JP3985385B2 - 表面欠陥検出装置 - Google Patents

表面欠陥検出装置 Download PDF

Info

Publication number
JP3985385B2
JP3985385B2 JP08426299A JP8426299A JP3985385B2 JP 3985385 B2 JP3985385 B2 JP 3985385B2 JP 08426299 A JP08426299 A JP 08426299A JP 8426299 A JP8426299 A JP 8426299A JP 3985385 B2 JP3985385 B2 JP 3985385B2
Authority
JP
Japan
Prior art keywords
data
image
luminance
imaging
ccd camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08426299A
Other languages
English (en)
Other versions
JP2000276599A (ja
Inventor
義博 山華
整 久保田
勝一 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP08426299A priority Critical patent/JP3985385B2/ja
Publication of JP2000276599A publication Critical patent/JP2000276599A/ja
Application granted granted Critical
Publication of JP3985385B2 publication Critical patent/JP3985385B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、撮影手段によって取り込まれた画像の輝度データを解析して被検査面上の欠陥を検出する表面欠陥検出装置の改良に関する。
【0002】
【従来の技術】
画像の輝度データを解析して被検査面上の欠陥を検出する表面欠陥検出装置としては、レーザービーム等の収束光を被検査面に照射し、その反射光をセンサによって検出することで欠陥の有無を検出するもの、また、LED等の検査光で被検査面を照明してCCDカメラ等の撮影手段で画像を取り込み、その画像を所定の手続きに従ってマイクロプロセッサ等で処理することにより欠陥の有無を判定するようにしたもの等が既に多数提案されている。
また、比較的広い面積に亘って欠陥の有無を検出する必要がある場合、例えば、車両のルーフやボンネットの塗装面等の異常を検出するものにおいては、レーザービームやセンサ、または、LED等の検査光やCCDカメラ等の撮影手段を被検査面に対して相対的に移動させながら異常の有無を検出していくものが一般的である。
表面欠陥検出装置の使用環境に関して言えば、必ずしも、検査専用のラインに設置されるというわけではなく、他の生産ラインや作業スペース等と隣接した場所で使用されることも多い。
【0003】
【発明が解決しようとする課題】
そこで問題となるのが、外部からの光による外乱である。レーザービームやLED等の検査光を使用した表面欠陥検出装置は、いずれも外部からの光による干渉に弱く、他の作業スペースに設置された蛍光灯や白熱電球からの光を受けたり、また、その点灯や消灯によって被検査面に照度変化が生じたり、部分的な明暗比(コントラスト)が変化したりすると、センサやCCDカメラがその外乱を拾い、正常な動作が妨げられるといった可能性もあった。
【0004】
このような不都合を解消するための検査装置として、例えば、特開平8−247961号公報に開示されるように、CCDカメラ等を被検査面に対して一定の速度で相対移動させながら連続的に撮影を行い、撮影タイミングの異なる複数の画像から画像中の移動物を検出し、前述した相対移動の速度から次の撮影時における移動物の位置を予測し、次の撮影時における移動物の位置と予測位置とが一致した場合にこれを被検査面上に実在する異常、即ち、外乱ではなく直接的に検査面に関連した欠陥として検出するようにしたものが知られている。
しかし、このものは画像上の移動物の位置を予測するためにCCDカメラ等と被検査面との間の相対移動速度を厳密に把握する必要があり、生産ラインが一様な速度で稼動しないような場合、例えば、一時停止の工程を含むタクト形式等の場合では、その欠陥検出機能が十分に機能しなくなるといった恐れがある。
【0005】
【発明の目的】
そこで、本発明の目的は、前記従来技術の欠点を解消し、照明状態の明暗の変化による悪影響を受けにくく、また、装置を設置した生産ラインの移動速度が必ずしも一様でない場合であっても、被検査面の欠陥を安定的に検出することのできる表面欠陥検出装置を提供することにある。
【0006】
【課題を解決するための手段】
図1は本発明が前記目的を達成するために採用した手段の概略について示すクレーム対応図である。本発明は、被検査面(A)と撮影手段(B)との間の垂直離間距離を略一定に維持したままの状態で被検査面(A)と撮影手段(B)との間に相対移動を生じさせる走査用移動手段(C)と、前記相対移動の量が撮影手段(B)の撮影範囲(J)内にある間に撮影手段(B)を繰り返し作動させて被検査面(A)の画像を取り込む画像取り込み手段(D)と、画像取り込み手段(D)によって画像が取り込まれる度、前回の画像取り込み時点から今回の画像取り込み時点までの間に生じた前記相対移動の量に基づいて、この相対移動の量に対応する画像データ記憶手段(E)上の輝度データの書き込み開始位置を算出するオフセット量算出手段(F)と、オフセット量算出手段(F)で算出された書き込み開始位置に基づき、その時点で既に画像データ記憶手段(E)上に記憶されている輝度データに今回の撮影で取り込まれた画像の輝度データを加算して書き込む輝度データ書き込み手段(G)とを有し、光源と撮影手段(B)との相対的な位置が固定され、前記光源は、前記相対移動の向きと交差する方向に帯状に広がって照射される複数の検査光を所定のピッチで有し、かつ、走査用移動手段(C)による相対移動の速度は、画像取り込み手段(D)の画像の取り込み周期の間に生じる相対移動の量が前記所定のピッチと一致しないように調整されると共に、画像解析手段(H)には、画像データ記憶手段(E)に記憶された輝度データを解析して、設定範囲内の輝度が所定のしきい値以上の面積に亘って検出された場合に欠陥として検出する欠陥検出機能を配備することにより前記目的を達成した。
被検査面(A)と撮影手段(B)との間の相対移動の量が撮影手段(B)の撮影範囲(J)内にある間に撮影手段(B)が繰り返し作動する。また、輝度データ書き込み手段(G)は、前回の画像取り込み時点から今回の画像取り込み時点までの間に生じた相対移動の量に対応する画像データ記憶手段(E)上の輝度データ書き込み開始位置を求め、その時点で既に画像データ記憶手段(E)上に記憶されている輝度データに加算して、今回の撮影で取り込まれた画像の輝度データを書き込む。被検査面(A)と撮影手段(B)との間の相対移動の量が撮影手段(B)の撮影範囲(J)内にある間に撮影手段(B)が繰り返し作動する結果、画像データ記憶手段(E)には、順次、相対移動の量に相当する記憶領域の分だけ輝度データが重複して積算されていくことになる。
従って、輝度が低い部分、即ち、輝度データの値が小さい部分が被検査面(A)上の座標系を基準として同一位置で安定的に検出された場合には、複数回の撮影によってその部分の値が何回積算されても、その部分の最終的な輝度データの積算値は低い値に保たれる。
一方、輝度が高い部分、即ち、輝度データの値が大きい部分が被検査面(A)上の座標系を基準として同一位置で安定的に検出された場合には、その部分の値が積算される度にその部分の輝度データの値が著しく大きくなる。
更に、輝度が高い部分や低い部分が被検査面(A)上の座標系を基準として様々な位置でランダムに検出された場合は、1回の撮影ではその輝度データの値がそのまま反映されるが、最終的に何回かの撮影と積算が繰り返し行われる結果、このようなランダムな輝度データの値は、前述した同一位置で安定的に検出される輝度データ、つまり、常に暗い値を示す輝度データや常に明るい値を示す輝度データによって、暗い値または明るい値のいずれか一方に平準化される。例えば、同一個所を重複してn回撮影し、そのうちの1回で外乱の影響を受けたデータが検出されたとすれば、この外乱によるデータが積算値に与える影響の重みは最終的には1/nである。
つまり、前述した様々な位置でランダムに検出される輝度データは、外乱の影響によるものであり、この外乱による影響は、複数の撮影の繰り返しとそれに伴う輝度データの積算によって平準化されるので、最終的に画像データ記憶手段(E)に記録された積算データを適切なしきい値と比較して明暗を判定することによって外乱の影響を排除することができる。
しかも、走査用移動手段(C)による相対移動の速度は、画像取り込み手段(D)の画像の取り込み周期の間に生じる相対移動の量が前記所定のピッチと一致しないように調整されているので、相対移動の向きと交差する方向に帯状に広がって照射される複数の検査光を所定のピッチで備えた光源を利用して光源と撮影手段(B)との相対的な位置を固定して作業を行うような場合であっても、撮影手段(B)が作動するときに被検査面(A)上の座標系を基準として常に同一位置で安定的に検査光が検出されることはなく、検査光の照射によって生じる明暗の境が誤って被検査面(A)上の欠陥として検出されといった不都合を防止することができる
【0007】
また、撮影手段(B)によって撮影された画像を多階調(例えば256階調)のディジタルデータとして出力する場合は、前記輝度データ書き込み手段(G)によって画像に微分処理を施し、画像の明暗の境を明確に強調してから画像データ記憶手段(E)に書き込むことにより、欠陥の検出精度を高めることができる。
【0008】
更に、前述した微分処理を行った後に画像に膨張処理を施すことにより、微小な欠陥部分を一層確実に検出することができる。多階調(例えば256階調)のディジタルデータに膨張処理を施すためには、それを実施するマイクロプロセッサに強力な処理能力が要求されるが、膨張処理を行う前の段階で前記多階調(例えば256階調)のディジタルデータを予め二階調化して処理を単純化することにより、容易に膨張処理を実施することができる。また、こうすることによって画像データ記憶手段(E)に記録される輝度データも二階調化されるので、画像データ記憶手段(E)に必要とされるメモリ容量も大幅に軽減することができる。
【0010】
【発明の実施の形態】
以下、図面を参照して本発明の一実施形態について詳細に説明する。図2は本発明を適用した一実施形態の表面欠陥検出装置1の構成について示す概念図であり、一例として、車両2のルーフ塗装面3を被検査面として塗装の欠陥を検出する場合の構造について示している。
図2に示す通り、表面欠陥検出装置1は、被検査面となるルーフ塗装面3に向けて検査光を照射するための光源4と、撮影手段となるCCDカメラ5、および、車両2を載置した台車6をCCDカメラ5に対して相対移動させるための走査用駆動手段7を備え、これらの要素は、表面欠陥検出装置1の主要部を構成する検査用制御装置8によって駆動制御されるようになっている。
【0011】
検査用制御装置8は、画像取り込み手段,オフセット量算出手段,輝度データ書き込み手段および画像解析手段となるマイクロプロセッサ(以下、単にMPUという)9を有し、該MPU9には、前述した各手段の機能を達成するための制御プログラムを格納したROM10や、演算データの一時記憶等に用いられるRAM11、および、入出力回路12を介してCCDカメラ5から取り込まれた画像データを一時記憶するためのフレームメモリ13、更には、画像データ記憶手段としての不揮発性メモリ14等がバス15を介して接続されている。なお、インターフェイス回路16は、検査用制御装置8を工場内の別のホストコンピュータに接続してデータの入出力を行ったり、プリンタ等に接続してデータの印字出力を行ったりするためのものである。また、操作パネル17は欠陥検出処理のための起動指令等を入力するためのもので、データ表示用のディスプレイやキーボード等を必要に応じて備える。
【0012】
光源4およびCCDカメラ5と走査用移動手段7は入出力回路12を介してMPU9によって駆動制御される。また、CCDカメラ5で撮影された画像の輝度データは入出力回路12を介してMPU9に取り込まれ、フレームメモリ13に一時記憶される。図2の例では、車両2を載置した台車6を走査用移動手段7で移動させることによって光源4およびCCDカメラ5に対してルーフ塗装面3を相対移動させるようにしているが、これとは逆に、車両2の側を固定して光源4およびCCDカメラ5の側を移動させる構成としてもよい。
【0013】
図3は光源4を取り出してその構造を詳細に示した図である。光源4は、多数のLED18を縦横に密接配備して帯状に形成した複数の光源ユニット4a,4b,4c,・・・を備える。光源4は、LED18を下に向けた状態で、光源ユニット4a,4b,4c,・・・の長手方向が走査用移動手段7による台車6の送り方向と交差するようにして、例えば図2に示すように、CCDカメラ5と共に工場内の天井等に固定して取り付けられる。各光源ユニット4a,4b,4c,・・・から照射される検査光4a’,4b’,4c’の例を図2に二点鎖線で示す。
【0014】
CCDカメラ5は、一回の走査によってルーフ塗装面3上の塗装の欠陥を検出する必要上、図2の紙面厚み方向に重合して複数配備されているが、いずれのCCDカメラ5に関しても、その処理動作に関しては同様であるので、以下の説明では、一つのCCDカメラ5を取り上げて全体的な処理について説明する。
一つのCCDカメラ5の撮影範囲19と該CCDカメラ5によって走査されるルーフ塗装面3上の検査領域20との関係について図4に示す。CCDカメラ5は、図4に示すように、台車6を移動させる走査用移動手段7の1回の送り動作によってルーフ塗装面3の端から端まで相対移動し、その間に複数回の撮影動作を実行する。
【0015】
図5はCCDカメラ5によって撮影される画像と各撮影時毎に画像データ記憶手段としての不揮発性メモリ14に書き込まれる画像データとの関係について大まかに示す概念図であり、図5(a)では各撮影タイミングにおけるルーフ塗装面3上の検査領域20に対するCCDカメラ5の撮影範囲19の実位置を符号19a,19b,19c,・・・で示し、また、図5(b)では、各撮影タイミングに対応させて、不揮発性メモリ14上における輝度データの書き込み位置をフレーム1,フレーム2,フレーム3,・・・で示している。
【0016】
図5(a)に示すように、一回の撮影周期間のCCDカメラ5の相対移動量ΔYd’はCCDカメラ5の撮影範囲Ydよりも小さくなるように調整されている。また、CCDカメラ5によって画像が取り込まれる度に、前回の画像取り込み時点から今回の画像取り込み時点までの間に生じたCCDカメラ5の相対移動の量に基づいて、この一回の撮影周期間の相対移動量に対応する不揮発性メモリ14の輝度データ書き込み開始位置を求め、その時点で既に不揮発性メモリ14上に記憶されている輝度データに加算して、今回撮影した画像の輝度データを前述の書き込み開始位置から加算して書き込むようにしているので、図5(b)に示すように、不揮発性メモリ14上の各記憶領域、例えば、フレーム1,フレーム2,フレーム3,・・・には、複数回の撮影データが重複して加算されることになる。
【0017】
図12に本実施形態におけるCCDカメラ5の撮影範囲19の実際の寸法とCCDカメラ5におけるCCDのドットの配列との関係、および、CCDのドットの配列と不揮発性メモリ14上における輝度データの記憶位置との関係について示す。
【0018】
この実施形態においては、図12(a)に示すように、CCDカメラ5の撮影範囲19の実際の幅、つまり、CCDカメラ5の相対移動方向と直行する向きの長さがXm(mm)、また、CCDカメラ5の撮影範囲19の実際の長さ、要するに、CCDカメラ5の相対移動方向に対応する撮影範囲19の長さがYm(mm)であって、CCDカメラ5の受光面の横方向に配列されたドットの数がXd(ドット)、また、長さ方向に配列されたドットの数がYd(ドット)であるとする。従って、ルーフ塗装面3に対するCCDカメラ5の実際の移動量1(mm)は、CCDカメラ5の受光面上のドット数にしてXd/Xm=Yd/Ym(ドット)の移動量に相当する。
【0019】
そして、この実施形態の場合、CCDカメラ5で撮影された画像から垂直方向に1/2の割合でデータを間引きすることによって奇数行のデータだけを取り出すようにしているので、実際にCCDカメラ5から取り出される画像の輝度データ19’の大きさは、図12(b)に示されるように、幅方向にXd(ドット)分、また、長さ方向にはYd/2(ドット)分となる。従って、CCDカメラ5の実際の移動量1(mm)は、図12(c)の不揮発性メモリ14上におけるデータの行数としては、最終的に、Xd/Xm/2=Yd/Ym/2行分となる。
【0020】
また、図12(c)に示すように、ルーフ塗装面3の検査領域20の長さをLm(mm)とすると、これに対応する不揮発性メモリ14上のデータの行数は、Ld=Lm・(Xd/Xm)/2となり、結果的に、不揮発性メモリ14には、幅方向にXd(列)、また、長さ方向にLm・(Xd/Xm)/2(行)のデータを記憶するだけの記憶領域が必要になる。撮影された画像を256階調のグレースケールのディジタルデータとして取り出すとすれば、256階調分の色深度を8(bit)として、不揮発性メモリ14には、Xd・Ld・8(bit)分の記憶領域が必要である。
【0021】
また、仮に、ルーフ塗装面3に対するCCDカメラ5の相対移動速度がVmax・V/100(mm/sec.)、CCDカメラ5による撮影の繰り返し周期が2・t(sec.)であるとすると、この間のCCDカメラ5の実移動量はVmax・V/100・2・t(mm)であり、これに対応する不揮発性メモリ14上の移動量ΔYdは、データの行数にしてVmax・V/100・2・t・Xd/Xm/2(行)分である。
この実施形態においては、ルーフ塗装面3に対するCCDカメラ5の相対移動速度の最大値をVmax(mm/sec.)とし、その値にオーバーライド値V(%)を乗じて実際の相対移動速度を設定するようにしているので、CCDカメラ5の実際の相対移動速度の値は、既に述べたようにVmax・V/100(mm/sec.)で表される。また、撮影周期2・t(sec.)は実質的に固定的な値であり、図14に示すように、CCDカメラ5の垂直同期信号の周期t(sec.)の2倍の値として設定されている。
【0022】
MPU9は、図14に示すように、基準となる垂直同期信号からt(sec.)の間でCCDカメラ5からの画像データの取り込みに関する処理を実行し、残るt(sec.)の間に、前述した輝度データの間引き抽出やグレースケール画像の微分処理、および、輝度データの加算処理等を実施する。そして、MPU9は、後述する欠陥検出処理により、画像データの取り込みに関する処理と輝度データの間引き抽出およびグレースケール画像の微分や輝度データの加算処理等を撮影周期2・t(sec.)毎に繰り返し実行し、図5(a)に示されるように、CCDカメラ5の相対移動量ΔYd’の積算値が、CCDカメラ5の撮影範囲Ydに達する度、つまり、図12(c)の不揮発性メモリ14上における撮影周期毎の相対移動量ΔYdの積算値Ycの値がYd/2に達して1フレーム分の撮影領域に対する撮影処理が終わる度に、この1フレーム分の撮影領域に対して表面欠陥の有無を判定する。
【0023】
不揮発性メモリ14上での画像データの書き込み開始位置はルーフ塗装面3に対するCCDカメラ5の相対移動量に対応してシフトするので、図5(a)および図5(b)から明らかなように、各撮影タイミングにおける不揮発性メモリ14上でのデータの書き込み開始位置は、前述した不揮発性メモリ14上での相対移動量ΔYdの積算値Ycに基づいて決めればよい。但し、この実施形態の場合、実際には、積算値Ycの値は1フレーム分の撮影領域に対する判定処理が完了する度、次の1フレームのカウントを実施するためににリセットされるようになっているので、図12(c)に示すように、CCDカメラ5が検査領域20上の移動を完了するまでの間継続して相対移動量ΔYdの積算を続けるもう一つの積算値記憶レジスタYmを用意し、このレジスタYmを用いて不揮発性メモリ14上でのデータの書き込み開始位置を特定するようにしている。ある撮影タイミングで撮影された画像の輝度データ19’,19”と、これらの輝度データ19’,19”が実際に書き込まれる不揮発性メモリ14上の位置との関係を図12(b)および図12(c)に実例を挙げて示す。
【0024】
図6〜図8は画像取り込み手段,オフセット量算出手段,輝度データ書き込み手段および画像解析手段となるMPU9によって実施される欠陥検出処理の概略を示すフローチャートである。以下、これらのフローチャートを参照して機能実現手段としてのMPU9の処理動作について詳細に説明する。
【0025】
オペレータが操作パネル17を操作して欠陥検出処理のための起動指令を入力すると、MPU9は、まず、ステップa1の判別処理でこの操作を検出し、光源4に電源を投入した後、オーバーライド値記憶レジスタVに、不揮発性メモリ14に予め登録されているデフォルト値(例えば50%)をセットし(ステップa2)、このオーバーライド値に相当する走査用移動手段7の相対送り速度Vmax・V/100(mm/sec.)の値を算出し、その送り速度でルーフ塗装面3に対するCCDカメラ5および光源4の相対送りを開始する(ステップa3)。
【0026】
次いで、MPU9は、CCDカメラ5および光源4の現在位置がルーフ塗装面3上の検査開始位置に到達しているか否かを判別し、達していなければ、CCDカメラ5および光源4の現在位置が検査開始位置に到達するまで、その送り動作を保持して送り動作を続ける(ステップa4)。
【0027】
そして、CCDカメラ5および光源4の現在位置が検査開始位置に到達したことがステップa4の判別処理で検出されると、画像取り込み手段としてのMPU9は、積算値記憶レジスタYmおよび積算値記憶レジスタYcの値を共に0に初期化し(ステップa5)、経過時間計測タイマTをリスタートさせて経過時間の計測を開始すると共に(ステップa6)、CCDカメラ5にスナップショット指令を出力して撮影および画像の取り込みを実施し、図12(a)に示されるように、CCDカメラ5で撮影された画像の輝度データP(1,1)〜P(Xd,Yd)のうち奇数行の輝度データだけを取り出し、その配列状態を保持したまま、各スポットの輝度データを図12(b)に示すようにしてフレームメモリ13のP(1,1)〜P(Xd,Yd/2)のスポットに一時記憶する(ステップa7)。
なお、フレームメモリ13に記憶される輝度データは、結果的に、P(1,1)〜P(Xd,Yd/2)までとなるが、ここで取り出すのは飽くまでCCDカメラ5の奇数行の輝度データのみであるから、フレームメモリ13上におけるP(Xd,Yd/2)のスポットの輝度データはCCDカメラ5上におけるP(Xd,Yd)の輝度データと同一である。
【0028】
フレームメモリ13上に取り込まれた輝度データの実例を図15(a1)に示す。図15(a1)において白く見える3本の線4a’,4b’,4c’は光源ユニット4a,4b,4cからの検査光、また、白点21はルーフ塗装面3上の欠陥、例えば、傷である。この実施形態ではCCDカメラ5から256階調のグレースケールで輝度データを取り込むようにしており、白部分の輝度の値は255またはそれに近い値であり、黒部分の輝度の値は0またはそれに近い値である。
【0029】
フレームメモリ13上に輝度データを取り込んだMPU9は、次いで、フレームメモリ13上のP(x,y)=P(1,1)〜P(Xd,Yd/2)の各々のデータに微分処理を施し、明暗の輪郭を強調した微分データP’(x,y)=P’(1,1)〜P’(Xd,Yd/2)を生成し、その値をフレームメモリ13上に再格納する(ステップa8)。微分値を求める演算式としては、ステップa8に示すように、P’(x,y)=|P(x+n1,y)−P(x−n1,y)|+|P(x,y+n2)−P(x,y−n2)|の式を利用しており、P(x,y)の位置を基準として、幅方向では左右に各々n1ドット離れた輝度データの輝度差をとって微分データとする一方、長さ方向では上下に各々n2ドット離れた輝度データの輝度差をとって、点P(x,y)における微分データP’(x,y)とするようにしている。
本実施形態で採用した微分フィルタの概念を図13に示す。図13(a)は幅方向の微分処理に用いるフィルタ、また、図13(b)は長さ方向の微分処理に用いるフィルタであり、本実施形態においては係数n1の値は2、また、係数n2の値は1となっている。しかし、フレームメモリ13上のデータは前述したCCDカメラ5の奇数行からのデータの取り出しによって長さ方向に1/2の割合で圧縮されているので、CCDカメラ5で取り込んだ画像の元データを基準としてみれば、結果的に、n1=n2=2であることと同値である。
【0030】
図15(a1)の輝度データをステップa8の処理で微分した結果を図15(b1)に示す。図15(b1)で黒に見える部分は微分データの値が0またはそれに近い値を示す部分、要するに、輝度の不連続的な変化がない部分であり、また、図15(b1)で白く見える部分は微分データの値が255またはそれに近い値を示す部分、要するに、輝度データの明暗の輪郭が強調された部分22である。図15(a1)のデータに比べて白点21の部分、つまり、ルーフ塗装面3上の欠陥の部分が一層明確になっていることが分かる。
【0031】
このようにして1回の撮影データに対する微分処理を終え、輝度データとしての微分データをフレームメモリ13に格納したMPU9は、次いで、フレームメモリ13上の微分データの値を不揮発性メモリ14に加算して記憶する輝度データ書き込み処理を実施する(ステップa9)。この加算および記憶に関する処理は、ステップa9および図12(c)に示す通り、不揮発性メモリ14上の記憶位置P(1,1+Ym)〜P(Xd,Yd/2+Ym)のP(x,y)の各々に対してフレームメモリ13上の微分データP’(1,1)〜P’(Xd,Yd/2)のP’(x,y)の各々を加算することによって行われる。
【0032】
欠陥検出処理を開始した直後の最初の撮影実施時点では、不揮発性メモリ14上のデータは全て0に初期化されており、また、積算値記憶レジスタYmの値も0であるから、最初のステップa9の処理によって、結果として、図12(c)に符号19’で示す位置、つまり、P(1,1)〜P(Xd,Yd/2)の位置にフレームメモリ13上の微分データP’(1,1)〜P’(Xd,Yd/2)の値がそのまま書き込まれることになる。
【0033】
また、2回目以降の撮影実施時点では積算値記憶レジスタYmにCCDカメラ5の相対移動量に相当する不揮発性メモリ14上のデータ行数が記憶されているので、例えば、図12(c)に符号19”で示すような位置、つまり、不揮発性メモリ14上のP(1,1+Ym)の位置にフレームメモリ13上の微分データP’(1,1)の値が加算して書き込まれ、また、不揮発性メモリ14上のP(Xd,Yd/2+Ym)の位置にはフレームメモリ13上の微分データP’(Xd,Yd/2)の値がそのまま書き込まれることになる。
既に述べた通り、一回の撮影周期間のCCDカメラ5の相対移動量に対応する不揮発性メモリ14上のデータ行数ΔYdの値はCCDカメラ5の撮影範囲に相当する不揮発性メモリ14上のデータ行数Yd/2よりも小さいので、この時点では、既に、不揮発性メモリ14上のYm+Yd/2−ΔYdの行までは、前回の撮影とそれ以前の撮影による微分データの書き込みと加算が行われていることを意味する。つまり、図12(c)に符号19”で示される記憶領域において二重のハッチングで示される部分に関しては、既に微分データが書き込まれており、その各々のスポットに今回の撮影で求めたフレームメモリ13上の微分データP’(1,1)〜P’(Xd,Yd/2)の値が加算して書き込まれるのである。
【0034】
微分データの加算および記憶に関する処理を終えたMPU9は、次いで、CCDカメラ5の送り速度として設定されているオーバーライドの現在値V(%)を読み込み、既に述べた関係式により、現時点から起算して撮影周期2・t(sec.)経過後のCCDカメラ5の相対移動量に対応する不揮発性メモリ14上のデータ行数ΔYdの値を求め(ステップa10)、その値を積算値記憶レジスタYmに加算することによって、次回の撮影で得た微分データの加算および書き込みを開始すべき不揮発性メモリ14上の記憶開始位置を求め、その値を積算値記憶レジスタYmに更新記憶すると共に、積算値記憶レジスタYcにもΔYdの値を加算する(ステップa11)。CCDカメラ5の送り速度となるオーバーライド値V(%)が途中で変更されていたような場合であっても、今後の撮影周期2・t(sec.)間の相対移動量ΔYdの予測は常にオーバーライドの現在値V(%)に基づいて行われるので、CCDカメラ5の相対送り速度が変更された場合であっても、その変更操作に関わりなく、次のデータ書き込み位置を的確に求めることができる。
【0035】
次いで、MPU9は、積算値記憶レジスタYcの値がCCDカメラ5の撮影範囲に相当する不揮発性メモリ14上のデータ行数Yd/2に達しているか否か、つまり、図5(b)に示されるような1フレーム分の撮影が完了しているか否かを判別する(ステップa12)。そして、1フレーム分の撮影が終了していなければ、MPU9は、余り時間を待機した後(ステップa13)、ステップa12の判別処理によって1フレーム分の撮影の完了が確認されるまでの間、前述したステップa6〜ステップa12の処理を繰り返し実行する。
【0036】
この繰り返し処理の間に抽出される輝度データの一例を図15(a2)〜図15(a4)に時系列で示すと共に、その各々に対応する微分データの例を図15(b2)〜図15(b4)に示す。
【0037】
そして、このような処理を繰り返し実行する間にステップa12の判別結果が真となって1フレーム分の撮影が完了したことが確認されると、MPU9は、積算値記憶レジスタYcの値をリセットし(ステップa14)、予め設定されたしきい値、例えば、230を基準として、最近の1フレーム分の微分データを加算記憶した不揮発性メモリ14の記憶領域、つまり、図12(c)に符号19”で示されるようなP(1,Ym−ΔYd)〜P(Xd,Ym+Yd/2−ΔYd)のデータを2値化する(ステップa15)。なお、−ΔYdは、Ymの値をステップa11の処理実行前の状態に戻すための補正値である。
【0038】
最近の1フレーム分の微分データを加算記憶した不揮発性メモリ14の記憶領域の一例を図16(a)に示す。
【0039】
この実施形態では、画像の取り込み周期2・t(sec.)の間にCCDカメラ5に生じる相対移動の量ΔYdが検査光4a’,4b’,4c’間のピッチと一致しないように調整されている。従って、各撮影周期間にCCDカメラ5に生じる相対移動量ΔYdだけデータ列をシフトして不揮発性メモリ14上で図15(b1)〜図15(b4)のデータを加算しても、言い換えれば、白点21の位置が一致するように図15(b1)〜図15(b4)の画像の位置を調整して図15(b1)〜図15(b4)の画像を重ね合わせたとしても、図16(a)に示される通り、検査光4a’,4b’,4c’の輝度データの明暗強調部分22が完全に重複することはなく、よって、検査光4a’,4b’,4c’の影響で生じる輝度データの明暗強調部分22自体の輪郭が加算処理によって強調されることはない。
また、照明状態の変化による撮影領域20のコントラスト変化や近傍に配備された照明を人が横切ることによって生じる瞬間的なコントラストの変化等もこれと同様であり、その影響が常に検査領域20上の同一位置に現れることはないので、前述した検査光4a’,4b’,4c’の影響による明暗強調部分22の場合と同様、複数回の撮影と加算処理を繰り返すことによって、その影響を排除することができる。
【0040】
これに対し、欠陥を示す白点21の部分は、CCDカメラ5の撮影範囲がその欠陥位置を通過する過程で実施される何回かの撮影、例えば、図15(b1)〜図15(b4)の撮影により、常に不揮発性メモリ14上の同一位置に加算して記憶されることになるので、そのデータの持つ重みは更に強調され、図16(a)に示すように、白点21の部分が一層目立つようになる。
そこで、予め設定されたしきい値、例えば、230を基準として図16(a)に示されるような微分データの積算値を二階調化すると、不揮発性メモリ14上において常時同じ位置では検出されない輝度データの明暗強調部分22の部分は色深度230以下の黒に属する値と識別されて背景の黒と一体化され、最終的には、図16(b)に示すように、色深度230以上の白に属するデータとして、欠陥を示す白点21の部分のみが残る。
なお、この実施形態では輝度データの値が大きな部分を明部、また、輝度データの値が小さな部分を暗部として扱っているが、これは飽くまで定義上の問題であるので、輝度データの値と濃度との関係自体は前記とは逆に定義することも可能である。
【0041】
2値化処理を終えたMPU9は、次いで、図16(b)に示されるような2値化済みの輝度データに対して粒子計測と面積計算に関する処理を従来と同様にして実施し(ステップa16)、予め設定されたしきい値以上の面積を有する白点データ21の有無を検出し、しきい値以上の面積を有する白点データ21が存在すれば、その位置をルーフ塗装面3上の表面欠陥位置として不揮発性メモリ14の欠陥位置記憶ファイルに記憶する(ステップa17)。
【0042】
次いで、MPU9は、積算値記憶レジスタYmの値が検査領域20の全長に相当する不揮発性メモリ14上のデータ行数Ldに達しているか否か、即ち、ルーフ塗装面3の検査領域20の全ての部分に対して欠陥検出処理が完了しているか否かを判別する(ステップa18)。前述した通り、Ldの値はLd=Lm・(Xd/Xm)/2である。
【0043】
そして、検査領域20の全長に亘る欠陥検出処理が完了していなければ、MPU9は、余り時間を待機した後(ステップa19)、前述したステップa6〜ステップa18の処理を繰り返し実行し、撮影周期2・t(sec.)毎にCCDカメラ5を起動して画像取り込み等の処理を行い、1フレーム分の撮影領域に対する撮影処理が終わる度に、その1フレーム分の撮影領域に対して表面欠陥の有無を判定し、前記と同様にして不揮発性メモリ14の欠陥位置記憶ファイルに次々と記憶していく。
【0044】
そして、最終的にステップa18の判別結果が真となり、検査領域20の全ての部分に対して欠陥検出処理が完了したことが確認された段階で、MPU9は、不揮発性メモリ14の欠陥位置記憶ファイルに記憶されている白点データの位置と大きさ、つまり、検査領域20上の表面欠陥に関する全てのデータを纏めて出力する(ステップa20)。
このデータはインターフェイス回路16を介してプリンタ等に印字出力してもよいし、また、ホストコンピュータ等に転送して管理させるようにしてもよい。
【0045】
以上、一実施形態として、CCDカメラ5を用いて取り込んだ多階調(例えば256階調)の画像を微分処理し、撮影位置を考慮して不揮発性メモリ14上で加算してから二階調化することにより表面欠陥を検出するようにしたものについて述べたが、このような処理手続きで得られる白点21の微分画像は、図15(b1)〜図15(b4)に示されるようにその面積が小さく、表面欠陥検出装置1を配備したラインに大きな振動等の外乱があるような場合には、撮影位置を考慮してこれらの画像を加算(重合)したとしても、必ずしも、図15(b1)〜図15(b4)に示されるような白点21の位置が一致するとは限らず、最終的に、白点21を欠陥として検出することが困難となる可能性もある。
【0046】
その原因は、CCDカメラ5と検査領域20との間の振動によって生じる白点21の検出位置のずれであるから、基本的には、図15(b1)〜図15(b4)に示される微分画像の白点21に対して膨張処理(dilate)を施してその面積を増大させることにより対処することが可能である。
【0047】
しかし、ここで問題となるのが256階調で保存された微分画像の膨張処理である。フレームメモリ13に256階調で保存された640(ドット)×480(ドット)の微分画像に対して膨張処理を施したところ、その所要時間は33.3(msec.)であった。既に述べた通り、本実施形態においてはCCDカメラ5の垂直同期信号の周期t(sec.)に基づいて2・t(sec.)の周期で1サイクルの処理を実施するようにしているが、ここで用いたCCDカメラ5の垂直同期信号の周期は33.3(msec.)であるから、2・t(sec.)=66.6(msec.)となり、この間に33.3(msec.)を要する画像の取り込みと33.3(msec.)を要する膨張処理を実施すると、その他の処理、例えば、輝度データの加算やデータ書き込み開始位置の演算等に関連する処理が実施できなくなるといった問題が発生してしまう。
【0048】
そこで、これらの不都合を解決して表面欠陥を的確に検出すべく、第二の実施形態においては、CCDカメラ5から取り込んだ多階調(例えば256階調)の画像を前記と同様に微分処理した後、直ちにその画像を2値化してデータの容量を減少させ、この2値化された画像データに対して膨張処理を施すことによりMPU9の実質的な処理速度を向上させて時間的な問題を解消すると共に、膨張処理によって面積を増大させられた白点21を加算処理で重合させることで、表面欠陥を的確に検出できるようにした。
【0049】
この構成によれば、加算処理のために不揮発性メモリ14に記憶される画像データも二階調となり、結果的に、不揮発性メモリ14に必要とされるメモリ容量も大幅に軽減され、また、加算処理の対象となるデータのビット数も減るので、全体的な処理速度が向上する。
【0050】
以下、図9〜図11のフローチャートを参照して第二の実施形態におけるMPU9の処理動作について簡単に説明する。なお、ハードウェアの構成に関しては先に述べた実施形態と同様である。
【0051】
ステップb1〜ステップb8の処理は初期設定に関する処理やCCDカメラ5からの画像の取り込みと画像の微分処理等に関するもので、その処理内容は、前述した実施形態のステップa1〜ステップa8までの処理と同様である。従って、ここでは説明を省略する。前述した実施形態と同様、ステップb8の処理が終わった段階でフレームメモリ13内には図15(b1)に示されるような微分データの画像が生成されることになる。
【0052】
次いで、この実施形態では、予め設定されたしきい値(例えば30)を基準としてフレームメモリ13内の微分データに対して2値化処理を実施し(ステップb9−1)、図17(a1)に示されるような画像を得る。しきい値を30としているので、検査光4a’,4b’,4c’の影響で明暗の輪郭が強調された部分22や白点21の部分に隣接する画像データも白に属するデータとして扱われるようになり、結果的に、この2値化処理によっても、図15(b1)に示されるような微分データの元画像における輪郭強調部分22や白点21の面積が僅かに増大することになる。
同時に、図17(a1)に示されるような白点21’や21”も見られるようになるが、これは二階調化のためのしきい値を30に設定することによって生じたノイズであり、白点21とは違って、実質的な表面欠陥に相当するものではない。
【0053】
次いで、MPU9は、2値化された図17(a1)の画像に対して公知の膨張処理を施し、輪郭強調部分22や白点21の面積を増大させる(ステップb9−2)。この段階で、図17(b1)に示されるように、明暗強調部分22および白点21やノイズ21’,21”が肥大した画像が得られる。膨張処理の対象となるデータが1ビットであるため、膨張処理に必要とされる所要時間は約18(msec.)と短く、図14に示されるような処理サイクルの画像取り込みの余り時間33.3(msec.)を用いて十分に膨張処理を実施することが可能であり、更に膨張処理の余り時間を利用してその他の処理、例えば、輝度データの加算やデータ書き込み開始位置の演算等に関連する処理を実施することができる。
【0054】
次いで、MPU9は、フレームメモリ13上で膨張処理を施された微分データの値を不揮発性メモリ14に加算して記憶する輝度データ書き込み処理を実施する(ステップb9−3)。
ここで実施される加算処理は、不揮発性メモリ14上の記憶位置P(1,1+Ym)〜P(Xd,Yd/2+Ym)の各々のスポットの輝度データとフレームメモリ13上の記憶位置P’(1,1)〜P’(Xd,Yd/2)の各々のスポットの輝度データとのANDをとって、不揮発性メモリ14上の記憶位置P(1,1+Ym)〜P(Xd,Yd/2+Ym)の各スポットにデータを書き込むことによって行われる。
つまり、対応するスポットのデータが共に黒(2値化された値が0)であれば結果として書き込まれるデータは黒(値が0)となり、また、対応するスポットのデータが共に白(2値化された値が1)であれば結果として書き込まれるデータは白(値が1)となる。更に、対応するスポットのデータの一方が黒で他方が白であれば結果として書き込まれるデータは黒(値が0)である。
扱われるデータが1ビットのデータに制限されるため、前述した実施形態におけるステップa9の加算処理に比べ、演算処理の所要時間が短縮される。
【0055】
ステップb10〜ステップb11の処理は、CCDカメラ5の相対移動量を求めて不揮発性メモリ14に対するデータ書き込み開始位置を算出するための処理等であり、その内容は、前述した実施形態のステップa10〜ステップa11までの処理と同様である。従って、ここでは説明を省略する。
【0056】
次いで、MPU9は、積算値記憶レジスタYcの値がCCDカメラ5の撮影範囲に相当する不揮発性メモリ14上のデータ行数Yd/2に達しているか否か、つまり、図5(b)に示されるような1フレーム分の撮影が完了しているか否かを判別するが(ステップb12)、1フレーム分の撮影が終了していなければ、余り時間を待機した後(ステップb13)、前記と同様にしてステップb6〜ステップb12の処理を繰り返し実行する。
【0057】
このような処理を繰り返し実行する間に抽出される微分データの例を図15(b2)〜図15(b4)に示すと共に、その各々に対応する2値化データを図17(a2)〜図17(a4)に示し、更に、その各々に対応する膨張処理終了後のデータを図17(b2)〜図17(b4)に示す。
【0058】
そして、このような処理を繰り返し実行する間にステップb12の判別結果が真となって1フレーム分の撮影が完了したことが確認されると、MPU9は、積算値記憶レジスタYcの値をリセットし(ステップb14)、最近の1フレーム分の微分データをANDの処理で加算して記憶した不揮発性メモリ14の記憶領域、つまり、図12(c)に符号19”で示されるようなP(1,Ym−ΔYd)〜P(Xd,Ym+Yd/2−ΔYd)のデータを参照して粒子計測と面積計算に関する処理を従来と同様にして実施し(ステップb16)、予め設定されたしきい値以上の面積を有する白点データ21の有無を検出し、しきい値以上の面積を有する白点データ21が存在すれば、その位置をルーフ塗装面3上の表面欠陥位置として、不揮発性メモリ14の欠陥位置記憶ファイルに記憶する(ステップb17)。この実施形態の場合、不揮発性メモリ14のデータは書き込みの段階で既に2値化されているので、前述した実施形態におけるステップa15のような2値化処理は必要ない。
【0059】
最近の1フレーム分の微分データをANDの処理で加算して記憶した不揮発性メモリ14の記憶領域の一例を図18に示す。前述した通り、白点21の部分が傷等の欠陥部である。また、図17(b1)や図17(b2)に見られるノイズ21’,21”の形跡がなくなっていることが分かる。
これは、前述したステップb9−3のANDを利用した加算処理による効果である。つまり、不揮発メモリ14とフレームメモリ13の対応するスポットのデータの一方が黒で他方が白であれば結果として不揮発メモリ14上に書き込まれるデータは黒(値が0)となるので、CCDカメラ5の撮影範囲が欠陥位置を通過するまでの間に実施される何回かの撮影、例えば、図17(b1)〜図17(b4)の撮影により、検査領域20上の同一位置つまりは不揮発性メモリ14上の同一位置に、欠陥部分を示す白データが常に検出され続けない限りは、その部分のデータは最終的に白とはされないからである。従って、撮影の都度に検査領域20上の異なる位置で検出される明暗強調部分22と二階調化または膨張処理の段階で生成されたノイズとしての白点21’,21”はANDを用いた加算処理によって排除され、常に検査領域20上の同一位置で検出される白点21、要するに、塗装上の傷等に起因する白点21のみを的確に検出することができる。
【0060】
次いで、MPU9は、積算値記憶レジスタYmの値が検査領域20の全長に相当する不揮発性メモリ14上のデータ行数Ldに達しているか否か、即ち、ルーフ塗装面3の検査領域20の全ての部分に対して欠陥検出処理が完了しているか否かを判別するが(ステップb18)、検査領域20の全長に亘る欠陥検出処理が完了していなければ、撮影周期の余り時間を待機した後(ステップb19)、前述したステップb6〜ステップb18の処理を繰り返し実行し、撮影周期2・t(sec.)毎にCCDカメラ5を起動して画像取り込み等の処理を行い、1フレーム分の撮影領域に対する撮影処理が終わる度に、1フレーム分の撮影領域に対して表面欠陥の有無を判定し、不揮発性メモリ14の欠陥位置記憶ファイルに次々と記憶していく。
【0061】
そして、最終的にステップb18の判別結果が真となって検査領域20の全ての部分に対して欠陥検出処理が完了したことが確認された段階で、MPU9は、不揮発性メモリ14の欠陥位置記憶ファイルに記憶されているデータ、つまり、検査領域20上の全ての表面欠陥に関するデータを纏めて出力する(ステップb20)。
【0062】
以上に述べたように、何れの実施形態においても、CCDカメラ5を移動させながら撮影を繰り返すことによって検査領域20上の同じ領域を複数回重複して撮影し、不揮発性メモリ14上の同一位置、つまり、検査領域20上の同一位置で繰り返し検出された輝度の変化部分のみを欠陥個所として検出するようにしているので、複数回の撮影とそれに伴うデータの加算処理によって、照明状態の変化による撮影領域のコントラスト変化等の外乱による影響が排除され、ルーフ塗装面3上の欠陥を的確に検出することができる。
【0063】
また、撮影周期間におけるCCDカメラ5の相対移動量の予測は常にオーバーライド(V)の現在値に基づいて行われるので、欠陥検出処理の途中で車両2を載置したラインの送り速度が変更されたような場合であっても、データを加算すべき不揮発性メモリ14上の位置に狂いが生じることはなく、送り速度の変化に対処して安定した欠陥検出作業を実施することができる。
【0064】
【発明の効果】
本発明の表面欠陥検出装置は、被検査面上の同じ領域の輝度データを部分的に重複させつつ次々と加算して画像解析の元になる画像データを作成するようにしているので、一時的な外乱による影響を受けた輝度データが画像解析手段の判断に与える影響を低く抑えることができ、照明状態やコントラスト変化等の外乱が発生した場合であっても、常に安定した欠陥検出作業を行うことができる。
【0065】
また、撮影周期毎に撮影手段の相対移動量を求めることで次の撮影の輝度データの書き込み開始位置を算出するようにしているので、撮影手段と被検査面との間の相対移動速度に多少の変化が生じたような場合であっても輝度データの取り込み作業を安定的に継続して画像解析の元になる画像データを作成することが可能となり、送り速度が一定でないタクト形式等の生産ラインにも適する。
【0066】
更に、撮影手段で取り込んだ輝度データを微分処理して被検査面上の明暗の境を明確にした後、その微分データを膨張処理して強調してから画像データ記憶手段に書き込むようにしているので、撮影手段と被検査面との間に振動が生じるような環境下にあっても、この振動による影響を輝度データの面積によって吸収して的確な欠陥検出作業を行うことができる。
また、撮影手段で取り込んだ輝度データを二階調化してから膨張処理を施すようにしているので、多階調の輝度データに対して直に膨張処理を施す場合に比べて大幅に処理時間が短縮化される。この結果、撮影周期の冗長化が防止され、全体の処理速度の低下を招くことなく、安定した欠陥検出作業を行うことができる。また、画像データ記憶手段に書き込まれるデータも二階調となるため、欠陥検出に必要とされるメモリの記憶容量が大幅に節減され、しかも、画像データ記憶手段のデータを解析する画像解析手段の処理速度も向上する。
【図面の簡単な説明】
【図1】本発明が目的を達成するために採用した手段の概略について示すクレーム対応図である。
【図2】本発明を適用した一実施形態の表面欠陥検出装置の構成について示す概念図である。
【図3】同実施形態の表面欠陥検出装置の光源の構造を詳細に示す図である。
【図4】CCDカメラの撮影範囲とCCDカメラによって走査されるルーフ塗装面上の検査領域との関係について示す概念図である。
【図5】CCDカメラによって撮影される画像と各撮影時毎に不揮発性メモリに書き込まれる画像データとの関係について大まかに示す概念図である。
【図6】マイクロプロセッサによって実施される欠陥検出処理の概略を示すフローチャートである。
【図7】欠陥検出処理の概略を示すフローチャートの続きである。
【図8】欠陥検出処理の概略を示すフローチャートの続きである。
【図9】他の実施形態の欠陥検出処理の概略を示すフローチャートである。
【図10】欠陥検出処理の概略を示すフローチャートの続きである。
【図11】欠陥検出処理の概略を示すフローチャートの続きである。
【図12】CCDカメラの撮影範囲の実際の寸法とディジタルデータのドットとの関係を示す概念図で、図12(a)はCCDカメラの撮影範囲の実際の寸法とCCDのドットとの関係を示す図、図12(b)はCCDカメラから間引きして取り込まれるディジタルデータを示す図、図12(C)は画像データ記憶手段としての不揮発性メモリ上の輝度データについて示す図である。
【図13】同実施形態で採用した微分フィルタの構造を概念的に示す図で、図13(a)は幅方向の微分に用いるフィルタ、また、図13(b)は縦軸方向の微分に用いるフィルタある。
【図14】CCDカメラの垂直同期信号の周期と各種処理との時間的な同期関係を示すタイミングチャートである。
【図15】CCDカメラで取り込まれた輝度データと微分データとの関係を示す図で、図15(a1)〜図15(a4)は輝度データ、図15(b1)〜図15(b4)は、その各々を微分して得られた微分データである。
【図16】最近の1フレーム分の微分データを加算して記憶した不揮発性メモリの記憶領域の一例とそれを2値化して得られるデータの一例を示す図で、図16(a)は微分前のデータ、また、図16(b)は微分後のデータである。
【図17】2値化データと膨張処理を施したデータとの関係を示す図で、図17(a1)〜図17(a4)は2値化データ、図17(b1)〜図17(b4)は、その各々を膨張処理して得られるデータである。
【図18】最近の1フレーム分の微分データを加算して記憶した不揮発性メモリの記憶領域の一例を示す図である。
【符号の説明】
1 表面欠陥検出装置
2 車両
3 ルーフ塗装面(被検査面)
4 光源
4a,4b,4c 光源ユニット
4a’,4b’,4c’ 検査光
5 CCDカメラ(撮影手段)
6 台車
7 走査用移動手段
8 検査用制御装置
9 マイクロプロセッサ(画像取り込み手段,オフセット量算出手段,輝度データ書き込み手段,画像解析手段)
10 ROM
11 RAM
12 入出力回路
13 フレームメモリ
14 不揮発性メモリ(画像データ記憶手段)
15 バス
16 インターフェイス回路
17 操作パネル
18 LED
19 撮影範囲
20 検査領域
21 白点(欠陥)
22 輝度データの明暗の輪郭が強調された部分

Claims (3)

  1. 被検査面に向けて検査光を照射する光源と、検査光を照射された被検査面を撮影する撮影手段と、この撮影手段により撮影された画像の輝度データの配列を保持して記憶する画像データ記憶手段と、前記画像データ記憶手段に記憶された輝度データを解析して被検査面上の欠陥を検出する画像解析手段とを備えた表面欠陥検出装置であって、
    前記被検査面と前記撮影手段との間の垂直離間距離を略一定に維持したままの状態で前記被検査面と前記撮影手段との間に相対移動を生じさせる走査用移動手段と、
    前記相対移動の量が前記撮影手段の撮影範囲内にある間に前記撮影手段を繰り返し作動させて前記被検査面の画像を取り込む画像取り込み手段と、
    前記画像取り込み手段によって画像が取り込まれる度、前回の画像取り込み時点から今回の画像取り込み時点までの間に生じた前記相対移動の量に基づいて、この相対移動の量に対応する前記画像データ記憶手段上の輝度データの書き込み開始位置を算出するオフセット量算出手段と、
    前記オフセット量算出手段で算出された書き込み開始位置に基づき、その時点で既に前記画像データ記憶手段上に記憶されている輝度データに今回の撮影で取り込まれた画像の輝度データを加算して書き込む輝度データ書き込み手段とを有し
    前記光源と前記撮影手段との相対的な位置が固定され、前記光源は、前記相対移動の向きと交差する方向に帯状に広がって照射される複数の検査光を所定のピッチで有し、かつ、前記走査用移動手段による相対移動の速度は、前記画像取り込み手段の画像の取り込み周期の間に生じる相対移動の量が前記所定のピッチと一致しないように調整されると共に
    前記画像解析手段には、前記画像データ記憶手段に記憶された輝度データを解析して、設定範囲内の輝度が所定のしきい値以上の面積に亘って検出された場合に欠陥として検出する欠陥検出機能を配備したことを特徴とする表面欠陥検出装置。
  2. 前記撮影手段は撮影された画像を多階調のディジタルデータとして出力するものであり、前記輝度データ書き込み手段は、前記画像を微分処理して前記画像データ記憶手段上に書き込むものである請求項1記載の表面欠陥検出装置。
  3. 前記撮影手段は撮影された画像を多階調のディジタルデータとして出力するものであり、前記輝度データ書き込み手段は、前記画像を微分処理した後に二階調化し、更に、二階調化されたデータに対して膨張処理を行って前記画像データ記憶手段上に書き込むものである請求項1記載の表面欠陥検出装置。
JP08426299A 1999-03-26 1999-03-26 表面欠陥検出装置 Expired - Fee Related JP3985385B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08426299A JP3985385B2 (ja) 1999-03-26 1999-03-26 表面欠陥検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08426299A JP3985385B2 (ja) 1999-03-26 1999-03-26 表面欠陥検出装置

Publications (2)

Publication Number Publication Date
JP2000276599A JP2000276599A (ja) 2000-10-06
JP3985385B2 true JP3985385B2 (ja) 2007-10-03

Family

ID=13825549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08426299A Expired - Fee Related JP3985385B2 (ja) 1999-03-26 1999-03-26 表面欠陥検出装置

Country Status (1)

Country Link
JP (1) JP3985385B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028596A (ja) * 2008-07-23 2010-02-04 Hitachi Ltd 撮像装置
JP6584454B2 (ja) * 2017-06-14 2019-10-02 キヤノン株式会社 画像処理装置及び方法
US20180367722A1 (en) * 2017-06-14 2018-12-20 Canon Kabushiki Kaisha Image acquisition device and image acquisition method
JP2019082452A (ja) * 2017-10-31 2019-05-30 キヤノン株式会社 画像生成方法、画像生成装置、及びそれらを用いた欠陥判定方法
JP2021056182A (ja) * 2019-10-02 2021-04-08 コニカミノルタ株式会社 ワークの表面欠陥検出装置及び検出方法、ワークの表面検査システム並びにプログラム
CN112179903B (zh) * 2020-09-30 2022-08-19 深兰人工智能芯片研究院(江苏)有限公司 无锁空瓶检测方法和系统
CN116342539B (zh) * 2023-03-22 2023-12-12 深圳市康士达科技有限公司 一种机器视觉环境快速构建方法、装置及介质

Also Published As

Publication number Publication date
JP2000276599A (ja) 2000-10-06

Similar Documents

Publication Publication Date Title
JP2686274B2 (ja) 細胞画像処理方法および装置
US5379347A (en) Method of inspecting the surface of a workpiece
JP6741173B2 (ja) 形状検査装置及び形状検査方法
CN111788476A (zh) 部件贴装状态的检查方法、印刷电路板检查装置及计算机可读记录介质
JPH0425741A (ja) ヘッドライトの光軸調整方法
JP3985385B2 (ja) 表面欠陥検出装置
JP2750226B2 (ja) 二値化閾値の設定方法
JP2000193601A (ja) 表面欠陥検査装置
JP4322230B2 (ja) 表面欠陥検査装置及び表面欠陥検査方法
JPH109841A (ja) 表面欠陥検査装置
JP2710527B2 (ja) 周期性パターンの検査装置
JP4349960B2 (ja) 表面欠陥検査装置
JPH05164703A (ja) ワーク表面検査方法
JPH11241916A (ja) 高さ測定方法、高さデータ処理方法及び高さ測定装置
JP2000172845A (ja) 表面欠陥検査装置、表面欠陥検査方法及び表面欠陥検査用プログラムを記録した記録媒体
JP3055322B2 (ja) 円形容器内面検査装置
JP2889490B2 (ja) 画像処理装置におけるしきい値設定方法
JP3055323B2 (ja) 円形容器内面検査装置
JPH11132957A (ja) 表面欠陥検出方法および装置
JPH0467887B2 (ja)
JP2836535B2 (ja) パネル表示状態認識装置
JP3357739B2 (ja) 形状検出方法
JP2009150847A (ja) 検査装置、検査システム、検査装置の制御方法、検査装置制御プログラム、及び該プログラムを記録したコンピュータ読み取り可能な記録媒体
JP2001005966A (ja) エッジ画像生成装置
JP3721847B2 (ja) ハンダボールの検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140720

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees