JP3952561B2 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP3952561B2
JP3952561B2 JP31871997A JP31871997A JP3952561B2 JP 3952561 B2 JP3952561 B2 JP 3952561B2 JP 31871997 A JP31871997 A JP 31871997A JP 31871997 A JP31871997 A JP 31871997A JP 3952561 B2 JP3952561 B2 JP 3952561B2
Authority
JP
Japan
Prior art keywords
temperature
exhaust purification
purification catalyst
exhaust
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31871997A
Other languages
English (en)
Other versions
JPH11153024A (ja
Inventor
計宏 桜井
隆晟 伊藤
幸夫 衣笠
幸一 星
公一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP31871997A priority Critical patent/JP3952561B2/ja
Priority to US09/188,359 priority patent/US6128898A/en
Priority to EP98121913A priority patent/EP0918147B1/en
Priority to DE69825707T priority patent/DE69825707T2/de
Publication of JPH11153024A publication Critical patent/JPH11153024A/ja
Application granted granted Critical
Publication of JP3952561B2 publication Critical patent/JP3952561B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Testing Of Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等の内燃機関の排気浄化触媒の故障を判定する技術に関し、特に、断熱材や蓄熱材等で覆われた排気浄化触媒を備える排気浄化装置の故障を判定する技術に関する。
【0002】
【従来の技術】
自動車等の内燃機関は、排出される排気ガス中の有害成分、例えば、一酸化炭素(CO)、窒素酸化物(NOX)、及び炭化水素(HC)等の成分を大気に放出する前に浄化すべく、白金やパラジウム等の貴金属を触媒として担持した排気浄化触媒を備えている。
【0003】
排気浄化触媒は、例えば、排気ガスに含まれるHC及びCOを排気ガス中の酸素O2と反応させてH2O及びCO2へ酸化すると同時に、排気ガス中のNOXを排気ガス中のHC及びCOと反応させてH2O、CO2、N2へ還元する。
【0004】
ところで、排気浄化触媒は、所定温度以上で活性化し、所定温度未満では未活性状態となるため、内燃機関が冷間始動された時のように排気浄化触媒が所定温度未満にあるときは、排気ガス中の有害成分を除去しきれないという問題がある。
【0005】
このような問題に対し、SAE Technical Paper #961134、#950409、#941998等に記載された触媒装置が知られている。この触媒装置は、排気浄化触媒を内装した内筒と、この内筒を覆う蓄熱材と、前記蓄熱材を覆う中間筒と、これら内筒及び中間筒を覆う外筒と、前記内筒及び前記中間筒と外筒との間に形成される真空空間部と、前記真空空間部に配置された水素吸蔵合金とを備え、内燃機関の運転時には、水素吸蔵合金から水素を放出させて前記真空空間部を非真空状態とすることにより、前記排気浄化触媒の熱を水素を介して外筒へ伝達させ、排気浄化触媒の過剰な昇温を抑制し、内燃機関の運転停止後には、前記水素を前記水素吸蔵合金に吸蔵させて前記真空空間部を真空状態とすることにより、排気浄化触媒及び蓄熱材からの放熱を前記真空空間部で遮断し、排気浄化触媒の活性化状態を次回の機関始動時まで維持しようとするものである。
【0006】
【発明が解決しようとする課題】
上記したような触媒装置では、触媒装置の故障を正確に診断することも重要である。例えば、外筒、中間筒、あるいは内筒等に孔や亀裂等が生じた場合や、水素吸蔵合金が劣化した場合には、真空空間部の真空度の低下、蓄熱材の劣化や流出、あるいは、水素の吸蔵性能や放出性能の劣化等を招き、その結果、触媒装置の断熱性能や放熱性能が低下する。
【0007】
触媒装置の断熱性能が低下した場合は、排気浄化触媒や蓄熱材の放熱を遮断することができず、内燃機関停止後に排気浄化触媒を活性化温度以上に保つことが困難となり、次回始動時の排気エミッションが悪化する虞がある。
【0008】
また、触媒装置の放熱性能が低下した場合は、排気浄化触媒や蓄熱材の熱を外筒等へ伝達することができず、排気浄化触媒の過剰な昇温を招き、排気浄化触媒の耐久性が低下する虞がある。
【0009】
本発明は、前記した問題点に鑑みてなされたものであり、排気浄化触媒の温度を調節する機能を備えた排気浄化装置において、温度調節機能の故障を診断する技術を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、前記課題を解決するために以下のような手段を採用した。
すなわち、本発明は、内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒を覆う外筒と、前記排気浄化触媒及び前記外筒との間に形成され、前記排気浄化触媒から前記外筒への伝熱を遮断する真空空間部とを備えた内燃機関の排気浄化装置であり、
前記真空空間部の圧力を検出する圧力検出手段と、
前記圧力検出手段の検出値に基づいて前記排気浄化装置の故障を判定する故障判定手段と、
を備えることを特徴とする(請求項1に対応)。
【0011】
このように構成された排気浄化装置では、圧力検出手段が真空空間部の圧力を検出する。そして、故障判定手段は、圧力検出手段により検出された圧力を参照し、排気浄化装置の故障を判定する。
【0012】
ここで、真空空間部の真空度が正常であれば、排気浄化触媒からの放熱が真空空間部で遮断されるので、内燃機関の運転停止後に、排気浄化触媒の温度低下が抑制される。一方、真空空間部の真空度が低下すると、排気浄化触媒の熱が外筒へ伝熱されるので、内燃機関の運転停止後に、排気浄化触媒の温度低下を招く。
【0013】
そこで、故障判定手段は、圧力検出手段により検出された圧力より、真空空間部の真空度が低下していることを検出すると、排気浄化装置が故障していると判定し、真空空間部の真空度が正常であれば、排気浄化装置が正常であると判定する。
【0014】
尚、排気浄化装置が、前記真空空間部を真空状態として前記排気浄化触媒からの放熱を遮断するとともに、前記真空空間部を非真空状態として前記排気浄化触媒からの放熱を許容する放断熱制御手段を更に備えている場合は、故障判定手段は、前記放断熱制御手段が前記真空空間部を真空状態とすべく制御を行っていることを条件に故障判定を行うようにしてもよい(請求項2に対応)。
【0015】
次に、本発明は、内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒からの放熱を遮断する断熱手段とを備えた内燃機関の排気浄化装置であり、
前記排気浄化触媒の温度を検出する温度検出手段と、
前記温度検出手段の検出値より、前記内燃機関停止後の所定時間当たりの温度低下率を算出し、その温度低下率の大きさに基づいて前記排気浄化装置の断熱機能の故障を判定する故障判定手段と、
を備えるようにしてもよい(請求項3に対応)。
【0016】
このように構成された排気浄化装置では、断熱手段が正常である場合は、前記排気浄化触媒からの放熱が遮断されるので、排気浄化触媒の温度低下が抑制されるが、断熱手段に異常が発生した場合は、前記排気浄化触媒からの放熱が遮断されないため、排気浄化触媒の温度低下速度が正常時より早くなり、その結果、所定時間当たりの排気浄化触媒の温度低下率は、正常時より大きくなる。
【0017】
そこで、故障判定手段は、内燃機関の運転停止後に、温度検出手段の検出値より、排気浄化触媒の所定時間当たりの温度低下率を算出し、その温度低下率が所定の判定基準より大きければ、排気浄化触媒の断熱機能が故障していると判定する。
【0018】
また、本発明は、内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒に熱を供給する蓄熱部材とを備えた内燃機関の排気浄化装置であり、
前記排気浄化触媒の温度を検出する温度検出手段と、
前記温度検出手段の検出値より、前記内燃機関停止後の所定時間当たりの温度低下率を算出し、その温度低下率の大きさに基づいて前記排気浄化装置の蓄熱機能の故障を判定する故障判定手段と、
を備えるようにしてもよい(請求項4に対応)。
【0019】
ここで、前記した蓄熱部材は、内燃機関の運転時に、排気ガスの熱を奪って蓄熱し、内燃機関の運転停止後や低負荷運転時等に、排気浄化触媒を活性化温度以上に維持すべく、蓄熱した熱を排気浄化触媒に供給するものである。
【0020】
このように構成された排気浄化装置では、蓄熱部材が正常である場合は、蓄熱部材から排気浄化触媒へ熱が供給されるので、排気浄化触媒の温度低下が抑制される。一方、蓄熱部材に異常が発生した場合は、蓄熱部材から排気浄化触媒へ熱が供給されないため、排気浄化触媒の温度低下速度が正常時より速くなり、その結果、所定時間当たりの排気浄化触媒の温度低下率は、正常時より大きくなる。
【0021】
そこで、故障判定手段は、内燃機関の運転停止後に、温度検出手段の検出値より、排気浄化触媒の所定時間当たりの温度低下率を算出する。そして、故障判定手段は、前記温度低下率が所定の判定基準より大きければ、排気浄化装置の蓄熱機能が故障していると判定する。
【0022】
また、本発明は、内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒に熱を供給する蓄熱部材と、前記排気浄化触媒及び前記蓄熱部材からの放熱を遮断する断熱手段とを備えた内燃機関の排気浄化装置であり、
前記蓄熱部材の温度を検出する温度検出手段と、
前記温度検出手段の検出値より、前記内燃機関停止後の所定時間当たりの温度低下率を算出し、その温度低下率の大きさに基づいて前記排気浄化装置の断熱機能の故障を判定する故障判定手段と、
を備えるようにしてもよい(請求項5に対応)。
【0023】
このように構成された排気浄化装置では、断熱手段が正常である場合は、蓄熱部材からの放熱が遮断されるので、蓄熱部材の温度低下が抑制される。一方、断熱手段に異常が発生した場合は、蓄熱部材からの放熱が遮断されないため、蓄熱部材の温度低下速度が正常時より速くなり、その結果、所定時間当たりの蓄熱部材の温度低下率は、正常時より大きくなる。
【0024】
そこで、故障判定手段は、内燃機関の運転停止後に、温度検出手段の検出値より、蓄熱部材の所定時間当たりの温度低下率を算出する。そして、故障判定手段は、前記温度低下率が所定の判定基準より大きければ、排気浄化装置の断熱機能が故障していると判定する。
【0025】
尚、前記蓄熱部材が相変化物質からなる場合は、故障判定手段は、前記蓄熱部材の温度が一定となる相変化状態の開始前、または相変化状態の終了後に、故障判定を行うようにしてもよい(請求項6に対応)。
【0026】
次に、本発明は、内燃機関の排気通路に設けられる排気浄化触媒と、相変化物質で形成され前記排気浄化触媒に熱を供給する蓄熱部材とを備えた内燃機関の排気浄化装置であり、
前記蓄熱部材の温度を検出する温度検出手段と、
前記蓄熱部材により検出された温度より、前記蓄熱部材の温度が一定となる相変化状態の継続時間を計時し、その継続時間の長さに基づいて前記排気浄化装置の故障を判定する故障判定手段と、
を備えるようにしてもよい(請求項7に対応)。
【0027】
このように構成された排気浄化装置では、正常時の蓄熱部材は、略一定の温度で相変化状態となり、相変化状態の継続時間も略一定の時間となるが、異常時の蓄熱部材の相変化時間は、正常時よりも短い時間となる。
【0028】
そこで、故障判定手段は、温度検出手段により検出された蓄熱部材の温度を参照し、蓄熱部材の相変化状態を判別すると共に、その相変化状態の継続時間を計時する。そして、故障判定手段は、相変化状態の継続時間が所定の判定基準より短ければ、故障判定手段の蓄熱機能が故障していると判定する。
【0029】
また、本発明は、内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒を覆う外筒と、前記排気浄化触媒と前記外筒との間に配置され、前記排気浄化触媒から前記外筒への伝熱を遮断する断熱手段とを備えた内燃機関の排気浄化装置であり、
前記排気浄化触媒の温度を検出する第1の温度検出手段と、
前記外筒の温度を検出する第2の温度検出手段と、
前記第1の温度検出手段により検出された温度と前記第2の温度検出手段により検出された温度との差に基づいて前記排気浄化装置の断熱機能の故障を判定する故障判定手段と、
を備えるようにしてもよい(請求項8に対応)。
【0030】
このように構成された排気浄化装置では、断熱手段が正常である場合は、排気浄化触媒から外筒への伝熱が遮断されるため、外筒と排気浄化触媒との間に温度差が生じる。一方、断熱手段に異常が発生した場合は、排気浄化触媒から外筒への伝達が遮断されないため、排気浄化触媒と外筒との温度差が正常時より小さくなる。
【0031】
そこで、故障判定手段は、第1及び第2の温度検出手段の検出値の差が所定の判定基準より小さければ、排気浄化装置の断熱機能が故障していると判定する。
次に、本発明は、内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒を覆う外筒と、前記排気浄化触媒と前記外筒との間に配置され、前記排気浄化触媒が所定温度未満のときは前記排気浄化触媒から前記外筒への伝熱を遮断し、前記排気浄化触媒が前記所定温度以上のときは前記排気浄化触媒から前記外筒への伝熱を許容する放断熱切換手段とを備えた内燃機関の排気浄化装置であり、
前記排気浄化触媒の温度を検出する第1の温度検出手段と、
前記外筒の温度を検出する第2の温度検出手段と、
前記放断熱切換手段が前記排気浄化触媒から前記外筒への伝熱を遮断すべき時期に、前記第1の温度検出手段により検出された温度と前記第2の温度検出手段により検出された温度との差に基づいて前記排気浄化装置の断熱機能の故障を判定する故障判定手段と、を備えるようにしてもよい(請求項9に対応)。
【0032】
このように構成された排気浄化装置では、放断熱切換手段が正常である場合は、前記排気浄化触媒が所定温度未満であるときに、放断熱切換手段が排気浄化触媒から外筒への伝熱を遮断すべく動作するため、排気浄化触媒と外筒との間に温度差が生じる。一方、放断熱切換手段に異常が発生した場合は、前記排気浄化触媒が所定温度未満であるときに、放断熱切換手段が排気浄化触媒から外筒への伝熱を遮断すべく動作しないため、排気浄化触媒と外筒との温度差が正常時よりも小さくなる。
【0033】
そこで、故障判定手段は、放断熱切換手段が排気浄化触媒からの放熱を遮断すべき時期に、第1及び第2の温度検出手段の検出値の差が所定の判定基準より小さければ、排気浄化装置の断熱機能が故障していると判定する。
【0034】
また、本発明は、内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒を覆う外筒と、前記排気浄化触媒と前記外筒との間に配置され、前記排気浄化触媒が所定温度未満のときは前記排気浄化触媒から前記外筒への伝熱を遮断し、前記排気浄化触媒が前記所定温度以上のときは前記排気浄化触媒から前記外筒への伝熱を許容する放断熱切換手段とを備えた内燃機関の排気浄化装置であり、
前記排気浄化触媒の温度を検出する第1の温度検出手段と、
前記外筒の温度を検出する第2の温度検出手段と、
前記放断熱切換手段が前記排気浄化触媒から前記外筒への伝熱を許容すべき時期に、前記第1の温度検出手段により検出された温度と前記第2の温度検出手段により検出された温度との差に基づいて前記排気浄化装置の放熱機能の故障を判定する故障判定手段と、
を備えるようにしてもよい(請求項10に対応)。
【0035】
このように構成された排気浄化装置では、放断熱切換手段が正常である場合は、前記排気浄化触媒が所定温度以上であるときに、放断熱切換手段が排気浄化触媒から外筒への伝熱を許容すべく動作するため、排気浄化触媒と外筒との温度差が小さくなる。一方、放断熱切換手段に異常が発生した場合は、前記排気浄化触媒が所定温度以上であるときに、放断熱切換手段が排気浄化触媒から外筒への伝熱を許容すべく動作しないため、排気浄化触媒と外筒との温度差が正常時よりも大きくなる。
【0036】
そこで、故障判定手段は、放断熱切換手段が排気浄化触媒からの放熱を許容すべき時期に、第1及び第2の温度検出手段の検出値の差が所定の判定基準より大きければ、排気浄化装置の断熱機能が故障していると判定する。
【0037】
次に、本発明は、内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒に熱を供給する蓄熱部材と、前記排気浄化触媒及び前記蓄熱部材を覆う外筒と、前記排気浄化触媒及び前記蓄熱部材と前記外筒との間に配置され、前記排気浄化触媒及び前記蓄熱部材からの放熱を遮断する断熱手段とを備えた内燃機関の排気浄化装置であり、
前記外筒の温度を検出する第2の温度検出手段と、
前記蓄熱部材の温度を検出する第3の温度検出手段と、
前記第2の温度検出手段により検出された温度と前記第3の温度検出手段により検出された温度との差に基づいて前記排気浄化装置の断熱機能の故障を判定する故障判定手段と、
を備えることを特徴とする(請求項11に対応)。
【0038】
このように構成された排気浄化装置では、断熱手段が正常である場合は、蓄熱部材から外筒への伝熱が遮断されるため、外筒と蓄熱部材との間に温度差が生じる。一方、断熱手段に異常が発生した場合は、蓄熱部材から外筒への伝達が遮断されないため、蓄熱部材と外筒との温度差が正常時より小さくなる。
【0039】
そこで、故障判定手段は、第2及び第3の温度検出手段の検出値の差が所定の判定基準より小さければ、排気浄化装置の断熱機能が故障していると判定する。
また、本発明は、内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒に熱を供給する蓄熱部材と、前記排気浄化触媒及び前記蓄熱部材を覆う外筒と、前記排気浄化触媒及び前記蓄熱部材と前記外筒との間に配置され、前記排気浄化触媒が所定温度未満のときは前記排気浄化触媒及び前記蓄熱部材から前記外筒への伝熱を遮断し、前記排気浄化触媒が所定温度以上のときは前記排気浄化触媒及び前記蓄熱部材から前記外筒への伝熱を許容する放断熱切換手段とを備えた内燃機関の排気浄化装置であり、
前記外筒の温度を検出する第2の温度検出手段と、
前記蓄熱部材の温度を検出する第3の温度検出手段と、
前記放断熱切換手段が前記排気浄化触媒及び前記蓄熱部材から前記外筒への伝熱を遮断すべき時期に、前記第2の温度検出手段により検出された温度と前記第3の温度検出手段により検出された温度との差に基づいて前記排気浄化装置の断熱機能の故障を判定する故障判定手段と、
を備えるようにしてもよい(請求項12に対応)。
【0040】
このように構成された排気浄化装置では、放断熱切換手段が正常である場合は、前記排気浄化触媒が所定温度未満であるときに、放断熱切換手段が排気浄化触媒及び蓄熱部材から外筒への伝熱を遮断すべく動作するため、蓄熱部材と外筒との間に温度差が生じる。
【0041】
一方、放断熱切換手段に異常が発生した場合は、前記排気浄化触媒が所定温度未満であるときに、放断熱切換手段が排気浄化触媒及び蓄熱部材から外筒への伝熱を遮断すべく動作しないため、蓄熱部材と外筒との温度差が正常時よりも小さくなる。
【0042】
そこで、故障判定手段は、放断熱切換手段が排気浄化触媒及び蓄熱部材からの放熱を遮断すべき時期に、第2及び第3の温度検出手段の検出値の差が所定の判定基準より小さければ、排気浄化装置の断熱機能が故障していると判定する。
【0043】
次に、本発明は、内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒に熱を供給する蓄熱部材と、前記排気浄化触媒及び前記蓄熱部材を覆う外筒と、前記排気浄化触媒及び前記蓄熱部材と前記外筒との間に配置され、前記排気浄化触媒が所定温度未満のときは前記排気浄化触媒及び前記蓄熱部材から前記外筒への伝熱を遮断し、前記排気浄化触媒が前記所定温度以上のときは前記排気浄化触媒及び前記蓄熱部材から前記外筒への伝熱を許容する放断熱切換手段とを備えた内燃機関の排気浄化装置であり、
前記外筒の温度を検出する第2の温度検出手段と、
前記蓄熱部材の温度を検出する第3の温度検出手段と、
前記放断熱切換手段が前記排気浄化触媒及び前記蓄熱部材から前記外筒への伝熱を許容すべき時期に、前記第2の温度検出手段により検出された温度と前記第3の温度検出手段により検出された温度との差に基づいて前記排気浄化装置の放熱機能の故障を判定する故障判定手段と、
を備えるようにしてもよい(請求項13に対応)。
【0044】
このように構成された排気浄化装置では、放断熱切換手段が正常である場合は、前記排気浄化触媒が所定温度以上であるときに、放断熱切換手段が排気浄化触媒及び蓄熱部材から外筒への伝熱を許容すべく動作するため、蓄熱部材と外筒との温度差が小さくなる。一方、放断熱切換手段に異常が発生した場合は、前記排気浄化触媒が所定温度以上であるときに、放断熱切換手段が排気浄化触媒及び蓄熱部材から外筒への伝熱を許容すべく動作しないため、蓄熱部材と外筒との温度差が正常時よりも大きくなる。
【0045】
そこで、故障判定手段は、放断熱切換手段が排気浄化触媒からの放熱を許容すべき時期に、第2及び第3の温度検出手段の検出値の差が所定の判定基準より大きければ、排気浄化装置の断熱機能が故障していると判定する。
【0046】
尚、本発明にかかる排気浄化装置は、故障判定手段が排気浄化装置の故障を判定したときに、前記排気浄化装置の故障を示唆する情報を出力する故障情報出力手段を更に備えるようにしてもよい(請求項14に対応)。
【0047】
また、本発明にかかる故障判定手段は、排気浄化触媒の温度、蓄熱部材の温度、あるいは外筒の温度等を利用して故障判定を行う場合に、外気温度に応じて判定基準を補正するようにしてもよい(請求項15に対応)。
【0048】
【発明の実施の形態】
以下、本発明の実施の形態について図面に基づいて説明する。
図1は、本発明に係る排気浄化装置を適用する内燃機関とその吸排気系の構成を示す図であり、同図に示す内燃機関は、4サイクルの多気筒内燃機関1である。この内燃機関1は、複数の気筒2が形成されたシリンダブロック1aと、このシリンダブロック1aの上部に固定されたシリンダヘッド1bとを備える。
【0049】
前記シリンダブロック1aの各気筒2には、軸方向へ摺動自在にピストン3が装填され、このピストン3は、機関出力軸であるクランクシャフト4と連結される。そして、前記ピストン3の上方には、前記ピストン3の頂面と前記シリンダヘッド1bとに囲まれた燃焼室5が形成される。
【0050】
前記シリンダヘッド1bには、前記燃焼室5に臨むよう点火栓6が取り付けられるとともに、吸気ポート7及び排気ポート8の開口端が燃焼室5に臨むよう形成される。さらに、前記シリンダヘッド1bには、前記吸排気ポート7、8の開口端を開閉する吸気弁9及び排気弁10が進退自在に支持されるとともに、これら吸排気弁9、10を開閉駆動するインテーク側カムシャフト11とエキゾースト側カムシャフト12とが回転自在に支持される。
【0051】
前記インテーク側カムシャフト11及びエキゾースト側カムシャフト12は、図示しないタイミングベルトを介して前記クランクシャフト4と連結され、前記クランクシャフト4の回転力が前記タイミングベルトを介して前記インテーク側カムシャフト11及び前記エキゾースト側カムシャフト12へ伝達される。
【0052】
また、内燃機関1は、前記クランクシャフト4の端部に取り付けられたタイミングロータ13aと前記シリンダブロック1aに取り付けられた電磁ピックアップ13bとからなるクランクポジションセンサ13を備える。
【0053】
さらに、前記シリンダブロック1aには、シリンダブロック1a内に形成された冷却水流路1c内を流れる冷却水の温度に対応した電気信号を出力する水温センサ14が取り付けられる。
【0054】
次に、前記吸気ポート7は、前記シリンダヘッド1bに取り付けられる吸気枝管16と連通し、この吸気枝管16はサージタンク17に接続される。そして、前記サージタンク17は、吸気管18を介してエアクリーナボックス19と接続される。
【0055】
前記吸気管18には、図示しないアクセルペダルと連動して、前記吸気管18内の吸気通路を開閉するスロットル弁20が設けられ、このスロットル弁20には、スロットル弁20の開度に対応した電気信号を出力するスロットルポジションセンサ21が取り付けられる。
【0056】
続いて、前記スロットル弁20より上流の吸気管18には、吸気管18内を流れる新気の質量(吸入空気質量)に対応した電気信号を出力するエアフローメータ22が取り付けられる。
【0057】
また、前記吸気枝管16には、その噴孔が前記吸気ポート7に臨むよう燃料噴射弁23が取り付けられる。この燃料噴射弁23は、駆動回路24と接続され、この駆動回路24からの駆動電流が印加されたときに開弁し、前記吸気枝管16内に燃料を噴射する。
【0058】
次に、前記排気ポート8は、前記シリンダヘッド1bに取り付けられる排気枝管25と連通し、この排気枝管25は、排気管26に接続される。次いで、前記排気管26は、下流にて図示しないマフラと接続される。
【0059】
前記排気管26の途中には、触媒装置27が設けられ、この触媒装置27より上流の排気管26には、排気管26内を流れる排気ガスの空燃比に対応した電気信号を出力する空燃比センサ28が取り付けられる。
【0060】
ここで、前記触媒装置27は、図2、3に示すように、内筒31と中間筒32と外筒33とを備えた三重構造の筒体で構成され、内筒31の内部には、所定の温度以上で活性化して、内筒31内を通過する排気中の一酸化炭素(CO)、窒素酸化物(NOX)、炭化水素(HC)等を浄化する排気浄化触媒34が装填されている。この排気浄化触媒34としては、三元触媒、酸化触媒、還元触媒、あるいはNOX浄化触媒等を例示することができる。
【0061】
前記内筒31と前記中間筒32とに囲まれた空間には、塩化リチウムや塩化ナトリウム等の相変化物質を基材とする蓄熱材35が装填される。この蓄熱材35と前記中間筒32とは、本発明にかかる蓄熱部材を実現する。
【0062】
続いて、前記内筒31と前記中間筒32と前記外筒33とに囲まれた空間36は、真空状態となるよう形成される(以下、前記空間36を真空層36と称する)。この真空層36は、本発明にかかる真空空間部を実現する。尚、ここでいう真空の度合いは、排気浄化触媒34の断熱要求に応じて適宜設定されるものとする。
【0063】
そして、前記外筒33には、前記真空層36内の絶対圧力に対応した電気信号を出力する圧力センサ29が取り付けられる。この圧力センサ29は、本発明にかかる圧力検出手段を実現する。
【0064】
このように構成された触媒装置27では、前記排気浄化触媒34は、内燃機関1の運転時に、排気ガスの熱を受けて昇温し、内燃機関1の運転停止後は、排気浄化触媒34の放熱が前記真空層36によって遮断されるため、前記排気浄化触媒34の温度が活性化温度未満に低下し難くくなる。
【0065】
ここで図1に戻り、前記クランクポジションセンサ13、前記水温センサ14、前記スロットルポジションセンサ21、前記エアフローメータ22、前記空燃比センサ28、及び前記圧力センサ29等の各種センサは、電気配線を介してエンジンコントロール用の電子制御ユニット(Electronic Control Unit:ECU)15に接続され、各センサの出力信号が前記ECU15に入力される。また、ECU15は、図示しない車両の室内に配置された警告灯30と電気配線を介して接続される。前記警告灯30は、本発明にかかる故障情報出力手段の一例であり、触媒装置27の故障時に点灯される
そして、前記ECU15は、前記各種センサからの出力信号をパラメータとして内燃機関1の運転状態を判定し、その運転状態に応じて、前記点火栓6、あるいは前記駆動回路24等の各種制御を行うとともに、本発明の要旨となる故障判定処理を行う。
【0066】
ここで、前記ECU15は、図4に示すように、双方向性バス39により相互に接続された、CPU40とROM41とRAM42とバックアップRAM46と入力ポート43と出力ポート44とを備えるとともに、前記入力ポート43に接続されたA/Dコンバータ(A/D)45を備える。
【0067】
前記入力ポート43は、クランクポジションセンサ13とスロットルポジションセンサ21とからの信号を入力し、これらの信号をCPU40あるいはRAM42へ送信する。さらに、前記入力ポート43は、水温センサ14とエアフローメータ22と空燃比センサ28と圧力センサ29とからの信号をA/Dコンバータ45を介して入力し、これらの信号をCPU40あるいはRAM42へ送信する。
【0068】
前記出力ポート44は、前記CPU40からの制御信号を点火栓6、駆動回路24、あるいは警告灯30へ出力する。
前記ROM41は、燃料噴射量を決定するための燃料噴射量制御ルーチン、燃料噴射時期を決定するための燃料噴射時期制御ルーチン、点火時期を決定するための点火時期制御ルーチン、あるいは排気浄化触媒34の故障診断を行うための故障診断制御ルーチン等のアプリケーションプログラムと、各種の制御マップと、故障判定用の判定値P0とを記憶する。
【0069】
前記制御マップは、例えば、内燃機関1の運転状態と燃料噴射量との関係を示す燃料噴射量制御マップ、内燃機関1の運転状態と燃料噴射時期との関係を示す燃料噴射時期制御マップ、内燃機関1の運転状態と点火時期との関係を示す点火時期制御マップ等である。
【0070】
続いて、前記RAM42は、各センサからの出力信号やCPU40の演算結果等を記憶する。前記演算結果は、例えば、クランクポジションセンサ13の出力信号より算出される機関回転数である。そして、各センサからの出力信号やCPU40の演算結果等は、クランクポジションセンサ13が信号を出力する都度、最新のデータに書き換えられる。
【0071】
さらに、前記RAM42には、触媒装置27が故障しているか否かを識別する故障判定フラグ(故障時:1、正常時:0)等の各種フラグを記憶する領域が設定されている。
前記バックアップRAM46は、内燃機関1停止後もデータを保持する不揮発性のメモリであり、本実施の形態では、故障判定フラグの値を記憶する。
【0072】
次に、前記CPU40は、前記ROM41に記憶されたアプリケーションプログラムに従って動作し、各センサの出力信号より内燃機関1の運転状態を判定し、その運転状態と各制御マップとから燃料噴射量、燃料噴射時期、点火時期等を算出する。そして、CPU40は、算出した燃料噴射量、燃料噴射時期、点火時期に従って、駆動回路24、点火栓6を制御する。
【0073】
また、CPU40は、所定の時期に前記圧力センサ29の出力信号P1を入力し、この信号値P1がROM41の判定値P0より小さいか否か、すなわち真空層36が真空状態にあるか否かを判別する。
前記信号値P1が前記所定値P0以上である場合は、CPU40は、真空層36が非真空状態にあると判定し、内筒31、中間筒32、あるいは外筒33に亀裂等が生じたことにより真空層36の真空度が低下したとみなす。そして、CPU40は、RAM42及びバックアップRAM46の故障判定フラグ記憶領域に“1”を書き込むとともに、警告灯30を点灯させるべく制御信号を出力する。
このように、ECU15は、本発明に係る故障判定手段を実現する。
【0074】
以下、本実施の形態の作用及び効果について述べる。
CPU40は、内燃機関1の運転時に、図5に示すような故障診断制御ルーチンを所定時間毎(例えば、クランクポジションセンサ13が信号を出力する都度)に繰り返し実行する。
【0075】
前記故障診断制御ルーチンでは、CPU40は、S501にてRAM42及びバックアップRAM46の故障判定フラグ記憶領域へアクセスし、“1”が記憶されているか否かを判別する。
【0076】
前記S501においてRAM42とバックアップRAM46との少なくとも一方の故障判定フラグ記憶領域に“1”が記憶されていると判定した場合は、CPU40は、触媒装置27の故障を判定済みであるとみなし、本ルーチンの実行を終了する。
【0077】
一方、前記S501においてRAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”が記憶されていると判定した場合は、CPU40は、S502へ進み、圧力センサ29の出力信号値P1を入力する。
【0078】
続いて、CPU40は、S503へ進み、ROM41から判定値P0を読み出す。そして、CPU40は、前記S501において入力した信号値P1が前記判定値P0以上であるか否かを判別する。
【0079】
前記S503において前記信号値P1が判定値P0以上であると判定した場合は、CPU40は、真空層36の真空度が低下しており、触媒装置27が故障しているとみなし、S504へ進む。
【0080】
S504では、CPU40は、RAM42の故障判定フラグ記憶領域に“1”を書き込む。次いで、CPU40は、S505へ進み、バックアップRAM46の故障判定フラグ記憶領域に“1”を書き込む。
【0081】
そして、CPU40は、S506へ進み、警告灯30を点灯させるべく制御信号を出力し、本ルーチンの実行を終了する。前記CPU40から出力された制御信号は、出力ポート44を介して警告灯30へ送信され、その結果、警告灯30が点灯される。
【0082】
一方、前記S503において前記信号値P1が判定値P0未満であると判定した場合は、CPU40は、真空層36が真空状態にあり、触媒装置27が正常であるとみなし、S507へ進む。
前記S507では、CPU40は、RAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”を書き込み、本ルーチンの実行を終了する。
【0083】
以上述べたように本実施の形態にかかる排気浄化装置によれば、真空層36により排気浄化触媒34の放熱を遮断する触媒装置27において、真空層36の圧力に基づいて触媒装置27の断熱機能の故障を診断することできる。そして、触媒装置27の断熱機能の故障を判定した場合は、警告灯30を点灯させることにより、運転者に触媒装置27の故障を認識させ、触媒装置27の修理や交換等を促すことができる。
【0084】
尚、本実施の形態では、内燃機関1の運転時に故障診断制御ルーチンを実行する例について述べたが、内燃機関1の運転停止時に故障診断制御ルーチンを実行するようにしてもよい。
【0085】
〈実施の形態2〉
本発明にかかる排気浄化装置の第2の実施の形態について図6、7に基づいて説明する。ここでは前述の第1の実施の形態と異なる構成について説明し、同一の構成については説明を省略する。
【0086】
本実施の形態にかかる触媒装置27は、図6に示すように、所定温度未満では水素を吸蔵し、前記所定温度以上では水素を放出する水素吸蔵合金37を真空層36に備えている。この水素吸蔵合金37の配置場所は、水素吸蔵合金37の温度を排気浄化触媒34の温度と略同一とすべく排気浄化触媒34の近傍が好ましい。
【0087】
このように構成された触媒装置27では、前記排気浄化触媒34及び前記蓄熱材35は、内燃機関1の運転時に、排気ガスの熱を受けて昇温する。特に、内燃機関1が高回転、高負荷運転されたときは、高温の排気ガスが多量に触媒装置27を通過するため、排気浄化触媒34及び蓄熱材35は、より高い温度まで昇温する。その際、水素吸蔵合金37は、排気浄化触媒34の昇温に対応して昇温する。
【0088】
そして、排気浄化触媒34及び水素吸蔵合金37が所定温度以上に昇温すると、水素吸蔵合金37から水素が放出され、真空層36が非真空状態となる。このとき、蓄熱材35や排気浄化触媒34の熱が水素を介して外筒33へ伝達されるため、排気浄化触媒34及び蓄熱材35の過剰な昇温が抑制される。
【0089】
その後、排気浄化触媒34及び水素吸蔵合金37の温度が前記所定温度未満に低下すると、真空層36内の水素が再び水素吸蔵合金37に吸蔵され、真空層36が真空状態となる。
【0090】
前記真空層36が真空状態にあるときは、排気浄化触媒34や蓄熱材35からの放熱が前記真空層36により遮断されるため、排気浄化触媒34や蓄熱材35の温度低下を抑制することができる。このような効果は、内燃機関1の運転停止後も継続されるため、次回の内燃機関1始動時まで排気浄化触媒34を活性化温度以上に保つことが可能となり、始動時の排気エミッション悪化を防止することができる。
【0091】
上記したように、水素吸蔵合金37は、本発明にかかる放断熱制御手段を実現する。
次に、ECU15のCPU40は、前述の第1の実施の形態と同様に、真空層36の圧力に基づいて故障診断を行うが、水素吸蔵合金37から水素が放出されているとき、すなわち真空層36が非真空状態にあるときに故障診断を行うと、真空層36が正常であるにもかかわらず故障していると誤判定する虞がある。
【0092】
そこで、CPU40は、水素が水素吸蔵合金37に吸蔵されていることを条件に、故障診断を行うようにした。具体的には、CPU40は、内燃機関1の運転状態が高回転、高負荷状態ではなく、且つ高回転、高負荷運転終了時から所定時間tA以上経過していれば、水素吸蔵合金37に水素が吸蔵されているとみなす。
尚、前記所定時間tAは、高回転、高負荷運転時に水素吸蔵合金37から一旦放出された水素が再び水素吸蔵合金37に吸蔵されるまでに要する時間である。
その他の構成は、前述の第1の実施の形態と同様である。
【0093】
以下、本実施の形態の作用及び効果について述べる。
CPU40は、内燃機関1の運転時において、図7に示すような故障診断制御ルーチンを所定時間毎に繰り返し実行する。
【0094】
前記故障診断制御ルーチンでは、CPU40は、S701にて、RAM42及びバックアップRAM46の故障判定フラグ記憶領域にアクセスし、“1”が記憶されているか否かを判別する。
【0095】
前記S701においてRAM42とバックアップRAM46との少なくとも一方の故障判定フラグ記憶領域に“1”が記憶されていると判定した場合は、CPU40は、触媒装置27の故障を判定済みであるとみなし、本ルーチンの実行を終了する。
【0096】
一方、前記S701においてRAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”が記憶されていると判定した場合は、CPU40は、S702へ進み、クランクポジションセンサ13及びエアフローメータ22の出力信号を入力するとともに、クランクポジションセンサ13の出力信号より機関回転数を算出する。
【0097】
続いて、CPU40は、S703へ進み、S702で算出した機関回転数が所定回転数以上であり、且つS702で入力した吸入空気量が所定量以上であるか否か、すなわち内燃機関1の運転状態が高回転、高負荷領域にあるか否かを判別する。
【0098】
前記S703において内燃機関1の運転状態が高回転、高負荷領域にあると判定した場合は、CPU40は、S714において後述する計測タイマt1をリセットした後、本ルーチンの実行を終了する。
【0099】
一方、前記S703において内燃機関1の運転状態が高回転、高負荷領域にないと判定した場合は、CPU40は、S704へ進み、内燃機関1の運転状態が高回転、高負荷領域にないと判定した後において、本ルーチンの実行回数が1回目であるか否かを判別する。
【0100】
前記S704において本ルーチンの実行回数が1回目であると判定した場合は、CPU40は、S705へ進み、計測タイマt1を起動する。この計測タイマt1は、内燃機関1の運転状態が高回転、高負荷領域にないと判定した時点からの経過時間を計時するタイマである。
【0101】
一方、前記S704において本ルーチンの実行回数が2回目以降であると判定した場合は、CPU40は、S706へ進み、計測タイマt1の計時時間を更新する。
【0102】
上記したS705又はS706の処理を実行し終えたCPU40は、S707へ進み、前記計測タイマt1の計時時間が所定時間tA以上であるか否か、すなわち内燃機関1の高回転、高負荷運転時に水素吸蔵合金37から放出された水素が再度水素吸蔵合金37に吸蔵されるのに十分な時間が経過したか否かを判別する。
【0103】
前記S707において前記計測タイマt1の計時時間が前記所定時間tA未満であると判定した場合は、CPU40は、内燃機関1の高負荷、高回転運転時に水素吸蔵合金37から放出された水素の吸蔵が終了していない(真空層36が非真空状態にある)とみなし、本ルーチンの実行を一旦終了する。
【0104】
一方、前記S707において前記計測タイマt1の計時時間が前記所定時間tA以上であると判定した場合は、CPU40は、高回転、高負荷運転時に水素吸蔵合金37から放出された水素の吸蔵が終了したとみなし、S708へ進む。
【0105】
前記S708では、CPU40は、圧力センサ29の出力信号値P1を入力し、次いでS709において、ROM41から判定値P0を読み出し、前記信号値P1が前記判定値P0以上であるか否かを判別する。
【0106】
前記S709において前記信号値P1が判定値P0以上であると判定した場合は、CPU40は、真空層36の真空度が低下しており、触媒装置27が故障しているとみなし、S710へ進む。
【0107】
前記S710では、CPU40は、RAM42の故障判定フラグ記憶領域に“1”を書き込み、次いで、S711へ進み、バックアップRAM46の故障判定フラグ記憶領域に“1”を書き込む。
【0108】
そして、CPU40は、S712へ進み、警告灯30を点灯させるべく制御信号を出力し、本ルーチンの実行を終了する。前記CPU40から出力された制御信号は、出力ポート44を介して警告灯30へ送信され、その結果、警告灯30が点灯される。これにより、運転者は、触媒装置27の故障を認識することができる。
【0109】
一方、前記S709において前記信号値P1が判定値P0未満であると判定した場合は、CPU40は、真空層36が真空状態にあり、触媒装置27が正常であるとみなし、S713へ進む。
【0110】
前記S713では、CPU40は、RAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”を書き込む。
上記したS712又は前記S713の処理を実行し終えたCPU40は、S714において計測タイマt1をリセットした後、本ルーチンの実行を終了する。
【0111】
以上述べたように本実施の形態にかかる排気浄化装置によれば、真空層36と水素吸蔵合金37とを備えた触媒装置27において、内燃機関の運転状態より水素が水素吸蔵合金37に吸蔵される時期、すなわち真空層36が真空状態となるべき時期を特定し、特定された時期に真空層36の圧力を検出することにより、触媒装置27の放熱機能や断熱機能の故障を正確に診断することができる。
【0112】
尚、本実施の形態では、排気浄化触媒34及び蓄熱材35の放熱を制御する手段として水素吸蔵合金37を例にあげたが、これに限られるものではなく、例えば、所定温度未満では内筒31もしくは中間筒32と外筒33とを非接触状態とすべく圧縮され、所定温度以上では内筒31もしくは中間筒32と外筒33とを接触状態とすべく膨張し、排気浄化触媒34あるいは蓄熱材35の熱を外筒33へ伝達するバイメタルを用いても良い。
【0113】
この場合、真空層36は、バイメタルの状態に関わらず常時真空状態となるので、CPU40は、前述の第1の実施の形態で説明したような故障診断制御ルーチンに従って触媒装置27の故障診断を行う。
【0114】
〈実施の形態3〉
本発明にかかる排気浄化装置の第3の実施の形態について図8〜11に基づいて説明する。ここでは前述の第2の実施の形態と異なる構成について説明し、同一の構成については説明を省略する。
【0115】
本実施の形態にかかる触媒装置27は、図8、9に示すように、前述の第2の実施の形態で述べた構成に加え、排気浄化触媒34の床温に対応した電気信号を出力する温度センサ38を備える。
【0116】
前記温度センサ38は、図10に示すように、電気配線を介してECU15のA/Dコンバータ45と接続される。そして、前記温度センサ38の出力信号は、A/Dコンバータ45でアナログ信号からデジタル信号に変換された後、入力ポート43に入力され、次いでCPU40やRAM42等に入力される。
【0117】
次に、ECU15のCPU40は、前述の第2の実施の形態と同様に、水素吸蔵合金37に水素が吸蔵されていることを条件に、真空層36の圧力を検出し、その圧力値に基づいて故障診断を行うが、水素吸蔵合金37に水素が吸蔵されていることを判定するパラメータとして、温度センサ38の出力信号値(排気浄化触媒34の床温、以下触媒床温と称する)を用いる。
【0118】
すなわち、水素吸蔵合金37は、排気浄化触媒34と略同一の温度となる位置に配置され、且つ、所定温度T0以上に昇温したときに水素の放出を開始するので、内燃機関1の運転状態が高回転、高負荷領域になく、且つ触媒床温Tが所定温度T0未満であれば、水素吸蔵合金37に水素が吸蔵されているとみなすことができる。前記所定温度T0は、ECU15のROM41に予め記憶される。
その他の構成は、前述の第2の実施の形態と同様である。
【0119】
以下、本実施の形態の作用及び効果について述べる。
CPU40は、内燃機関1の運転時において、図11に示すような故障診断制御ルーチンを所定時間毎(例えば、クランクポジションセンサ13が信号を出力する都度)に繰り返し実行する。
【0120】
前記故障診断制御ルーチンでは、CPU40は、S1101にて、RAM42及びバックアップRAM46の故障判定フラグ記憶領域にアクセスし、“1”が記憶されているか否かを判別する。
【0121】
前記S1101においてRAM42とバックアップRAM46との少なくとも一方の故障判定フラグ記憶領域に“1”が記憶されていると判定した場合は、CPU40は、触媒装置27の故障を判定済みであるとみなし、本ルーチンの実行を終了する。
【0122】
一方、前記S1101においてRAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”が記憶されていると判定した場合は、CPU40は、S1102へ進み、クランクポジションセンサ13及びエアフローメータ22の出力信号を入力するとともに、クランクポジションセンサ13の出力信号より機関回転数を算出する。
【0123】
続いて、CPU40は、S1103へ進み、S1102で算出した機関回転数が所定回転数以上であり、且つS1102で入力した吸入空気量が所定量以上であるか否か、すなわち内燃機関1の運転状態が高回転、高負荷領域にあるか否かを判別する。
前記S1103において内燃機関1の運転状態が高回転、高負荷領域にあると判定した場合は、CPU40は、本ルーチンの実行を終了する。
【0124】
一方、前記S1103において内燃機関1の運転状態が高回転、高負荷領域にないと判定した場合は、CPU40は、S1104へ進み、温度センサ38の出力信号値(触媒床温)Tを入力する。
【0125】
続いて、CPU40は、S1105へ進み、ROM41に記憶された所定温度T0を読み出し、前記S1104で入力した触媒床温Tが前記所定温度T0未満であるか否か、すなわち水素吸蔵合金37の温度が水素を吸蔵する温度域にあるか否かを判別する。
【0126】
前記S1105において触媒床温Tが前記所定温度T0未満ではないと判定した場合は、CPU40は、本ルーチンの実行を終了し、前記触媒床温Tが前記所定温度T0未満であると判定した場合は、S1106へ進む。
【0127】
前記S1106では、CPU40は、圧力センサ29の出力信号値P1(真空層36の絶対圧力値P1)を入力する。そして、CPU40は、S1107において、ROM41に記憶された判定値P0を読み出し、前記信号値P1が前記判定値P0以上であるか否かを判別する。
【0128】
前記S1107において前記信号値P1が判定値P0以上であると判定した場合は、CPU40は、真空層36の真空度が低下しており、触媒装置27が故障しているとみなし、S1108へ進む。
【0129】
前記S1108では、CPU40は、RAM42の故障判定フラグ記憶領域に“1”を書き込む。続いて、CPU40は、S1109へ進み、バックアップRAM46の故障判定フラグ記憶領域に“1”を書き込む。
【0130】
そして、CPU40は、S1110へ進み、警告灯30を点灯させるべく制御信号を出力し、本ルーチンの実行を終了する。前記CPU40から出力された制御信号は、出力ポート44を介して警告灯30へ送信され、その結果、警告灯30が点灯される。これにより、運転者は、触媒装置27の故障を認識することができる。
【0131】
一方、前記S1107において前記信号値P1が判定値P0未満であると判定した場合は、CPU40は、真空層36が真空状態にあり、触媒装置27が正常であるとみなし、S1111へ進む。
【0132】
前記S1111では、CPU40は、RAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”を書き込む。
上記したS1110又は前記S1111の処理を実行し終えたCPU40は、本ルーチンの実行を終了する。
【0133】
以上述べたように本実施の形態にかかる排気浄化装置によれば、水素吸蔵合金37を備えた触媒装置27において、排気浄化触媒34の床温より、水素が水素吸蔵合金37に吸蔵される時期、すなわち真空層36が真空状態となるべき時期を特定し、特定された時期に真空層36の圧力を検出することにより、触媒装置27の放熱機能や断熱機能の故障を正確に判定することができる。
【0134】
尚、本実施の形態では、水素の吸蔵状態を判定するパラメータとして排気浄化触媒34の床温を例に挙げたが、蓄熱材35の温度や内筒31の表面温度、あるいは水素吸蔵合金37の温度を用いてもよい。
【0135】
〈実施の形態4〉
本発明にかかる排気浄化装置の第4の実施の形態について図12〜15に基づいて説明する。ここでは前述の第1の実施の形態と異なる構成について説明し、同一の構成については説明を省略する。
【0136】
本実施の形態に係る触媒装置27は、図12、13に示すように、内筒31と外筒33とを備えた二重構造の筒体で構成され、内筒31と外筒33との間には、本発明にかかる断熱手段としての真空層36が形成される。
【0137】
そして、前記外筒33には、排気浄化触媒34の床温に対応した電気信号を出力する温度センサ38が取り付けられる。この温度センサ38は、本発明にかかる温度検出手段を実現する。
【0138】
続いて、ECU15のA/Dコンバータ45には、図14に示すように、前記温度センサ38が電気配線を介して接続され、前記温度センサ38の出力信号は、A/Dコンバータ45でアナログ信号からデジタル信号に変換された後、入力ポート43に入力され、次いでCPU40やRAM42等に入力される。
【0139】
前記ECU15のCPU40は、内燃機関1の運転停止後に、温度センサ38の出力信号より、排気浄化触媒34の床温の低下率(温度低下率)を算出し、算出した温度低下率に基づいて触媒装置27の故障診断を行う。
【0140】
具体的には、CPU40は、内燃機関1の運転停止後の所定時間tB内に、温度センサ38の出力信号値を複数個収集する。続いて、CPU40は、収集した複数個の出力信号値を用いて所定時間tB内における排気浄化触媒34の温度低下率Xを算出する。
【0141】
ここで、触媒装置27の真空層36に異常が発生すると、排気浄化触媒34からの放熱を遮断する性能が低下し、排気浄化触媒34の温度低下率が大きくなるため、排気浄化触媒34の温度低下率は、正常時よりも大きくなる。
【0142】
そこで、触媒装置27の正常時における排気浄化触媒34の温度低下率や、温度センサ38の初期公差等に基づいて決定される判定値Kを、予めROM41に記憶しておき、CPU40は、前記温度低下率Xが前記判定値Kより大きければ、触媒装置27が故障していると判定するようにした。
【0143】
このようにECU15は、本発明にかかる故障判定手段を実現する。
その他の構成は、前述の第1の実施の形態と同様である。
【0144】
以下、本実施の形態の作用及び効果について述べる。
CPU40は、図15に示すような故障診断制御ルーチンを実行することにより、触媒装置27の故障診断を行う。尚、前記故障診断制御ルーチンは、内燃機関1の運転時は、所定時間毎に繰り返し実行され、内燃機関1の運転停止後は、1回のみ実行される。
【0145】
前記故障診断制御ルーチンでは、CPU40は、S1501にて、RAM42及びバックアップRAM46の故障判定フラグ記憶領域にアクセスし、“1”が記憶されているか否かを判別する。
【0146】
前記S1501においてRAM42とバックアップRAM46との少なくとも一方の故障判定フラグ記憶領域に“1”が記憶されていると判定した場合は、CPU40は、触媒装置27の故障を判定済みであるとみなし、本ルーチンの実行を終了する。
【0147】
一方、前記S1501においてRAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”が記憶されていると判定した場合は、CPU40は、S1502へ進み、図示しないイグニッションスイッチのオン/オフ状態等より、内燃機関1が運転停止状態にあるか否かを判別する。
【0148】
前記S1502において内燃機関1が運転停止状態にないと判定した場合は、CPU40は、S1512へ進み、後述する計測タイマt2をリセットし、本ルーチンの実行を終了する。
【0149】
一方、前記S1502において内燃機関1が運転停止状態にあると判定した場合は、CPU40は、S1503へ進み、計測タイマt2を起動する。この計測タイマt2は、内燃機関1の運転停止時からの経過時間を計時するタイマである。
【0150】
そして、CPU40は、S1504へ進み、温度センサ38の出力信号値(触媒床温)を入力し、RAM42の所定の領域に記憶する。
続いて、CPU40は、S1505へ進み、計測タイマt2の計時時間t2が所定時間tB以上であるか否かを判別する。
【0151】
前記S1505において計測タイマt2の計時時間t2が所定時間tB未満であると判定した場合は、CPU40は、計測タイマt2の計時時間が前記所定時間tB以上となるまで、前記S1504以降の処理を繰り返し実行する。これにより、RAM42には、複数個の触媒床温が記憶されることになる。
【0152】
そして、前記1505において計測タイマt2の計時時間t2が所定時間tB以上であると判定すると、CPU40は、S1506へ進み、前記RAM42に記憶された複数個の触媒床温より、前記所定時間tB内における排気浄化触媒34の温度低下率Xを算出する。
【0153】
次に、CPU40は、S1507へ進み、ROM41から判定値Kを読み出し、前記S1506で算出した温度低下率Xが前記判定値Kより大きいか否かを判別する。
【0154】
前記S1507において前記温度低下率Xが前記判定値Kより大きいと判定した場合は、CPU40は、真空層36の断熱性能が低下しており、触媒装置27が故障しているとみなし、S1508へ進む。
【0155】
前記S1508では、CPU40は、RAM42の故障判定フラグ記憶領域に“1”を書き込む。続いて、CPU40は、S1509へ進み、バックアップRAM46の故障判定フラグ記憶領域に“1”を書き込む。
【0156】
そして、CPU40は、S1510へ進み、警告灯30を点灯させるべく制御信号を出力し、本ルーチンの実行を終了する。前記CPU40から出力された制御信号は、出力ポート44を介して警告灯30へ送信され、その結果、警告灯30が点灯される。これにより、運転者は、触媒装置27の故障を認識することができる。
【0157】
一方、前記S1507において前記温度低下率Xが前記判定値K以下であると判定した場合は、CPU40は、触媒装置27が正常であるとみなし、S1510へ進む。
【0158】
前記S1510では、CPU40は、RAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”を書き込む。
上記したS1509又はS1510の処理を実行し終えたCPU40は、S1512において計測タイマt2をリセットした後、本ルーチンの実行を終了する。
【0159】
以上述べたように本実施の形態にかかる排気浄化装置によれば、内燃機関1の運転停止後における排気浄化触媒34の温度低下率に基づいて触媒装置27の断熱機能の故障を診断することができる。そして、触媒装置27の断熱機能の故障を判定した場合は、警告灯30を点灯させることにより、運転者に触媒装置27の故障を認識させ、触媒装置27の修理や交換等を促すことができる。
【0160】
尚、本実施の形態では、排気浄化触媒34からの放熱を遮断する手段として真空層36を例示しているが、断熱性を有するものであれば如何なる手段でも構わない。
【0161】
また、本実施の形態では、真空層36を備えた触媒装置27を例に挙げたが、真空層の代わりに蓄熱材を備えた触媒装置の場合でもよい。このような触媒装置では、排気浄化触媒の温度低下率に基づいて蓄熱材の故障を判定することができる。
【0162】
〈実施の形態5〉
本発明にかかる排気浄化装置の第5の実施の形態について図16〜20に基づいて説明する。ここでは前述の第4の実施の形態と異なる構成について説明し、同一の構成については説明を省略する。
【0163】
本実施の形態に係る触媒装置27は、図16、17に示すように、内筒31と中間筒32と外筒33とを備えた三重構造の筒体で構成され、内筒31と外筒33との間には、真空層36が形成され、内筒31と中間筒32との間には、所定の温度域で相変化状態となる相変化物質で構成される蓄熱材35が装填されている。前記蓄熱材35は、本発明にかかる蓄熱部材を実現する。
【0164】
そして、前記外筒33には、前記蓄熱材35の温度に対応した電気信号を出力する温度センサ47が取り付けられる。この温度センサ47は、本発明にかかる第3の温度検出手段を実現する。
【0165】
続いて、前記ECU15のA/Dコンバータ45には、図18に示すように、前記温度センサ47が電気配線を介して接続され、前記温度センサ47の出力信号は、A/Dコンバータ45でアナログ信号からデジタル信号に変換された後、入力ポート43に入力され、次いでCPU40やRAM42等に入力される。
【0166】
そして、前記ECU15のCPU40は、内燃機関1の運転停止後に、温度センサ47の出力信号より、所定時間内における蓄熱材35の温度低下率を算出し、算出した温度低下率に基づいて触媒装置27の故障診断を行う。
【0167】
具体的には、CPU40は、内燃機関1の運転停止後の所定時間tD内に、温度センサ47の出力信号値を入力し続ける。そして、CPU40は、前記所定時間tD内に入力された出力信号値を用いて、前記所定時間tDにおける蓄熱材35の温度低下率を算出する。
【0168】
ここで、触媒装置27の真空層36や蓄熱材35に異常が発生すると、排気浄化触媒34からの放熱を遮断する性能や排気浄化触媒34に熱を供給する性能が低下し、排気浄化触媒34の温度低下率が正常時よりも大きくなり、それに対応して蓄熱材35の温度低下率も大きくなる。
【0169】
従って、触媒装置27の正常時における蓄熱材35の温度低下率や温度センサ47の初期公差等に基づいて決定される判定値Kを、予めROM41に記憶しておき、CPU40は、蓄熱材35の温度低下率が前記判定値Kより大きければ、触媒装置27が故障していると判定することができる。
【0170】
ところで、蓄熱材35は、熱容量が大きく、排気浄化触媒34より温度上昇速度が遅いため、排気浄化触媒34と略同一の温度になるまでに時間がかかる。これにより、蓄熱材35は、内燃機関1の運転停止後も昇温し続ける場合があり、そのような状態で蓄熱材35の温度検出を行うと、誤判定を招く虞がある。
【0171】
さらに、蓄熱材35が所定温度域(以下、相変化温度域と称する)にあるときは相変化状態となり、蓄熱材35の温度が略一定となるため、そのような状態で蓄熱材35の温度検出を行っても誤判定を招く虞がある。
【0172】
そこで、本実施の形態では、内燃機関1の運転停止から所定時間tC以上が経過し、且つ蓄熱材35の温度が相変化温度域にないとき(蓄熱材35の相変化前、あるいは相変化後)に、蓄熱材35の温度を検出するようにした。
その他の構成は、前述の第4の実施の形態と同様である。
【0173】
以下、本実施の形態の作用及び効果について述べる。
CPU40は、図19に示すような故障診断制御ルーチンを実行することにより、触媒装置27の故障診断を行う。尚、前記故障診断制御ルーチンは、内燃機関1の運転時は、所定時間毎に繰り返し実行され、内燃機関1の運転停止後は、1回のみ実行される。
【0174】
前記故障診断制御ルーチンでは、CPU40は、S1901にて、RAM42及びバックアップRAM46の故障判定フラグ記憶領域にアクセスし、“1”が記憶されているか否かを判別する。
【0175】
前記S1901においてRAM42とバックアップRAM46との少なくとも一方の故障判定フラグ記憶領域に“1”が記憶されていると判定した場合は、CPU40は、触媒装置27の故障を判定済みであるとみなし、本ルーチンの実行を終了する。
【0176】
一方、前記S1901においてRAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”が記憶されていると判定した場合は、CPU40は、S1902へ進み、イグニッションスイッチのオン/オフ状態等より、内燃機関1が運転停止状態にあるか否かを判別する。
【0177】
前記S1902において内燃機関1が運転停止状態にないと判定した場合は、CPU40は、S1919へ進み、後述する計測タイマt3、t4をリセットし、本ルーチンの実行を終了する。
【0178】
一方、前記S1902において内燃機関1が運転停止状態にあると判定した場合は、CPU40は、S1903へ進み、計測タイマt3を起動する。この計測タイマt3は、内燃機関1の運転停止時からの経過時間を計時するタイマである。
【0179】
そして、CPU40は、S1904へ進み、前記計測タイマt3の計時時間t3が所定時間tC以上であるか否かを判別する。
前記S1904において前記計測タイマt3の計時時間t3が所定時間tC未満であると判定した場合は、CPU40は、前記計測タイマt3の計時時間t3が前記所定時間tC以上になるまで前記S1905の処理を繰り返し実行する。
【0180】
そして、前記S1904において前記計測タイマt3の計時時間t3が所定時間tC以上であると判定した場合は、CPU40は、S1905へ進み、内燃機関1の運転停止状態が継続しているか否かを判別する。
【0181】
前記S1905において内燃機関1の運転停止状態が継続していないと判定した場合は、CPU40は、S1919へ進み、計測タイマt3をリセットして本ルーチンの実行を終了する。
【0182】
一方、前記S1905において内燃機関1の運転停止状態が継続していると判定した場合は、CPU40は、S1906へ進み、温度センサ47の出力信号値(蓄熱材35の温度)Tを入力する。
【0183】
続いて、CPU40は、S1907へ進み、蓄熱材35の相変化温度域の上限値TmaxをRAM42から読み出し、前記S1906で入力した出力信号値Tが前記Tmaxより大きいか否か、すなわち蓄熱材35の温度が相変化温度域よりも高いか否かを判別する。
【0184】
前記S1907において前記出力信号値Tが前記Tmaxより大きいと判定した場合は、CPU40は、蓄熱材35が相変化前であるとみなし、S1908へ進む。
【0185】
前記S1908では、CPU40は、計測タイマt4を起動する。この計測タイマt4は、蓄熱材35の温度検出を開始した時点からの経過時間を計時するタイマである。
【0186】
そして、CPU40は、S1909へ進み、温度センサ47の出力信号値を入力し、RAM42の所定領域に書き込む。
続いて、CPU40は、S1910へ進み、計測タイマt4の計時時間t4が所定時間tD以上であるか否かを判別する。
【0187】
前記S1910において計測タイマt4の計時時間t4が所定時間tD未満であると判定した場合は、CPU40は、計測タイマt4の計時時間t4が前記所定時間tD以上となるまで、前記S1909以降の処理を繰り返し実行する。これにより、RAM42には、複数個の蓄熱材温度が記憶されることになる。
【0188】
そして、前記S1910において計測タイマt4の計時時間t4が所定時間tD以上であると判定すると、CPU40は、S1911へ進み、内燃機関1の運転停止状態が継続しているか否かを判別する。
【0189】
前記S1911において内燃機関1の運転停止状態が継続していないと判定した場合は、CPU40は、S1919へ進み、計測タイマt3、t4をリセットし、本ルーチンの実行を終了する。
【0190】
一方、前記S1911において内燃機関1の運転停止状態が継続していると判定した場合は、CPU40は、S1912へ進み、前記所定時間tD内において最後に検出した蓄熱材温度が相変化温度域の上限値Tmaxより大きいか否かを判別する。
【0191】
前記S1912において前記蓄熱材温度が相変化温度域の上限値Tmaxより大きいと判定した場合は、CPU40は、蓄熱材35が相変化前であるとみなし、S1913へ進む。
【0192】
前記S1913では、CPU40は、前記RAM42に記憶された複数個の蓄熱材温度より、前記所定時間tD内における蓄熱材35の温度低下率Xを算出する。
【0193】
続いて、CPU40は、S1914へ進み、RAM42から判定値Kを読み出し、前記S1913で算出した温度低下率Xが前記判定値Kよりも大きいか否かを判別する。
【0194】
前記S1914において前記温度低下率Xが前記判定値Kよりも大きいと判定した場合は、CPU40は、真空層36あるいは蓄熱材35に異常が発生し、触媒装置27が故障しているとみなし、S1915へ進む。
【0195】
前記S1915では、CPU40は、RAM42の故障判定フラグ記憶領域に“1”を書き込み、次いでS1916において、バックアップRAM46の故障判定フラグ記憶領域に“1”を書き込む。
【0196】
そして、CPU40は、S1917へ進み、警告灯30を点灯させるべく制御信号を出力し、本ルーチンの実行を終了する。前記制御信号は、出力ポート44を介して警告灯30へ送信され、その結果、警告灯30が点灯される。これにより、運転者は、触媒装置27の故障を認識することができる。
【0197】
一方、前記S1914において前記温度低下率Xが前記判定値K以下であると判定した場合は、CPU40は、触媒装置27が正常であるとみなし、S1918へ進む。
【0198】
前記S1918では、CPU40は、RAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”を書き込む。
上記したS1917又はS1918の処理を実行し終えたCPU40は、S1919において計測タイマt3、t4タイマをリセットした後、本ルーチンの実行を終了する。
【0199】
尚、前記S1912において、最後に検出された蓄熱材温度が相変化温度域の上限値Tmax以下であると判定した場合は、CPU40は、蓄熱材35が相変化状態にあるとみなし、S1920へ進む。
【0200】
前記S1920では、CPU40は、故障診断処理を中断し、次いでS1921において計測タイマt3、t4タイマをリセットする。そして、CPU40は、S1922へ進み、相変化後の故障診断処理を実行する。
【0201】
相変化後の故障診断処理は、CPU40が図20に示すような故障診断制御ルーチンを実行することにより実現される。
前記故障診断制御ルーチンでは、CPU40は、S2001にて、RAM42及びバックアップRAM46の故障判定フラグ記憶領域にアクセスし、“1”が記憶されているか否かを判別する。
【0202】
前記S2001においてRAM42とバックアップRAM46との少なくとも一方の故障判定フラグ記憶領域に“1”が記憶されていると判定した場合は、CPU40は、触媒装置27の故障を判定済みであるとみなし、本ルーチンの実行を終了する。
【0203】
一方、前記S2001においてRAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”が記憶されていると判定した場合は、CPU40は、S2002へ進み、内燃機関1が運転停止状態にあるか否かを判別する。
【0204】
前記S2002において内燃機関1が運転停止状態にないと判定した場合は、CPU40は、S2015へ進み、後述する計測タイマt5をリセットし、本ルーチンの実行を終了する。
【0205】
一方、前記S2002において内燃機関1が運転停止状態にあると判定した場合は、CPU40は、S2003へ進み、温度センサ47の出力信号値T(蓄熱材35の温度)を入力する。
【0206】
続いて、CPU40は、S2004へ進み、蓄熱材35の相変化温度域の下限値TminをRAM42から読み出し、前記S2003で入力した出力信号値Tが前記Tmin未満であるか否か、すなわち蓄熱材35の温度が相変化温度域よりも低いか否かを判別する。
【0207】
前記S2004において前記出力信号値Tが前記Tmin未満であると判定した場合は、CPU40は、蓄熱材35が相変化終了後であるとみなし、S2005へ進む。
【0208】
前記S2005では、CPU40は、計測タイマt5を起動する。この計測タイマt5は、蓄熱材35の温度検出を開始した時点からの経過時間を計時するタイマである。
【0209】
そして、CPU40は、S2006へ進み、温度センサ47の出力信号値を入力し、その出力信号値をRAM42の所定領域に書き込む。
続いて、CPU40は、S2007へ進み、前記計測タイマt5の計時時間t5が所定時間tE以上であるか否かを判別する。
【0210】
前記S2007において前記計時時間t5が前記所定時間tE未満であると判定した場合は、CPU40は、計測タイマt5の計時時間t5が前記所定時間tE以上となるまで、前記S2006以降の処理を繰り返し実行する。これにより、RAM42には、複数個の蓄熱材温度が記憶されることになる。
そして、前記S2007において計測タイマt5の計時時間t5が所定時間tE以上であると判定すると、CPU40は、S2008へ進み、内燃機関1の運転停止状態が継続しているか否かを判別する。
【0211】
前記S2008において内燃機関1の運転停止状態が継続していないと判定した場合は、CPU40は、S2015へ進み、計測タイマt5をリセットし、本ルーチンの実行を終了する。
【0212】
一方、前記S2008において内燃機関1の運転停止状態が継続していると判定した場合は、CPU40は、S2009へ進み、前記所定時間tE内にRAM42に書き込まれた複数個の蓄熱材温度より、前記所定時間tD内における蓄熱材35の温度低下率Xを算出する。
【0213】
そして、CPU40は、S2010へ進み、RAM42から判定値Kを読み出し、前記S2009で算出した温度低下率Xが前記判定値Kよりも大きいか否かを判別する。
【0214】
前記S2010において前記温度低下率Xが前記判定値Kよりも大きいと判定した場合は、CPU40は、真空層36あるいは蓄熱材35に異常が発生し、触媒装置27が故障しているとみなし、S2011へ進む。
【0215】
前記S2011では、CPU40は、RAM42の故障判定フラグ記憶領域に“1”を書き込み、次いでS2012において、バックアップRAM46の故障判定フラグ記憶領域に“1”を書き込む。
【0216】
そして、CPU40は、S2013へ進み、警告灯30を点灯させるべく制御信号を出力し、本ルーチンの実行を終了する。前記制御信号は、出力ポート44を介して警告灯30へ送信され、その結果、警告灯30が点灯される。これにより、運転者は、触媒装置27の故障を認識することができる。
【0217】
一方、前記S2010において前記温度低下率Xが前記判定値K以下であると判定した場合は、CPU40は、触媒装置27が正常であるとみなし、S2014へ進む。
【0218】
前記S2014では、CPU40は、RAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”を書き込む。
そして、上記したS2013又はS2014の処理を実行し終えたCPU40は、S2015において計測タイマt5をリセットした後、本ルーチンの実行を終了する。
【0219】
以上述べたように本実施の形態にかかる排気浄化装置によれば、相変化物質からなる蓄熱材35を備えた触媒装置27において、蓄熱材35の相変化前の温度低下率あるいは相変化後の温度低下率に基づいて、触媒装置27の蓄熱機能や断熱機能の故障を診断することができる。そして、触媒装置27の断熱機能の故障を判定した場合は、警告灯30を点灯させることにより、運転者に触媒装置27の故障を認識させ、触媒装置の修理や交換等を促すことができる。
【0220】
尚、本実施の形態では、真空層36を備えた触媒装置27に本発明を適用する例について説明したが、真空層を備えていない触媒装置でもよく、要は蓄熱材を備えた触媒装置であれば如何なる構成の触媒装置でも構わない。
【0221】
また、本実施の形態では、相変化物質からなる蓄熱材35を備えた触媒装置27を例に挙げたが、相変化物質以外の物質からなる蓄熱材を備えた触媒装置の場合は、前述の第4の実施の形態にかかる排気浄化装置において、触媒床温の代わりに蓄熱材の温度を用いることにより故障診断を行うことができる。
【0222】
〈実施の形態6〉
本発明にかかる排気浄化装置の第6の実施の形態について図21、22に基づいて説明する。ここでは前述の第5の実施の形態と異なる構成について説明し、同一の構成については説明を省略する。
【0223】
前述の第5の実施の形態では、蓄熱材35の温度低下率に基づいて触媒装置27の故障を診断する例について述べたが、本実施の形態では、蓄熱材35が相変化状態にある時間(以下、相変化時間と称する)に基づいて触媒装置27の故障を診断する例について述べる。
【0224】
蓄熱材35が相変化状態となる温度域は、蓄熱材35を構成する材質(相変化物質)により異なるが、個々の相変化物質が相変化状態となる温度域は、略一定である。さらに、個々の相変化物質の相変化時間は、図21に示すように、触媒装置27が正常である場合は、略一定の時間となり、触媒装置27が故障している場合は、正常時よりも短い時間となる。
【0225】
そこで、本実施の形態では、蓄熱材35を構成する相変化物質が相変化状態となる温度域の上限値Tmaxと下限値TminとをROM41に記憶しておくとともに、前記相変化物質の相変化時間と温度センサ47の初期公差等とに基づいて決定される判定値u0をROM41に記憶しておく。
【0226】
そして、CPU40は、内燃機関1の運転終了後に、温度センサ47の出力信号値(蓄熱材35の温度)を監視し、蓄熱材35の温度が前記上限値Tmaxと同一の温度に低下した時点から、前記下限値Tmin未満の温度に低下するまでの時間、いわゆる相変化時間を計時する。
【0227】
続いて、CPU40は、前記相変化時間が前記判定値u0未満であれば、触媒装置27が故障していると判定し、前記相変化時間が前記判定値u0以上であれば、触媒装置27が正常であると判定する。
【0228】
このようにECU15は、本発明にかかる故障判定手段を実現する。
その他の構成は、前述の第5の実施の形態と同様である。
以下、本実施の形態の作用及び効果について述べる。
【0229】
CPU40は、図22に示すような故障診断制御ルーチンを実行することにより、触媒装置27の故障診断を行う。尚、前記故障診断制御ルーチンは、内燃機関1の運転時は、所定時間毎に繰り返し実行され、内燃機関1の運転停止後は、1回のみ実行される。
【0230】
前記故障診断制御ルーチンでは、CPU40は、S2201にて、RAM42及びバックアップRAM46の故障判定フラグ記憶領域にアクセスし、“1”が記憶されているか否かを判別する。
【0231】
前記S2201においてRAM42とバックアップRAM46との少なくとも一方の故障判定フラグ記憶領域に“1”が記憶されていると判定した場合は、CPU40は、触媒装置27の故障を判定済みであるとみなし、本ルーチンの実行を終了する。
【0232】
一方、前記S2201においてRAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”が記憶されていると判定した場合は、CPU40は、S2202へ進み、内燃機関1が運転停止状態にあるか否かを判別する。
【0233】
前記S2202において内燃機関1が運転状態にあると判定した場合は、CPU40は、S2215へ進み、後述する計測タイマt6をリセットし、本ルーチンの実行を終了する。
【0234】
一方、前記S2202において内燃機関1が運転停止状態にあると判定した場合は、CPU40は、S2203へ進み、温度センサ47の出力信号値(蓄熱材35の温度)Tを入力する。
【0235】
続いて、CPU40は、S2204へ進み、ROM41に記憶された上限値Tmaxを読み出し、前記S2203で入力した蓄熱材温度Tが前記上限値Tmax以下であるか否かを判別する。
【0236】
前記S2204において前記蓄熱材温度Tが前記上限値Tmaxより大きいと判定した場合は、CPU40は、前記蓄熱材温度Tが前記上限値Tmax以下に低下するまで、前記S2202以降の処理を繰り返し実行する。
【0237】
そして、前記S2204において前記蓄熱材温度Tが前記上限値Tmax以下であると判定した場合は、CPU40は、S2205へ進み、ROM41に記憶された下限値Tminを読み出し、前記蓄熱材温度Tが前記下限値Tmin以上であるか否かを判別する。
【0238】
前記S2205において前記蓄熱材温度Tが前記下限値Tmin以上であると判定した場合は、CPU40は、蓄熱材35が相変化状態にあるとみなし、S2206へ進む。
【0239】
前記S2206では、CPU40は、S2206の実行回数が1回目であるか否か、すなわちS2206を初めて実行するか否かを判別する。そして、CPU40は、前記S2206の実行回数が1回目である場合は、S2207へ進み、計測タイマt6を起動し、前記S2206の実行回数が2回目以降である場合は、S2208へ進み、計測タイマt6の値を更新する。
【0240】
ここで、前記計測タイマt6は、蓄熱材35の相変化が開始された時点(蓄熱材35の温度が上限値Tmaxと同一の温度まで低下した時点)からの経過時間を計時する計測タイマである。
【0241】
前記S2207又は前記S2208の処理を実行し終えたCPU40は、S2209へ進み、温度センサ47の出力信号値(蓄熱材温度)Tを入力し、次いで前記S2205以降の処理を再度実行する。その際、CPU40は、前記S2205において前記S2209で入力した蓄熱材温度Tが前記下限値Tmin未満であると判定すると、蓄熱材35の相変化が終了したとみなし、S2210にて前記計測タイマt6を停止する。
【0242】
続いて、CPU40は、S2211へ進み、ROM41に記憶された判定値u0を読み出し、前記計測タイマt6の計時時間t6が前記判定値u0未満であるか否かを判別する。
【0243】
前記S2211において前記計時時間t6が前記判定値u0未満であると判定した場合は、CPU40は、真空層36あるいは蓄熱材35に異常が発生し、触媒装置27が故障しているとみなし、S2212へ進む。
【0244】
前記S2212では、CPU40は、RAM42の故障判定フラグ記憶領域に“1”を書き込み、次いでS2213において、バックアップRAM46の故障判定フラグ記憶領域に“1”を書き込む。
【0245】
そして、CPU40は、S2214へ進み、警告灯30を点灯させるべく制御信号を出力し、本ルーチンの実行を終了する。前記制御信号は、出力ポート44を介して警告灯30へ送信され、その結果、警告灯30が点灯される。これにより、運転者は、触媒装置27の故障を認識することができる。
【0246】
一方、前記S2211において前記計時時間t6が前記判定値u0以上であると判定した場合は、CPU40は、触媒装置27が正常であるとみなし、S2215へ進む。
【0247】
前記S2215では、CPU40は、RAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”を書き込む。
上記したS2217又はS2218の処理を実行し終えたCPU40は、S2222において計測タイマt6をリセットし、本ルーチンの実行を終了する。
【0248】
以上述べたように本実施の形態にかかる排気浄化装置によれば、相変化物質からなる蓄熱材35を備えた触媒装置27において、内燃機関1の運転停止後における蓄熱材35の相変化時間を計測することにより、触媒装置27の蓄熱機能や断熱機能の故障を診断することができる。そして、触媒装置27の断熱機能の故障を判定した場合は、警告灯30を点灯させることにより、運転者に触媒装置27の故障を認識させ、触媒装置の修理や交換等を促すことができる。
【0249】
尚、本実施の形態では、真空層36を備えた触媒装置27に本発明を適用する例について説明したが、真空層を備えていない触媒装置でもよく、要は蓄熱材を備えた触媒装置であれば如何なる構成の触媒装置でも構わない。
【0250】
〈実施の形態7〉
本発明にかかる排気浄化装置の第7の実施の形態について図23〜26に基づいて説明する。ここでは前述の第1の実施の形態と異なる構成について説明し、同一の構成については説明を省略する。
【0251】
本実施の形態にかかる触媒装置27は、図23、24に示すように、内筒31及び外筒33からなる二重構造の筒体で構成され、前記内筒31に排気浄化触媒34が内装され、内筒31と外筒33との間に真空層36が形成される。
【0252】
そして、前記触媒装置27には、排気浄化触媒34の床温に対応した電気信号を出力する第1温度センサ38と、前記外筒33の温度に対応した電気信号を出力する第2温度センサ48とが取り付けられる。前記第1温度センサ38は、本発明にかかる第1の温度検出手段を実現し、前記第2温度センサ48は、本発明にかかる第2の温度検出手段を実現する。
【0253】
続いて、前記第1及び第2温度センサ38、48は、図25に示すように、ECU15のA/Dコンバータ45と電気配線を介して接続される。そして、前記第1及び第2センサ38、48の出力信号は、A/Dコンバータ45でアナログ信号からデジタル信号に変換された後、入力ポート43に入力され、次いでCPU40やRAM42等に入力される。
【0254】
次に、ECU15のCPU40は、前記第1温度センサ38の出力信号値(触媒床温)と前記第2温度センサ48の出力信号値(外筒温度)との差に基づいて故障診断を行う。
【0255】
ここで、前記触媒装置27の断熱機能が正常である場合は、排気浄化触媒34からの放熱が遮断され、排気浄化触媒34の熱が外筒33へ伝達されないため、触媒床温と外筒温度との間に所定値以上の温度差が生じる。
【0256】
一方、前記真空層36の断熱性能が低下した場合は、排気浄化触媒34からの放熱が真空層36で遮断されず外筒33へ伝達されるため、排気浄化触媒34と外筒33との温度差が正常時より小さくなる。
【0257】
そこで、本実施の形態では、正常時の排気浄化触媒34と外筒33との温度差や、第1及び第2温度センサ38、48の初期公差等を考慮した判定値T1を予め求め、この判定値T1をROM41に記憶しておく。
【0258】
そして、CPU40は、故障診断処理を実行する際に、第1温度センサ38の出力信号値(触媒床温):TC及び第2温度センサ48の出力信号値(外筒温度):TGを入力し、触媒床温TCと外筒温度TGとの差△Tを算出する。続いて、CPU40は、前記差△Tと前記判定値T1とを比較し、前記差△Tが前記判定値T1より小さければ、触媒装置27が故障していると判定し、前記差△Tが前記判定値T1以上であれば、触媒装置27が正常であると判定する。
【0259】
このようにECU15は、本発明にかかる故障判定手段を実現する。
その他の構成は、前述の第1の実施の形態と同様である。
【0260】
以下、本実施の形態の作用及び効果について述べる。
CPU40は、内燃機関1の運転時に、図26に示すような故障診断制御ルーチンを所定時間毎に繰り返し実行する。
前記故障診断制御ルーチンでは、CPU40は、S2601にてRAM42及びバックアップRAM46の故障判定フラグ記憶領域へアクセスし、“1”が記憶されているか否かを判別する。
【0261】
前記S2601においてRAM42とバックアップRAM46との少なくとも一方の故障判定フラグ記憶領域に“1”が記憶されていると判定した場合は、CPU40は、触媒装置27の故障を判定済みであるとみなし、本ルーチンの実行を終了する。
【0262】
一方、前記S2601においてRAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”が記憶されていると判定した場合は、CPU40は、S2602へ進み、故障判定実行条件が成立しているか否か、例えば、排気浄化触媒34が活性化しているか否か(触媒床温が活性化温度以上であるか否か)を判別する。
【0263】
前記S2602において前記故障判定実行条件が不成立であると判定した場合は、CPU40は、本ルーチンの実行を終了する。
【0264】
一方、前記S2602において前記故障判定条件が成立していると判定した場合は、CPU40は、S2603へ進み、第1温度センサ38の出力信号値(触媒床温)TCと第2温度センサ48の出力信号値(外筒温度)TGとを入力する。
【0265】
続いて、CPU40は、S2604へ進み、触媒床温TCから外筒温度TGを減算し、差△Tを算出する。
そして、CPU40は、S2605において、ROM41に記憶された判定値T1を読み出し、前記S2604で算出した差△Tが前記判定値T1未満であるか否かを判別する。
【0266】
前記S2605において前記差△Tが前記判定値T1未満であると判定した場合は、CPU40は、真空層36の断熱性能が低下しており、触媒装置27が故障しているとみなし、S2606へ進む。
【0267】
前記S2606では、CPU40は、RAM42の故障判定フラグ記憶領域に“1”を書き込み、次いでS2607においてバックアップRAM46の故障判定フラグ記憶領域に“1”を書き込む。
【0268】
そして、CPU40は、S2608へ進み、警告灯30を点灯させるべく制御信号を出力し、本ルーチンの実行を終了する。前記CPU40から出力された制御信号は、出力ポート44を介して警告灯30へ送信され、その結果、警告灯30が点灯される。
【0269】
一方、前記S2605において前記差△Tが前記判定値T1以上であると判定した場合は、CPU40は、触媒装置27が正常であるとみなし、S2609へ進む。
【0270】
前記S2609では、CPU40は、RAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”を書き込み、本ルーチンの実行を終了する。
【0271】
以上述べたように本実施の形態にかかる排気浄化装置によれば、真空層36により排気浄化触媒34の放熱を遮断する触媒装置27において、触媒床温と外筒温度との差に基づいて、真空層36の断熱機能の故障を判定することができる。そして、触媒装置27の断熱機能が故障していると判定した場合は、警告灯30を点灯させることにより、運転者に触媒装置の故障を認識させ、触媒装置の修理や交換等を促すことができる。
【0272】
尚、本実施の形態では、内燃機関1の運転時に故障診断制御ルーチンを実行する例について述べたが、内燃機関1の運転停止時に故障診断制御ルーチンを実行するようにしてもよい。
【0273】
また、本実施の形態では、真空層36により排気浄化触媒34の放熱を遮断する触媒装置を例に挙げて説明したが、これに限られるものではなく、要は排気浄化触媒の放熱を遮断する手段を有する触媒装置であればよい。
【0274】
〈実施の形態8〉
本発明にかかる排気浄化装置の第8の実施の形態について図27〜28に基づいて説明する。ここでは前述の第7の実施の形態と異なる構成について説明し、同一の構成については説明を省略する。
【0275】
本実施の形態にかかる触媒装置27は、図27に示すように、前述の第7の実施の形態で述べた構成に加え、所定温度未満で水素を吸蔵し、所定温度以上で水素を放出する水素吸蔵合金37を備えている。この水素吸蔵合金37は、真空層36内であって、実質的に排気浄化触媒34の近傍となる位置に配置される。
【0276】
このように構成された触媒装置27では、水素吸蔵合金37が所定温度未満のときは、水素吸蔵合金37に水素が吸蔵され、真空層36が真空状態となるので、排気浄化触媒34の熱が外筒33へ伝達されず、排気浄化触媒34の温度低下が抑制される。
【0277】
一方、水素吸蔵合金37が所定温度以上のときは、水素吸蔵合金37から水素が放出され、真空層36が非真空状態となるので、排気浄化触媒34の熱が水素を介して外筒33に伝達され、排気浄化触媒34の過剰な昇温が抑制される。
このように前記真空層36と前記水素吸蔵合金37とは、本発明にかかる放断熱切換手段を実現する。
【0278】
次に、ECU15のCPU40は、前述の第7の実施の形態と同様に、第1温度センサ38の出力信号値(触媒床温)と第2温度センサ48の出力信号値(外筒温度)との差に基づいて故障診断を行うが、水素吸蔵合金37に水素が吸蔵されている時と水素が放出されている時とでは、排気浄化触媒34と外筒33との温度差が異なるため、故障診断処理の実行時期を特定する必要がある。
【0279】
本実施の形態では、水素吸蔵合金37に水素が吸蔵されるべき時期、すなわち、水素吸蔵合金37が所定温度未満であるときに故障診断処理を実行する例について説明する。
【0280】
そして、ECU15のROM41には、触媒装置27が正常であり、且つ水素吸蔵合金37に水素が吸蔵されているときの排気浄化触媒34及び外筒33の温度差と、第1及び第2温度センサ38、48の初期公差等とを考慮した判定値T2が記憶される。
【0281】
続いて、ECU15のCPU40は、前記水素吸蔵合金37の温度を推定するパラメータとして排気浄化触媒34の床温(第1温度センサ38の出力信号値)を用い、排気浄化触媒34の床温が前記所定温度未満であるときに故障診断処理を行う。
その他の構成は、前述の第7の実施の形態と同様である。
【0282】
以下、本実施の形態の作用及び効果について述べる。
CPU40は、内燃機関1の運転時に、図28に示すような故障診断制御ルーチンを所定時間毎に繰り返し実行する。
【0283】
前記故障診断制御ルーチンでは、CPU40は、S2801にてRAM42及びバックアップRAM46の故障判定フラグ記憶領域へアクセスし、“1”が記憶されているか否かを判別する。
【0284】
前記S2801においてRAM42とバックアップRAM46との少なくとも一方の故障判定フラグ記憶領域に“1”が記憶されていると判定した場合は、CPU40は、触媒装置27の故障を判定済みであるとみなし、本ルーチンの実行を終了する。
【0285】
一方、前記S2801においてRAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”が記憶されていると判定した場合は、CPU40は、S2802へ進み、故障判定実行条件が成立しているか否か、例えば、排気浄化触媒34が活性化しているか否か(触媒床温が活性化温度以上であるか否か)を判別する。
【0286】
前記S2802において前記故障判定実行条件が不成立であると判定した場合は、CPU40は、本ルーチンの実行を終了する。
【0287】
一方、前記S2802において前記故障判定条件が成立していると判定した場合は、CPU40は、S2803へ進み、水素吸蔵合金37に水素が吸蔵される条件が成立しているか否か、すなわち第1温度センサ38の出力信号値(触媒床温)が所定温度(水素吸蔵合金37から水素が放出される温度)未満であるか否かを判別する。
前記S2803において水素吸蔵条件が不成立であると判定した場合は、CPU40は、本ルーチンの実行を終了する。
【0288】
一方、前記S2803において水素吸蔵条件が成立していると判定した場合は、CPU40は、S2804へ進み、第1温度センサ38の出力信号値(触媒床温)TCと第2温度センサ48の出力信号値(外筒温度)TGとを入力する。
続いて、CPU40は、S2805へ進み、触媒床温TCから外筒温度TGを減算し、差△Tを算出する。
【0289】
そして、CPU40は、S2806において、ROM41に記憶された判定値T1を読み出し、前記S2805で算出した差△Tが前記判定値T1未満であるか否かを判別する。
【0290】
前記S2806において前記差△Tが前記判定値T1未満であると判定した場合は、CPU40は、真空層36の断熱性能が低下しており、触媒装置27が故障しているとみなし、S2807へ進む。
【0291】
前記S2807では、CPU40は、RAM42の故障判定フラグ記憶領域に“1”を書き込み、次いでS2808においてバックアップRAM46の故障判定フラグ記憶領域に“1”を書き込む。
【0292】
そして、CPU40は、S2809へ進み、警告灯30を点灯させるべく制御信号を出力し、本ルーチンの実行を終了する。前記CPU40から出力された制御信号は、出力ポート44を介して警告灯30へ送信され、その結果、警告灯30が点灯される。
【0293】
一方、前記S2806において前記差△Tが前記判定値T1以上であると判定した場合は、CPU40は、触媒装置27が正常であるとみなし、S2810へ進む。
前記S2810では、CPU40は、RAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”を書き込み、本ルーチンの実行を終了する。
【0294】
以上述べたように本実施の形態にかかる排気浄化装置によれば、真空層36と水素吸蔵合金37とにより排気浄化触媒34の断熱と放熱とを切り換える触媒装置27において、水素吸蔵合金37が水素を吸蔵していることを条件に故障診断処理を実行することにより、真空層36の断熱性能の低下や水素吸蔵合金37の故障等を正確に判定することができる。
【0295】
尚、本実施の形態では、真空層36と水素吸蔵合金37とにより排気浄化触媒34の断熱と放熱とを切り換える触媒装置27を例に挙げて説明したが、これに限られるものではなく、要は、排気浄化触媒の放熱と断熱とを切り換える機構を有する触媒装置であればよい。
【0296】
〈実施の形態9〉
本発明にかかる第9の実施の形態について図29に基づいて説明する。ここでは、前述の第8の実施の形態と異なる構成について説明し、同一の構成については説明を省略する。
【0297】
前述の第8の実施の形態では、水素吸蔵合金37を備えた触媒装置27において、水素吸蔵合金37に水素が吸蔵されべき時期に故障診断処理を実行する例について述べたが、本実施の形態では、水素吸蔵合金37から水素が放出されるべき時期、すなわち水素吸蔵合金37が所定温度以上であるときに故障診断処理を実行する例について説明する。
【0298】
ここで、触媒装置27が正常であり、且つ水素吸蔵合金37から水素が放出されている場合は、排気浄化触媒34の熱が水素を介して外筒33へ伝達されるため、排気浄化触媒34と外筒33との温度差は、所定値未満となる。
【0299】
一方、触媒装置27が故障している場合は、排気浄化触媒34の熱が外筒33へ十分に伝達されないため、排気浄化触媒34と外筒33との温度差が所定値より大きくなる。
【0300】
そこで、本実施の形態では、触媒装置27が正常であり、且つ水素吸蔵合金37から水素が放出されているときの排気浄化触媒34及び外筒33の温度差と、第1及び第2温度センサ38、48の初期公差等とを考慮した判定値T2を求めておき、この判定値T2をROM41に記憶する。
【0301】
そして、CPU40は、前記水素吸蔵合金37の温度を推定するパラメータとして排気浄化触媒34の床温(第1温度センサ38の出力信号値)を用い、排気浄化触媒34の床温が前記所定温度以上であるときに故障診断処理を行う。
【0302】
前記故障診断処理では、CPU40は、第1及び第2温度センサ38、48を入力し、これらの出力信号値の差△Tを算出する。続いて、CPU40は、前記差△Tと前記判定値T2とを比較し、前記差△Tが前記判定値T2より大きければ、触媒装置27が故障していると判定するようにした。
その他の構成は、前述の第8の実施の形態と同様である。
【0303】
以下、本実施の形態の作用及び効果について述べる。
CPU40は、内燃機関1の運転時に、図29に示すような故障診断制御ルーチンを所定時間毎に繰り返し実行する。
【0304】
前記故障診断制御ルーチンでは、CPU40は、S2901にてRAM42及びバックアップRAM46の故障判定フラグ記憶領域へアクセスし、“1”が記憶されているか否かを判別する。
【0305】
前記S2901においてRAM42とバックアップRAM46との少なくとも一方の故障判定フラグ記憶領域に“1”が記憶されていると判定した場合は、CPU40は、触媒装置27の故障を判定済みであるとみなし、本ルーチンの実行を終了する。
【0306】
一方、前記S2901においてRAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”が記憶されていると判定した場合は、CPU40は、S2902へ進み、故障判定実行条件が成立しているか否か、例えば、排気浄化触媒34が活性化しているか否か(触媒床温が活性化温度以上であるか否か)を判別する。
前記S2902において前記故障判定実行条件が不成立であると判定した場合は、CPU40は、本ルーチンの実行を終了する。
【0307】
一方、前記S2902において前記故障判定条件が成立していると判定した場合は、CPU40は、S2903へ進み、水素吸蔵合金37から水素が放出される条件が成立しているか否か、すなわち第1温度センサ38の出力信号値(触媒床温)が所定温度(水素吸蔵合金37から水素が放出される温度)以上であるか否かを判別する。
前記S2903において水素吸蔵条件が不成立であると判定した場合は、CPU40は、本ルーチンの実行を終了する。
【0308】
一方、前記S2903において水素吸蔵条件が成立していると判定した場合は、CPU40は、S2904へ進み、第1温度センサ38の出力信号値(触媒床温)TCと第2温度センサ48の出力信号値(外筒温度)TGとを入力する。
【0309】
続いて、CPU40は、S2905へ進み、触媒床温TCから外筒温度TGを減算し、差△Tを算出する。
そして、CPU40は、S2906において、ROM41に記憶された判定値T2を読み出し、前記S2905で算出した差△Tが前記判定値T2より大きいか否かを判別する。
【0310】
前記S2906において前記差△Tが前記判定値T2より大きいと判定した場合は、CPU40は、真空層36の断熱性能の低下や水素吸蔵合金37の異常が発生しており、触媒装置27が故障しているとみなし、S2907へ進む。
【0311】
前記S2907では、CPU40は、RAM42の故障判定フラグ記憶領域に“1”を書き込み、次いでS2908においてバックアップRAM46の故障判定フラグ記憶領域に“1”を書き込む。
【0312】
そして、CPU40は、S2909へ進み、警告灯30を点灯させるべく制御信号を出力し、本ルーチンの実行を終了する。前記CPU40から出力された制御信号は、出力ポート44を介して警告灯30へ送信され、その結果、警告灯30が点灯される。
【0313】
一方、前記S2906において前記差△Tが前記判定値T2以下であると判定した場合は、CPU40は、触媒装置27が正常であるとみなし、S2910へ進む。
【0314】
前記S2910では、CPU40は、RAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”を書き込み、本ルーチンの実行を終了する。
以上述べたように本実施の形態にかかる排気浄化装置によれば、真空層36と水素吸蔵合金37とにより排気浄化触媒34の断熱と放熱とを切り換える触媒装置27において、水素吸蔵合金37から水素が放出されていることを条件に故障診断処理を実行することにより、水素吸蔵合金37の故障等を正確に判定することができる。
【0315】
尚、本実施の形態では、真空層36と水素吸蔵合金37とにより排気浄化触媒34の断熱と放熱とを切り換える触媒装置27を例に挙げて説明したが、これに限られるものではなく、要は、排気浄化触媒の放熱と断熱とを切り換える機構を有する触媒装置であればよい。
【0316】
〈実施の形態10〉
本発明にかかる排気浄化装置の第10の実施の形態について図30〜31に基づいて説明する。ここでは前述の第7の実施の形態と異なる構成について説明し、同一の構成については説明を省略する。
【0317】
本実施の形態にかかる触媒装置27は、図30に示すように、前述の第7の実施の形態で述べた構成に加え、所定温度未満で水素を吸蔵し、所定温度以上で水素を放出する水素吸蔵合金37を備えている。この水素吸蔵合金37は、真空層36内であって、実質的に排気浄化触媒34の近傍となる位置に配置される。
【0318】
このように構成された触媒装置27では、水素吸蔵合金37が所定温度未満のときは、水素吸蔵合金37に水素が吸蔵され、真空層36が真空状態となるので、排気浄化触媒34の熱が外筒33へ伝達されず、排気浄化触媒34の温度低下が抑制される。
【0319】
一方、水素吸蔵合金37が所定温度以上のときは、水素吸蔵合金37から水素が放出され、真空層36が非真空状態となるので、排気浄化触媒34の熱が水素を介して外筒33に伝達され、排気浄化触媒34の過剰な昇温が抑制される。
【0320】
次に、ECU15のCPU40は、前述の第7の実施の形態と同様に、第1温度センサ38の出力信号値(触媒床温)と第2温度センサ48の出力信号値(外筒温度)との差に基づいて故障診断を行うが、水素吸蔵合金37に水素が吸蔵されている時と水素が放出されている時とでは、排気浄化触媒34と外筒33との温度差が異なるため、水素吸蔵合金37の状態に応じた判定値を設定する必要がある。
【0321】
そこで、本実施の形態では、触媒装置27が正常であり、且つ水素吸蔵合金37に水素が吸蔵されているときの排気浄化触媒34及び外筒33の温度差と、第1及び第2温度センサ38、48の初期公差等とを考慮した第1の判定値T1を求めておくとともに、触媒装置27が正常であり、且つ水素吸蔵合金37から水素が放出されているときの排気浄化触媒34及び外筒33の温度差と、第1及び第2温度センサ38、48の初期公差等とを考慮した第2の判定値T2を求めておき、これら第1及び第2の判定値T1、T2をROM41の所定領域に記憶しておく。
【0322】
そして、CPU40は、触媒装置27の故障診断を行う際に、前記水素吸蔵合金37の温度を推定するパラメータとして排気浄化触媒34の床温(第1温度センサ38の出力信号値)を用い、排気浄化触媒34の床温が前記所定温度未満であるか否かを判別する。
【0323】
前記排気浄化触媒34の床温が前記所定温度未満であれば、CPU40は、水素吸蔵合金37に水素が吸蔵されているとみなす。そして、CPU40は、第1及び第2温度センサ38、48の出力信号値(触媒床温TC、外筒温度TG)を入力し、これら出力信号値の差△T(=TC−TG)を算出するとともに、ROM41から第1の判定値T1を読み出し、前記差△Tと前記第1の判定値T1とを比較する。 その際、CPU40は、前記差△Tが前記第1の判定値T1より小さければ、触媒装置27が故障していると判定し、前記差△Tが前記第1の判定値T1以上であれば、触媒装置27が正常であると判定する。
【0324】
また、前記排気浄化触媒34の床温が前記所定温度以上であれば、CPU40は、水素吸蔵合金37から水素が放出されているとみなす。そして、CPU40は、第1及び第2温度センサ38、48の出力信号値(触媒床温TC、外筒温度TG)を入力し、これら出力信号値の差△T(=TC−TG)を算出するとともに、ROM41から第2の判定値T2を読み出し、前記差△Tと前記第2の判定値T2とを比較する。
【0325】
その際、CPU40は、前記差△Tが前記第2の判定値T2より大きければ、触媒装置27が故障していると判定し、前記差△Tが前記第2の判定値T2以下であれば、触媒装置27が正常であると判定する。
その他の構成は、前述の第7の実施の形態と同様である。
【0326】
以下、本実施の形態の作用及び効果について述べる。
CPU40は、内燃機関1の運転時に、図31に示すような故障診断制御ルーチンを所定時間毎に繰り返し実行する。
【0327】
前記故障診断制御ルーチンでは、CPU40は、S3101にてRAM42及びバックアップRAM46の故障判定フラグ記憶領域へアクセスし、“1”が記憶されているか否かを判別する。
【0328】
前記S3101においてRAM42とバックアップRAM46との少なくとも一方の故障判定フラグ記憶領域に“1”が記憶されていると判定した場合は、CPU40は、触媒装置27の故障を判定済みであるとみなし、本ルーチンの実行を終了する。
【0329】
一方、前記S3101においてRAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”が記憶されていると判定した場合は、CPU40は、S3102へ進み、故障判定実行条件が成立しているか否か、例えば、排気浄化触媒34が活性化しているか否か(排気浄化触媒34の床温が活性化温度以上であるか否か)を判別する。
前記S3102において前記故障判定実行条件が不成立であると判定した場合は、CPU40は、本ルーチンの実行を終了する。
【0330】
一方、前記S3102において前記故障判定条件が成立していると判定した場合は、CPU40は、S3103へ進み、水素吸蔵条件が成立しているか否かを判別する。
【0331】
前記S3103において水素吸蔵条件が成立していると判定した場合は、CPU40は、S3104へ進み、第1温度センサ38の出力信号値(触媒床温)TCと第2温度センサ48の出力信号値(外筒温度)TGとを入力する。
【0332】
続いて、CPU40は、S3105へ進み、排気浄化触媒34の床温TCから外筒33の温度TGを減算し、差△Tを算出する。
そして、CPU40は、S3106において、ROM41に記憶された第1の判定値T1を読み出し、前記S3105で算出した差△Tが前記第1の判定値T1未満であるか否かを判別する。
【0333】
前記S3106において前記差△Tが前記第1の判定値T1未満であると判定した場合は、CPU40は、真空層36の断熱性能が低下しており、触媒装置27が故障しているとみなし、S3107へ進む。
【0334】
前記S3107では、CPU40は、RAM42の故障判定フラグ記憶領域に“1”を書き込み、次いでS3108においてバックアップRAM46の故障判定フラグ記憶領域に“1”を書き込む。
【0335】
そして、CPU40は、S3109へ進み、警告灯30を点灯させるべく制御信号を出力し、本ルーチンの実行を終了する。前記CPU40から出力された制御信号は、出力ポート44を介して警告灯30へ送信され、その結果、警告灯30が点灯される。
【0336】
一方、前記S3106において前記差△Tが前記第1の判定値T1以上であると判定した場合は、CPU40は、触媒装置27が正常であるとみなし、S3110へ進む。
前記S3110では、CPU40は、RAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”を書き込み、本ルーチンの実行を終了する。
【0337】
また、前記S3103において水素吸蔵条件が不成立である、すなわち水素吸蔵合金37の水素放出条件が成立していると判定した場合は、CPU40は、S3111へ進み、第1温度センサ38の出力信号値(触媒床温)TCと第2温度センサ48の出力信号値(外筒温度)TGとを入力する。
【0338】
続いて、CPU40は、S3112へ進み、排気浄化触媒34の床温TCから外筒33の温度TGを減算し、差△Tを算出する。
そして、CPU40は、S3113において、ROM41に記憶された第2の判定値T2を読み出し、前記S3112で算出した差△Tが前記第2の判定値T2より大きいか否かを判別する。
【0339】
前記S3113において前記差△Tが前記第2の判定値T2より大きいと判定した場合は、CPU40は、触媒装置27の放熱性能が低下しており、触媒装置27が故障しているとみなし、S3114へ進む。
【0340】
前記S3114では、CPU40は、RAM42の故障判定フラグ記憶領域に“1”を書き込み、次いでS3115においてバックアップRAM46の故障判定フラグ記憶領域に“1”を書き込む。
【0341】
そして、CPU40は、S3116へ進み、警告灯30を点灯させるべく制御信号を出力し、本ルーチンの実行を終了する。前記CPU40から出力された制御信号は、出力ポート44を介して警告灯30へ送信され、その結果、警告灯30が点灯される。
【0342】
一方、前記S3113において前記差△Tが前記第2の判定値T2以下であると判定した場合は、CPU40は、触媒装置27が正常であるとみなし、S3117へ進む。
前記S3117では、CPU40は、RAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”を書き込み、本ルーチンの実行を終了する。
【0343】
以上述べたように本実施の形態にかかる排気浄化装置によれば、真空層36と水素吸蔵合金37とにより排気浄化触媒34の断熱と放熱とを切り換える触媒装置27において、水素吸蔵合金37の状態に応じた故障診断処理を実行することにより、真空層36の故障や水素吸蔵合金37の故障等を正確に判定することができる。
【0344】
〈実施の形態11〉
本発明にかかる排気浄化装置の第11の実施の形態について図32〜34に基づいて説明する。ここでは前述の第7の実施の形態と異なる構成について説明し、同一の構成については説明を省略する。
【0345】
本実施の形態にかかる触媒装置27は、図32、33に示すように、内筒31、中間筒32、及び外筒33からなる三重構造の筒体で構成され、前記内筒31に排気浄化触媒34が内装され、前記内筒31と前記中間筒32との間に蓄熱材35が装填され、更に内筒31及び中間筒32と外筒33との間に真空層36が形成される。
【0346】
そして、前記触媒装置27には、外筒33の温度に対応した電気信号を出力する第2温度センサ48と、蓄熱材35の温度に対応した電気信号を出力する第3温度センサ47とが取り付けられる。前記第2温度センサ48は、本発明にかかる第2の温度検出手段を実現し、前記第3温度センサ47は、本発明にかかる第3の温度検出手段を実現する。
【0347】
前記第2及び第3温度センサ48、47は、図34に示すように、ECU15のA/Dコンバータ45と電気配線を介して接続される。そして、前記第2及び第3温度センサ48、47の出力信号は、A/Dコンバータ45でアナログ信号からデジタル信号に変換された後、入力ポート43に入力され、次いでCPU40やRAM42等に入力される。
【0348】
次に、ECU15のCPU40は、前述の第7の実施の形態に対し、排気浄化触媒34の温度の代わりに蓄熱材35の温度を用い、外筒33の温度(第2温度センサ48の出力信号値)と蓄熱材35の温度(第3温度センサ47の出力信号値)との差に基づいて故障診断を行う。
【0349】
ここで、前記触媒装置27の断熱機能が正常である場合は、蓄熱材35からの放熱が遮断され、蓄熱材35の熱が外筒33へ伝達されないため、蓄熱材温度と外筒温度との間に所定値以上の温度差が生じる。
【0350】
一方、前記真空層36の断熱性能が低下した場合は、蓄熱材35からの放熱が真空層36で遮断されず外筒33へ伝達されるため、蓄熱材35と外筒33との温度差が正常時より小さくなる。
【0351】
そこで、本実施の形態では、正常時の蓄熱材35と外筒33との温度差や、第2及び第3温度センサ48、47の初期公差等を考慮した判定値T3を予め求め、この判定値T3をROM41に記憶しておく。
【0352】
そして、CPU40は、故障診断処理を実行する際に、第2温度センサ48の出力信号値(外筒温度):TG及び第3温度センサ47の出力信号値(蓄熱材温度):TSを入力し、蓄熱材温度TSと外筒温度TGとの差△Tを算出する。続いて、CPU40は、前記差△Tと前記判定値T3とを比較し、前記差△Tが前記判定値T3より小さければ、触媒装置27が故障していると判定し、前記差△Tが前記判定値T3以上であれば、触媒装置27が正常であると判定する。
【0353】
その他の構成は、前述の第7の実施の形態と同様である。
以下、本実施の形態の作用及び効果について述べる。
CPU40は、内燃機関1の運転時に、図35に示すような故障診断制御ルーチンを所定時間毎に繰り返し実行する。
【0354】
前記故障診断制御ルーチンでは、CPU40は、S3501にてRAM42及びバックアップRAM46の故障判定フラグ記憶領域へアクセスし、“1”が記憶されているか否かを判別する。
【0355】
前記S3501においてRAM42とバックアップRAM46との少なくとも一方の故障判定フラグ記憶領域に“1”が記憶されていると判定した場合は、CPU40は、触媒装置27の故障を判定済みであるとみなし、本ルーチンの実行を終了する。
【0356】
一方、前記S3501においてRAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”が記憶されていると判定した場合は、CPU40は、S3502へ進み、故障判定実行条件が成立しているか否かを判別する。
【0357】
前記S3502において前記故障判定実行条件が不成立であると判定した場合は、CPU40は、本ルーチンの実行を終了する。
一方、前記S3502において前記故障判定条件が成立していると判定した場合は、CPU40は、S3503へ進み、第3温度センサ47の出力信号値(蓄熱材温度)TSと第2温度センサ48の出力信号値(外筒温度)TGとを入力する。
【0358】
続いて、CPU40は、S3504へ進み、蓄熱材温度TSから外筒温度TGを減算し、差△Tを算出する。
そして、CPU40は、S3505において、ROM41に記憶された判定値T3を読み出し、前記S3504で算出した差△Tが前記判定値T3未満であるか否かを判別する。
【0359】
前記S3505において前記差△Tが前記判定値T3未満であると判定した場合は、CPU40は、真空層36の断熱性能が低下しており、触媒装置27が故障しているとみなし、S3506へ進む。
【0360】
前記S3506では、CPU40は、RAM42の故障判定フラグ記憶領域に“1”を書き込み、次いでS3507においてバックアップRAM46の故障判定フラグ記憶領域に“1”を書き込む。
【0361】
そして、CPU40は、S3508へ進み、警告灯30を点灯させるべく制御信号を出力し、本ルーチンの実行を終了する。前記CPU40から出力された制御信号は、出力ポート44を介して警告灯30へ送信され、その結果、警告灯30が点灯される。
【0362】
一方、前記S3505において前記差△Tが前記判定値T3以上であると判定した場合は、CPU40は、触媒装置27が正常であるとみなし、S3509へ進む。
前記S3509では、CPU40は、RAM42及びバックアップRAM46の故障判定フラグ記憶領域に“0”を書き込み、本ルーチンの実行を終了する。
【0363】
以上述べたように本実施の形態にかかる排気浄化装置によれば、真空層36により蓄熱材35や排気浄化触媒34の放熱を遮断する触媒装置27において、触媒床温の代わりに蓄熱材温度を用いても、前述の第7の実施の形態と同様の効果を得ることができる。
【0364】
尚、本実施の形態では、内燃機関1の運転時に故障診断制御ルーチンを実行する例について述べたが、内燃機関1の運転停止時に故障診断制御ルーチンを実行するようにしてもよい。
【0365】
また、本実施の形態では、水素吸蔵合金を備えていない触媒装置27を例に挙げて説明したが、水素吸蔵合金を備えた触媒装置であってもよく、その場合は、第8、第9、あるいは第10の実施の形態にかかる排気浄化装置において、触媒床温の代わりに蓄熱材温度を用いればよい。
【0366】
【発明の効果】
本発明によれば、排気浄化触媒からの放熱を遮断する真空空間部を備えた排気浄化装置において、前記真空空間部の圧力の大きさにより、真空度の低下、すなわち断熱機能の故障を判定することができる。
【0367】
また、排気浄化触媒からの放熱を遮断する断熱手段を備えた排気浄化装置の場合は、内燃機関の運転停止後における排気浄化触媒の温度低下率の大きさにより、断熱機能の故障を判定することができる。
【0368】
さらに、排気浄化触媒に熱を供給する蓄熱部材を備えた排気浄化装置の場合は、内燃機関の運転停止後における排気浄化触媒の温度低下率の大きさにより、蓄熱機能の故障を判定することができる。
【0369】
また、蓄熱部材と、排気浄化触媒及び蓄熱部材からの放熱を遮断する断熱手段とを備えた排気浄化装置の場合は、内燃機関停止後における蓄熱部材の温度低下率の大きさにより、断熱機能の故障を判定することができる。
【0370】
さらに、相変化物質で形成された蓄熱部材を備えた排気浄化装置の場合は、蓄熱部材の温度が一定となる相変化状態の継続時間の長さにより、断熱機能や蓄熱機能の故障を判定することができる。
【0371】
また、排気浄化触媒を覆う外筒と、排気浄化触媒から外筒への伝熱を遮断する断熱手段とを備えた排気浄化装置の場合は、排気浄化触媒の温度と外筒の温度との差により、断熱機能の故障を判定することができる。
【0372】
さらに、排気浄化触媒を覆う外筒と、排気浄化触媒が所定温度未満であるときに排気浄化触媒から外筒への伝熱を遮断し、排気浄化触媒が前記所定温度以上のときに排気浄化触媒から外筒への伝熱を許容する放断熱切換手段とを備えた排気浄化装置の場合は、放断熱切換手段が排気浄化触媒から外筒への伝熱を遮断すべき時期における外筒温度と排気浄化触媒温度との差により、断熱機能の故障を判定することができる。
【0373】
また、排気浄化触媒を覆う外筒と、排気浄化触媒が所定温度未満のときに排気浄化触媒から外筒への伝熱を遮断し、排気浄化触媒が前記所定温度以上のときに排気浄化触媒から外筒への伝熱を許容する放断熱切換手段とを備えた排気浄化装置である場合は、放断熱切換手段が排気浄化触媒から外筒への伝熱を許容すべき時期における外筒温度と排気浄化触媒温度との差により、放熱機能の故障を判定することができる。
【0374】
さらに、排気浄化触媒に熱を供給する蓄熱部材と、排気浄化触媒及び蓄熱部材を覆う外筒と、排気浄化触媒及び蓄熱部材からの放熱を遮断する断熱手段とを備えた排気浄化装置の場合は、蓄熱部材の温度と外筒の温度との差より、断熱機能の故障を判定することができる。
【0375】
また、排気浄化触媒に熱を供給する蓄熱部材と、排気浄化触媒及び蓄熱部材を覆う外筒と、排気浄化触媒が所定温度未満のときに排気浄化触媒及び蓄熱部材から外筒への伝熱を遮断し、排気浄化触媒が所定温度以上のときに排気浄化触媒及び蓄熱部材から外筒への伝熱を許容する放断熱切換手段とを備えた排気浄化装置の場合は、放断熱切換手段が排気浄化触媒及び蓄熱部材から外筒への伝熱を遮断すべき時期における蓄熱部材温度と外筒温度との差により、断熱機能の故障を判定することができる。
【0376】
また、排気浄化触媒に熱を供給する蓄熱部材と、排気浄化触媒及び蓄熱部材を覆う外筒と、排気浄化触媒が所定温度未満のときに排気浄化触媒及び蓄熱部材から外筒への伝熱を遮断し、排気浄化触媒が所定温度以上のときに排気浄化触媒及び蓄熱部材から外筒への伝熱を許容する放断熱切換手段とを備えた排気浄化装置の場合は、放断熱切換手段が排気浄化触媒及び蓄熱部材から外筒への伝熱を許容すべき時期における蓄熱部材温度と外筒温度との差により、放熱機能の故障を判定することができる。
【図面の簡単な説明】
【図1】 本発明にかかる排気浄化装置を適用する内燃機関の概略構成を示す図
【図2】 触媒装置の構成を示す縦断面図
【図3】 図2における触媒装置のA−A’矢視断面図
【図4】 ECUの内部構成を示す図
【図5】 故障判定制御ルーチンを示すフローチャート図
【図6】 第2の実施の形態における触媒装置の構成を示す縦断面図
【図7】 第2の実施の形態における故障判定制御ルーチンを示すフローチャート図
【図8】 第3の実施の形態における排気浄化装置を適用する内燃機関の概略構成を示す図
【図9】 第3の実施の形態における触媒装置の構成を示す縦断面図
【図10】 第3の実施の形態におけるECUの内部構成を示す図
【図11】 第3の実施の形態における故障判定制御ルーチンを示すフローチャート図
【図12】 第4の実施の形態における排気浄化装置を適用する内燃機関の概略構成を示す図
【図13】 第4の実施の形態における触媒装置の構成を示す縦断面図
【図14】 第4の実施の形態におけるECUの内部構成を示す図
【図15】 第4の実施の形態における故障判定制御ルーチンを示すフローチャート図
【図16】 第5の実施の形態における排気浄化装置を適用する内燃機関の概略構成を示す図
【図17】 第5の実施の形態における触媒装置の構成を示す縦断面図
【図18】 第5の実施の形態におけるECUの内部構成を示す図
【図19】 第5の実施の形態における故障判定制御ルーチンを示すフローチャート図(1)
【図20】 第5の実施の形態における故障判定制御ルーチンを示すフローチャート図(2)
【図21】 蓄熱材の温度と相変化時間との関係を示す図
【図22】 第6の実施の形態における故障判定制御ルーチンを示すフローチャート図
【図23】 第7の実施の形態における排気浄化装置を適用する内燃機関の概略構成を示す図
【図24】 第7の実施の形態における触媒装置の構成を示す縦断面図
【図25】 第7の実施の形態におけるECUの内部構成を示す図
【図26】 第7の実施の形態における故障判定制御ルーチンを示すフローチャート図
【図27】 第8の実施の形態における触媒装置の構成を示す縦断面図
【図28】 第8の実施の形態における故障判定制御ルーチンを示すフローチャート図
【図29】 第9の実施の形態における故障判定制御ルーチンを示すフローチャート図
【図30】 第10の実施の形態における触媒装置の構成を示す縦断面図
【図31】 第10の実施の形態における故障判定制御ルーチンを示すフローチャート図
【図32】 第11の実施の形態における排気浄化装置を適用する内燃機関の概略構成を示す図
【図33】 第11の実施の形態における触媒装置の構成を示す縦断面図
【図34】 第11の実施の形態におけるECUの内部構成を示す図
【図35】 第11の実施の形態における故障判定制御ルーチンを示すフローチャート図
【符号の説明】
1・・・内燃機関
15・・ECU
27・・触媒装置
29・・圧力センサ
31・・内筒
32・・中間筒
33・・外筒
34・・排気浄化触媒
35・・蓄熱材
36・・真空層
37・・水素吸蔵合金
38・・温度センサ、第1温度センサ(第1の温度検出手段)
47・・温度センサ、第3温度センサ(第3の温度検出手段)
48・・温度センサ、第2温度センサ(第2の温度検出手段)
40・・CPU
41・・ROM
42・・RAM
46・・バックアップRAM

Claims (15)

  1. 内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒を覆う外筒と、前記排気浄化触媒及び前記外筒との間に形成され、前記排気浄化触媒から前記外筒への伝熱を遮断する真空空間部とを備えた内燃機関の排気浄化装置であり、
    前記真空空間部の圧力を検出する圧力検出手段と、
    前記圧力検出手段の検出値に基づいて前記排気浄化装置の故障を判定する故障判定手段と、
    を備えることを特徴とする内燃機関の排気浄化装置。
  2. 前記真空空間部を真空状態として前記排気浄化触媒からの放熱を遮断するとともに、前記真空空間部を非真空状態として前記排気浄化触媒からの放熱を許容する放断熱制御手段を更に備えた内燃機関の排気浄化装置であり、
    前記故障判定手段は、前記放断熱制御手段が前記真空空間部を真空状態とすべき時期に故障判定を行うことを特徴とする請求項1記載の内燃機関の排気浄化装置。
  3. 内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒からの放熱を遮断する断熱手段とを備えた内燃機関の排気浄化装置であり、
    前記排気浄化触媒の温度を検出する温度検出手段と、
    前記温度検出手段の検出値より、前記内燃機関停止後の所定時間当たりの温度低下率を算出し、その温度低下率の大きさに基づいて前記排気浄化装置の断熱機能の故障を判定する故障判定手段と、
    を備えることを特徴とする内燃機関の排気浄化装置。
  4. 内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒に熱を供給する蓄熱部材とを備えた内燃機関の排気浄化装置であり、
    前記排気浄化触媒の温度を検出する温度検出手段と、
    前記温度検出手段の検出値より、前記内燃機関停止後の所定時間当たりの温度低下率を算出し、その温度低下率の大きさに基づいて前記排気浄化装置の蓄熱機能の故障を判定する故障判定手段と、
    を備えることを特徴とする内燃機関の排気浄化装置。
  5. 内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒に熱を供給する蓄熱部材と、前記排気浄化触媒及び前記蓄熱部材からの放熱を遮断する断熱手段とを備えた内燃機関の排気浄化装置であり、
    前記蓄熱部材の温度を検出する温度検出手段と、
    前記温度検出手段の検出値より、前記内燃機関停止後の所定時間当たりの温度低下率を算出し、その温度低下率の大きさに基づいて前記排気浄化装置の断熱機能の故障を判定する故障判定手段と、
    を備えることを特徴とする内燃機関の排気浄化装置。
  6. 前記蓄熱部材は、相変化物質からなり、
    前記故障判定手段は、前記蓄熱部材の温度が一定となる相変化状態の開始前、または相変化状態の終了後に、故障判定を行うことを特徴とする請求項5記載の内燃機関の排気浄化装置。
  7. 内燃機関の排気通路に設けられる排気浄化触媒と、相変化物質で形成され前記排気浄化触媒に熱を供給する蓄熱部材とを備えた内燃機関の排気浄化装置であり、
    前記蓄熱部材の温度を検出する温度検出手段と、
    前記蓄熱部材により検出された温度より、前記蓄熱部材の温度が一定となる相変化状態の継続時間を計時し、その継続時間の長さに基づいて前記排気浄化装置の故障を判定する故障判定手段と、
    を備えることを特徴とする内燃機関の排気浄化装置。
  8. 内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒を覆う外筒と、前記排気浄化触媒と前記外筒との間に配置され、前記排気浄化触媒から前記外筒への伝熱を遮断する断熱手段とを備えた内燃機関の排気浄化装置であり、
    前記排気浄化触媒の温度を検出する第1の温度検出手段と、
    前記外筒の温度を検出する第2の温度検出手段と、
    前記第1の温度検出手段により検出された温度と前記第2の温度検出手段により検出された温度との差に基づいて前記排気浄化装置の断熱機能の故障を判定する故障判定手段と、
    を備えることを特徴とする内燃機関の排気浄化装置。
  9. 内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒を覆う外筒と、前記排気浄化触媒と前記外筒との間に配置され、前記排気浄化触媒が所定温度未満のときは前記排気浄化触媒から前記外筒への伝熱を遮断し、前記排気浄化触媒が所定温度以上のときは前記排気浄化触媒から前記外筒への伝熱を許容する放断熱切換手段とを備えた内燃機関の排気浄化装置であり、
    前記排気浄化触媒の温度を検出する第1の温度検出手段と、
    前記外筒の温度を検出する第2の温度検出手段と、
    前記放断熱切換手段が前記排気浄化触媒から前記外筒への伝熱を遮断すべき時期に、前記第1の温度検出手段により検出された温度と前記第2の温度検出手段により検出された温度との差に基づいて前記排気浄化装置の断熱機能の故障を判定する故障判定手段と、
    を備えることを特徴とする内燃機関の排気浄化装置。
  10. 内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒を覆う外筒と、前記排気浄化触媒と前記外筒との間に配置され、前記排気浄化触媒が所定温度未満のときは前記排気浄化触媒から前記外筒への伝熱を遮断し、前記排気浄化触媒が所定温度以上のときは前記排気浄化触媒から前記外筒への伝熱を許容する放断熱切換手段とを備えた内燃機関の排気浄化装置であり、
    前記排気浄化触媒の温度を検出する第1の温度検出手段と、
    前記外筒の温度を検出する第2の温度検出手段と、
    前記放断熱切換手段が前記排気浄化触媒から前記外筒への伝熱を許容すべき時期に、前記第1の温度検出手段により検出された温度と前記第2の温度検出手段により検出された温度との差に基づいて前記排気浄化装置の放熱機能の故障を判定する故障判定手段と、
    を備えることを特徴とする内燃機関の排気浄化装置。
  11. 内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒に熱を供給する蓄熱部材と、前記排気浄化触媒及び前記蓄熱部材を覆う外筒と、前記排気浄化触媒及び前記蓄熱部材と前記外筒との間に配置され、前記排気浄化触媒及び前記蓄熱部材からの放熱を遮断する断熱手段とを備えた内燃機関の排気浄化装置であり、
    前記外筒の温度を検出する第2の温度検出手段と、
    前記蓄熱部材の温度を検出する第3の温度検出手段と、
    前記第2の温度検出手段により検出された温度と前記第3の温度検出手段により検出された温度との差に基づいて前記排気浄化装置の断熱機能の故障を判定する故障判定手段と、
    を備えることを特徴とする内燃機関の排気浄化装置。
  12. 内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒に熱を供給する蓄熱部材と、前記排気浄化触媒及び前記蓄熱部材を覆う外筒と、前記排気浄化触媒及び前記蓄熱部材と前記外筒との間に配置され、前記排気浄化触媒が所定温度未満のときは前記排気浄化触媒及び前記蓄熱部材から前記外筒への伝熱を遮断し、前記排気浄化触媒が所定温度以上のときは前記排気浄化触媒及び前記蓄熱部材から前記外筒への伝熱を許容する放断熱切換手段とを備えた内燃機関の排気浄化装置であり、
    前記外筒の温度を検出する第2の温度検出手段と、
    前記蓄熱部材の温度を検出する第3の温度検出手段と、
    前記放断熱切換手段が前記排気浄化触媒及び前記蓄熱部材から前記外筒への伝熱を遮断すべき時期に、前記第2の温度検出手段により検出された温度と前記第3の温度検出手段により検出された温度との差に基づいて前記排気浄化装置の断熱機能の故障を判定する故障判定手段と、
    を備えることを特徴とする内燃機関の排気浄化装置。
  13. 内燃機関の排気通路に設けられる排気浄化触媒と、この排気浄化触媒に熱を供給する蓄熱部材と、前記排気浄化触媒及び前記蓄熱部材を覆う外筒と、前記排気浄化触媒及び前記蓄熱部材と前記外筒との間に配置され、前記排気浄化触媒が所定温度未満のときは前記排気浄化触媒及び前記蓄熱部材から前記外筒への伝熱を遮断し、前記排気浄化触媒が所定温度以上のときは前記排気浄化触媒及び前記蓄熱部材から前記外筒への伝熱を許容する放断熱切換手段とを備えた内燃機関の排気浄化装置であり、
    前記外筒の温度を検出する第2の温度検出手段と、
    前記蓄熱部材の温度を検出する第3の温度検出手段と、
    前記放断熱切換手段が前記排気浄化触媒及び前記蓄熱部材から前記外筒への伝熱を許容すべき時期に、前記第2の温度検出手段により検出された温度と前記第3の温度検出手段により検出された温度との差に基づいて前記排気浄化装置の放熱機能の故障を判定する故障判定手段と、
    を備えることを特徴とする内燃機関の排気浄化装置。
  14. 前記故障判定手段が排気浄化装置の故障を判定したとき、前記排気浄化装置の故障を示唆する情報を出力する故障情報出力手段を更に備えることを特徴とする請求項1から13の何れかに記載の内燃機関の排気浄化装置。
  15. 前記故障判定手段は、外気温度に応じて判定基準を補正することを特徴とする請求項3から13の何れかに記載の内燃機関の排気浄化装置。
JP31871997A 1997-11-19 1997-11-19 内燃機関の排気浄化装置 Expired - Fee Related JP3952561B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP31871997A JP3952561B2 (ja) 1997-11-19 1997-11-19 内燃機関の排気浄化装置
US09/188,359 US6128898A (en) 1997-11-19 1998-11-10 Exhaust gas purifying apparatus for internal combustion engine
EP98121913A EP0918147B1 (en) 1997-11-19 1998-11-18 Exhaust gas purifying apparatus for internal combustion engine
DE69825707T DE69825707T2 (de) 1997-11-19 1998-11-18 Abgasreinigungsvorrichtung für eine Brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31871997A JP3952561B2 (ja) 1997-11-19 1997-11-19 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JPH11153024A JPH11153024A (ja) 1999-06-08
JP3952561B2 true JP3952561B2 (ja) 2007-08-01

Family

ID=18102213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31871997A Expired - Fee Related JP3952561B2 (ja) 1997-11-19 1997-11-19 内燃機関の排気浄化装置

Country Status (4)

Country Link
US (1) US6128898A (ja)
EP (1) EP0918147B1 (ja)
JP (1) JP3952561B2 (ja)
DE (1) DE69825707T2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3956548B2 (ja) * 1999-09-20 2007-08-08 トヨタ自動車株式会社 ハイブリット車における蓄熱式触媒装置
US6951099B2 (en) * 2001-04-03 2005-10-04 John Dickau Heated insulated catalytic converter with air cooling
US7552583B2 (en) * 2004-11-08 2009-06-30 Caterpillar Inc. Exhaust purification with on-board ammonia production
US7373559B2 (en) * 2003-09-11 2008-05-13 Copan Systems, Inc. Method and system for proactive drive replacement for high availability storage systems
US20070227143A1 (en) * 2004-11-08 2007-10-04 Robel Wade J Exhaust purification with on-board ammonia production
US7371353B2 (en) * 2005-08-31 2008-05-13 Caterpillar Inc. Exhaust purification with on-board ammonia production
US7485272B2 (en) * 2005-11-30 2009-02-03 Caterpillar Inc. Multi-stage system for selective catalytic reduction
US7805929B2 (en) * 2005-12-21 2010-10-05 Caterpillar Inc Selective catalytic reduction system
US7490462B2 (en) * 2006-02-21 2009-02-17 Caterpillar Inc. Turbocharged exhaust gas recirculation system
US20080022666A1 (en) * 2006-07-31 2008-01-31 Driscoll James J Balanced partial two-stroke engine
US7921640B2 (en) * 2007-12-14 2011-04-12 Gm Global Technology Operations, Llc Exhaust gas waste heat recovery
US20090282813A1 (en) * 2008-05-17 2009-11-19 The Itb Group Ltd. Thermal Stability for Exhaust Emissions Treatment Materials
WO2015060199A1 (ja) * 2013-10-24 2015-04-30 株式会社豊田自動織機 化学蓄熱装置
CN104791056B (zh) * 2015-03-21 2017-06-16 北京工业大学 一种利用真空‑相变保温降低冷启动排放的方法
JP6188770B2 (ja) * 2015-11-18 2017-08-30 新日本電工株式会社 自動車の排気ガス浄化方法および装置
JP6780763B2 (ja) * 2018-12-25 2020-11-04 トヨタ自動車株式会社 内燃機関の制御装置
JP2020112070A (ja) * 2019-01-10 2020-07-27 いすゞ自動車株式会社 内燃機関の蓄熱装置
KR102095573B1 (ko) * 2019-06-27 2020-05-18 주식회사 엔알티 촉매형 수소 제거장치를 이용한 폭발방지 시스템
JP2022042207A (ja) * 2020-09-02 2022-03-14 いすゞ自動車株式会社 異常診断装置および異常診断方法
CN112179661B (zh) * 2020-09-18 2022-04-22 中国航发四川燃气涡轮研究院 轮盘试验的加温装置
CN113323746B (zh) * 2021-05-31 2022-05-20 浙江吉利控股集团有限公司 排气温度预测方法、终端设备及可读存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861143A (en) * 1973-04-17 1975-01-21 Mobil Oil Corp High temperature protectional apparatus for engine emissions catalytic converter
US4315243A (en) * 1980-09-16 1982-02-09 Calvert Sr Willard R Unused fuel indicator for automotive engines employing catalytic converters
JPS5979025A (ja) * 1982-10-27 1984-05-08 Mazda Motor Corp エンジンの排気ガス浄化装置
DE3537080C1 (en) * 1985-10-18 1987-06-19 Benteler Werke Ag Exhaust pipe with built-in exhaust gas catalyst - and outer insulation coating contg. evacuated cavity with chamber filled with better alloy
DE3720684A1 (de) * 1987-06-23 1989-01-05 Bosch Gmbh Robert Verfahren und vorrichtung zum ueberwachen des schadstoffgehaltes von abgasen bei brennkraftmaschinen
US4875336A (en) * 1988-01-12 1989-10-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas emission control device for diesel engine
US5477676A (en) * 1988-04-15 1995-12-26 Midwest Research Institute Method and apparatus for thermal management of vehicle exhaust systems
JPH0621552B2 (ja) * 1989-02-13 1994-03-23 いすゞ自動車株式会社 パティキュレートトラップの再燃焼装置
US5052178A (en) * 1989-08-08 1991-10-01 Cummins Engine Company, Inc. Unitary hybrid exhaust system and method for reducing particulate emmissions from internal combustion engines
US5212948A (en) * 1990-09-27 1993-05-25 Donaldson Company, Inc. Trap apparatus with bypass
JPH0736349B2 (ja) * 1991-06-28 1995-04-19 信越ポリマー株式会社 エラスチックコネクターの製造方法
JP2598728B2 (ja) * 1991-08-07 1997-04-09 株式会社イナックス カウンターの製造方法
JP2580353Y2 (ja) * 1991-09-03 1998-09-10 臼井国際産業株式会社 自動車用触媒装置
US5651248A (en) * 1994-08-29 1997-07-29 Isuzu Ceramics Research Institute Co., Ltd. Diesel particulate filter apparatus

Also Published As

Publication number Publication date
EP0918147B1 (en) 2004-08-18
DE69825707T2 (de) 2005-07-14
EP0918147A3 (en) 2002-05-02
DE69825707D1 (de) 2004-09-23
EP0918147A2 (en) 1999-05-26
US6128898A (en) 2000-10-10
JPH11153024A (ja) 1999-06-08

Similar Documents

Publication Publication Date Title
JP3952561B2 (ja) 内燃機関の排気浄化装置
JP2851433B2 (ja) 触媒コンバータの機能監視方法
JP6563839B2 (ja) 触媒劣化診断方法および触媒劣化診断システム
JP4325367B2 (ja) 排気温度センサの故障検出装置
US5444974A (en) On-board automotive exhaust catalyst monitoring with a calorimetric sensor
JP2017180119A (ja) 触媒劣化診断方法および触媒劣化診断システム
EP2806131A1 (en) Thermoelectric power generating device
EP2511491A1 (en) Particulate matter filter and regeneration method for particulate matter filter
EP2549074A1 (en) Exhaust emission control device for internal combustion engine
JPH11324659A (ja) 触媒温度制御方法及び装置
KR20010006235A (ko) 질소산화물 저장기를 모니터링하기 위한 방법 및 장치
US5822979A (en) Catalyst monitoring using a hydrocarbon sensor
JPH1037741A (ja) エンジンの排気浄化装置
JP2006521482A5 (ja)
US5447696A (en) Electrically heated catalytic converter system for an engine
JP2000064830A (ja) 触媒劣化検出装置
CN107228021B (zh) 车辆及其控制方法
US8256207B2 (en) Exhaust emission control device for internal combustion engine
JP2013147974A (ja) 熱電発電装置
EP1876334B1 (en) An exhaust gas temperature sensor inspecting apparatus
JP2021116730A (ja) 下流側空燃比検出装置の異常診断装置
JP3978171B2 (ja) エンジン排気ガス温度予測方法
JP4192617B2 (ja) 内燃機関の排気浄化装置
JP4938950B2 (ja) 特に自動車の内燃機関の運転方法
KR20190134944A (ko) 배기 정화 시스템 및 이의 제어방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

LAPS Cancellation because of no payment of annual fees