JP3952460B2 - 移動物体検出装置、移動物体検出方法及び移動物体検出プログラム - Google Patents

移動物体検出装置、移動物体検出方法及び移動物体検出プログラム Download PDF

Info

Publication number
JP3952460B2
JP3952460B2 JP2002334970A JP2002334970A JP3952460B2 JP 3952460 B2 JP3952460 B2 JP 3952460B2 JP 2002334970 A JP2002334970 A JP 2002334970A JP 2002334970 A JP2002334970 A JP 2002334970A JP 3952460 B2 JP3952460 B2 JP 3952460B2
Authority
JP
Japan
Prior art keywords
target
distance
moving object
image
target distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002334970A
Other languages
English (en)
Other versions
JP2004171189A (ja
Inventor
信男 檜垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002334970A priority Critical patent/JP3952460B2/ja
Priority to US10/713,431 priority patent/US7251346B2/en
Publication of JP2004171189A publication Critical patent/JP2004171189A/ja
Application granted granted Critical
Publication of JP3952460B2 publication Critical patent/JP3952460B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、カメラによって撮像された画像から、その画像上に存在する移動物体を検出する移動物体検出装置、移動物体検出方法及び移動物体検出プログラムに関する。
【0002】
【従来の技術】
従来、CCD等のカメラによって撮像された画像から、その画像上に存在する物体を検出する技術としては、例えば、画像内で物体の初期の曖昧な輪郭を輪郭モデルとして設定し、その輪郭モデルを所定の規則に従って収縮変形することで物体の輪郭を抽出して物体を検出する技術(動的輪郭モデル:SNAKES)が存在する。なお、この輪郭抽出に基づいた物体検出技術においては、時間的に連続した画像により、動きのある物体(移動物体)のエッジを検出し、輪郭モデルをそのエッジに連結させることで移動物体の輪郭を抽出して移動物体を検出している(例えば、特許文献1参照。)。
【0003】
また、移動カメラで撮像した画像から移動物体を検出する技術としては、時間的に連続する画像の輝度情報から移動カメラの動きを解析し、その動きを背景の動きであると仮定し、連続する画像の差分と背景の動きとに基づいて、移動物体の領域を検出し、輪郭として抽出する技術が存在する(例えば、非特許文献1参照。)。
【0004】
【特許文献1】
特開平8−329254号公報(第7頁、第9−10図)
【非特許文献1】
松岡,荒木,山澤,竹村,横矢,「移動カメラ画像からの移動物体輪郭の抽出・追跡とDSPによる実時間処理」、社団法人 電子情報通信学会、信学技報、PRMU97−235、1998
【0005】
【発明が解決しようとする課題】
しかし、前記従来の技術において、第1の例である、輪郭モデルを連続する画像から検出されるエッジに連結することで移動物体の輪郭を抽出して物体を検出する技術では、撮像した画像上で、複数の物体が隣接して存在する場合、その複数の物体を一つの物体として認識してしまうという問題がある。
【0006】
また、前記従来の技術において、第2の例である、移動カメラによって移動物体を検出する技術では、移動カメラで撮像された画像全体を輪郭抽出の対象領域として処理を行うため、計算量が多くなり、実時間で移動物体の輪郭を逐次抽出するためには高速の演算装置が必要になるという問題がある。さらに、前記第1の例と同様に、撮像した画像上で、複数の物体が隣接して存在する場合、その複数の物体を一つの物体として認識してしまうという問題がある。
【0007】
本発明は、以上のような問題点に鑑みてなされたものであり、移動カメラで撮像した画像であっても、移動物体の輪郭抽出を行う演算処理を軽減し、また、撮像した画像上に複数の物体が隣接した場合でも、個別に物体を検出することを可能にした移動物体検出装置、移動物体検出方法及び移動物体検出プログラムを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、前記目的を達成するために創案されたものであり、まず、請求項1に記載の移動物体検出装置は、同期した複数の撮像手段で、撮像対象を撮像した複数の撮像画像から、前記撮像対象内に存在する移動物体を検出する移動物体検出装置であって、前記複数の撮像画像の視差に基づいて、前記撮像対象までの距離を距離情報として生成する距離情報生成手段と、前記複数の撮像手段の中の少なくとも一つの撮像手段から、時系列に入力される撮像画像の差分に基づいて、前記移動物体の動きを動き情報として生成する動き情報生成手段と、前記距離情報で表された距離毎に、前記動き情報で動きのあったと示される画素の数を累計し、最も累計が多くなる距離に前記移動物体が存在する対象距離を設定する対象距離設定手段と、前記距離情報に基づいて、前記対象距離設定手段で設定された対象距離に対応する画素からなる対象距離画像を生成する対象距離画像生成手段と、前記対象距離画像内において前記対象距離に対応する画素を含んだ所定範囲の領域を、前記移動物体を検出する対象となる対象領域として設定する対象領域設定手段と、この対象領域設定手段で設定された対象領域から輪郭を抽出することで、前記移動物体を検出する輪郭抽出手段と、を備える構成とした。
【0009】
かかる構成によれば、移動物体検出装置は、距離情報生成手段によって、複数の撮像画像の視差に基づいて、撮像対象までの距離を距離情報として生成する。例えば、複数の撮像画像から視差が検出された画素において、その視差の大きさ(視差量)を、撮像対象までの視差(距離)として各画素毎に埋め込んだ距離画像(距離情報)を生成する。
【0010】
また、移動物体検出装置は、動き情報生成手段によって、複数の撮像手段の中の少なくとも一つの撮像手段から、時系列に入力される撮像画像の差分に基づいて、移動物体の動きを動き情報として生成する。例えば、時系列に入力される2枚の撮像画像の差分をとって、値が“0”でない画素値をすべて“1”にした差分画像を移動物体の動き情報として生成する。
【0011】
そして、移動物体検出装置は、対象距離設定手段によって、距離情報と動き情報とにより、最も動き量の多い視差(距離)を特定し、その視差(距離)を対象距離として設定する。すなわち、移動物体検出装置は、対象距離設定手段によって、距離情報に含まれる視差(距離)毎に、動き情報に含まれる動きのあったと示される画素の数を累計(ヒストグラム化)し、その累計が最も多くなる視差(距離)に、最も動き量の多い移動物体が存在していると判定し、その視差(距離)を対象距離として設定する。このように、画素数を累計するという簡単な動作で対象と距離を設定することができ、処理を高速化することができる。
【0012】
また、移動物体検出装置は、対象距離画像生成手段によって、距離画像(距離情報)から対象距離に対応する画素を抽出して対象距離画像を生成する。例えば、対象距離にある程度の幅(例えば、数十cm等)を持たせ、その距離に対応する画素を距離画像から抽出する。さらに、対象領域設定手段によって、対象距離画像内に、少なくとも前記対象距離に対応して、移動物体を検出する対象となる対象領域を設定する。例えば、対象距離に対応する画素で生成された対象距離画像で、画素が存在する領域を対象領域とする。これによって、対象距離画像の中で移動物体が存在すると想定される領域を絞り込むことができる。そして、輪郭抽出手段によって、対象距離画像内の対象領域から移動物体の輪郭を抽出することで移動物体を検出する。
【0015】
さらに、請求項2に記載の移動物体検出装置は、請求項1に記載の移動物体検出装置において、前記対象距離画像生成手段が、少なくとも前記対象距離を基準として奥行き方向の所定範囲内に存在する画素からなる対象距離画像を生成することを特徴とする。
【0016】
かかる構成によれば、移動物体検出装置は、対象距離画像生成手段によって、例えば、対象距離を基準とした奥行き方向(前後方向)で、予め定めた範囲(所定範囲)内に存在する画素のみを抽出することで対象距離画像を生成する。これによって、同一方向に複数移動物体が存在していても、その中から対象距離に存在する移動物体を特定した対象距離画像を生成することができる。
【0017】
また、請求項3に記載の移動物体検出装置は、請求項1又は請求項2に記載の移動物体検出装置において、前記対象領域設定手段が、前記対象距離画像内における垂直方向の前記対象距離に対応する画素数に基づいて、その画素数がピークとなる位置から水平方向の所定範囲内に対象領域を設定することを特徴とする。
【0018】
かかる構成によれば、移動物体検出装置は、移動物体が存在する対象領域を設定する際に、対象領域設定手段によって、対象距離画像内における移動物体の垂直方向の画素数に基づいて、移動物体の水平方向の位置を特定する。例えば、移動物体の垂直方向の画素数が最も多い箇所(ピーク)を、水平方向における移動物体の中心として、その中心から所定範囲を移動物体の存在領域として設定する。これによって、同一距離に複数の移動物体が存在している場合でも、その中の一つを検出することができる。
【0019】
さらに、請求項4に記載の移動物体検出装置は、請求項1乃至請求項3のいずれか1項に記載の移動物体検出装置において、前記対象領域設定手段が、少なくとも前記撮像手段のチルト角及び設置面からの高さに基づいて、前記対象領域の垂直方向の範囲を設定することを特徴とする。
【0020】
かかる構成によれば、移動物体検出装置は、移動物体が存在する対象領域を設定する際に、対象領域設定手段によって、撮像手段であるカメラのチルト角や、そのカメラの基準となる設置面からの高さ等のカメラパラメータに基づいて、移動物体の垂直方向の存在領域の範囲を設定する。例えば、移動物体の高さを特定の大きさ(人間であれば2m等)に定めることで、その大きさとカメラパラメータとに基づいて、移動物体が対象距離画像内のどの範囲に位置するかを特定することができる。
【0021】
また、請求項5に記載の移動物体検出装置は、請求項1乃至請求項4のいずれか1項に記載の移動物体検出装置において、前記撮像画像の各画素の色情報又は濃淡情報に基づいて、その撮像画像のエッジを抽出したエッジ画像を生成するエッジ画像生成手段を備え、前記対象距離画像生成手段が、前記距離情報に基づいて、前記対象距離に対応する前記エッジ画像の画素を抽出して、前記対象距離画像を生成することを特徴とする。
【0022】
かかる構成によれば、移動物体検出装置は、エッジ画像生成手段によって、撮像画像の色情報又は濃淡情報から、撮像画像のエッジを抽出したエッジ画像を生成する。例えば、撮像画像の明るさ(輝度)に基づいて、その明るさが大きく変化する部分をエッジとして検出することで、エッジのみからなるエッジ画像を生成する。なお、撮像画像がカラー画像で、移動物体を人物として特定する場合は、例えば、人物の顔の色(肌色)等を色情報として検出することで、エッジを検出することも可能である。
【0023】
そして、移動物体検出装置は、対象距離画像生成手段によって、エッジ画像から対象距離の範囲内に存在する対象距離画像を生成する。これによって、輪郭抽出手段が対象距離画像から輪郭を抽出する際に、エッジを検出する動作を省くことができる。
【0024】
さらに、請求項6に記載の移動物体検出装置は、請求項1乃至請求項5のいずれか1項に記載の移動物体検出装置において、前記輪郭抽出手段で抽出された輪郭の内部領域を、前記移動物体の抽出済領域として、前記距離情報を更新する距離情報更新手段を備えたことを特徴とする。
【0025】
かかる構成によれば、移動物体検出装置は、距離情報更新手段によって、輪郭抽出手段で抽出された輪郭の内部領域を、すでに移動物体の輪郭を抽出した抽出済領域とすることで、距離情報を更新する。これにより、すでに抽出された移動物体の情報が距離情報から削除されることになるので、別の移動物体を順次検出することが可能になる。
【0026】
さらに、請求項7に記載の移動物体検出方法は、同期した複数の撮像手段で撮像された撮像画像に基づいて生成された撮像対象までの距離情報と、前記複数の撮像手段の中の少なくとも一つの撮像手段から時系列に入力される撮像画像に基づいて生成された動き情報とにより、前記撮像対象内で動きのある移動物体を検出する移動物体検出方法であって、前記距離情報で表された距離毎に、前記動き情報で動きのあったと示される画素の数を累計し、最も累計が多くなる距離に前記移動物体が存在する対象距離を設定する対象距離設定ステップと、前記距離情報に基づいて、前記対象距離設定ステップで設定された対象距離に対応する画素からなる対象距離画像を生成する対象距離画像生成ステップと、前記対象距離画像内において前記対象距離に対応する画素を含んだ所定範囲の領域を、前記移動物体を検出する対象となる対象領域として設定する対象領域設定ステップと、この対象領域設定ステップで設定された対象領域から輪郭を抽出することで、前記移動物体を検出する輪郭抽出ステップと、を含んでいることを特徴とする。
【0027】
この方法によれば、移動物体検出方法は、対象距離設定ステップにおいて、同期した複数の撮像手段で撮像された撮像画像に基づいて生成された撮像対象までの距離情報と、複数の撮像手段の中の少なくとも一つの撮像手段で時系列に入力される撮像画像に基づいて生成された動き情報とにより、最も動き量の多い視差(距離)を特定し、その視差(距離)を対象距離として設定する。
【0028】
そして、対象距離画像生成ステップにおいて、距離画像(距離情報)から対象距離に対応する画素を抽出して対象距離画像を生成する。例えば、対象距離にある程度の幅(例えば、数十cm等)を持たせ、その距離に対応する画素を距離画像から抽出する。さらに、対象領域設定ステップにおいて、対象距離画像内に、少なくとも前記対象距離に対応して、移動物体を検出する対象となる対象領域を設定する。これによって、対象距離画像の中で移動物体が存在すると想定される領域を絞り込むことができる。そして、輪郭抽出ステップにおいて、対象距離画像内の対象領域から移動物体の輪郭を抽出することで移動物体を検出する。
【0029】
また、請求項8に記載の移動物体検出プログラムは、同期した複数の撮像手段で撮像された撮像画像に基づいて生成された撮像対象までの距離情報と、前記複数の撮像手段の中の少なくとも一つの撮像手段から時系列に入力される撮像画像に基づいて生成された動き情報とにより、前記撮像対象内で動きのある移動物体を検出するために、コンピュータを、以下の手段によって機能させる構成とした。
【0030】
すなわち、前記距離情報で表された距離毎に、前記動き情報で動きのあったと示される画素の数を累計し、最も累計が多くなる距離に前記移動物体が存在する対象距離を設定する対象距離設定手段、前記距離情報に基づいて、前記対象距離設定手段で設定された対象距離に対応する画素からなる対象距離画像を生成する対象距離画像生成手段、前記対象距離画像内において前記対象距離に対応する画素を含んだ所定範囲の領域を、前記移動物体を検出する対象となる対象領域として設定する対象領域設定手段、この対象領域設定手段で設定された対象領域から輪郭を抽出することで、前記移動物体を検出する輪郭抽出手段、とした。
【0031】
かかる構成によれば、移動物体検出プログラムは、対象距離設定手段によって、距離情報と動き情報とにより、最も動き量の多い視差(距離)を特定し、その視差(距離)を対象距離として設定する。
【0032】
そして、対象距離画像生成手段によって、距離画像(距離情報)から対象距離に対応する画素を抽出して対象距離画像を生成し、対象領域設定手段によって、対象距離画像の中で移動物体が存在すると想定される領域を絞り込んだ対象領域を設定する。
そして、輪郭抽出手段によって、対象距離画像内の対象領域から移動物体の輪郭を抽出することで移動物体を検出する。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
[第一の実施の形態]
(移動物体検出装置の構成)
図1は、本発明における第一の実施の形態である移動物体検出装置1の構成を示したブロック図である。図1に示すように移動物体検出装置1は、2台のカメラ(撮像手段)2で撮像されたカメラ画像(撮像画像)から、動きを伴う物体(移動物体)を検出するものである。ここでは、移動物体検出装置1を、入力されたカメラ画像を解析する入力画像解析手段10と、解析されたカメラ画像から物体を検出する物体検出手段20とで構成した。なお、2台のカメラ2は、左右に距離Bだけ離れて配置されており、それぞれを右カメラ2a及び左カメラ2bとする。
【0034】
入力画像解析手段10は、撮像対象を撮像した2台のカメラ2(撮像手段:2a、2b)から同期して入力されるカメラ画像(撮像画像)を解析して、距離情報を含んだ距離画像と動き情報を含んだ差分画像とを生成するものである。ここでは、入力画像解析手段10を、距離情報生成部11と、動き情報生成部12とで構成した。
【0035】
距離情報生成部(距離情報生成手段)11は、同時刻に右カメラ2aと左カメラ2bとで撮影された2枚のカメラ画像の視差を、カメラ2からカメラ2で撮像した撮像対象までの距離情報(より正確には、カメラ2の焦点位置からの距離)として埋め込み、距離画像として生成するものである。
【0036】
この距離情報生成部11では、右カメラ2aを基準カメラ(基準撮像手段)として、この基準カメラ(右カメラ2a)で撮像されたカメラ画像(基準撮像画像)と、左カメラ2bで撮像されたカメラ画像(同時刻撮像画像)とで、特定の大きさのブロック(例えば16×16画素)でブロックマッチングを行うことで、基準撮像画像からの視差を計測する。そして、その視差の大きさ(視差量)を基準撮像画像の各画素に対応付けた距離画像を生成する。
【0037】
なお、視差をZとしたとき、この視差Zに対応するカメラ2から物体までの距離D(図示せず)は、カメラ2の焦点距離をf(図示せず)、右カメラ2aと左カメラ2bとの距離をBとすると、(1)式で求めることができる。
【0038】
D=B×f/Z …(1)
【0039】
動き情報生成部(動き情報生成手段)12は、基準カメラ(右カメラ2a)で時系列に撮像された2枚のカメラ画像の差分に基づいて、カメラ画像内の移動物体の動きを動き情報として埋め込んだ、差分画像を生成するものである。
【0040】
この動き情報生成部12では、右カメラ2aを基準カメラ(基準撮像手段)として、この基準カメラ(右カメラ2a)で時系列(時刻t及び時刻t+1)に撮像された2枚のカメラ画像の差分をとる。そして、差のあった画素には動きのあった画素として画素値“1”を与え、差のなかった画素には動きのなかった画素として画素値“0”を与えた差分画像を生成する。なお、動き情報生成部12では、さらに差分画像に対して、メディアンフィルタ等のフィルタリング処理を行うことで、ノイズを除去しておく。
【0041】
なお、カメラ2を移動カメラとし、撮像されたカメラ画像内の背景が変化する場合は、カメラ2からカメラ画像毎のパン、チルト等のカメラ移動量を入力し、例えば、時刻t+1のカメラ画像をそのカメラ移動量分補正することで、時刻t及び時刻t+1において、動きのあった画素のみを検出する。
【0042】
ここで、図4を参照(適宜図1参照)して、距離情報生成部11で生成される距離画像、及び動き情報生成部12で生成される差分画像の内容について説明する。図4は、距離画像DE及び差分画像DIの画像内容と、各画像の画素値(距離画像画素値DEB及び差分画像画素値DIB)の一例を示したものである。ここでは、カメラ2から約1m、2m及び3m離れた位置に人物が存在しているものとする。
【0043】
図4に示したように、距離画像DEは、時刻tの右カメラ画像と左カメラ画像との視差を画素値で表現することで生成される。この視差は、その値が大きいほど人物の位置がカメラ2に近いことを表し、値が小さいほど人物の位置がカメラ2から遠いことを表している。例えば、距離画像画素値DEBに示したように、距離画像DEの画素位置(0,0)は視差が0であり、カメラ2からの距離が無限大(∞)であることを意味している。また、距離画像DEの画素位置(30,50)は視差が20であり、カメラ2からの距離が視差20に対応する距離、例えば2.2mであることを意味している。このように、距離画像DEは、視差を画素値として表現するため、例えば、カメラ2に近いほど明るく、遠いほど暗い画像となる。
【0044】
また、差分画像DIは、時刻tの右カメラ画像と時刻t+1の右カメラ画像との差分をとり、差のあった画素を画素値“1”、差のなかった画素を画素値“0”として表現することで生成される。この差のあった画素が、実際に人物が動いた領域を表している。例えば、差分画像画素値DIBに示したように、差分画像DIの画素位置(0,0)は“0”「停止」で、動きがなかったことを意味している。また、差分画像DIの画素位置(30,50)は“1”「動き」で、動きがあったことを意味している。
図1に戻って、説明を続ける。
【0045】
物体検出手段20は、入力画像解析手段10で解析された画像(距離画像及び差分画像)に基づいて、動きのある移動物体の領域を検出し、移動物体の輪郭を抽出するものである。ここでは、物体検出手段20を、対象距離設定部21と、対象距離画像生成部22と、対象領域設定部23と、輪郭抽出部24と、距離情報更新部25とで構成した。
【0046】
対象距離設定部(対象距離設定手段)21は、入力画像解析手段10の距離情報生成部11で生成された距離画像と、動き情報生成部12で生成された差分画像とに基づいて、最も動き量の多い移動物体を特定し、対象となる移動物体が存在する視差(対象距離)を設定するものである。この対象距離は、対象距離画像生成部22へ通知される。
【0047】
この対象距離設定部21では、距離画像で表された視差(距離)毎に、その視差に対応する画素と同じ位置にある差分画像の画素値を累計し、その累計が最も多くなる視差(最多視差)に、最も動き量の多い移動物体が存在していると判定する。なお、対象距離設定部21は、距離情報生成部11で生成された距離画像と、動き情報生成部12で生成された差分画像とを、図示していないメモリ等の記憶手段に記憶することとする。
【0048】
対象距離画像生成部(対象距離画像生成手段)22は、距離情報生成部11で生成された視差量を埋め込んだ距離画像から、対象距離設定部21で設定された対象距離に対応する画素を抽出した対象距離画像を生成するものである。
【0049】
なお、ここでは人物を検出することと仮定して、対象距離(最多視差)±α(数十cm)分の視差の幅(奥行き)を、最も動き量の多い移動物体が存在する視差の範囲とする。このαの値は、対象距離を基準とした奥行き方向の範囲(所定範囲)であって、検出する対象となる物体の奥行き方向の大きさによって予め定めた値である。
【0050】
例えば、最多視差におけるカメラ2から移動物体までの距離Dを前記(1)式で算出したとすると、その視差の範囲Zrは(1)式を変形することで、(2)式を得る。ただし、カメラ2の焦点距離をf、右カメラ2aと左カメラ2bとの距離をBとする。
【0051】
B×f/(D+α)<Zr<B×f/(D−α) …(2)
【0052】
この対象距離画像生成部22では、前記(2)式の範囲の視差に対応する画素を抽出した対象距離画像を生成するものとする。
なお、この対象距離画像の生成は、基準カメラ(右カメラ2a)で撮像されたカメラ画像(原画像)から、対象距離(視差の範囲)に対応する画素位置のみの画素を抽出することとしてもよい。
【0053】
ここで、図5を参照(適宜図1参照)して、対象距離設定部21及び対象距離画像生成部22で、検出対象となる移動物体が存在する距離に対応する画像(対象距離画像)を生成する手順について説明する。図5(a)は、距離画像DE及び差分画像DI(図4)に基づいて、視差(距離)と動きのある画素を累計した動き量(画素数)との関係を示したグラフである。図5(b)は、距離画像DE(図4)から対象距離の画像のみを抽出した対象距離画像TDEを示している。
【0054】
図5(a)に示したように、距離画像DE(図4)の視差(距離)と動き量(画素数)との関係をグラフ化すると、視差(距離)が1m、2.2m、3mの位置で動き量がピークとなる。そこで、対象距離設定部21は、動き量が最大となる視差(2.2m)に移動物体が存在するものとして、2.2mを対象距離に設定する。なお、移動物体を人物と仮定すると、カメラ2から2.2±αm(α=0.5m)の範囲に人物が存在すると判定することができる。
【0055】
そこで、対象距離画像生成部22は、図5(b)に示したように、距離情報生成部11で生成された距離画像から、対象距離設定部21で設定された対象距離±αm(2.2±0.5m)に存在する画素を抽出した対象距離画像TDEを生成する。これによって、カメラ2から1m、3m離れた位置に存在している人物の画像を削除し、2.2±0.5m離れた位置に存在している人物のみを抽出した対象距離画像TDEを生成することができる。
図1に戻って、説明を続ける。
【0056】
対象領域設定部(対象領域設定手段)23は、対象距離画像生成部22で生成された対象距離画像の垂直方向の画素数を累計し、その垂直方向の画素数の累計が最も多くなる位置(ピーク)を移動物体の中心の水平位置であると特定して、その移動物体を含んだ領域(対象領域)を設定するものである。
【0057】
より詳しくは、この対象領域設定部23では、対象距離画像生成部22で生成された対象距離画像の垂直方向の画素数をカウントすることでヒストグラム化し、そのヒストグラムが最大(ピーク)となる位置を移動物体の中心の水平位置であると特定する。ここでは人物を検出することと仮定して、ヒストグラムが最大となる水平位置を中心に、左右に特定の大きさ(例えば0.5〜0.6(m))の範囲を対象領域の水平方向の存在領域(範囲)として設定する。また、縦方向は特定の大きさ(例えば2(m))を対象領域の高さとする。このとき、対象領域設定部23は、カメラ2から入力されるチルト角、床(設置面)からの高さ等のカメラパラメータに基づいて、対象領域の垂直方向の存在領域(範囲)を設定する。
【0058】
なお、このようにヒストグラムが最大となる位置を移動物体の中心と判定することで、同一距離に複数の移動物体(人物等)が存在していても、その中の一つ(一人)を検出することができる。
【0059】
ここで、図6を参照(適宜図1参照)して、対象領域設定部23が、対象距離画像TDEの中から一つ(一人)の移動物体の領域(対象領域)を設定する手順について説明する。図6(a)は、対象距離画像生成部22で生成された対象距離画像TDEにおける垂直方向の画素数の累計をヒストグラムHIで表したものである。図6(b)は、対象距離画像TDEの中で移動物体を人物として対象領域Tを設定した状態を示したものである。なお、図6(a)(b)では、ヒストグラムHIを対象距離画像TDEに重畳させているが、これは、説明の都合上重畳させているだけである。
【0060】
対象領域設定部23は、図6(a)に示したように、対象距離画像TDEの垂直方向の画素数を累計したヒストグラムHIを生成する。このように対象距離画像TDEをヒストグラム化することで、そのヒストグラムHIが最大となる位置に移動物体の中心の水平位置が存在すると判定することが可能になる。例えば、ヒストグラムHIを使用せずに対象距離画像TDEの中で最も高位置に存在する0でない画素位置を、移動物体の中心の水平位置と判定すると、人物が手を上げた場合、その手の先を人物(移動物体)の中心であると判定してしまうことになる。そこで、ここでは、ヒストグラムHIを使用することとする。
【0061】
そして、対象領域設定部23は、図6(b)に示したように、ヒストグラムHIが最大となる水平位置を中心に、左右に特定の大きさ(例えば0.5m)の範囲を対象領域Tの水平方向の範囲とする。また、縦方向は特定の大きさ(例えば2m)を対象領域Tの垂直方向の範囲とする。
【0062】
この対象領域Tの大きさについては、図7を参照(適宜図1参照)してさらに説明を行う。図7は、カメラ2が移動ロボット(図示せず)に組み込まれ、移動物体Mと同じ床からある高さ(カメラ高)Hに位置しているときに、移動物体Mが対象距離画像(a´、b´)上のどの高さに位置するかを説明するための説明図である。なお、図7(a)は、カメラ2のチルト角が0(°)の場合、図7(b)はカメラ2のチルト角がθT(≠0)の場合におけるカメラ2と移動物体Mとの対応関係を示している。
【0063】
まず、図7(a)を参照して、チルト角が0(°)の場合において、移動物体Mが対象距離画像(a´)上で縦方向のどの位置に存在するかを特定する方法について説明する。
ここで、カメラ2の垂直画角をθv、カメラ2から移動物体Mまでの距離をD、対象距離画像(a´)の縦方向の解像度をY、カメラ2の床からの高さ(カメラ高)をH、移動物体Mの床からの仮想の高さを2(m)とする。このとき、カメラ2の光軸と、カメラ2から移動物体Mの仮想の上端(床から2m)までを結んだ直線との角度θHは(3)式で表すことができる。
【0064】
θH=tan-1((2−H)/D) …(3)
【0065】
これにより、移動物体Mの対象距離画像(a´)上での上端yTは(4)式で求めることができる。
【0066】
Figure 0003952460
【0067】
また、カメラ2の光軸と、カメラ2から移動物体Mの下端(床)までを結んだ直線との角度θLは(5)式で表すことができる。
【0068】
θL=tan-1(H/D) …(5)
【0069】
これにより、移動物体Mの対象距離画像(a´)上での下端yBは(6)式で求めることができる。
【0070】
Figure 0003952460
【0071】
次に、図7(b)を参照して、チルト角がθT(≠0)の場合において、移動物体Mが対象距離画像(b´)上で縦方向のどの位置に存在するかを特定する方法について説明する。
ここで、カメラ2の垂直画角をθv、チルト角をθT、移動物体Mまでの距離をD、対象距離画像の縦方向の解像度をY、カメラ2の床からの高さ(カメラ高)をH、移動物体Mの床からの仮想の高さを2(m)とする。このとき、カメラ2の光軸とカメラ2から移動物体Mの仮想の上端(床から2m)までを結んだ直線との角度θHと、チルト角θTとの差分角度(θH−θT)は(7)式で表すことができる。
【0072】
θH−θT=tan-1((2−H)/D) …(7)
【0073】
これにより、移動物体Mの対象距離画像(b´)上での上端yTは(8)式で求めることができる。
【0074】
Figure 0003952460
【0075】
また、カメラ2の光軸とカメラ2から移動物体Mの下端(床)までを結んだ直線との角度θLと、チルト角θTとの加算角度(θL+θT)は(9)式で表すことができる。
【0076】
θL+θT=tan-1(H/D) …(9)
【0077】
これにより、移動物体Mの対象距離画像(b´)上での下端yBは(10)式で求めることができる。
【0078】
Figure 0003952460
【0079】
このように求めた対象距離画像(a´又はb´)の上端yT及び下端yBによって、対象領域T(図6(b))の垂直方向の範囲が決定される。
なお、移動ロボット(図示せず)が階段等を昇降し、移動物体Mと同一の床に存在しない場合は、移動ロボット本体のエンコーダ等によって昇降量を検出し、その昇降量を移動物体Mの床からの高さに対して加算又は減算することで、移動物体Mの対象距離画像(a´又はb´)における縦方向の位置を特定することができる。あるいは、移動ロボットに地図情報を保持しておき、移動物体Mの方向及び距離で特定される床の高さを、その地図情報から取得することとしてもよい。
【0080】
また、対象領域T(図6(b))の水平方向の範囲は、例えば、図示していないが、カメラ2の水平画角をθh、カメラ2から対象とする移動物体Mまでの距離をD、対象距離画像の横方向の解像度をXとすると、対象領域の幅の半分(移動物体の中心からの距離)を0.5(m)としたときの、対象距離画像上での水平画素数αHは、(11)式で求めることができる。
【0081】
αH=(X/θh)tan-1(0.5/D) …(11)
図1に戻って、説明を続ける。
【0082】
輪郭抽出部(輪郭抽出手段)24は、対象距離画像生成部22で生成された対象距離画像において、対象領域設定部23で設定した移動物体の領域(対象領域)内で、既知の輪郭抽出技術を用いて輪郭の抽出を行うものである。ここで抽出された輪郭(輪郭情報)は、移動物体検出装置1の出力として、外部に出力されるとともに、距離情報更新部25へ通知される。なお、この輪郭抽出部24で輪郭が抽出されることで、移動物体が検出されたことになる。
【0083】
ここで、既知の技術である輪郭抽出の手順の概要を説明する。
まず、対象領域内の画素値の変化に基づいてエッジを検出する。例えば、ある画素の近傍領域の画素に対して重み係数を持つオペレータ(係数行例:Sovelオペレータ、Kirschオペレータ等)を画素毎に乗算することで、エッジの検出を行う。そして、この検出されたエッジに対して、適当な閾値によって2値化を行い、メディアンフィルタ等によって孤立点の除去を行う。このように2値化されたエッジを連結することで、対象領域内から移動物体の輪郭を抽出することができる。なお、エッジから輪郭を抽出する手法として、動的輪郭モデル(SNAKES)を適用することとしてもよい。これによって、例えば、図8に示したように、対象領域画像TDEの中で移動物体が一つ(一人)に限定された対象領域T内で輪郭Oを抽出することができる。
【0084】
距離情報更新部(距離情報更新手段)25は、輪郭抽出部24で抽出された輪郭(輪郭情報)に基づいて、対象距離設定部21で記憶手段(図示せず)に記憶した距離画像を更新するものである。例えば、輪郭を含んだ内部領域に対応する距離画像の画素値を“0”にする。これによって、輪郭抽出を完了した移動物体の領域が距離画像から削除されたことになる。なお、距離情報更新部25は、この距離画像の更新が完了したことを、更新情報として、対象距離設定部21へ通知する。
【0085】
例えば、図9に示したように、図8で抽出した輪郭O内(輪郭Oを含んだ内部領域)に対応する距離画像DEの内容(距離画像画素値DEB)を更新する。すなわち、輪郭Oの領域内における全ての画素値、例えば輪郭O内の画素位置(30,50)等、の視差を0に変更する。このように輪郭Oの領域内の視差を0に変更することで、輪郭Oとして抽出された移動物体は、カメラ2からの距離が無限大になり、距離画像DE上には存在しなくなる。
【0086】
以上、第一の実施の形態である移動物体検出装置1の構成について説明したが、移動物体検出装置1は、コンピュータにおいて各手段を各機能プログラムとして実現することも可能であり、各機能プログラムを結合して移動物体検出プログラムとして動作させることも可能である。
【0087】
また、ここでは、移動物体検出装置1の距離情報生成部11が、2台のカメラ2で撮像したカメラ画像に基づいて距離画像を生成したが、3台以上のカメラを用いて距離画像を生成することとしてもよい。例えば、3行3列に配置した9台のカメラで、中央に配置したカメラを基準カメラとして、他のカメラとの視差に基づいて距離画像を生成することで、移動物体までの距離をより正確に測定することもできる。
【0088】
また、この移動物体検出装置1を、移動ロボット、自動車等の移動体に組み込んで、人物等の物体を検出するために用いることも可能である。例えば、移動ロボットに本発明を適用することで、移動ロボットが、人込みにおいても人物を認識することが可能になる。さらに、人物を個別に検出することができるので、例えば、顔認識等を行うことで、その人物を追跡したり、人物毎に異なる動作を行わせる等の輪郭抽出後の処理が容易になる。
【0089】
(移動物体検出装置1の動作)
次に、図1乃至図3を参照して、移動物体検出装置1の動作について説明する。図2及び図3は、移動物体検出装置1の動作を示すフローチャートである。
【0090】
<カメラ画像入力ステップ>
まず、移動物体検出装置1は、同期した2台のカメラ2から時系列にカメラ画像を入力する(ステップS1)。なお、ここでは、ある時刻tに右カメラ2a(基準カメラ)と左カメラ2bとから入力されたカメラ画像と、次の時刻t+1(例えば、1フレーム後)に右カメラ2a(基準カメラ)から入力されたカメラ画像とに基づいて、移動物体の輪郭を抽出するものとする。
【0091】
<距離画像生成ステップ>
そして、移動物体検出装置1は、距離情報生成部11によって、時刻tに右カメラ2a(基準カメラ)と左カメラ2bとから入力された2枚のカメラ画像から、撮像対象までの視差(距離)を埋め込んだ距離画像を生成する(ステップS2)。
【0092】
<差分画像生成ステップ>
さらに、移動物体検出装置1は、動き情報生成部12によって、右カメラ2a(基準カメラ)で時刻tと時刻t+1に撮像された2枚のカメラ画像(基準カメラ画像)の差分をとり、差のあった画素を画素値“1”、差のなかった画素を画素値“0”とした差分画像を生成する(ステップS3)。
【0093】
<対象距離設定ステップ>
また、移動物体検出装置1は、対象距離設定部21によって、ステップS2及びステップS3で生成した距離画像及び差分画像から、距離画像で表された視差(距離)毎に、動きのあった画素数を累計する(ステップS4)。例えば、距離画像から、ある視差(距離)の画素のみを抽出し、この抽出された画素と対応する差分画像の画素の画素値を累計する。そして、この動き(差分)のある画素数の累計が最大となる距離を、検出する移動物体の対象距離として設定する(ステップS5)。
【0094】
<対象距離画像生成ステップ>
そして、移動物体検出装置1は、対象距離画像生成部22によって、距離画像から対象距離±αに対応する画素を抽出した対象距離画像を生成する(ステップS6)。なお、ここでは人物を検出することと仮定して、αを数十cmとする。
【0095】
<対象領域設定ステップ>
そして、移動物体検出装置1は、対象領域設定部23によって、ステップS6で生成した対象距離画像の垂直方向(縦方向)の画素数をヒストグラム化することで計測する(ステップS7)。そして、このヒストグラムが最大(ピーク)となる水平位置を中心に、左右に特定の大きさ(例えば0.5〜0.6(m))の範囲を対象領域の水平方向の範囲として設定する(ステップS8)。
さらに、対象領域設定部23では、カメラ2から入力されるチルト角、床(設置面)からの高さ等のカメラパラメータに基づいて、対象領域の垂直(上下)方向の範囲を設定する(ステップS9)。
【0096】
例えば、カメラ2のチルト角、床からの高さに基づいて、対象距離画像における画像中の床の位置(対象領域の下端)を求める。そして、カメラ2の画角と移動物体までの距離とに基づいて、床から2mまでの範囲を、画素数に換算することにより対象領域の対象距離画像における床からの画素数を求める。これによって、対象距離画像における対象領域の上端を求めることができる。この対象領域の上端は、カメラ2のチルト角、床からの高さに基づいて、対象距離画像における画像中の2mの位置(高さ)を直接求めることとしてもよい。なお、この2mは、一例であって、他の長さ(高さ)であっても構わない。
【0097】
<輪郭抽出ステップ>
また、移動物体検出装置1は、輪郭抽出部24によって、ステップS6で生成した対象距離画像において、ステップS8及びステップS9で設定した対象領域内で輪郭の抽出を行う(ステップS10)。例えば、対象領域内でエッジを検出し、そのエッジに対して動的輪郭モデル(SNAKES)を適用することによって輪郭の抽出を行う。
【0098】
そして、輪郭の抽出に成功したかどうかを判定する(ステップS11)。なお、ここで輪郭抽出の成功及び失敗の判定は、ステップS10において輪郭が抽出できたかどうかの判定だけではなく、例えば、対象距離が予め定めた距離よりも遠い場合や、対象領域が予め定めた大きさよりも小さい場合、さらには、すべての物体の輪郭抽出を完了した等の理由によって、物体の輪郭抽出を行わないとする判定をも含むものとする。
このステップS11で輪郭の抽出に成功した場合(Yes)は、ステップS12へ進む。一方、輪郭の抽出に失敗した(あるいは抽出を行わない)場合(No)は、本動作を終了する。
【0099】
<距離情報更新ステップ>
そして、移動物体検出装置1は、距離情報更新部25によって、ステップS10で抽出した輪郭内(輪郭を含んだ内部領域)に対応する距離画像を更新する(ステップS12)。例えば、輪郭を含んだ内部領域に対応する距離画像の画素値を“0”にする。これによって、すでに抽出を終わった移動物体の領域が距離画像から削除されることになる。そして、ステップS4へ戻って、処理を継続する。
【0100】
以上の各ステップによって、本実施の形態の移動物体検出装置1によれば、カメラ2から入力されたカメラ画像から、そのカメラ画像に存在する移動物体を検出することができる。なお、ここでは、ある時刻t(t+1)において移動物体の輪郭を抽出したが、時々刻々と入力されるカメラ画像に基づいて、前記ステップ(ステップS1〜ステップS12)を動作させることで、例えば、移動ロボット等の移動体が、人物を検出し続けることができる。
【0101】
[第二の実施の形態]
(移動物体検出装置の構成)
次に、図10を参照して、本発明における第二の実施の形態である移動物体検出装置1Bの構成について説明する。図10は、移動物体検出装置1Bの構成を示したブロック図である。図10に示すように移動物体検出装置1Bは、2台のカメラ(撮像手段)2から撮像されたカメラ画像(撮像画像)から、動きを伴う物体(移動物体)を検出するものである。
【0102】
ここでは、移動物体検出装置1Bを、距離情報生成部11、動き情報生成部12及びエッジ画像生成部13からなる入力画像解析手段10Bと、対象距離設定部21、対象距離画像生成部22B、対象領域設定部23、輪郭抽出部24B及び距離情報更新部25からなる物体検出手段20Bとで構成した。なお、エッジ画像生成部13、対象距離画像生成部22B及び輪郭抽出部24B以外の構成は、図1に示したものと同一であるので、同一の符号を付し、説明を省略する。
【0103】
エッジ画像生成部(エッジ画像生成手段)13は、カメラ2(2a)から距離情報生成部11と動き情報生成部12とに入力される同時刻のカメラ画像(基準撮像画像)を入力し、そのカメラ画像からエッジを抽出したエッジ画像を生成するものである。このエッジ画像生成部13では、カメラ2(2a)から入力されたカメラ画像の明るさ(輝度:濃淡情報)に基づいて、その明るさが大きく変化する部分をエッジとして検出し、そのエッジのみからなるエッジ画像を生成する。例えば、ある画素の近傍領域の画素に対して重み係数を持つオペレータ(係数行例:Sovelオペレータ、Kirschオペレータ等)を画素毎に乗算することで、エッジの検出を行う。
【0104】
すなわち、入力画像解析手段10Bでは、図13に示すように、時刻tの右カメラ画像と左カメラ画像との視差を画素値で表現した距離画像DEと、時刻tの右カメラ画像からエッジを抽出したエッジ画像EDと、時刻tの右カメラ画像と時刻t+1の右カメラ画像との差分をとり、差のあった画素を画素値“1”、差のなかった画素を画素値“0”として表現した差分画像DIとが生成されることになる。
なお、エッジ画像生成部13では、カメラ画像がカラー画像で、移動物体を人物として特定する場合は、例えば、人物の顔の色(肌色)等を色情報として検出することで、エッジを検出することも可能である。
【0105】
対象距離画像生成部(対象距離画像生成手段)22Bは、対象距離設定部21で設定された対象距離に対応する画素からなる対象距離画像を生成するものである。この対象距離画像生成部22Bでは、まず、距離情報生成部11で生成された視差量を埋め込んだ距離画像から、対象距離設定部21から通知される対象距離±α(このαは、人物を検出することと仮定した場合、数十cm)に対応する画素位置を求める。そして、その画素位置に対応する画素のみをエッジ画像生成部13で生成されたエッジ画像から抽出し、対象距離画像を生成する。すなわち、この対象距離画像は、対象距離に存在する移動物体をエッジで表現した画像になる。
【0106】
輪郭抽出部(輪郭抽出手段)24Bは、対象距離画像生成部22Bで生成された対象距離画像において、対象領域設定部23で設定した移動物体の領域(対象領域)内で輪郭の抽出を行うものである。ここで抽出された輪郭(輪郭情報)は、移動物体検出装置1Bの出力として、外部に出力されるとともに、距離情報更新部25へ通知される。この輪郭抽出部24Bで輪郭が抽出されることで、移動物体が検出されたことになる。
【0107】
なお、この輪郭抽出部24Bでは、対象距離画像生成部22Bで生成された対象距離画像が、すでにエッジで表現されているため、そのエッジから動的輪郭モデル(SNAKES)等によって輪郭を抽出する。すなわち、輪郭抽出部24Bでは、輪郭抽出部24(図1)で行ったエッジ検出を省略することができる。
【0108】
以上、第二の実施の形態である移動物体検出装置1Bの構成について説明したが、移動物体検出装置1Bは、コンピュータにおいて各手段を各機能プログラムとして実現することも可能であり、各機能プログラムを結合して移動物体検出プログラムとして動作させることも可能である。
【0109】
また、移動物体検出装置1Bは、距離情報生成部11において、3台以上のカメラを用いて距離画像を生成することとしてもよい。この場合、動き情報生成部12及びエッジ画像生成部13は、基準となるカメラから入力されるカメラ画像に基づいて、差分画像及びエッジ画像を生成することとする。
さらに、移動物体検出装置1Bは、移動ロボット、自動車等の移動体に組み込んで、人物等の物体を検出するために用いることも可能である。
【0110】
(移動物体検出装置1Bの動作)
次に、図10、図11及び図12を参照して、移動物体検出装置1Bの動作について簡単に説明する。図11及び図12は、移動物体検出装置1Bの動作を示すフローチャートである。
【0111】
まず、移動物体検出装置1Bは、同期した2台のカメラ2から時系列にカメラ画像を入力する(ステップS21)。そして、距離情報生成部11によって、時刻tに右カメラ2a(基準カメラ)と左カメラ2bとから入力された2枚のカメラ画像から、撮像対象までの視差(距離)を埋め込んだ距離画像を生成する(ステップS22)。さらに、動き情報生成部12によって、右カメラ2a(基準カメラ)で時刻tと時刻t+1に撮像された2枚のカメラ画像(基準カメラ画像)の差分をとり、差のあった画素を画素値“1”、差のなかった画素を画素値“0”とした差分画像を生成する(ステップS23)。そして、エッジ画像生成部13によって、右カメラ2a(基準カメラ)で時刻tに撮像されたカメラ画像(基準カメラ画像)からエッジを抽出したエッジ画像を生成する(ステップS24)。
【0112】
そして、移動物体検出装置1Bは、対象距離設定部21によって、ステップS22及びステップS23で生成した距離画像及び差分画像から、距離画像で表された視差(距離)毎に、その視差に対応する画素と同じ位置にある差分画像の画素値を累計する(ステップS25)。そして、この動き(差分)のある画素数(画素値の累計)が最大となる距離を、検出する移動物体の対象距離として設定する(ステップS26)。そして、対象距離画像生成部22Bによって、エッジ画像から対象距離±αに対応する画素を抽出した対象距離画像を生成する(ステップS27)。なお、ここでは人物を検出することと仮定して、αを数十cmとする。
【0113】
そして、移動物体検出装置1Bは、対象領域設定部23によって、ステップS27で生成した対象距離画像の垂直方向(縦方向)の画素値をヒストグラム化することで計測する(ステップS28)。そして、このヒストグラムが最大となる水平位置を中心に、左右に特定の大きさ(例えば0.5〜0.6(m))の範囲を対象領域の水平方向の範囲として設定する(ステップS29)。さらに、カメラ2から入力されるチルト角、床(設置面)からの高さ等のカメラパラメータに基づいて、対象領域の垂直方向の範囲を設定する(ステップS30)。
【0114】
また、移動物体検出装置1Bは、輪郭抽出部24Bによって、ステップS27で生成した対象距離画像において、ステップS29及びステップS30で設定した対象領域内で輪郭の抽出を行い(ステップS31)、輪郭の抽出に成功したかどうかを判定する(ステップS32)。このステップS32で輪郭の抽出に成功した場合(Yes)は、ステップS33へ進む。一方、輪郭の抽出に失敗した(あるいは抽出を行わない)場合(No)は、本動作を終了する。
【0115】
そして、移動物体検出装置1Bは、距離情報更新部25によって、ステップS31で抽出した輪郭内(輪郭を含んだ内部領域)に対応する画素位置を更新情報として生成し、対象距離設定部21が、その更新情報に基づいて、距離画像の情報を削除する(ステップS33)。これによって、すでに抽出を終わった移動物体の領域が距離画像から削除されることになる。そして、ステップS25へ戻って、処理を継続する。
【0116】
以上の各ステップによって、本実施の形態の移動物体検出装置1Bによれば、カメラ2から入力されたカメラ画像から、そのカメラ画像に存在する移動物体を検出することができる。なお、移動物体検出装置1Bでは、ステップS24でエッジ画像を生成し、ステップS31における輪郭の抽出には、すでにエッジを検出した対象距離画像を用いるため、同じ距離に複数の移動物体(人物等)が並んで存在している場合でも高速に輪郭の抽出を行うことが可能になる。
【0117】
【発明の効果】
以上説明したとおり、本発明に係る移動物体検出装置、移動物体検出方法及び移動物体検出プログラムでは、以下に示す優れた効果を奏する。
【0118】
本発明によれば、複数のカメラで撮像されたカメラ画像から生成される距離画像(距離情報)と、時系列に入力されるカメラ画像から生成される差分画像(動き情報)とに基づいて、動きのある移動物体のカメラからの距離を特定し、その距離のみに着目した画像(対象距離画像)を生成することができる。これによって、カメラ画像上では繋がっている移動物体(例えば、人物等)を、距離によって識別し分離することで、別の移動物体として検出することが可能になる。
【0119】
また、本発明によれば、対象距離画像における移動物体の垂直方向の画素量に基づいて、移動物体の水平方向の範囲を絞り込むことができるため、同じ距離に横並びに存在する複数の移動物体を分離して、別の移動物体として検出することが可能になる。
【0120】
さらに、本発明によれば、カメラのチルト角や、床からの高さに基づいて、対象距離画像における移動物体の垂直方向の範囲を絞り込むことができるため、輪郭抽出にかかる計算量を抑え、移動物体の検出にかかる処理速度を早めることができる。
【0121】
また、本発明によれば、予めカメラ画像からエッジを抽出したエッジ画像を生成しておくため、個々の移動物体の領域(対象領域)に対する輪郭抽出時にエッジを検出する必要がない。このため、移動物体がカメラ画像上に複数繋がって存在する場合であっても、重複した領域でエッジの抽出を行わないため、高速に移動物体を検出することが可能になる。
【図面の簡単な説明】
【図1】本発明の第一の実施の形態である移動物体検出装置の全体構成を示すブロック図である。
【図2】本発明の第一の実施の形態である移動物体検出装置の動作を示すフローチャート(1/2)である。
【図3】本発明の第一の実施の形態である移動物体検出装置の動作を示すフローチャート(2/2)である。
【図4】距離画像及び差分画像の内容の一例を示す図である。
【図5】視差(距離)毎の動き量(画素値)に基づいて、対象距離画像を生成するための手順を説明するための説明図である。
【図6】ヒストグラムに基づいて、対象領域を設定する手順を説明するための説明図である。
【図7】カメラパラメータに基づいて、移動物体が対象距離画像上のどの高さに位置するかを算出する手順を説明するための説明図である。
【図8】対象距離画像の対象領域で輪郭を抽出した例を示す図である。
【図9】輪郭を抽出した移動物体の領域に基づいて、距離画像の内容を更新した例を示す図である。
【図10】本発明の第二の実施の形態である移動物体検出装置の全体構成を示すブロック図である。
【図11】本発明の第二の実施の形態である移動物体検出装置の動作を示すフローチャート(1/2)である。
【図12】本発明の第二の実施の形態である移動物体検出装置の動作を示すフローチャート(2/2)である。
【図13】距離画像、差分画像及びエッジ画像の内容の一例を示す図である。
【符号の説明】
1、1B …… 移動物体検出装置
10、10B…… 入力画像解析手段
11 …… 距離情報生成部(距離情報生成手段)
12 …… 動き情報生成部(動き情報生成手段)
13 …… エッジ画像生成部(エッジ画像生成手段)
20、20B…… 物体検出手段
21 …… 対象距離設定部(対象距離設定手段)
22、22B…… 対象距離画像生成部(対象距離画像生成手段)
23 …… 対象領域設定部(対象領域設定手段)
24、24B…… 輪郭抽出部(輪郭抽出手段)
25 …… 距離情報更新部(距離情報更新手段)

Claims (8)

  1. 同期した複数の撮像手段で、撮像対象を撮像した複数の撮像画像から、前記撮像対象内に存在する移動物体を検出する移動物体検出装置であって、
    前記複数の撮像画像の視差に基づいて、前記撮像対象までの距離を距離情報として生成する距離情報生成手段と、
    前記複数の撮像手段の中の少なくとも一つの撮像手段から、時系列に入力される撮像画像の差分に基づいて、前記移動物体の動きを動き情報として生成する動き情報生成手段と、
    前記距離情報で表された距離毎に、前記動き情報で動きのあったと示される画素の数を累計し、最も累計が多くなる距離に前記移動物体が存在する対象距離を設定する対象距離設定手段と、
    前記距離情報に基づいて、前記対象距離設定手段で設定された対象距離に対応する画素からなる対象距離画像を生成する対象距離画像生成手段と、
    前記対象距離画像内において前記対象距離に対応する画素を含んだ所定範囲の領域を、前記移動物体を検出する対象となる対象領域として設定する対象領域設定手段と、
    この対象領域設定手段で設定された対象領域から輪郭を抽出することで、前記移動物体を検出する輪郭抽出手段と、
    を備えていることを特徴とする移動物体検出装置。
  2. 前記対象距離画像生成手段は、少なくとも前記対象距離を基準として奥行き方向の所定範囲内に存在する画素からなる対象距離画像を生成することを特徴とする請求項1に記載の移動物体検出装置。
  3. 前記対象領域設定手段は、前記対象距離画像内における垂直方向の前記対象距離に対応する画素数に基づいて、その画素数がピークとなる位置から水平方向の所定範囲内に前記対象領域を設定することを特徴とする請求項1又は請求項2に記載の移動物体検出装置。
  4. 前記対象領域設定手段は、少なくとも前記撮像手段のチルト角及び設置面からの高さに基づいて、前記対象領域の垂直方向の範囲を設定することを特徴とする請求項1乃至請求項3のいずれか1項に記載の移動物体検出装置。
  5. 前記撮像画像の各画素の色情報又は濃淡情報に基づいて、その撮像画像のエッジを抽出したエッジ画像を生成するエッジ画像生成手段を備え、
    前記対象距離画像生成手段が、前記距離情報に基づいて、前記対象距離に対応する前記エッジ画像の画素を抽出して、前記対象距離画像を生成することを特徴とする請求項1乃至請求項4のいずれか1項に記載の移動物体検出装置。
  6. 前記輪郭抽出手段で抽出された輪郭の内部領域を、前記移動物体の抽出済領域として、前記距離情報を更新する距離情報更新手段を備えたことを特徴とする請求項1乃至請求項5のいずれか1項に記載の移動物体検出装置。
  7. 同期した複数の撮像手段で撮像された撮像画像に基づいて生成された撮像対象までの距離情報と、前記複数の撮像手段の中の少なくとも一つの撮像手段から時系列に入力される撮像画像に基づいて生成された動き情報とにより、前記撮像対象内で動きのある移動物体を検出する移動物体検出方法であって、
    前記距離情報で表された距離毎に、前記動き情報で動きのあったと示される画素の数を累計し、最も累計が多くなる距離に前記移動物体が存在する対象距離を設定する対象距離設定ステップと、
    前記距離情報に基づいて、前記対象距離設定ステップで設定された対象距離に対応する画素からなる対象距離画像を生成する対象距離画像生成ステップと、
    前記対象距離画像内において前記対象距離に対応する画素を含んだ所定範囲の領域を、前記移動物体を検出する対象となる対象領域として設定する対象領域設定ステップと、
    この対象領域設定ステップで設定された対象領域から輪郭を抽出することで、前記移動物体を検出する輪郭抽出ステップと、
    を含んでいることを特徴とする移動物体検出方法。
  8. 同期した複数の撮像手段で撮像された撮像画像に基づいて生成された撮像対象までの距離情報と、前記複数の撮像手段の中の少なくとも一つの撮像手段から時系列に入力される撮像画像に基づいて生成された動き情報とにより、前記撮像対象内で動きのある移動物体を検出するために、コンピュータを、
    前記距離情報で表された距離毎に、前記動き情報で動きのあったと示される画素の数を累計し、最も累計が多くなる距離に前記移動物体が存在する対象距離を設定する対象距離設定手段、
    前記距離情報に基づいて、前記対象距離設定手段で設定された対象距離に対応する画素からなる対象距離画像を生成する対象距離画像生成手段、
    前記対象距離画像内において前記対象距離に対応する画素を含んだ所定範囲の領域を、前記移動物体を検出する対象となる対象領域として設定する対象領域設定手段、
    この対象領域設定手段で設定された対象領域から輪郭を抽出することで、前記移動物体を検出する輪郭抽出手段、
    として機能させることを特徴とする移動物体検出プログラム。
JP2002334970A 2002-11-19 2002-11-19 移動物体検出装置、移動物体検出方法及び移動物体検出プログラム Expired - Fee Related JP3952460B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002334970A JP3952460B2 (ja) 2002-11-19 2002-11-19 移動物体検出装置、移動物体検出方法及び移動物体検出プログラム
US10/713,431 US7251346B2 (en) 2002-11-19 2003-11-17 Moving object detection device, moving object detection method, and moving object detection program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334970A JP3952460B2 (ja) 2002-11-19 2002-11-19 移動物体検出装置、移動物体検出方法及び移動物体検出プログラム

Publications (2)

Publication Number Publication Date
JP2004171189A JP2004171189A (ja) 2004-06-17
JP3952460B2 true JP3952460B2 (ja) 2007-08-01

Family

ID=32699216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334970A Expired - Fee Related JP3952460B2 (ja) 2002-11-19 2002-11-19 移動物体検出装置、移動物体検出方法及び移動物体検出プログラム

Country Status (1)

Country Link
JP (1) JP3952460B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302905A (ja) * 2003-03-31 2004-10-28 Honda Motor Co Ltd 移動体の検出装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4272539B2 (ja) * 2004-01-05 2009-06-03 本田技研工業株式会社 移動物体検出装置、移動物体検出方法、および移動物体検出プログラム
US7376250B2 (en) 2004-01-05 2008-05-20 Honda Motor Co., Ltd. Apparatus, method and program for moving object detection
JP4272538B2 (ja) * 2004-01-05 2009-06-03 本田技研工業株式会社 移動物体検出装置、移動物体検出方法及び移動物体検出プログラム
JP4516516B2 (ja) * 2005-12-07 2010-08-04 本田技研工業株式会社 人物検出装置、人物検出方法及び人物検出プログラム
JP4887540B2 (ja) * 2008-02-15 2012-02-29 本田技研工業株式会社 車両周辺監視装置、車両、車両周辺監視用プログラム、車両周辺監視方法
JP4875652B2 (ja) * 2008-03-31 2012-02-15 三菱重工業株式会社 行動認識システム及びその方法
JP5165540B2 (ja) * 2008-11-20 2013-03-21 日本信号株式会社 身長検出システムおよびこれを用いた自動改札機
US10311595B2 (en) 2013-11-19 2019-06-04 Canon Kabushiki Kaisha Image processing device and its control method, imaging apparatus, and storage medium
JP6429466B2 (ja) * 2013-11-19 2018-11-28 キヤノン株式会社 画像処理装置およびその制御方法、撮像装置、プログラム
JP6732902B2 (ja) * 2016-06-03 2020-07-29 マクセル株式会社 撮像装置および撮像システム
JP6738662B2 (ja) * 2016-06-16 2020-08-12 株式会社エヌ・ティ・ティ・データ 追跡物体発見装置、追跡物体発見方法、およびプログラム
JP6981802B2 (ja) * 2017-08-03 2021-12-17 東芝テック株式会社 寸法測定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210847A (ja) * 1995-02-06 1996-08-20 Ikegami Tsushinki Co Ltd 画像処理方法
JPH09185720A (ja) * 1995-12-28 1997-07-15 Canon Inc 画像抽出装置
JP4010708B2 (ja) * 1999-06-21 2007-11-21 日本ビクター株式会社 機器制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302905A (ja) * 2003-03-31 2004-10-28 Honda Motor Co Ltd 移動体の検出装置

Also Published As

Publication number Publication date
JP2004171189A (ja) 2004-06-17

Similar Documents

Publication Publication Date Title
US11360571B2 (en) Information processing device and method, program and recording medium for identifying a gesture of a person from captured image data
JP4516516B2 (ja) 人物検出装置、人物検出方法及び人物検出プログラム
JP4328286B2 (ja) 顔領域推定装置、顔領域推定方法及び顔領域推定プログラム
JP6030617B2 (ja) 画像処理装置および画像処理方法
US7251346B2 (en) Moving object detection device, moving object detection method, and moving object detection program
KR101870902B1 (ko) 영상 처리 장치 및 영상 처리 방법
KR100799990B1 (ko) 2차원 영상의 3차원 영상 변환 장치 및 방법
JP3952460B2 (ja) 移動物体検出装置、移動物体検出方法及び移動物体検出プログラム
JP4235018B2 (ja) 移動物体検出装置、移動物体検出方法及び移動物体検出プログラム
JP4597391B2 (ja) 顔領域検出装置およびその方法並びにコンピュータ読み取り可能な記録媒体
KR100651034B1 (ko) 대상 물체 검출 시스템 및 그 방법
US11727637B2 (en) Method for generating 3D skeleton using joint-based calibration acquired from multi-view camera
JP4272538B2 (ja) 移動物体検出装置、移動物体検出方法及び移動物体検出プログラム
JP2016081252A (ja) 画像処理装置および画像処理方法
JPWO2005004060A1 (ja) 輪郭抽出装置、輪郭抽出方法及び輪郭抽出プログラム
JP4272539B2 (ja) 移動物体検出装置、移動物体検出方法、および移動物体検出プログラム
JP4584405B2 (ja) 3次元物体検出装置と3次元物体検出方法及び記録媒体
JP4664805B2 (ja) 顔端検出装置、顔端検出方法、及び、プログラム
CN111563912B (zh) 一种行人追踪系统和方法
JP2008090735A (ja) 画像処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070420

R150 Certificate of patent or registration of utility model

Ref document number: 3952460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees