CN104076295B - 新能源燃料电池电动车气压值信号的实时监控方法 - Google Patents

新能源燃料电池电动车气压值信号的实时监控方法 Download PDF

Info

Publication number
CN104076295B
CN104076295B CN201410349833.9A CN201410349833A CN104076295B CN 104076295 B CN104076295 B CN 104076295B CN 201410349833 A CN201410349833 A CN 201410349833A CN 104076295 B CN104076295 B CN 104076295B
Authority
CN
China
Prior art keywords
value
atmospheric pressure
fuel cell
energy source
new energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410349833.9A
Other languages
English (en)
Other versions
CN104076295A (zh
Inventor
贾云健
赵倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201410349833.9A priority Critical patent/CN104076295B/zh
Publication of CN104076295A publication Critical patent/CN104076295A/zh
Application granted granted Critical
Publication of CN104076295B publication Critical patent/CN104076295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种新能源燃料电池电动车气压值信号的实时监控方法,属于信号与信息处理技术领域。该方法包括以下步骤:步骤一:通过安装在新能源电车电瓶下的传感器采集电瓶当前的气压测量值Ck;步骤二:采用无损卡尔曼滤波UKF(Unscented Kalman Filter)技术对采集的气压测量值进行滤波;步骤三:对经过滤波处理后的数据进行判断,并对不符合实际情况的滤波值进行修正;步骤四:存储得到修正后的气压值并进行绘制和显示。本方法能够及时准确的反应电车实际的能源值,从而方便实时了解电车当前的能源剩余量及时给车补充燃料,避免电池出现过充或过放现象。

Description

新能源燃料电池电动车气压值信号的实时监控方法
技术领域
本发明属于信号与信息处理技术领域,涉及一种新能源燃料电池电动车气压值信号的实时监控方法。
背景技术
当前,随着能源紧缺的问题愈发突出,人们越来越关注生态环保和节能技术,电动汽车随之备受看好。伴随着国内雾霾污染的加剧,政府及民众都已经认识到了雾霾污染的危害性,而新能源汽车几乎可以解决汽车尾气污染甚至是实现汽车尾气的零排放,因此大力推广新能源汽车也已经获得了政府部门的重视,未来新能源汽车的发展必将走上新的更快的轨道上来,同时,随着近些年来技术的发展,基于氢能源的燃料电池电动车得到了快速发展。
新能源燃料电池的气压值是通过安装在气瓶下的传感器测量并返回的。但是,由于传感器本身的精度存在误差,会使得传感器测出的气压值与真实值间存在误差;此外,汽车在运行过程中会出现急刹或因道路不平而造成的颠簸等情况,这些情况也会使传感器输出不符合实际的错误气压值或出现陡升陡降的气压点,如附图3中的标注。陡升可能是由于实际在给电车加气引起的,也有可能是外界干扰造成的,此时需要对气压值进行判断;而陡降点则是因外界干扰引起的点也是要滤除的点。在实际情况中,除加气外电车的气压值应呈现下降趋势。如果不能实时检测燃料剩余量的真实状态,就有可能会引起电池的过充或过放,对昂贵的电池造成损伤。
因此,如何对新能源燃料电池电动车的气压监控值信号进行实时修正和监控,以使得气压值信号更加准确显得至关重要。
发明内容
有鉴于此,本发明的目的在于提供一种新能源燃料电池电动车气压值信号的实时监控方法,该方法针对新能源燃料电池电车的气瓶气压值实时监控,滤除掉传感器不精确造成的干扰、修正汽车运行中造成的错误波动点,并判断出实际加气点,及时准确的反应电车实际的能源值,从而方便实时了解电车当前的能源剩余量及时给车补充燃料,避免电池出现过充或过放现象。
为达到上述目的,本发明提供如下技术方案:
一种新能源燃料电池电动车气压值信号的实时监控方法,包括以下步骤:步骤一:通过安装在新能源电车电瓶下的传感器采集电瓶当前的气压测量值Ck;步骤二:采用无损卡尔曼滤波UKF(Unscented Kalman Filter)技术对采集的气压测量值进行滤波;步骤三:对经过滤波处理后的数据进行判断,并对不符合实际情况的滤波值进行修正;步骤四:存储得到修正后的气压值并进行绘制和显示。
进一步,在步骤二中,假设卡尔曼滤波的状态方程Xk等于前一状态的最优值Xk-1与一高斯噪声Wk的和,测量方程为装在新能源电车电瓶下的传感器返回的电瓶当前气压值Ck和一高斯噪声ek的和,将状态方程和测量方程作为无损卡尔曼滤波的输入控制量,即:
状态方程为:Xk=f(Xk-1)+wk,测量方程为:Zk=Ck+ek;同时,估计误差wk的协方差Qk、测量误差ek的协方差Rk也作为无损卡尔曼滤波的输入变量;经过无损卡尔曼滤波后,输出去噪后的最优值Vk及协方差Pk
进一步,在步骤三中,在得到经过UKF滤波的滤波值Vk后,还需进一步对得到的数据进行判断:首先,判断此时的滤波值是否为加气点,在实际情况中只有对燃料电池汽车加气时,燃料电池汽车的气瓶电压值才呈现突然增加的状态,除此之外,气瓶气压值均呈现出下降趋势;其次,对不满足实际情况的滤波值修正,即若滤波值Vk不是实际加气值,但是又高于前一时刻值Vk-1,此时需要确定出错的数值并进行修正。
进一步,在步骤三中,采用滑动窗对得到的数据进行判断,需要等待下一时刻的值VK+1来判断出错的数值然后对错误数据进行修正。
本发明的有益效果在于:本方法针对新能源燃料电池电车的气瓶气压值实时监控,滤除掉传感器不精确造成的干扰、修正汽车运行中造成的错误波动点,并判断出实际加气点,及时准确的反应电车实际的能源值,从而方便实时了解电车当前的能源剩余量及时给车补充燃料,避免电池出现过充或过放现象。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为UKF滤波器的框图;
图2为本发明的滤波修正流程图;
图3为无处理的电车气瓶气压;
图4为经过UKF滤波后的数据;
图5为经过本发明处理后的电车气瓶气压;
图6为实时监控系统的具体实施框图;
图7为滤波修正模块的实施框图。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
本发明所述的新能源燃料电池电动车气压值信号的实时监控方法,包括以下步骤:步骤一:通过安装在新能源电车电瓶下的传感器采集电瓶当前的气压测量值Ck;步骤二:采用无损卡尔曼滤波UKF(Unscented Kalman Filter)技术对采集的气压测量值进行滤波;步骤三:对经过滤波处理后的数据进行判断,并对不符合实际情况的滤波值进行修正;步骤四:存储得到修正后的气压值并进行绘制和显示。
在本实施例中,以重庆恒通新能源燃料公交车为例,对气压值测量信号的滤波修正的系统图如图6所示:
其高压氢气瓶是公交车上盛放氢气燃料的装置,传感器则安装在高压氢气瓶下。传感器每隔2秒返回一个电瓶的气压值。后台接收到传感器传回的气压数据进行存储,然后滤波修正模块再对存储的气压值进行滤波,滤除掉噪声造成的干扰,并修正其中错误的气压值。把燃料电池电车气压值实时显示在后台显示屏上。
本实施例中的滤波修正模块对得到的初始数据滤波、修正过程如图7所示。
首先,假设卡尔曼滤波的状态方程Xk等于前一状态的最优值Xk-1与一高斯噪声Wk的和;测量方程是装在新能源电车电瓶下的传感器返回电瓶当前的气压值Ck和一高斯噪声ek的和。并把状态方程和测量方程作为UKF的输入控制量。无损卡尔曼滤波的过程如图1所示。
状态方程为:
Xk=f(Xk-1)+wk
测量方程为:Zk=Ck+ek
此外,估计误差wk的协方差Qk、测量误差ek的协方差Rk也是UKF的输入变量。经过UKF滤波后,输出去噪后的最优值Vk及协方差Pk。经过UKF去噪后的滤波值,再经过修正模块才能输出满足实际情况的真实值。滤波修正过程如图2所示。
具体步骤如下:
1)首先进行了一次抽样,即间隔15个点(时间间隔为30秒)存储电瓶的气压值Ck。并把估计值和测量值及误差的协方差输入到UKF滤波器,输出的值认为是去噪后的最优值Vk
2)如果Vk-Vk-1≥A时,则认为Vk是电车的真实加气。其中A值由研究电车加气行为分析得出。
3)如果Vk-Vk-1≤B时,则认为Vk值出错并剔除掉此值。其中B值是由研究电车的实际能耗确定的。
4)如果a=Vk-Vk-1/Δt<0时,认为Vk-1时刻的值是准确的值。
5)反之,如果a=Vk-Vk-1/Δt>0,由2)以排除不是加气点。此时,不能确定是Vk-1还是Vk出错。还需要通过Vk+1的数值来判断出错的数据。若Vk+1-Vk/Δt<0时,则判断为Vk-1正确,Vk出错,并对其进行修正;若Vk+1-Vk/Δt>0时,则判断为Vk正确,Vk-1出错,并对其进行修正。
6)最后把处理过的数据储存,绘制出电车气瓶气压的变化曲线。
如图3所示,气瓶气压有很多陡降陡升的点,这些点不符合实际。并且图3是在所有数据已知的情况绘制的,不能实时判断出错的数据。
如图4所示,数据经过UKF滤波器,与图3相比数据除去了其中的噪声曲线变得更平滑。但是仍然不判断其中出错的数据。
图5是经过本发明滤波修正模块后,与图4相比较,已经剔除掉了陡降的点并且修正出错的数据。图5中的数据一直是递减的趋势,加气后的走势也是下降的。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (3)

1.一种新能源燃料电池电动车气压值信号的实时监控方法,其特征在于:包括以下步骤:
步骤一:通过安装在新能源燃料电池电动车电瓶下的传感器采集电瓶当前的气压测量值Ck
步骤二:采用无损卡尔曼滤波(UKF,Unscented Kalman Filter)技术对采集的气压测量值进行滤波;
步骤三:对经过滤波处理后的数据进行判断,并对不符合实际情况的滤波值进行修正;
步骤四:存储得到修正后的气压值并进行绘制和显示;
在步骤二中,假设卡尔曼滤波的状态方程Xk等于前一状态的最优值Xk-1与一高斯噪声Wk的和,高斯噪声Wk即为估计误差;测量方程为装在新能源燃料电池电动车电瓶下的传感器返回的电瓶当前气压测量值Ck和一高斯噪声ek的和,高斯噪声ek即为测量误差;将状态方程和测量方程作为无损卡尔曼滤波的输入控制量,即:
状态方程为:Xk=f(Xk-1)+Wk,测量方程为:Zk=Ck+ek;同时,估计误差Wk的协方差Qk、测量误差ek的协方差Rk也作为无损卡尔曼滤波的输入控制量;经过无损卡尔曼滤波后,输出去噪后的最优值Vk及协方差Pk
2.根据权利要求1所述的一种新能源燃料电池电动车气压值信号的实时监控方法,其特征在于:在步骤三中,在得到经过UKF滤波的滤波值Vk后,还需进一步对得到的数据进行判断:首先,判断此时的滤波值是否为加气点,在实际情况中只有对新能源燃料电池电动车加气时,新能源燃料电池电动车的气瓶气压值才呈现突然增加的状态,除此之外,气瓶气压值均呈现出下降趋势;其次,对不满足实际情况的滤波值修正,即若滤波值Vk不是实际加气值,但是又高于前一时刻值Vk-1,此时需要确定出错的数值并进行修正。
3.根据权利要求2所述的一种新能源燃料电池电动车气压值信号的实时监控方法,其特征在于:在步骤三中,采用滑动窗对得到的数据进行判断,需要等待下一时刻的值VK+1来判断出错的数值然后对错误数据进行修正。
CN201410349833.9A 2014-07-22 2014-07-22 新能源燃料电池电动车气压值信号的实时监控方法 Active CN104076295B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410349833.9A CN104076295B (zh) 2014-07-22 2014-07-22 新能源燃料电池电动车气压值信号的实时监控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410349833.9A CN104076295B (zh) 2014-07-22 2014-07-22 新能源燃料电池电动车气压值信号的实时监控方法

Publications (2)

Publication Number Publication Date
CN104076295A CN104076295A (zh) 2014-10-01
CN104076295B true CN104076295B (zh) 2016-09-14

Family

ID=51597685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410349833.9A Active CN104076295B (zh) 2014-07-22 2014-07-22 新能源燃料电池电动车气压值信号的实时监控方法

Country Status (1)

Country Link
CN (1) CN104076295B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690497B (zh) * 2020-05-18 2023-11-14 好风光储能技术(成都)有限公司 一种电池的安全维护方法以及电池系统
CN114662060B (zh) * 2022-05-26 2022-08-16 中汽研汽车检验中心(天津)有限公司 基于机器学习的车载氮氧化物传感器浓度测量值修正方法
CN115965080A (zh) * 2022-11-07 2023-04-14 河海大学 新能源发电单元运行状态识别方法、装置及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3993658B2 (ja) * 1997-03-13 2007-10-17 本田技研工業株式会社 電気自動車用バッテリの検査装置、電気自動車用バッテリの検査システム及び電気自動車用バッテリの検査方法
JP2004259670A (ja) * 2003-02-27 2004-09-16 Nissan Motor Co Ltd 燃料電池システム
CN201964994U (zh) * 2010-12-28 2011-09-07 天津出入境检验检疫局工业产品安全技术中心 一种燃料电池用氮气压力简易检测装置
CN102866301B (zh) * 2012-09-18 2016-12-07 深圳远征技术有限公司 一种接地电阻分析装置及接地电阻的分析方法

Also Published As

Publication number Publication date
CN104076295A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
CN110228470B (zh) 一种基于隐藏车辆模型预测的节油率实时计算方法
CN109558988B (zh) 一种基于大数据融合的电动汽车能耗预测方法及系统
CN106121819A (zh) 一种基于发动机进气量的空滤器保养提醒方法及系统
CN104076295B (zh) 新能源燃料电池电动车气压值信号的实时监控方法
CN104535471B (zh) 空气净化设备过滤网状态的检测方法及装置
CN103003709A (zh) 电池状态估计装置以及电池状态估计方法
WO2021227408A1 (zh) 一种基于信号分离和精准积分的直流电能计量装置及方法
CN103077275A (zh) 高速公路匝道仿真模型的参数标定方法
CN102955161A (zh) 一种省电的移动终端无线定位方法
EP2431877A3 (en) System and method for modeling conditional dependence for anomaly detection in machine condition monitoring
CN109425835A (zh) 一种电池寿命、基于大数据的车辆性能检测方法及系统
CN104569501A (zh) 一种基于北斗系统的车辆速比标定系统及方法
CN102661811A (zh) 遥感地表温度升尺度方法及系统
CN110529306A (zh) 一种汽车滤清器使用寿命的实时监测装置及其监测方法
CN106364322B (zh) 一种电池安全状态管理系统及方法
CN104089667B (zh) 一种车辆耗油量测量方法
CN104197958A (zh) 一种基于激光测速仪航位推算系统的里程计标定方法
CN107228769B (zh) 一种基于车辆油耗的节能效果监测评估方法及系统
CN103728141A (zh) 汽车使用性能条件化测试方法及系统
CN205826618U (zh) 一种汽车尾气检测装置
CN103256480B (zh) 基于车载数据的公交车储气量实时监控系统
CN106610478A (zh) 一种基于海量数据的储能电池特性评估方法及系统
CN116702096B (zh) 车辆高原环境道路滑行阻力测算方法及装置
CN112577865A (zh) 一种道路积尘负荷走航测定系统
CN104535279A (zh) 一种新型防水防尘等级干式检测方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant