JP3983572B2 - 画像処理方法、画像処理装置、該画像処理装置を備えた画像形成装置、画像処理プログラム、および該画像処理プログラムを備えた記録媒体 - Google Patents

画像処理方法、画像処理装置、該画像処理装置を備えた画像形成装置、画像処理プログラム、および該画像処理プログラムを備えた記録媒体 Download PDF

Info

Publication number
JP3983572B2
JP3983572B2 JP2002059460A JP2002059460A JP3983572B2 JP 3983572 B2 JP3983572 B2 JP 3983572B2 JP 2002059460 A JP2002059460 A JP 2002059460A JP 2002059460 A JP2002059460 A JP 2002059460A JP 3983572 B2 JP3983572 B2 JP 3983572B2
Authority
JP
Japan
Prior art keywords
pixel
image
correspondence relationship
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002059460A
Other languages
English (en)
Other versions
JP2003259119A (ja
Inventor
秀義 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002059460A priority Critical patent/JP3983572B2/ja
Publication of JP2003259119A publication Critical patent/JP2003259119A/ja
Application granted granted Critical
Publication of JP3983572B2 publication Critical patent/JP3983572B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color, Gradation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、入力画像データに対して中間調処理を施して出力画像データに変換する画像処理方法、画像処理装置、該画像処理装置を備えた画像形成装置、画像処理プログラム、および該画像処理プログラムを備えた記録媒体に関するものである。特に、本発明は、回路規模の拡大を抑えつつ、低階調から高階調までの画像出力装置に対応可能な画像処理装置に関するものである。
【0002】
【従来の技術】
従来、フルカラー複写機等のデジタル画像形成装置においては、スキャナ等の画像入力装置からの入力画像データを、電子写真方式の出力エンジン、インクジェット方式の出力エンジン等の画像出力装置に出力して画像形成を行っている。
【0003】
このとき、画像出力装置の階調表現能力が画像入力装置の階調表現能力を下回っている場合には、良好な階調を再現するために中間調処理と呼ばれる画像処理を施してから、画像データを画像出力装置に出力している。
【0004】
このような中間調処理では、一般にディザ法および誤差拡散法の2種類の方法が主に利用されているが、中でも近年の処理速度の高速化や、画像出力装置の高解像度化により、ディザ法が盛んに利用されている。
【0005】
ディザ法を用いた画像処理装置としては、特開2000−341522号公報(公開日:2000年12月8日)に多値ディザ法を用いた印刷装置が開示されている。
【0006】
前記印刷装置は、複数のディザマトリクステーブル(ディザマスクテーブル)を登録できるディザマトリクステーブル格納手段と、印刷色ごとに、任意のマトリクスサイズのディザマトリクステーブルを前記格納手段に登録するディザマトリクス登録手段と、1画素あたりの濃度情報である階調情報を、ディザマトリクス法を用いて印刷装置が再現できる情報量に変換する階調値変換手段とを備える。前記階調値変換手段は、前記登録手段により前記格納手段に登録された前記ディザマトリクステーブルの閾値データに基づいて、印刷色ごとに、異なるマトリクスサイズの階調値変換処理を実行するものである。
【0007】
上記の構成によると、メモリ素子の容量を最小限に抑えつつ、ディザマトリクスサイズをフレキシブルに変化させて、多種多様なディザマトリクスを提供することにより、印刷データの種類にかかわらず高品質な印刷画像を提供することができる。
【0008】
【発明が解決しようとする課題】
一般に、ディザ法では、ディザマトリクスサイズが大きい程、階調再現能力が高まり良いとされる。しかしながら、画像出力装置の階調表現能力が高い場合には、ディザマトリクスサイズを大きくせずとも高い階調表現を達成できるため、小さいサイズのディザマトリクスが利用される。一方、画像出力装置の階調表現能力が低い場合には、ディザマトリクスサイズを大きくしなければ階調表現能力を高めることができない。
【0009】
また、マトリクスサイズが大きいほど、個別の画素における階調変化が激しいため、例えばCMYK(C:シアン、M:マゼンタ、Y:イエロー、K:ブラック)4色プレーン出力を行なうカラー画像出力装置では、マトリクスの形状やマトリクスの並びを他の色プレーンとは変化させ、スクリーン角を色プレーンごとに変更することで、各色プレーン間での相関を抑えることが重要になる。
【0010】
上記公報に記載の印刷装置では、同一の多値ディザ処理回路を使用し、色プレーンごとに設定データを入れ替えることで、回路規模を抑えつつ、色プレーンごとに異なるディザマトリクス形状またはスクリーン角を実現している。このため、前記印刷装置は、ある色プレーンの処理を終了してから次の色プレーンの処理を行なう多回転型の電子写真方式のカラー印刷装置では有効である。
【0011】
しかしながら、各色プレーンの処理を同時に実行する必要のあるタンデム型の電子写真方式のカラー印刷装置や、インクジェット方式のカラー印刷装置では、色プレーンの切替え処理のオーバヘッドが大きく、上記公報に記載の印刷装置を適用することは困難である。
【0012】
さらに、上記公報に記載の印刷装置では、多値ディザ処理部を複数個の比較器で構成し、入力画像データと閾値データとを比較することによって出力画像データを算出している。このとき、多値ディザ処理により、例えば128階調のような高階調の画像データを出力する場合には、127個の比較器が必要となり、回路規模の増大を招くという結果となる。
【0013】
本発明は、上記問題点に鑑みなされたものであり、その目的は、回路規模の拡大を抑えつつ、高階調から低階調までの幅広い画像出力装置に対応可能な画像処理装置を提供することにある。
【0014】
【課題を解決するための手段】
上記の課題を解決するために、本発明に係る画像処理方法は、入力画像データに対して多値ディザ法により行なわれる中間調処理ステップを含む画像処理方法において、前記中間調処理ステップは、前記入力画像データの画素である入力画素の各階調値と、ディザマスク上の各画素位置と、出力画素の各階調値との対応関係である第1の対応関係を予め記憶しておき、前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置と前記入力画素の階調値とを用いて第1の対応関係を参照することにより、前記出力画素の階調値を取得して出力する直接変換処理ステップと、前記ディザマスク上の各画素位置と複数の閾値との対応関係である第2の対応関係を予め記憶しておき、前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置を用いて第2の対応関係を参照することにより前記複数の閾値を取得し、取得された複数の閾値のそれぞれと前記入力画素の階調値とを比較することにより、前記出力画素の階調値を取得して出力する間接変換処理ステップとを含んでおり、第2の対応関係には、1主走査ライン上における、前記ディザマスク上の画素の並び順に、該画素に対応する前記複数の閾値が格納され、隣り合う前記画素同士が別々のディザマスクに属する場合 には、前記隣り合う画素同士に対応する前記複数の閾値同士の間に、ディザマスクの位置変更を示す位置変更フラグが挿入されており、前記間接変換処理ステップは、第2の対応関係を参照して取得した前記複数の閾値に、前記位置変更フラグが含まれる場合、前記ディザマスクの位置変更を行うことを特徴としている。
【0015】
前記直接変換処理ステップは、前記間接変換処理ステップに比べて、前記比較する処理が不要である。比較する処理は、前記入力画素の画素値と前記複数の閾値のそれぞれとを比較することから、前記閾値の数だけ比較する必要がある。従って、出力する階調数が多いほど前記閾値の数が多くなり、比較する回数が多くなることになる。
【0016】
また、前記直接変換処理ステップでは、前記記憶の処理により記憶する際に必要な記憶容量は、(入力画素の階調数)×(ディザマスクのサイズ)×(出力画素の階調数)となる。一方、前記間接変換処理ステップでは、必要な前記記憶容量は、(ディザマスクのサイズ)×(画素ごとの閾値の数)×(閾値の最大値)となる。
【0017】
このとき、入力画素の階調数(例えば256)よりも、閾値の最大値(例えば240)の方が小さく、出力画素の階調数よりも、画素ごとの閾値の数の方が1だけ少ない。従って、前記直接変換処理ステップよりも前記間接変換処理ステップの方が、必要な前記記憶容量が少なくてすむ。
【0018】
また、出力する階調数が少ない場合には、ディザマスクのサイズを大きくする必要があり、このとき、モアレによる画質劣化を抑えるために、例えば、図10に示すように、ディザマスクの並びに角度をつける必要がある。この場合、前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定する際に、入力画素の画像上の位置と前記ディザマスク上の画素位置との対応関係を記憶する必要があり、記憶容量を増やす必要がある。
【0019】
しかしながら、前述のように、前記直接変換処理ステップよりも前記間接変換処理ステップの方が、必要な前記記憶容量が少なくてすむから、前記間接変換処理ステップにおける必要な前記記憶容量は、前記対応関係を記憶する分の記憶容量を増やしたとしても、前記直接変換処理ステップにおける必要な前記記憶容量と同程度ですむ。
【0020】
以上より、前記直接変換処理ステップは、出力する階調数が多い場合には、回路規模の拡大を抑え、かつ、高速な処理が可能であることから好適であり、前記間接変換処理ステップは、出力する階調数が少ない場合には、回路規模の拡大を抑えることから好適であることが理解できる。
【0021】
従って、本発明の画像処理方法は、中間調処理において、出力する階調数が多い場合には前記直接変換処理を行ない、出力する階調数が少ない場合には前記間接変換処理を行なうことから、回路規模の拡大を抑えつつ、高階調および低階調の何れの画像出力にも適切に対応することができる。さらに、第2の対応関係から前記複数の閾値を読み出すときに、位置変更フラグも読み出すことにより、次の入力画素の階調値に中間調処理を行なう前にディザマスクの位置を変更することができ、これにより、処理を効率よく行なうことができる。
【0022】
また、本発明の画像処理装置は、入力画像データに対して多値ディザ法による中間調処理手段と、各種のデータを記憶する記憶手段とを備える画像処理装置において、前記記憶手段は、前記入力画像データの画素である入力画素の各階調値と、ディザマスク上の各画素位置と、出力画素の各階調値との対応関係である第1の対応関係を予め記憶すると共に、前記ディザマスク上の各画素位置と複数の閾値との対応関係である第2の対応関係を予め記憶しており、前記中間調処理手段は、前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置と前記入力画素の階調値とを用いて前記記憶手段の第1の対応関係を参照することにより、前記出力画素の階調値を取得して出力する直接変換処理手段と、前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置を用いて前記記憶手段の第2の対応関係を参照することにより前記複数の閾値を取得し、取得された複数の閾値のそれぞれと前記入力画素の階調値とを比較することにより、出力画素の階調値を取得して出力する間接変換処理手段とを備えており、前記記憶手段の第2の対応関係には、1主走査ライン上における、前記ディザマスク上の画素の並び順に、該画素に対応する前記複数の閾値が格納され、隣り合う前記画素同士が別々のディザマスクに属する場合には、前記隣り合う画素同士に対応する前記複数の閾値同士の間に、ディザマスクの位置変更を示す位置変更フラグが挿入されており、前記間接変換処理手段は、第2の対応関係を参照して取得した前記複数の閾値に、前記位置変更フラグが含まれる場合、前記ディザマスクの位置変更を行うことを特徴としている。
【0023】
上記の構成によると、出力する階調数が多い場合には、選択手段にて直接変換処理手段が選択されて、記憶手段に第1の対応関係が記憶される。
【0024】
そして、入力画像データが入力画素ごとに入力されると、直接変換処理手段は、前記入力画素の画像上の位置からディザマスク上の画素位置が特定され、特定されたディザマスク上の画素位置と前記入力画素の階調値とを用いて第1の対応関係を参照することにより、出力する階調値を取得して出力する。
【0025】
一方、出力する階調数が少ない場合には、選択手段にて間接変換処理手段が選択されて、記憶手段に第2の対応関係が記憶される。
【0026】
そして、入力画像データが入力画素ごとに入力されると、間接変換処理手段は、前記入力画素の画像上の位置からディザマスク上の画素位置が特定され、特定されたディザマスク上の画素位置を用いて第2の対応関係を参照することにより、複数の閾値を取得し、取得された複数の閾値のそれぞれと前記入力画素の階調値とを比較することにより、出力画素の階調値を取得して出力する。
【0027】
従って、本発明の画像処理装置は、前述のように、中間調処理において、出力する階調数が多い場合には前記直接変換処理を行ない、出力する階調数が少ない場合には前記間接変換処理を行なうことから、回路規模の拡大を抑えつつ、高階調および低階調の何れの画像出力にも適切に対応することができる。さらに、第2の対応関係から前記複数の閾値を読み出すときに、位置変更フラグも読み出すことにより、次の入力画素の階調値に中間調処理を行なう前にディザマスクの位置を変更することができ、これにより、処理を効率よく行なうことができる。
【0028】
また、本発明の画像処理装置は、上記の構成において、前記記憶手段は、第1の対応関係および第2の対応関係を予め記憶する第1の記憶手段と、第2の記憶手段とを備えており、前記直接変換手段は、第1の記憶手段から第1の対応関係を読み出して第2の記憶手段に記憶しておき、前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置と前記入力画素の階調値とを用いて第2の記憶手段の第1の対応関係を参照することにより、前記出力画素の階調値を取得して出力しており、前記間接変換手段は、第1の記憶手段から第2の対応関係を読み出して第2の記憶手段に記憶しておき、前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置を用いて第2の記憶手段の第2の対応関係を参照することにより前記複数の閾値を取得し、取得された複数の閾値のそれぞれと前記入力画素の階調値とを比較することにより、出力画素の階調値を取得して出力していることを特徴としている。
【0029】
上記の構成によると、第2の記憶手段は、第1の対応関係および第2の対応関係の何れか大きい方を記憶できる容量であればよく、従って、第2の記憶手段として、高速読出しかつ小容量の記憶手段を使用することにより、中間調処理を高速に行なうことができる。
【0030】
また、本発明の画像処理装置は、上記の構成において、第2の記憶手段にて記憶される第2の対応関係は、前記ディザマスク上の各画素と、該画素から特定される複数の閾値が第1の記憶手段に記憶されている記憶位置との対応関係であることを特徴としている。
【0031】
上記の構成によると、第2の記憶手段に記憶される第2の対応関係は、複数の閾値の代わりに、第1の記憶手段の記憶位置が格納されることになる。従って、閾値を変更する場合に、前記記憶位置を変更すればよいから、処理を高速化することができる。
【0032】
なお、入力画像データを生成する画像入力装置と、該画像入力装置からの画像データに画像処理を施す画像処理装置と、該画像処理装置により中間調処理された画像データに基づいて画像を出力する画像出力装置とを備える画像形成装置に、上記何れかの構成の画像処理装置を適用することができる。
【0033】
また、上記の画像処理方法により行なわれる各ステップを、画像処理プログラムによりコンピュータ上で実行させることができる。さらに、前記画像処理プログラムをコンピュータ読取り可能な記録媒体に記憶させることにより、任意のコンピュータ上で前記画像処理プログラムを実行させることができる。
【0034】
【発明の実施の形態】
本発明の実施の一形態について図1〜図11に基づいて説明する。本実施形態のデジタル複写機(画像形成装置)10は、図2に示すように、スキャナ部(画像入力装置)11、画像処理部(画像処理装置)12、エンジン部(画像出力装置)13、コンソール14、およびコントローラ15を備えている。
【0035】
スキャナ部11は、図示しないCCD(Charge Coupled Device)ラインイメージセンサユニットおよび副走査方向駆動系を備えている。スキャナ部11は、原稿を走査し、1主走査ライン毎にRGB(R:赤・G:緑・B:青)カラー信号を生成し、この信号を有効範囲のみA/D(アナログ/デジタル)変換することによりRGB画像データ(入力画像データ)を生成して画像処理部12に出力する。
【0036】
画像処理部12は、ASIC(Application Specific Integrated Circuit)で構成されており、スキャナ部11から受け取ったRGB画像データに対して画像処理を行なって、CMYK画像データを生成し、エンジン部13に出力する。エンジン部13は、画像処理部12から1ページ分のCMYK画像データを受け取り、該データに基づいて記録紙に画像を出力する。
【0037】
コントローラ15は、一般的なCPU(Central Processing Unit )で構成され、スキャナ部11、画像処理部12およびエンジン部13を制御することにより、一連の複写動作を実施させる。コンソール14は、図示しないが、ユーザとのインタフェースを行なうための液晶表示装置や動作指示用のボタン類から構成され、コントローラ15との送受信により、コントローラ15に動作を指示したり、動作状態を液晶表示装置に表示したりする。
【0038】
次に、本実施形態におけるエンジン部13として使用されるカラー出力エンジンのさらに詳しい構成および機能について説明する。カラー出力エンジン100は、図3に示すように、4色の可視像形成ユニット110を記録媒体搬送路に沿って配列したいわゆるタンデム型の電子写真方式カラー画像形成装置である。
【0039】
カラー出力エンジン100は、供給トレイ120と定着装置140とを繋ぐ記録紙P(記録媒体)の搬送路に沿って、4組の可視像形成ユニット110Y・110M・110C・110Bを配設し、無端状ベルトの記録紙搬送手段130によって搬送される記録紙Pに各色トナーを多重転写した後、定着装置140によってトナーを定着してカラー画像を形成するものである。
【0040】
記録紙搬送手段130は、所定の周速度に制御されて回動する一対の駆動ローラ131およびアイドリングローラ132と、駆動ローラ131およびアイドリングローラ132に張架された無端状の搬送ベルト133とを有し、このベルト133上に記録紙Pを静電吸着させて搬送する。
【0041】
各可視像形成ユニット110には、感光体ドラム111の周囲に帯電ローラ112、レーザ光照射手段113、現像器114、転写ローラ115およびクリーナー116が配置されている。各ユニットの現像器114には、イエロー(Y)、マゼンタ(M)、シアン(C)およびブラック(B)の各色トナーがそれぞれ収容されている。そして各可視像形成ユニット110は、以下の工程によりトナー画像を記録紙P上に形成する。
【0042】
まず、感光体ドラム111の表面を帯電ローラ112で一様に帯電する。次に、画像処理部12から受け取った出力画像データに応じて、感光体ドラム111の表面をレーザ光照射手段113でレーザ露光する。これにより、感光体ドラム111の表面に静電潜像が形成される。
【0043】
次に、感光体ドラム111上の静電潜像を現像器114で現像する。これにより、感光体ドラム111の表面にトナー画像が顕像化する。次に、トナーとは逆極性のバイアス電圧が印加された転写ローラ115により、記録紙搬送手段130によって搬送される記録紙Pにトナー画像が順次転写される。
【0044】
その後、記録紙Pは、駆動ローラ131の曲率により搬送ベルト133から剥離された後、定着装置140に搬送される。定着装置140では、所定の温度に保たれた定着ローラにより適当な温度および圧力が与えられる。これにより、トナーが溶解して記録紙Pに固定されて、記録紙P上に堅牢な画像が形成される。
【0045】
次に、本実施形態における画像処理部12のさらに詳しい構成および機能について説明する。画像処理部12は、図4に示すように、シェーディング補正処理部21、入力ガンマ処理部22、領域分離処理部23、フィルタ処理部24、変倍処理部25、色補正処理部26、および中間調処理部27を備えている。
【0046】
シェーディング補正処理部21は、主走査方向内で光量分布が存在する入力データを、光量分布が低減されたデータに補正する。すなわち、スキャナ部11より送られてきたデジタルのRGB信号に対して、スキャナ部11の照明系、結像系および撮像系で生じる各種の歪みを取り除く処理を行なう。
【0047】
入力ガンマ処理部22は、スキャナ部11の入力特性を後の画像処理で扱いやすくするため、画像データがスキャナ部11のCCDの感度にリニアになるように補正する。領域分離処理部23は、入力ガンマ処理部22から入力された画像データに対して、画素が文字画素か否かを示す1ビットの属性フラグAを各画素に付加する。
【0048】
フィルタ処理部24は、画素毎に2次元FIR(Finite Impulse Response)フィルタをかけ、画素毎の属性フラグAを用いて文字領域であれば強調フィルタ処理を行なって文字エッジを強調し、それ以外の領域であれば平滑フィルタ処理を行なってノイズの除去を行なう。
【0049】
変倍処理部25は、フィルタ処理部24から入力された画像データの主走査方向への変倍処理を行ない、主走査方向に対して画像の拡大あるいは縮小を実施する。色補正処理部26は、RGB多値画像データをCMYK多値画像データに変換する。すなわち、忠実な色再現を実現するために、不要吸収成分を含むCMYK色材の分光特性に基づいて格納された変換テーブルを参照することにより、RGB値をCMYK値に直接変換する。
【0050】
中間調処理部27は、色補正処理部26から入力された各色256階調のCMYK画像データをエンジン部13の能力に応じて、各色2階調から各色256階調までの範囲の階調表現が可能になるようにディザ処理を行なう。ディザ処理されたCMYK画像データは、エンジン部13に出力され、エンジン部13は、前述のように、該データに基づいて記録紙Pにカラー画像を形成する。
【0051】
次に、本発明に係る多値ディザ処理を実施する中間調処理部27について、図1・図5〜図11に基づいて説明する。
【0052】
中間調処理部27は、図1に示すような、コンパレータ31、出力エンコーダ32、出力LUT33、セレクタ(選択手段)34、座標生成器35、シーケンスLUT(Look Up Table:ルックアップテーブル)36、データエンコーダ37、およびテーブルメモリ38を含む構成を、CMYKの各色プレーン毎に計4つ設けられている。すなわち、中間調処理部27は、各色プレーンに対して多値ディザ処理を行なっている。
【0053】
コンパレータ31は、図示しない15組の8ビット比較器C0〜C14で構成されており、入力ポート(色補正処理部26)から受け取る8ビット入力画像データと、データエンコーダ37から受け取る15組8ビットの閾値データとを比較し、各比較結果を1ビットの値に対応させた15ビットの判定データを生成する。
【0054】
出力エンコーダ32は、コンパレータ31からの15ビットの判定データを4ビット(16階調)の値に変換する。出力LUT33は、出力エンコーダ32からの4ビットの値に基づいて8ビットの出力データ値を生成する。
【0055】
セレクタ34は、動作モードが直接変換処理モードである場合には、データエンコーダ37からの8ビット出力データ値を選択し、動作モードが間接変換処理モードである場合には、出力LUT33からの8ビット出力データ値を選択して、出力ポート(エンジン部13)に出力する。
【0056】
座標生成器35は、図5に示すように、主走査カウンタ41、副走査カウンタ42、直接変換モードアドレス生成器43、間接変換処理モードアドレス生成器44、データデコーダ45、次ラインアドレス値レジスタ46、アドレス値レジスタ47、シーケンス数レジスタ48、シーケンスアドレス値レジスタ49、およびアドレスデコーダ50を備える構成である。
【0057】
また、座標生成器35は、選択された動作モードを受けて、入力ポートからの入力画像データと、ページ基準信号と、主走査基準信号と、シーケンスLUT36またはテーブルメモリ38からのデータとを用いて、次にアクセスすべきテーブルメモリ38の位置を決定して、決定したアドレス値をテーブルメモリ38に出力するとともに、エンコードマスク値をデータエンコーダ37に出力する。
【0058】
データデコーダ45は、テーブルメモリ38からのアドレス算出用データを受け取り、動作モードに応じて、次ラインアドレス値レジスタ46に次ラインタグアドレスを、アドレス値レジスタ47にラインnの開始アドレスを、シーケンスLUT36にシーケンスLUT書込み値を、シーケンス数レジスタ48に合計シーケンス数をそれぞれ出力する。
【0059】
直接変換モードアドレス生成器43は、入力ポートからの入力画像データ、主走査カウンタ41からの主走査カウンタ値、および副走査カウンタ42からの副走査カウンタ値に応じて、直接変換モードにおけるアドレス値およびエンコードマスク値の元となるデータ値を計算する。
【0060】
間接変換モードアドレス生成器44は、シーケンスLUT36からのシーケンスデータに応じて、間接変換モードにおけるアドレス値およびエンコードマスク値の元となるデータ値を計算する。
【0061】
アドレスデコーダ50は、動作モードに応じて、アドレス値レジスタ47からのアドレス値と、直接変換モードアドレス生成器43または間接変換モードアドレス生成器44からのデータ値とに基づいて、アドレス値およびエンコードマスク値を生成する。
【0062】
シーケンスLUT36は、12ビットの値を16エントリ格納することができ、テーブルメモリ38から、処理対象ラインに対応するマスクデータの格納アドレス値を主走査基準信号毎に受け取って記憶し、座標生成器35の要求に応じて、記憶したアドレス値を座標生成器35に出力する。
【0063】
データエンコーダ37は、テーブルメモリ38から16組8ビットのデータを受け取り、座標生成器35からのエンコードマスク値と動作モードとに従って、コンパレータ31に15組の閾値データを出力し、あるいはセレクタ34に1組の出力データ値を出力する。
【0064】
テーブルメモリ38は、8ビットの値を4096エントリ格納することができ、各エントリの位置を12ビットのアドレス値として与える。
【0065】
また、テーブルメモリ38は、16個のメモリブロックを用いた16バンク構成となっており、各メモリバンクに対してアドレス値に応じてローカルなアドレスを発行することによりアドレス値の下位4ビットが重複しない任意の16エントリ128ビットをデータエンコーダ37に出力することができる。
【0066】
テーブルメモリ38内には、動作モードに応じて出力データ値または閾値とアドレス算出用データとを格納しており、座標生成器35からのアドレス値に応じて出力データ値または閾値をデータエンコーダ37に出力するとともに、アドレス算出用データを座標生成器35に出力する。
【0067】
次に、本実施形態のデジタル複写機10における処理動作について、図6にに基づいて説明する。まず、ステップ10(以下、S10と略称する。S11以降についても同様である。)において初期化が行われ、ASICにて実現されている画像処理部12の各種動作パラメータがコントローラ15により設定される。このとき、コントローラ15は、中間調処理において行なわれる動作モード(直接変換処理モードまたは間接変換処理モード)に基づいて、各種のデータをテーブルメモリ38に書き込む。
【0068】
続いて、S11において、スキャナ部11のラインセンサユニットが、副走査方向に移動して、読取り対象位置に達するまで待機する。読取り対象位置は、入力画像に対する変倍率によって変化する。例えば、入力解像度が600dpi(dot per inch)のスキャナの場合、変倍率が100%であれば、1インチを600分割した位置ごとに読取りを行ない、変倍率が50%であれば、1インチを300分割した位置ごとに読取りを行なう。
【0069】
S12において、スキャナ部11は、読取り対象位置にて主走査1ライン分のRGB画素値を読み取り、10ビットデジタル信号値として変換した後、画像処理部12に出力する。
S13において、シェーディング補正処理部21は、シェーディング補正処理を実施し、8ビット値に変換する。S14において、入力ガンマ処理部22は、入力ガンマ補正処理を実施する。
【0070】
S15において、領域分離処理部23は、領域分離処理を実施し、画素毎に文字又はその他領域の属性フラグAを生成する。S16において、フィルタ処理部24は、フィルタ処理を実施し、文字属性の画素に対しては強調フィルタを、その他領域属性の画素に対しては平滑フィルタを実施する。
【0071】
S17において、変倍処理部25は、主走査1ラインに対して変倍処理を行ない、主走査方向に対して画像の拡大または縮小処理を実施する。S18において、色補正処理部26は、色補正処理を行ない、変換テーブルを参照することにより、1ライン分の画素値をRGB値からCMYK値に直接変換する。
【0072】
S19において、中間調処理部27は、多値ディザ処理を行ない、1ライン分の256階調のCMYK値をエンジン部13の階調表現能力に合わせて、64階調のCMYK値、あるいは16階調のCMYK値に変換し、エンジン部13に出力する。S20において、画像処理部12が1ページ分のCMYK値をエンジン部13に送った後、S21において、エンジン部13は、記録紙Pに対して画像処理結果を印字出力して、デジタル複写機10の処理動作を終了する。
【0073】
次に、図6におけるS19の中間調処理について、図7〜図9に基づいてさらに詳しく説明する。中間調処理部27は、図7に示すように、まず、S30において、現在のディザ処理モードとして直接変換処理モードが選択されたか否かを判定する。
ここで、画像を出力するエンジン部13が64階調以上の高性能な階調表現を行なうことができる場合には、直接変換処理モードが選択され、S31において、直接変換処理を実施する。一方、エンジン部13が16階調以下の階調表現しか行なうことができない場合には、間接変換処理モードが選択され、S32において間接変換処理を実施する。
【0074】
ここで、S31の直接変換処理について、図8に基づいてさらに詳しく説明する。なお、直接変換処理モードの場合には、図6におけるS10の初期化処理において、図2に示すコントローラ15は、所定の階調(例えば、64階調)となる出力データ値を図1に示すテーブルメモリ38に書き込む。
【0075】
前記出力データ値は、入力画素の階調値とディザマスク上の画素とにそれぞれ対応する階調値であり、入力画素の或る階調値について、ディザマスク上の画素ごとに順番に並べられ、さらに、入力画素の階調値ごとに順番に並べられてテーブルメモリに書き込まれている。
【0076】
まず、S40において、対象ラインにおいてページ基準信号が有効であるか否かを判断し、ページ基準信号が有効である場合には、S41において、副走査カウンタ42をリセットして、副走査カウント値を0にする。
【0077】
S42においては、主走査基準信号が有効であるか否かを判断し、主走査基準信号が有効である場合には、S43において、主走査カウンタ41をリセットして、主走査カウンタ値を0にする。
【0078】
S44においては、座標生成器35がアドレス値およびエンコーダマスク値を計算する。主走査方向のマスクサイズをm、主走査カウンタ値をa、副走査カウンタ値をb、入力画像データ値をcとすると、アドレス値lは以下のように示される。
【0079】
l=(m×b+a)×256+c
また、エンコードマスク値hは以下のように示される。
【0080】
h=c mod 16
座標生成器35は、上記の式に従ってアドレス値lおよびエンコードマスク値hを計算し、図1に示すように、アドレス値lをテーブルメモリ38に、エンコードマスク値hをデータエンコーダ37にそれぞれ出力する。
【0081】
S45においては、テーブルメモリ38が、座標生成器35からのアドレス値lに基づいて、出力データ値を読み出し、データエンコーダ37に出力する。
【0082】
S46においては、データエンコーダ37が、座標生成器35からのエンコードマスク値hに基づいて、テーブルデータ38からの128ビット(16カラム8ビット)出力データ値のうち、第hカラム目の8ビット出力データ値をエンコード結果としてセレクタ34に出力する。
【0083】
S47においては、セレクタ34が、データエンコーダ37からの8ビット値を出力画像データとして出力ポート(エンジン部13)に出力する。
【0084】
S48においては、主走査カウンタ値をインクリメントし、S49において、主走査カウンタ値が主走査方向のディザマスクサイズと同じであるか否かを判断する。このとき、主走査カウンタ値が主走査ディザマスクサイズと同じであれば、S50において、主走査カウンタ41をリセットして、主走査カウンタ値を0にする。
【0085】
S51においては、1ライン分の画像データに対して処理を終えるまで、S42以降の処理を繰り返す。
【0086】
1ラインの処理終了後、S52において、副走査カウント値をインクリメントし、S53において、副走査カウント値が副走査ディザマスクサイズと同じであるか否かを判断し、副走査カウント値が副走査ディザサイズと同じであれば、S54において、副走査カウンタ42をリセットして、副走査カウンタ値を0にする。そして、中間調処理を終了して、図6に示すS20に進む。
【0087】
以上のように、中間調処理として、上記のような直接変換処理モードを選択した場合には、階調表現能力の高いエンジン部13に最適な画像データを出力することができる。なお、座標生成器35、データエンコーダ37、およびテーブルメモリ38が直接変換処理モードとして使用されるもの(直接変換処理手段)になる。
【0088】
次に、S32の間接変換処理について、図9〜図11に基づいてさらに詳しく説明する。間接変換処理モードの場合には、図6におけるS10の初期化処理において、図2に示すコントローラ15は、所定の階調(例えば16階調)を算出するための閾値と、各マスク値が格納されているアドレス値を算出するためのシーケンスデータとを図1に示すテーブルメモリ38に書き込む。
【0089】
例えば、図10に示すような16個の画素M0〜M15を含む領域を1つのディザマスクとする場合では、テーブルメモリ38には、図11に示すようなデータが書き込まれることになる。なお、図11において、マスク内の画素番号M0〜M15の下に示される数字0〜14は、閾値の番号を示している。また、各アドレスには、8ビットのデータが書き込まれている。
【0090】
テーブルメモリ38における最初の記憶領域には、最初のラインであるライン0に対するシーケンスデータが書き込まれている。シーケンスデータは、以下のような構成である。
【0091】
まず、最初の16ビット(アドレス0・1)は、ライン0の最初の画素に対応する閾値がテーブルメモリ38に記憶されているアドレス(ライン0の開始アドレス)である。
【0092】
次の16ビット(アドレス2・3)は、次のラインであるライン1に対するシーケンスデータがテーブルメモリ38に記憶されているアドレス(次ラインタグアドレス)である。
【0093】
以下、16ビットごとに、シーケンスLUT36に格納すべきディザマスクのデータがテーブルメモリ38に記憶されているアドレス(先頭アドレス)が配置されている。なお、ライン0における最後の先頭アドレスであるか否かは、最上位ビットが1であるか否かで判別される。
【0094】
シーケンスデータの後には、閾値データが格納されている。閾値データは、ディザマスク上の画素M0〜M15ごとに、15個8ビットずつ格納され、画素M0からライン0に沿う並びで、すなわち、M0〜M2、M10〜M12、M3〜M6、M13〜M15、およびM7〜M9の順番でテーブルメモリ38に記憶されている。
【0095】
また、隣り合う前記画素がそれぞれ別々のディザマスクに含まれる場合には、ディザマスクの区切りを示すRET(値は255)が挿入される。すなわち、画素M2の第14閾値と画素M10の第0閾値との間、画素M12の第14閾値と画素M3の第0閾値との間、画素M6の第14閾値と画素M13の第0閾値との間、および画素M15の第14閾値と画素M7の第0閾値との間にRETデータが挿入されている。
【0096】
次に、間接変換処理の各ステップについて、図9に基づいてさらに詳しく説明する。まず、S60において、対象ラインに関してページ基準信号が有効であるか否かを判断し、ページ基準信号が有効である場合には、S61において、座標生成器35のアドレス値レジスタ47をリセットして、アドレス値を0にする。
【0097】
次に、S62において、主走査基準信号が有効であるか否かを判断する。主走査基準信号が有効である場合には、以下のS63およびS64の処理を行なう。
【0098】
S63において、アドレス値レジスタ47に格納されたアドレス値がアドレスデコーダ50を介してテーブルメモリ38に出力されることにより、テーブルメモリ38の該アドレス位置からシーケンスデータが読み出され、読み出されたシーケンスデータがシーケンスLUT36に出力される。
【0099】
さらに、S64において、読み出されたシーケンスデータにおけるライン0の開始アドレスと次ラインタグアドレスとが(図11を参照)、座標生成器35に出力され、座標生成器35において、データデコーダ45を介して、アドレス値レジスタ47と次ラインアドレス値レジスタ46とにそれぞれ格納される(アドレス値の初期化処理)。
【0100】
次に、S65において、座標生成器35におけるアドレスデコーダ50は、アドレス値レジスタ47からのアドレス値に基づいて、エンコードマスク値を計算し、データエンコーダ37に出力する。エンコードマスク値hは、アドレス値レジスタ47に格納された現在のアドレス値をrとすると以下のように示される。
【0101】
h=r mod 16
S66において、アドレス値レジスタ47に格納されたアドレス値rがアドレスデコーダ50を介してテーブルメモリ38に出力されることにより、テーブルメモリ38のアドレス位置rから閾値データが読み出される。
【0102】
すなわち、テーブルメモリ38から出力される出力データ値の階調数をqとすると、アドレス位置rから連続するq個の閾値が閾値データとして読み出される。このとき、qが16以下の場合は同一カラム(列)になることはないため、連続するq個の閾値を同時に読み出すことが可能である。読み出された閾値データは、データエンコーダ37に出力される。
【0103】
S67において、データエンコーダ37が閾値データの並替えを行なう。すなわち、データエンコーダ37は、テーブルメモリ38から受け取った128ビット(8ビット×16カラム)の閾値データに対して、座標生成器35からのエンコードマスク値h(hは、0から15までの整数)に基づいて、第hカラムの閾値を最初の閾値とし、以下、第(h+1)カラム〜第(q−1)カラムの閾値を順番に並べ、その後に第0カラム〜第(h−1)カラムの閾値を順番に並べる。
【0104】
ここで、元の閾値データにおける最後のカラムである第(q−1)カラムは、次の画素に対する閾値であるか、あるいはディザマスクの区切りを示すRET(値は255)であるので、閾値データから削除される。すなわち、この段階で、閾値データは、8ビット×15カラムとなる。
【0105】
並べ替えられた閾値データは、コンパレータ31における比較器0〜比較器14に閾値ごとに出力される。すなわち、元の閾値データにおける第hカラムの閾値が最初の比較器0に、第(h+1)カラムの閾値が2番目の比較器1に順次出力され、第(h−1)カラムの閾値が最後の比較器(q−2)に出力されることになる。
【0106】
S68において、コンパレータ31は、入力ポートから受け取る1画素の入力画像データ値を、比較器0〜比較器(q−2)において(q−1)個の閾値とそれぞれ比較することにより、(q−1)ビットの比較結果を得る。なお、比較結果の第iビット(iは0からq−2までの整数)が比較器iからの出力ビットとする。また、入力画像データ値の方が閾値よりも大きい場合に比較器が1を出力するとする。
【0107】
S69において、出力エンコーダ32が(q−1)ビットの比較結果を4ビット値にエンコードする。すなわち、出力エンコーダ32は、比較結果の第(q−2)ビット目が1ならば値としてq−2、それ以外の場合で(q−3)ビット目が1ならば値としてq−3というように、ビットが1である最も最上位のビット位置をエンコード結果とする。
【0108】
S70において、出力エンコーダ32からの4ビットのエンコード結果をアドレスとして出力LUT33の対応位置から出力データ値を算出し、セレクタ34を介して出力ポートに出力する。
【0109】
S71において、S66で読み出した閾値データのうち、最後のカラムの値が図9に示すRETである255であるか否かを判断する。255である場合には、この値がアドレス変更指示データ(位置変更フラグ)であるため、S72において、シーケンスアドレス値レジスタ49に格納されたアドレス値をシーケンスLUT36に出力し、シーケンスLUT36に書き込まれているシーケンスデータに対して、該アドレスの位置に格納された値を読み出して、アドレス値レジスタ47に格納する。
【0110】
一方、255ではない場合には、S73において、現在のアドレス値に対して(q−1)を加算して、アドレス値レジスタ47に格納する。
【0111】
次に、S74において、1ライン分の画像データに対する処理が終了しているか否かを判断し、終了していない場合には、S62以降の処理を繰り返す。一方、終了している場合は、次ラインのテーブルメモリ38中のシーケンスデータ位置を読み出すために、S75において、座標生成器35中、次ラインアドレス値レジスタ46に格納されている次ラインタグアドレスをアドレス値レジスタ47にコピーして、以上の間接変換処理を終了する。そして、中間調処理を終了して、図6に示すS20に進む。
【0112】
以上のように、中間調処理として、上記のような間接変換処理モードを選択した場合には、階調表現能力の低いエンジン部13に最適な画像データを出力することができる。なお、コンパレータ31、出力エンコーダ32、出力LUT33、座標生成器35、シーケンスLUT36、データエンコーダ37、およびテーブルメモリ38が間接変換処理モードとして使用されるもの(間接変換処理手段)になる。
【0113】
従って、本実施形態では、直接変換処理モードの場合には、テーブルメモリ38に出力データ値を格納し、その格納位置を入力画像データの対象画素に対する位置情報と対象画素の濃度値とを用いて演算することにより出力データ値を決定しており、一方、間接変換処理モードの場合には、テーブルメモリ38に閾値とマスクの遷移情報(参照するディザマスクの位置情報)とを格納し、マスクの遷移状態に対応する閾値を用いた閾値判定結果を元に出力データ値を決定している。
【0114】
上記2つのモードを使い分けることにより、直接変換処理および間接変換処理の何れの処理も実行することができる。よって、画像出力装置(エンジン部13)の階調表現能力に応じて上記変換処理モードを選択することで、最適な中間調処理(ディザ処理)を行なうことができる。
【0115】
また、本実施形態のデジタル複写機10は、1つの回路構成で上記2種類のモードを使い分けることができるため、多種類のディザマスクを備えられるようにテーブルメモリ38のサイズを大きくする必要はない。
【0116】
従って、本実施形態のデジタル複写機10は、回路規模を大型化することなく、低階調から高階調までの幅広い画像出力に対応することができる。
【0117】
また、本実施形態のデジタル複写機10は、図9のS66において、テーブルメモリから閾値を読み出すときに、アドレス変更指示データも読み出し、同図のS72において、アドレス値の変更設定を行なっている。これにより、次の画素に対してディザ処理を行なうときに、ディザマスクのアドレスを変更する手間を省くことができるので、処理効率を向上させることができる。
【0118】
なお、本実施形態ではテーブルメモリ38(第2の記憶手段)内に閾値を直接格納しているが、これに限定されるものではなく、閾値以外にも、別のメモリ(第1の記憶手段)に対するアドレス値を格納し、そのメモリ中に閾値を格納してもよい。
【0119】
この場合、テーブルメモリ38として、記憶容量が小さいが高速に読出し可能なメモリを利用することができるので、中間調処理を高速化することができる。
【0120】
さらに、ディザマスクを変更して、閾値を変更する場合には、閾値が格納されている前記アドレスを変更すればよいから、変更する処理を高速化することができる。
【0121】
また、本発明はコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体に、画像処理方法を記録して処理を実行することもできる。これにより、画像処理方法を実行するためのプログラムを記録した記録媒体を持ち運び、自在に提供することができる。
【0122】
この記録媒体としては、マイクロコンピュータで処理を行なうために図示しないメモリ、例えばROMのようなものがプログラムメディアであっても良いし、また、図示していないが外部記憶装置としてプログラム読取り装置が設けられ、そこに記録媒体を挿入することにより読取り可能なプログラムメディアであっても良い。
【0123】
また、何れの場合でも、格納されているプログラムは、マイクロプロセッサがアクセスして実行される構成であることが好ましい。さらに、プログラムを読み出し、読み出されたプログラムは、マイクロコンピュータのプログラム記憶エリアにダウンロードされて、そのプログラムが実行される方式であることが好ましい。なお、このダウンロード用のプログラムは予め本体装置に格納されているものとする。
【0124】
また、上記プログラムメディアとしては、本体と分離可能に構成される記録媒体であり、磁気テープやカセットテープ等のテープ系、フロッピーディスクやハードディスク等の磁気ディスクやCD−ROM/MO/MD/DVD等の光ディスクのディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory )、フラッシュROM等による半導体メモリを含めた固定的にプログラムを担持する記録媒体等がある。
【0125】
また、インターネットを含む通信ネットワークを接続可能なシステム構成であれば、通信ネットワークからプログラムをダウンロードするように流動的にプログラムを担持する記録媒体であることが好ましい。
【0126】
さらに、このように通信ネットワークからプログラムをダウンロードする場合には、そのダウンロード用のプログラムは予め本体装置に格納しておくか、あるいは別な記録媒体からインストールされるものであることが好ましい。
【0127】
また、上記記録媒体は、画像処理サーバやコンピュータシステムに備えられるプログラム読取り装置により読み取られることで上述した画像処理方法を実行することができる。
【0128】
例えば、画像処理サーバやコンピュータからの出力画像データをプリンタで出力する場合には、プリンタの階調数に関する情報をプリンタから取得し、その情報に基づき、中間調処理として直接変換処理あるいは間接変換処理が選択される。これにより、上述した画像処理装置と同様に、プリンタ等の画像出力装置の階調表現能力に応じた最適な画像処理を行なうことができる。
【0129】
なお、コンピュータシステムは、フラットベッドスキャナ、フイルムスキャナ、デジタルカメラなどの画像入力装置、所定のプログラムをロードすることにより上記画像処理方法など様々な処理を行なうコンピュータ、コンピュータの処理結果を表示するCRTディスプレイ、液晶ディスプレイなどの画像表示装置、コンピュータの処理結果を紙などに出力するプリンタ等により構成されていることが好ましい。さらに、ネットワークを介してサーバなどに接続するための通信手段として、モデムなどを備えることが好ましい。
【0130】
これにより、プリンタ等の階調表現能力に係わらず、常に良好な階調表現が可能な画像を提供できる画像処理・画像形成システムを構築できる。
【0131】
【発明の効果】
以上のように、本発明に係る画像処理方法は、入力画像データに対して多値ディザ法により行なわれる中間調処理ステップを含む画像処理方法において、前記中間調処理ステップは、前記入力画像データの画素である入力画素の各階調値と、ディザマスク上の各画素位置と、出力画素の各階調値との対応関係である第1の対応関係を予め記憶しておき、前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置と前記入力画素の階調値とを用いて第1の対応関係を参照することにより、前記出力画素の階調値を取得して出力する直接変換処理ステップと、前記ディザマスク上の各画素位置と複数の閾値との対応関係である第2の対応関係を予め記憶しておき、前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置を用いて第2の対応関係を参照することにより前記複数の閾値を取得し、取得された複数の閾値のそれぞれと前記入力画素の階調値とを比較することにより、前記出力画素の階調値を取得して出力する間接変換処理ステップとを含んでおり、第2の対応関係には、1主走査ライン上における、前記ディザマスク上の画素の並び順に、該画素に対応する前記複数の閾値が格納され、隣り合う前記画素同士が別々のディザマスクに属する場合には、前記隣り合う画素同士に対応する前記複数の閾値同士の間に、ディザマスクの位置変更を示す位置変更フラグが挿入されており、前記間接変換処理ステップは、第2の対応関係を参照して取得した前記複数の閾値に、前記位置変更フラグが含まれる場合、前記ディザマスクの位置変更を行う方法である。
【0132】
これにより、中間調処理において、出力する階調数が多い場合には前記直接変換処理を行ない、出力する階調数が少ない場合には前記間接変換処理を行なうことから、回路規模の拡大を抑えつつ、高階調および低階調の何れの画像出力にも適切に対応できるという効果を奏する。さらに、第2の対応関係から前記複数の閾値を読み出すときに、位置変更フラグも読み出すことにより、次の入力画素の階調値に中間調処理を行なう前にディザマスクの位置を変更することができ、これにより、処理を効率よく行なうことができるという効果を奏する。
【0133】
また、本発明の画像処理装置は、以上のように、入力画像データに対して多値ディザ法による中間調処理手段と、各種のデータを記憶する記憶手段とを備える画像処理装置において、前記記憶手段は、前記入力画像データの画素である入力画素の各階調値と、ディザマスク上の各画素位置と、出力画素の各階調値との対応関係である第1の対応関係を予め記憶すると共に、前記ディザマスク上の各画素位置と複数の閾値との対応関係である第2の対応関係を予め記憶しており、前記中間調処理手段は、前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置と前記入力画素の階調値とを用いて前記記憶手段の第1の対応関係を参照することにより、前記出力画素の階調値を取得して出力する直接変換処理手段と、前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置を用いて前記記憶手段の第2の対応関係を参照することにより前記複数の閾値を取得し、取得された複数の閾値のそれぞれと前記入力画素の階調値とを比較することにより、出力画素の階調値を取得して出力する間接変換処理手段とを備えており、前記記憶手段の第2の対応関係には、1主走査ライン上における、前記ディザマスク上の画素の並び順に、該画素に対応する前記複数の閾値が格納され、隣り合う前記画素同士が別々のディザマスクに属する場合には、前記隣り合う画素同士に対応する前記複数の閾値同士の間に、ディザマスクの位置変更を示す位置変更フラグが挿入されており、前記間接変換処理手段は、第2の対応関係を参照して取得した前記複数の閾値に、前記位置変更フラグが含まれる場合、前記ディザマスクの位置変更を行う構成である。
【0134】
これにより、中間調処理において、出力する階調数が多い場合には前記直接変換処理を行ない、出力する階調数が少ない場合には前記間接変換処理を行なうことから、回路規模の拡大を抑えつつ、高階調および低階調の何れの画像出力にも適切に対応できるという効果を奏する。さらに、第2の対応関係から前記複数の閾値を読み出すときに、位置変更フラグも読み出すことにより、次の入力画素の階調値に中間調処理を行なう前にディザマスクの位置を変更できることから、処理効率を向上できるという効果を奏する。
【0135】
また、本発明の画像処理装置は、以上のように、上記の構成において、前記記憶手段は、第1の対応関係および第2の対応関係を予め記憶する第1の記憶手段と、第2の記憶手段とを備えており、前記直接変換手段は、第1の記憶手段から第1の対応関係を読み出して第2の記憶手段に記憶しておき、前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置と前記入力画素の階調値とを用いて第2の記憶手段の第1の対応関係を参照することにより、前記出力画素の階調値を取得して出力しており、前記間接変換手段は、第1の記憶手段から第2の対応関係を読み出して第2の記憶手段に記憶しておき、前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置を用いて第2の記憶手段の第2の対応関係を参照することにより前記複数の閾値を取得し、取得された複数の閾値のそれぞれと前記入力画素の階調値とを比較することにより、出力画素の階調値を取得して出力している構成である。
【0136】
これにより、第2の記憶手段として、高速読出しかつ小容量の記憶手段を使用でき、中間調処理を高速化できるという効果を奏する。
【0137】
また、本発明の画像処理装置は、以上のように、上記の構成において、第2の記憶手段にて記憶される第2の対応関係は、前記ディザマスク上の各画素と、該画素から特定される複数の閾値が第1の記憶手段に記憶されている記憶位置との対応関係である構成である。
【0138】
これにより、閾値を変更する場合に、前記記憶位置を変更すればよいから、処理を高速化できるという効果を奏する。
【0139】
なお、入力画像データを生成する画像入力装置と、該画像入力装置からの画像データに画像処理を施す画像処理装置と、該画像処理装置により中間調処理された画像データに基づいて画像を出力する画像出力装置とを備える画像形成装置に、上記何れかの構成の画像処理装置を適用することができる。
【0140】
また、上記の画像処理方法により行なわれる各ステップを、画像処理プログラムによりコンピュータ上で実行させることができる。さらに、前記画像処理プログラムをコンピュータ読取り可能な記録媒体に記憶させることにより、任意のコンピュータ上で前記画像処理プログラムを実行させることができる。
【図面の簡単な説明】
【図1】 本発明の実施の一形態であるデジタル複写機における中間調処理部の概略構成を示すブロック図である。
【図2】 本実施形態のデジタル複写機の概略構成を示すブロック図である。
【図3】 本実施形態におけるエンジン部の概略構成を示す模式図である。
【図4】 本実施形態における画像処理部の概略構成を示すブロック図である。
【図5】 図1における座標生成器の概略構成を示すブロック図である。
【図6】 本実施形態における処理動作を示すフローチャートである。
【図7】 図6における中間調処理の処理動作を示すフローチャートである。
【図8】 図7における直接変換処理の処理動作を示すフローチャートである。
【図9】 図7における間接変換処理の処理動作を示すフローチャートである。
【図10】 図9に示す間接変換処理において使用されるディザマスクを示す模式図である。
【図11】 図9に示す間接変換処理において図1に示すテーブルメモリに格納されるデータを示すメモリマップである。
【符号の説明】
10 デジタル複写機(画像形成装置)
11 スキャナ部(画像入力装置)
12 画像処理部(画像処理装置)
13 エンジン部(画像出力装置)
15 コントローラ(選択手段)
27 中間調処理部(中間調処理手段)
31 コンパレータ(比較手段)
34 セレクタ(選択手段)
35 座標生成器(算出手段)
38 テーブルメモリ(記憶手段)

Claims (7)

  1. 入力画像データに対して多値ディザ法により行なわれる中間調処理ステップを含む画像処理方法において、
    前記中間調処理ステップは、
    前記入力画像データの画素である入力画素の各階調値と、ディザマスク上の各画素位置と、出力画素の各階調値との対応関係である第1の対応関係を予め記憶しておき、前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置と前記入力画素の階調値とを用いて第1の対応関係を参照することにより、前記出力画素の階調値を取得して出力する直接変換処理ステップと、
    前記ディザマスク上の各画素位置と複数の閾値との対応関係である第2の対応関係を予め記憶しておき、前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置を用いて第2の対応関係を参照することにより前記複数の閾値を取得し、取得された複数の閾値のそれぞれと前記入力画素の階調値とを比較することにより、前記出力画素の階調値を取得して出力する間接変換処理ステップとを含んでおり、
    第2の対応関係には、1主走査ライン上における、前記ディザマスク上の画素の並び順に、該画素に対応する前記複数の閾値が格納され、隣り合う前記画素同士が別々のディザマスクに属する場合には、前記隣り合う画素同士に対応する前記複数の閾値同士の間に、ディザマスクの位置変更を示す位置変更フラグが挿入されており、
    前記間接変換処理ステップは、第2の対応関係を参照して取得した前記複数の閾値に、前記位置変更フラグが含まれる場合、前記ディザマスクの位置変更を行うことを特徴とする画像処理方法。
  2. 入力画像データに対して多値ディザ法による中間調処理手段と、各種のデータを記憶する記憶手段とを備える画像処理装置において、
    前記記憶手段は、前記入力画像データの画素である入力画素の各階調値と、ディザマスク上の各画素位置と、出力画素の各階調値との対応関係である第1の対応関係を予め記憶すると共に、前記ディザマスク上の各画素位置と複数の閾値との対応関係である第2の対応関係を予め記憶しており、
    前記中間調処理手段は、
    前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置と前記入力画素の階調値とを用いて前記記憶手段の第1の対応関係を参照することにより、前記出力画素の階調値を取得して出力する直接変換処理手段と、
    前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置を用いて前記記憶手段の第2の対応関係を参照することにより前記複数の閾値を取得し、取得された複数の閾値のそれぞれと前記入力画素の階調値とを比較することにより、出力画素の階調値を取得して出力する間接変換処理手段とを備えており、
    前記記憶手段の第2の対応関係には、1主走査ライン上における、前記ディザマスク上の画素の並び順に、該画素に対応する前記複数の閾値が格納され、隣り合う前記画素同士が別々のディザマスクに属する場合には、前記隣り合う画素同士に対応する前記複数の閾値同士の間に、ディザマスクの位置変更を示す位置変更フラグが挿入されており、
    前記間接変換処理手段は、第2の対応関係を参照して取得した前記複数の閾値に、前記位置変更フラグが含まれる場合、前記ディザマスクの位置変更を行うことを特徴とする画像処理装置。
  3. 前記記憶手段は、第1の対応関係および第2の対応関係を予め記憶する第1の記憶手段と、第2の記憶手段とを備えており、
    前記直接変換手段は、
    第1の記憶手段から第1の対応関係を読み出して第2の記憶手段に記憶しておき、
    前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された 画素位置と前記入力画素の階調値とを用いて第2の記憶手段の第1の対応関係を参照することにより、前記出力画素の階調値を取得して出力しており、
    前記間接変換手段は、
    第1の記憶手段から第2の対応関係を読み出して第2の記憶手段に記憶しておき、
    前記入力画素の画像上の位置から前記ディザマスク上の画素位置を特定し、特定された画素位置を用いて第2の記憶手段の第2の対応関係を参照することにより前記複数の閾値を取得し、取得された複数の閾値のそれぞれと前記入力画素の階調値とを比較することにより、出力画素の階調値を取得して出力していることを特徴とする請求項2に記載の画像処理装置。
  4. 第2の記憶手段にて記憶される第2の対応関係は、前記ディザマスク上の各画素と、該画素から特定される複数の閾値が第1の記憶手段に記憶されている記憶位置との対応関係であることを特徴とする請求項3に記載の画像処理装置。
  5. 請求項2から4までの何れか1項に記載の画像処理装置を備えるとともに、
    入力画像データを生成する画像入力装置と、前記画像処理装置により中間調処理された画像データに基づいて画像を出力する画像出力装置とを備えることを特徴とする画像形成装置。
  6. 請求項1に記載の各ステップをコンピュータに実行させることを特徴とする画像処理プログラム。
  7. 請求項6に記載の画像処理プログラムを記録したことを特徴とするコンピュータ読取り可能な記録媒体。
JP2002059460A 2002-03-05 2002-03-05 画像処理方法、画像処理装置、該画像処理装置を備えた画像形成装置、画像処理プログラム、および該画像処理プログラムを備えた記録媒体 Expired - Fee Related JP3983572B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002059460A JP3983572B2 (ja) 2002-03-05 2002-03-05 画像処理方法、画像処理装置、該画像処理装置を備えた画像形成装置、画像処理プログラム、および該画像処理プログラムを備えた記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002059460A JP3983572B2 (ja) 2002-03-05 2002-03-05 画像処理方法、画像処理装置、該画像処理装置を備えた画像形成装置、画像処理プログラム、および該画像処理プログラムを備えた記録媒体

Publications (2)

Publication Number Publication Date
JP2003259119A JP2003259119A (ja) 2003-09-12
JP3983572B2 true JP3983572B2 (ja) 2007-09-26

Family

ID=28669145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002059460A Expired - Fee Related JP3983572B2 (ja) 2002-03-05 2002-03-05 画像処理方法、画像処理装置、該画像処理装置を備えた画像形成装置、画像処理プログラム、および該画像処理プログラムを備えた記録媒体

Country Status (1)

Country Link
JP (1) JP3983572B2 (ja)

Also Published As

Publication number Publication date
JP2003259119A (ja) 2003-09-12

Similar Documents

Publication Publication Date Title
JP4173154B2 (ja) 画像処理方法、画像処理装置、画像形成装置、コンピュータプログラム及び記録媒体
US8553287B2 (en) Pseudo-halftoning device, image forming apparatus, and image forming system
JPH08116464A (ja) カラー画像を処理する方法及び画像処理装置
JPS62220072A (ja) 中間調デジタルカラ−画像処理方法
US20030123093A1 (en) Processor for image processing, method of processing image using the same, and printer incorporating the same
JP3983572B2 (ja) 画像処理方法、画像処理装置、該画像処理装置を備えた画像形成装置、画像処理プログラム、および該画像処理プログラムを備えた記録媒体
JP4034061B2 (ja) 画像処理方法、画像処理装置、画像形成装置、画像処理プログラムおよびコンピュータ読み取り可能な記録媒体
JP3771145B2 (ja) 画像処理方法、画像処理装置および画像形成装置
US20030030827A1 (en) Image processing apparatus and image forming apparatus
JP3883031B2 (ja) 画像処理装置、画像処理方法及び記憶媒体
JP5603613B2 (ja) 画像処理装置および画像処理方法
JP3431687B2 (ja) 画像形成装置及び画像形成システム
JP2005072635A (ja) 画像処理装置、画像形成装置、画像読取装置、画像処理方法、画像処理プログラム、及び画像処理プログラムを記録したコンピュータ読み取り可能な記録媒体
JPH09284579A (ja) 色信号処理装置および複写装置
JPH04314183A (ja) 画像処理装置
JP3881178B2 (ja) 記録システム
JPH10224648A (ja) 画像処理装置及び方法
JP2005057598A (ja) カラー画像形成装置およびカラー画像処理装置
JP2000236451A (ja) カラー印字装置
JP2004282720A (ja) 画像処理装置、画像形成装置、画像処理方法、画像処理プログラムおよび画像処理プログラムを記録したコンピュータ読み取り可能な記録媒体
JP3265735B2 (ja) カラー画像処理装置
JP2913517B2 (ja) 画像形成装置
JP2004236249A (ja) 誤差拡散処理装置、画像形成装置、誤差拡散処理方法及びコンピュータプログラム
JPH05169720A (ja) カラー画像形成装置
JP2022159339A (ja) 画像形成装置とその制御方法、及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3983572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees