WO2021227408A1 - 一种基于信号分离和精准积分的直流电能计量装置及方法 - Google Patents

一种基于信号分离和精准积分的直流电能计量装置及方法 Download PDF

Info

Publication number
WO2021227408A1
WO2021227408A1 PCT/CN2020/128366 CN2020128366W WO2021227408A1 WO 2021227408 A1 WO2021227408 A1 WO 2021227408A1 CN 2020128366 W CN2020128366 W CN 2020128366W WO 2021227408 A1 WO2021227408 A1 WO 2021227408A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
current
electric energy
direct
ripple
Prior art date
Application number
PCT/CN2020/128366
Other languages
English (en)
French (fr)
Inventor
向德
李庆先
刘良江
王晋威
朱宪宇
熊婕
Original Assignee
湖南省计量检测研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南省计量检测研究院 filed Critical 湖南省计量检测研究院
Publication of WO2021227408A1 publication Critical patent/WO2021227408A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods

Definitions

  • This application relates to the technical field of electric energy metering, and in particular to a DC electric energy metering device and method based on signal separation and precise integration.
  • the purpose of this application is to overcome the shortcomings of the prior art and propose a DC electric energy metering device and method based on signal separation and precise integration.
  • This application provides a DC power metering device, which is characterized in that it includes four parts: a DC signal acquisition module, a signal analysis and processing module, a DC power calculation module, and a touch screen display module.
  • the DC signal acquisition module includes DC current and DC voltage sensors for collecting DC current and voltage data.
  • the output terminal of the DC signal acquisition module is connected to the input terminal of the signal separation module; the signal analysis and processing module is used for The DC current and DC voltage signals are separately processed for signal separation.
  • the output terminal of the signal analysis and processing module is connected to the input terminal of the DC power calculation module; the DC power calculation module includes a DC power calculation module and a ripple power calculation module.
  • the output terminal of the DC electric energy calculation module is connected to the input terminal of the touch screen display module; the touch screen display module is used to set the acquisition frequency and display the DC electric energy Analyze the calculated results.
  • the application of the DC electric energy measurement method based on signal separation and precise integration includes the following steps:
  • Step 1 The DC signal acquisition module collects the DC current and voltage to be measured, and adjusts the frequency synchronization through the touch screen display module to make the DC current and voltage acquisition frequency the same;
  • Step 2 The signal analysis and processing module respectively filters the collected DC current and voltage signals to remove noise interference
  • Step 3 The signal analysis and processing module separately performs signal separation processing on the filtered DC current and voltage signals, and decomposes the signal into two parts: a DC signal and a ripple signal;
  • Step 4 The DC power calculation module calculates the DC current and voltage components to obtain the DC power through a precise integration algorithm, and calculates the ripple current and voltage components to obtain the ripple power;
  • Step 5 The touch screen display module displays the calculation result of the DC power.
  • the ripple content threshold By setting the ripple content threshold, if the ripple content of the measured DC signal exceeds the set threshold, an alarm will be given.
  • the filtering processing method in step 2 is:
  • Wavelet threshold denoising algorithm First, according to the characteristics of the wavelet basis function and the signal to be measured, select the appropriate wavelet basis function and determine the number of decomposition levels N. Use the wavelet basis function to perform N-layer wavelet decomposition on the noise signal, and get the wavelet transformed
  • the wavelet coefficients ⁇ j,i include the wavelet coefficients u j,i corresponding to the target signal and the wavelet coefficients v j,i corresponding to the noise signal.
  • a soft threshold is selected for quantization, and the quantized wavelet coefficients for:
  • is the threshold, when ⁇ j,i > 0, sgn ( ⁇ j, i ) is 1, and when ⁇ j, i ⁇ 0, sgn ( ⁇ j, i ) is -1.
  • the inverse wavelet change of the signal is performed to obtain the denoised reconstructed signal.
  • the signal separation method in step 3 is:
  • VMD variable modal decomposition
  • the DC signal is decomposed by VMD, and the DC current, voltage signal and several current and voltage ripple mode components are obtained.
  • the precise integration algorithm in step 4 is:
  • the beneficial technical effect of this application is: the system puts into practice the overall design idea of the combined application of the standard meter method and the static quality method, and can quickly perform the standard meter method for most caliber flow meters. Verification, and for some high-precision small-caliber flow meters, the original quality method can be used for detection, which is obviously high in detection efficiency.
  • the scale of the static mass method part is reduced, the construction cost of the device is significantly reduced, and the reliability is ensured.
  • Figure 1 is a schematic diagram of a DC electric energy metering device
  • FIG. 2 is a flow chart of the steps of this application.
  • a DC electric energy metering device is characterized in that it comprises four parts: a DC signal acquisition module, a signal analysis and processing module, a DC electric energy calculation module and a touch screen display module.
  • the DC signal acquisition module includes DC current and DC voltage sensors for collecting DC current and voltage data.
  • the output terminal of the DC signal acquisition module is connected to the input terminal of the signal separation module; the signal analysis and processing module is used for The DC current and DC voltage signals are separately processed for signal separation.
  • the output terminal of the signal analysis and processing module is connected to the input terminal of the DC power calculation module; the DC power calculation module includes a DC power calculation module and a ripple power calculation module.
  • the output terminal of the DC electric energy calculation module is connected to the input terminal of the touch screen display module; the touch screen display module is used to display the result of the DC electric energy analysis and calculation.
  • the application of the DC electric energy measurement method based on signal separation and precise integration includes the following steps:
  • Step 1 The DC signal acquisition module collects the DC current and voltage to be measured, and adjusts the frequency synchronization through the touch screen display module to make the DC current and voltage acquisition frequency the same;
  • Step 2 The signal analysis and processing module respectively filters the collected DC current and voltage signals to remove noise interference
  • the wavelet threshold denoising algorithm is the wavelet threshold denoising algorithm.
  • the appropriate wavelet basis function is selected and the decomposition layer number N is determined, and the noise signal is decomposed by N layers of wavelet using the wavelet basis function to obtain the wavelet
  • the transformed wavelet coefficients ⁇ j,i include the wavelet coefficients u j,i corresponding to the target signal and the wavelet coefficients v j,i corresponding to the noise signal.
  • a soft threshold is selected for quantization, and the quantized wavelet coefficients for:
  • is the threshold, when ⁇ j,i > 0, sgn ( ⁇ j, i ) is 1, and when ⁇ j, i ⁇ 0, sgn ( ⁇ j, i ) is -1.
  • the inverse wavelet change of the signal is performed to obtain the denoised reconstructed signal.
  • Step 3 The signal analysis and processing module separately performs signal separation processing on the filtered DC current and voltage signals, and decomposes the signal into two parts: a DC signal and a ripple signal;
  • VMD parameter-optimized variable mode decomposition
  • the DC signal is decomposed by VMD, and the DC current, voltage signal and several current and voltage ripple mode components are obtained.
  • Step 4 The DC power calculation module calculates the DC current and voltage components to obtain the DC power through a precise integration algorithm, and calculates the ripple current and voltage components to obtain the ripple power;
  • Step 5 The touch screen display module displays the calculation result of the DC power.
  • the ripple content threshold By setting the ripple content threshold, if the ripple content of the measured DC signal exceeds the set threshold, an alarm will be given.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

一种基于信号分离和精准积分的直流电能计量装置及方法:针对目前直流电能质量分析评价指标尚未定义且缺乏有效的检测技术,直流电能无法计量检测,不便于准确计费、结算的问题,提出一套直流电能计量装置及基于信号分离和精准积分的直流电能计量方法。首先通过小波阈值去噪算法对直流信号进行去噪处理,然后通过参数优化的变模态分解(VMD)算法将直流信号中的直流部分和若干纹波部分进行分离,最后通过复化辛甫生积分算法分别计算直流部分和纹波部分产生的电能。本方法适用于含有纹波、噪声干扰的直流电能计量,并且解决了直流电能和纹波产生的电能分别准确计算的问题。

Description

一种基于信号分离和精准积分的直流电能计量装置及方法
相关申请的交叉引用
本申请要求于2020年5月9日提交的申请号为202010384213.4,发明名称为“一种基于信号分离和精准积分的直流电能计量装置及方法”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及电能计量技术领域,具体涉及一种基于信号分离和精准积分的直流电能计量装置及方法。
背景技术
直流电在国民经济和社会生活中的应用日益广泛,其中直流供电形式的光伏发电、氢燃料电池等在光伏空调、汽车和城市轨道交通等领域的应用是新能源发展的重要方向。目前直流电能质量分析评价指标尚未定义且缺乏有效的检测技术,直流电能无法计量检测,不便于准确计费、结算,制约了直流电能相关产业的快速发展。这就要求设计一种适合直流电能计量的模型,来实现直流电能的准确计量。本申请以直流电能计量技术为基础,确定了一种基于信号分离和精准积分的直流电能计量装置及方法。
发明内容
本申请的目的是为克服已有技术的不足,提出一种基于信号分离和精准积分的直流电能计量装置及方法。
本申请提供了一种直流电能计量装置,其特征在于,包括直流信号采集模块、信号分析处理模块、直流电能计算模块和触屏显示模块四个部分。所述直流信号采集模块包含直流电流、直流电压传感器,用于对直流电流和电压数据进行采集,所述直流信号采集模块的输出端与信号分离模块输入端相连;所述信号分析处理模块用于分别将直流电流、直流电压信号进行信号分离处理,所述信号分析处理模块的输出端与直流电能计算模块输入端相连;所述直流电能计算模块包含直流电能计算模块、纹波电能计算模块,用于分别计算直流信号的电能值和纹波信号的电能值,所述直流电 能计算模块的输出端与触屏显示模块输入端相连;所述触屏显示模块用于设定采集频率和展示直流电能分析计算的结果。
应用所述基于信号分离和精准积分的直流电能计量方法,包括以下步骤:
步骤1,直流信号采集模块对待测直流电流和电压进行采集,通过触屏显示模块调整频率同步,使直流电流、电压的采集频率相同;
步骤2,信号分析处理模块分别对采集的直流电流、电压信号进行滤波处理,去除噪声干扰;
步骤3,信号分析处理模块分别对滤波后的直流电流、电压信号进行信号分离处理,把信号分解为直流信号和纹波信号两部分;
步骤4,直流电能计算模块通过精准积分算法将直流电流、电压分量计算得出直流电能,将纹波电流、电压分量计算得出纹波电能;
步骤5,触屏显示模块显示直流电能计算结果,通过设定纹波含量阈值,若被测直流信号纹波含量超过设定阈值则进行报警提示。
在一个实施例中,步骤2中的滤波处理方式为:
小波阈值去噪算法,首先根据小波基函数和待测信号的特点,选择合适的小波基函数并确定分解层数N,用该小波基函数对噪声信号进行N层小波分解,得到经小波变换后的小波系数ω j,i,其中包括目标信号对应的小波系数u j,i和噪声信号对应的小波系数v j,i
然后根据小波分解后系数的不同幅值大小,选择软阈值进行量化处理,经过量化处理后的小波系数
Figure PCTCN2020128366-appb-000001
为:
Figure PCTCN2020128366-appb-000002
其中λ为阈值,当ω j,i>0时sgn(ω j,i)为1,当ω j,i<0时sgn(ω j,i)为-1。
最后根据小波分解的第N层的低频系数和经过量化处理后的第一层到第N层的高频系数,进行信号的逆小波变化得到去噪的重构信号。
在一个实施例中,步骤3中的信号分离方式为:
参数优化的变模态分解(VMD)算法,首先优化VMD算法的模态数目K,初始化惩罚因子α=2000,带宽τ=1×10 -7,模态数K=2,用VMD对信号进行分解,计算各个基本模式分量的合成峭度。合成峭度是指纹波 波形峰度的参数。求出此次分解各个基本模式分量合成峭度的均值,判断是否为最大值,如果是最大值,则模态数为K;否则K=K+1继续寻找最优值,直到合成峭度均值最大时停止。
然后优化VMD算法的惩罚因子α,利用对模态数K的优化结果,基于合成峭度均值最大原则对α进行优化,与K的优化方法相同。
最后基于上述K和α的优化,对直流信号进行VMD分解,得到直流电流、电压信号和若干的电流、电压纹波模式分量。
在一个实施例中,步骤4中的精准积分算法为:
复化辛甫生积分算法,分别对直流信号和纹波信号在一个周期T采样M点,将周期内时间等分为M个区间[t k,t k+1],其中k=0,1…,M-1,则对每两个等分区间[t 2i,t 2i+2],其中i=0,1…,M/2-1的直流信号和纹波信号电压U、电流I和功率P等各参量进行辛普生积分,如下式所示:
Figure PCTCN2020128366-appb-000003
Figure PCTCN2020128366-appb-000004
Figure PCTCN2020128366-appb-000005
然后,将上式在每个等份区间上积分值累加求和,可分别得到直流信号和纹波信号的电能:
Figure PCTCN2020128366-appb-000006
Figure PCTCN2020128366-appb-000007
Figure PCTCN2020128366-appb-000008
Figure PCTCN2020128366-appb-000009
本申请与现有技术相比,其有益的技术效果为:本系统将标准表法和 静态质量法联合应用的整体设计思想付诸实践,对大部分口径的流量仪表可以通过标准表法进行快速检定,而对于一些精度较高的小口径流量仪表可以应用原始质量法进行检测,明显的检测效率较高。通过标准表法的优势,减小了静态质量法部分的规模,显著降低装置的建设成本,确保了可靠性。
附图说明
图1是直流电能计量装置的原理图;
图2是本申请的步骤流程图。
具体实施方式
一种直流电能计量装置,其特征在于,包括直流信号采集模块、信号分析处理模块、直流电能计算模块和触屏显示模块四个部分。所述直流信号采集模块包含直流电流、直流电压传感器,用于对直流电流和电压数据进行采集,所述直流信号采集模块的输出端与信号分离模块输入端相连;所述信号分析处理模块用于分别将直流电流、直流电压信号进行信号分离处理,所述信号分析处理模块的输出端与直流电能计算模块输入端相连;所述直流电能计算模块包含直流电能计算模块、纹波电能计算模块,用于分别计算直流信号的电能值和纹波信号的电能值,所述直流电能计算模块的输出端与触屏显示模块输入端相连;所述触屏显示模块用于展示直流电能分析计算的结果。
应用所述基于信号分离和精准积分的直流电能计量方法,包括以下步骤:
步骤1,直流信号采集模块对待测直流电流和电压进行采集,通过触屏显示模块调整频率同步,使直流电流、电压的采集频率相同;
步骤2,信号分析处理模块分别对采集的直流电流、电压信号进行滤波处理,去除噪声干扰;
具体是小波阈值去噪算法,首先根据小波基函数和待测信号的特点,选择合适的小波基函数并确定分解层数N,用该小波基函数对噪声信号进行N层小波分解,得到经小波变换后的小波系数ω j,i,其中包括目标信号对应的小波系数u j,i和噪声信号对应的小波系数v j,i
然后根据小波分解后系数的不同幅值大小,选择软阈值进行量化处理,经过量化处理后的小波系数
Figure PCTCN2020128366-appb-000010
为:
Figure PCTCN2020128366-appb-000011
其中λ为阈值,当ω j,i>0时sgn(ω j,i)为1,当ω j,i<0时sgn(ω j,i)为-1。
最后根据小波分解的第N层的低频系数和经过量化处理后的第一层到第N层的高频系数,进行信号的逆小波变化得到去噪的重构信号。
步骤3,信号分析处理模块分别对滤波后的直流电流、电压信号进行信号分离处理,把信号分解为直流信号和纹波信号两部分;
具体是参数优化的变模态分解(VMD)算法,首先优化VMD算法的模态数目K,初始化惩罚因子α=2000,带宽τ=1×10 -7,模态数K=2,用VMD对信号进行分解,计算各个基本模式分量的合成峭度。合成峭度是指纹波波形峰度的参数。求出此次分解各个基本模式分量合成峭度的均值,判断是否为最大值,如果是最大值,则模态数为K;否则K=K+1继续寻找最优值,直到合成峭度均值最大时停止。
然后优化VMD算法的惩罚因子α,利用对模态数K的优化结果,基于合成峭度均值最大原则对α进行优化,与K的优化方法相同。
最后基于上述K和α的优化,对直流信号进行VMD分解,得到直流电流、电压信号和若干的电流、电压纹波模式分量。
步骤4,直流电能计算模块通过精准积分算法将直流电流、电压分量计算得出直流电能,将纹波电流、电压分量计算得出纹波电能;
具体是复化辛甫生积分算法,分别对直流信号和纹波信号在一个周期T采样M点,将周期内时间等分为M个区间[t k,t k+1],其中k=0,1…,M-1,则对每两个等分区间[t 2i,t 2i+2],其中i=0,1…,M/2-1的直流信号和纹波信号电压U、电流I和功率P等各参量进行辛普生积分,如下式所示:
Figure PCTCN2020128366-appb-000012
Figure PCTCN2020128366-appb-000013
Figure PCTCN2020128366-appb-000014
然后,将上式在每个等份区间上积分值累加求和,可分别得到直流信号和纹波信号的电能:
Figure PCTCN2020128366-appb-000015
Figure PCTCN2020128366-appb-000016
Figure PCTCN2020128366-appb-000017
Figure PCTCN2020128366-appb-000018
步骤5,触屏显示模块显示直流电能计算结果,通过设定纹波含量阈值,若被测直流信号纹波含量超过设定阈值则进行报警提示。
以上对本申请进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的表明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本表明书内容不应理解为对本申请的限制。

Claims (5)

  1. 一种直流电能计量装置,其特征在于,包括直流信号采集模块、信号分析处理模块、直流电能计算模块和触屏显示模块四个部分;所述直流信号采集模块包含直流电流、直流电压传感器,用于对直流电流和电压数据进行采集,所述直流信号采集模块的输出端与信号分离模块输入端相连;所述信号分析处理模块用于分别将直流电流、直流电压信号进行信号分离处理,所述信号分析处理模块的输出端与直流电能计算模块输入端相连;所述直流电能计算模块包含直流电能计算模块、纹波电能计算模块,用于分别计算直流信号的电能值和纹波信号的电能值,所述直流电能计算模块的输出端与触屏显示模块输入端相连;所述触屏显示模块用于设定采集频率和展示直流电能分析计算的结果。
  2. 一种基于信号分离和精准积分的直流电能计量方法,包括以下步骤:
    步骤1,直流信号采集模块对待测直流电流和电压进行采集,通过触屏显示模块调整频率同步,使直流电流、电压的采集频率相同;
    步骤2,信号分析处理模块分别对采集的直流电流、电压信号进行滤波处理,去除噪声干扰;
    步骤3,信号分析处理模块分别对滤波后的直流电流、电压信号进行信号分离处理,把信号分解为直流信号和纹波信号两部分;
    步骤4,直流电能计算模块通过精准积分算法将直流电流、电压分量计算得出直流电能,将纹波电流、电压分量计算得出纹波电能;
    步骤5,触屏显示模块显示直流电能计算结果,通过设定纹波含量阈值,若被测直流信号纹波含量超过设定阈值则进行报警提示。
  3. 如权利要求2所述的直流电能计量方法,其特征在于:
    步骤2中的滤波处理方式为:
    小波阈值去噪算法,首先根据小波基函数和待测信号的特点,选择合适的小波基函数并确定分解层数N,用该小波基函数对噪声信号进行N层小波分解,得到经小波变换后的小波系数ω j,i,其中包括目标信号对应的小波系数u j,i和噪声信号对应的小波系数v j,i
    然后根据小波分解后系数的不同幅值大小,选择软阈值进行量化处理, 经过量化处理后的小波系数
    Figure PCTCN2020128366-appb-100001
    为:
    Figure PCTCN2020128366-appb-100002
    其中λ为阈值,当ω j,i>0时sgn(ω j,i)为1,当ω j,i<0时sgn(ω j,i)为-1;
    最后根据小波分解的第N层的低频系数和经过量化处理后的第一层到第N层的高频系数,进行信号的逆小波变化得到去噪的重构信号。
  4. 如权利要求2所述的直流电能计量方法,其特征在于:
    步骤3中的信号分离方式为:
    参数优化的变模态分解(VMD)算法,首先优化VMD算法的模态数目K,初始化惩罚因子α=2000,带宽τ=1×10 -7,模态数K=2,用VMD对信号进行分解,计算各个基本模式分量的合成峭度,合成峭度是指纹波波形峰度的参数,求出此次分解各个基本模式分量合成峭度的均值,判断是否为最大值,如果是最大值,则模态数为K;否则K=K+1继续寻找最优值,直到合成峭度均值最大时停止;
    然后优化VMD算法的惩罚因子α,利用对模态数K的优化结果,基于合成峭度均值最大原则对α进行优化,与K的优化方法相同;
    最后基于上述K和α的优化,对直流信号进行VMD分解,得到直流电流、电压信号和若干的电流、电压纹波模式分量。
  5. 如权利要求2所述的直流电能计量方法,其特征在于:
    步骤4中的精准积分算法为:
    复化辛甫生积分算法,分别对直流信号和纹波信号在一个周期T采样M点,将周期内时间等分为M个区间[t k,t k+1],其中k=0,1…,M-1,则对每两个等分区间[t 2i,t 2i+2],其中i=0,1…,M/2-1的直流信号和纹波信号电压U、电流I和功率P等各参量进行辛普生积分,如下式所示:
    Figure PCTCN2020128366-appb-100003
    Figure PCTCN2020128366-appb-100004
    Figure PCTCN2020128366-appb-100005
    然后,将上式在每个等份区间上积分值累加求和,可分别得到直流信 号和纹波信号的电能:
    Figure PCTCN2020128366-appb-100006
    Figure PCTCN2020128366-appb-100007
    Figure PCTCN2020128366-appb-100008
    Figure PCTCN2020128366-appb-100009
PCT/CN2020/128366 2020-05-09 2020-11-12 一种基于信号分离和精准积分的直流电能计量装置及方法 WO2021227408A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010384213.4 2020-05-09
CN202010384213.4A CN111537789A (zh) 2020-05-09 2020-05-09 一种基于信号分离和精准积分的直流电能计量装置及方法

Publications (1)

Publication Number Publication Date
WO2021227408A1 true WO2021227408A1 (zh) 2021-11-18

Family

ID=71977487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128366 WO2021227408A1 (zh) 2020-05-09 2020-11-12 一种基于信号分离和精准积分的直流电能计量装置及方法

Country Status (2)

Country Link
CN (1) CN111537789A (zh)
WO (1) WO2021227408A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115877223A (zh) * 2023-03-03 2023-03-31 浙江天能新材料有限公司 锂电池检测方法、装置、设备及存储介质
CN117807896A (zh) * 2024-02-29 2024-04-02 南昌工程学院 电解水制氢系统电磁暂态电压信号分解方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537789A (zh) * 2020-05-09 2020-08-14 湖南省计量检测研究院 一种基于信号分离和精准积分的直流电能计量装置及方法
CN113884758B (zh) * 2021-09-29 2023-06-27 广东电网有限责任公司 一种直流电能计量方法、装置、设备及存储介质
CN114295890A (zh) * 2021-12-29 2022-04-08 国网新疆电力有限公司经济技术研究院 一种直流充电桩电能计量方法、系统、设备及可读存储介质
CN115577024B (zh) * 2022-12-07 2023-03-14 湖南省计量检测研究院 直流电能量值回溯方法、装置及电子设备
CN116701822B (zh) * 2023-08-07 2023-11-28 云南电网有限责任公司 基于麻雀搜索算法与变分模态分解的负荷电能计量方法
CN117076823A (zh) * 2023-09-25 2023-11-17 国网四川省电力公司营销服务中心 基于高斯积分法的纹波分量分析方法、系统、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186825A1 (en) * 2015-05-18 2016-11-24 Powertree Services, Inc. Method for clear delineation of wholesale and retail energy usage and activity involving energy storage devices
CN107515332A (zh) * 2017-07-03 2017-12-26 中国电力科学研究院 一种基于频谱分析和同步采样的直流电能计量装置及方法
CN108830411A (zh) * 2018-06-07 2018-11-16 苏州工业职业技术学院 一种基于数据处理的风电功率预测方法
CN110967599A (zh) * 2019-12-11 2020-04-07 贵州电网有限责任公司 一种电能质量扰动检测与定位算法
CN111537789A (zh) * 2020-05-09 2020-08-14 湖南省计量检测研究院 一种基于信号分离和精准积分的直流电能计量装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880592A (zh) * 2015-06-24 2015-09-02 国网浙江省电力公司电力科学研究院 一种谐波条件下的电能计算方法及系统
CN108985179B (zh) * 2018-06-22 2022-01-25 福建和盛高科技产业有限公司 一种基于改进小波阈值函数的电能质量信号去噪方法
CN110287853B (zh) * 2019-06-20 2021-02-09 清华大学 一种基于小波分解的暂态信号去噪方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186825A1 (en) * 2015-05-18 2016-11-24 Powertree Services, Inc. Method for clear delineation of wholesale and retail energy usage and activity involving energy storage devices
CN107515332A (zh) * 2017-07-03 2017-12-26 中国电力科学研究院 一种基于频谱分析和同步采样的直流电能计量装置及方法
CN108830411A (zh) * 2018-06-07 2018-11-16 苏州工业职业技术学院 一种基于数据处理的风电功率预测方法
CN110967599A (zh) * 2019-12-11 2020-04-07 贵州电网有限责任公司 一种电能质量扰动检测与定位算法
CN111537789A (zh) * 2020-05-09 2020-08-14 湖南省计量检测研究院 一种基于信号分离和精准积分的直流电能计量装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI KAI, WANG HAIYUAN;YANG MAOTAO: "Ripple Effects Simulation and Test of AC Modulated DC Electric Energy Meter", CHINA MEASUREMENT & TESTING TECHNOLOGY, ZHONGGUO CESHI JISHU YANJIUYUAN, CN, vol. 44, no. 4, 30 April 2018 (2018-04-30), CN , pages 147 - 152, XP055865871, ISSN: 1674-5124, DOI: 10.11857/j.issn.1674-5124.2018.04.027 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115877223A (zh) * 2023-03-03 2023-03-31 浙江天能新材料有限公司 锂电池检测方法、装置、设备及存储介质
CN115877223B (zh) * 2023-03-03 2023-07-04 浙江天能新材料有限公司 锂电池检测方法、装置、设备及存储介质
CN117807896A (zh) * 2024-02-29 2024-04-02 南昌工程学院 电解水制氢系统电磁暂态电压信号分解方法及系统
CN117807896B (zh) * 2024-02-29 2024-04-30 南昌工程学院 电解水制氢系统电磁暂态电压信号分解方法及系统

Also Published As

Publication number Publication date
CN111537789A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
WO2021227408A1 (zh) 一种基于信号分离和精准积分的直流电能计量装置及方法
WO2021185308A1 (zh) 一种电动汽车动力电池组健康状态在线确定方法和系统
US9880061B2 (en) Methods and apparatus for sensing the internal temperature of an electrochemical device
CN103344921B (zh) 锂离子动力电池健康状态评估系统及方法
CN108459278B (zh) 一种锂离子电池内阻与荷电状态同步估算方法
CN203480000U (zh) 一种纯电动车用动力锂电池健康状况检测器
JP2013050433A (ja) 電池監視装置
CN110161421A (zh) 一种在线重构设定频率范围内电池阻抗的方法
US9733312B1 (en) Methods for dynamic characterization of electrochemical systems
CN103472430B (zh) 太阳模拟器辐照不均匀度和不稳定度测试系统
CN111123136A (zh) 一种锂离子电池健康状态在线测量装置及在线测量方法
CN114019242B (zh) 光伏逆变器直流侧绝缘阻抗检测方法及装置
CN114325445B (zh) 一种基于区域频率的锂离子电池健康状态快速评估方法
CN109581268B (zh) 一种光纤电流互感器故障诊断方法及装置
CN110441707A (zh) 一种锂离子电池健康状态声发射检测系统及方法
CN108008246B (zh) 基于时域自适应窗的线路故障测距方法及装置
CN107290607A (zh) 一种电动汽车的测试系统及方法
CN112782468A (zh) 一种列车运行能耗计量方法
CN115808563B (zh) 一种基于用电功率异常分析的高压用户窃电检测方法
CN116910655A (zh) 一种基于装置量测数据的智能电能表故障预测方法
CN116990216A (zh) 动态直流干扰下金属界面电容时间常数的测量装置及方法
CN106021855A (zh) 一种反应堆周期计算方法
JP2013029411A (ja) 電池インピーダンス測定装置
CN112668807B (zh) 一种用于风电场功率预测的风速预测方法
CN114398922A (zh) 一种基于CNN-BiLSTM的高压并联电抗器绕组松动的故障诊断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935392

Country of ref document: EP

Kind code of ref document: A1