A (ja) バッテリーの充放電検査方法及び充放電用接触ピン装置
JP2002247778A (ja) 充電装置
CN214374995U (zh) 用于车载多媒体设备的故障检测装置及车辆
CN203365670U (zh) 电能表测试设备
KR20070045429A (ko) 배전자동화 개폐기 제어함 시험기
JP5688337B2 (ja) バッテリ寿命チェック装置
CN210155226U (zh) 一种开关柜抽屉离线试验装置
JPS62216018A (ja) バツテリ−バツクアツプ方式
JPH05157055A (ja) 空気圧縮機の制御装置
JPH04147076A (ja) 電源装置及びそのバックアップ電源のチェック方式

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees