JP3950517B2 - 液体金属冷却型原子炉の蒸気発生器および冷却システム - Google Patents

液体金属冷却型原子炉の蒸気発生器および冷却システム Download PDF

Info

Publication number
JP3950517B2
JP3950517B2 JP18546997A JP18546997A JP3950517B2 JP 3950517 B2 JP3950517 B2 JP 3950517B2 JP 18546997 A JP18546997 A JP 18546997A JP 18546997 A JP18546997 A JP 18546997A JP 3950517 B2 JP3950517 B2 JP 3950517B2
Authority
JP
Japan
Prior art keywords
liquid metal
steam generator
main body
electromagnetic pump
nuclear reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18546997A
Other languages
English (en)
Other versions
JPH1130686A (ja
Inventor
秀貢 松澤
正好 中崎
明洋 大音
亨 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Japan Atomic Power Co Ltd
Original Assignee
Toshiba Corp
Japan Atomic Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Japan Atomic Power Co Ltd filed Critical Toshiba Corp
Priority to JP18546997A priority Critical patent/JP3950517B2/ja
Publication of JPH1130686A publication Critical patent/JPH1130686A/ja
Application granted granted Critical
Publication of JP3950517B2 publication Critical patent/JP3950517B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷却材としてナトリウム等の液体金属を使用する液体金属冷却型原子炉における二次冷却系の構成、特に蒸気発生器およびその蒸気発生器を用いた冷却システムに関するものである。
【0002】
【従来の技術】
冷却材としてナトリウム等の液体金属を使用する液体金属冷却型原子炉、例えば高速増殖炉では、原子炉冷却材としての一次冷却材が放射能を帯びるため、この一次冷却系は蒸気発生系から隔離されている。また、ナトリウムは水と反応し易いため、蒸気発生器で万一ナトリウム水反応が生じた場合にも、一次系にその反応が影響しないように二次冷却系が設置されている。
【0003】
従来の液体金属冷却型原子炉における冷却系について図20を参照して説明する。原子炉容器1の中には、燃料を装荷した炉心2が配置され、この炉心を冷却する液体金属、例えばナトリウム等の冷却材3が装填される。原子炉容器1内には一次ポンプ4が設けられるとともに、一次冷却材と二次冷却材との熱交換を行う中間熱交換器5からなる一次冷却系が設けられている。
【0004】
一方、二次冷却系は、中間熱交換器5と、図示しないタービン発電機に供給する蒸気を生成する蒸気発生器6と、二次冷却材を循環するための二次主循環ポンプ7とにより構成されている。従来の構成では、この二次主循環ポンプ7に機械式ポンプが採用されている。
【0005】
【発明が解決しようとする課題】
上述した従来の二次冷却系の配管構成によれば、二次主循環ポンプ7と蒸気発生器6とが個別に設置され、それらの機器および配管が原子炉補助建屋の空間の大きな割合を占め、建物およびドレンタンクなどの付属設備の規模を大型化するため、設備的に不経済となる問題があった。
【0006】
また、蒸気発生器6と二次主循環電磁ポンプ7とを接続する配管8bの接続部はいずれも固定されたアンカー点になるため、各機器を接続する配管8a,8b,8cには、熱膨脹吸収するために途中部分に配管ループを形成したり、蛇行させる必要があった。そのため、配管が占める空間容積が大きく、付帯設備が大型化する問題があった。
【0007】
このことから従来では、機器構造や配置を簡素化して配管長を短縮する工夫がなされ、例えば特公平7−7088「液体金属冷却型原子炉の冷却装置」等が提案されている。この提案は、蒸気発生器内部に電磁ポンプを合体させ、配管構成の簡素化を図ることを目的に案出されたものであるが、さらに、電磁ポンプが万一の故障の場合にも配管を切断せずに取出して補修できる構成とすることが望まれる。
【0008】
本発明はこのような事情に鑑みてなされたものであり、機器構造および配置を簡素化して配管長を短縮し、それにより原子炉建屋の空間容積の削減およびプラント建設コストの低減が図れるとともに、電磁ポンプ単体を蒸気発生器の内部から配管を切断せずに取外して補修することができる液体金属冷却型原子炉の蒸気発生器および冷却システムを提供することを目的とする。
【0009】
【課題を解決するための手段】
前記の目的を達成するため、請求項1の発明は、液体金属をその内部で流下させる縦長な円筒状の本体胴と、この本体胴の内部中心位置に同軸的に配置され、その内部に前記本体胴内で流下した液体金属を下端側から導入し得る内筒と、この内筒の上部に設けられ、導入した液体金属に上昇流を起こさせる電磁ポンプと、前記本体胴と内筒との間にその内筒を囲む配置で設けられ、その内部に水を流通させることにより液体金属と水との熱交換を行って蒸気を発生させるヘリカルコイル型の伝熱管束とを備えた液体金属冷却型原子炉の蒸気発生器において、前記電磁ポンプは、前記本体胴の上部にボルトで吊り下げ状態で支持され、かつ前記電磁ポンプの出口部は、前記本体胴の上部の電磁ポンプ出口ノズルと連絡管により着脱可能に嵌合され、さらに、本体胴の上部に液体金属入口ノズルが上方から接続され、その液体金属入口ノズルから入った液体金属はヘリカルコイル型の伝熱管束の上部プレナムに排出される構成とされており、かつ前記上部プレナムの液面部にオーバフローノズルを有するオーバフロー管が前記伝熱管束の一部を利用して外部に連通していることを特徴とする液体金属冷却型原子炉の蒸気発生器を提供する。
【0011】
請求項の発明は、請求項1記載の液体金属冷却型原子炉の蒸気発生器において、本体胴の下部にはこの本体胴の下方に設置されたダンプと連通する連通管が設けられ、かつ、その連通管の途中に液体金属と水との反応時の圧力を解放する圧力解放板が設置されていることを特徴とする液体金属冷却型原子炉の蒸気発生器を提供する。
【0012】
請求項の発明は、請求項1記載の液体金属冷却型原子炉の蒸気発生器において、本体胴の低温部位である下部または伝熱管束位置に、その本体胴を支持するためのスカートを設けたことを特徴とする液体金属冷却型原子炉の蒸気発生器を提供する。
【0013】
請求項の発明は、請求項1記載の液体金属冷却型原子炉の蒸気発生器において、ヘリカルコイル型伝熱管束の内側に設置された内筒の内部に電磁ポンプを内包設置し、かつ、その下方にナトリウム−水反応事故時に発生する圧力波を吸収するためのガス空間プレナムを設けたことを特徴とする液体金属冷却型原子炉の蒸気発生器を提供する。
【0014】
請求項5の発明は、液体金属をその内部で流下させる縦長な円筒状の本体胴と、この本体胴の内部中心位置に同軸的に配置され、その内部に前記本体胴内で流下した液体金属を下端側から導入し得る内筒と、この内筒内に設けられ、導入した液体金属に上昇流を起こさせる電磁ポンプと、前記本体胴と内筒との間にその内筒を囲む配置で設けられ、その内部に水を流通させることにより液体金属と水との熱交換を行って蒸気を発生させるヘリカルコイル型の伝熱管束とを備えた液体金属冷却型原子炉の蒸気発生器において、前記電磁ポンプは、前記内筒の上部に設置されたフランジと結合されて吊り下げ状態で支持され、かつ前記内筒の内部に内包設置され、その電磁ポンプの吐出ノズルを出口配管と連絡させ、この出口配管を前記本体胴の下部の鏡板を貫通するよう設置するとともに外部に連通させたことを特徴とする液体金属冷却型原子炉の蒸気発生器を提供する。
【0015】
請求項の発明は、請求項記載の液体金属冷却型原子炉の蒸気発生器において、内包
する電磁ポンプを2基並列した構成とし、その並列した電磁ポンプを上下2段設置として、合計4基の電磁ポンプを並列運転するようにしたことを特徴とする液体金属冷却型原子炉の蒸気発生器を提供する。
【0016】
請求項の発明は、請求項記載の液体金属冷却型原子炉の蒸気発生器において、内包される電磁ポンプは流路構成が二重円筒管構成とされ、かつ二重円筒管の両側に電磁コイルを配置するアニュラリニア型ダブルステータ電磁ポンプであり、その内側ステータの支持は、ステータ下部にて外側と剛接合されており、また、内側ステータの上部は、外側ダクトと軸方向でスライド可能な支持構造とされ、内側ステータ上部には外側ダクトを貫通する電線管が連通することを特徴とする液体金属冷却型原子炉の蒸気発生器を提供する。
【0017】
請求項の発明は、請求項1からまでのいずれかに記載の蒸気発生器を用いた冷却システムであって、オーバフロー管は蒸気発生器の本体胴の下部からに外部に導出されてオーバフロータンクに連通し、そのオーバフロータンク内にはオーバフローしたナトリウムの純化を行うためのコールドトラップが内蔵され、そのコールドトラップで純化したナトリウムは前記蒸気発生器のホットプレナムに汲み上げられるようにしたことを特徴とする液体金属冷却型原子炉の冷却システムを提供する。
【0019】
【発明の実施の形態】
以下、本発明に係る蒸気発生器の実施形態について、図面を参照して説明する。
【0020】
図1および図2は、本発明の第1実施形態による蒸気発生器の構造を示している。
【0021】
本実施形態の蒸気発生器10aは、上下両端部が上鏡板14aおよび下鏡板14bによってそれぞれ閉塞された縦長な円筒状の本体胴14を有し、この本体胴14はその下端部に設けられた支持スカート21により架台27に支持されている。本体胴14の内側には、内部中心位置に同軸的に内筒16が配置されている。
【0022】
この内筒16の周囲には多数本の伝熱管13がヘリカルコイル状に巻回され、層状に配置されてヘリカルコイル型伝熱管束17を構成している。このヘリカルコイル型伝熱管束17の上下両端部は、それぞれ蒸気管板19および給水管板12に接続されている。
【0023】
蒸気管板19および給水管板12は、それぞれ蒸気管台11aおよび給水管台11b内に固定されている。蒸気管台11aは本体胴14の上部外側部に取付けられ、給水管台11bは下鏡板14bに取付けられている。また、本体胴14の上部には液体金属入口ノズル15が設けられ、蒸気発生器上部プレナム内の液体金属を流量配分するためのリングヘッダ15aに接続されている。
【0024】
内筒16の内側上端部には電磁ポンプ22が設けられ、この電磁ポンプ22は液体金属出口ノズルとしての電磁ポンプノズル23に連絡管24を介して接続されている。また、本体胴14の上部には支持フランジ25が設けられ、電磁ポンプ22は吊り下げられた状態で、内筒16に接続された支持フランジ25の上端の平板26とボルト(図示せず)により結合されている。
【0025】
本実施形態に係る液体金属冷却型原子炉の蒸気発生器においては、中間熱交換器によって加熱された液体金属ナトリウムが入口配管を通って液体金属入口ノズル15から本体胴14の内部に供給され、ヘリカルコイル型伝熱管束17の外側を下降しながら給水と熱交換して蒸気を発生せしめる。
【0026】
熱交換により温度が低下した液体金属ナトリウムは、本体胴14の下部で流れが反転して伝熱管束17のコイル中心側に配置されている内筒16内を上昇し、この内筒16に設けられた電磁ポンプ22により吸い出される。
【0027】
また、蒸気発生器10a内の液体金属ナトリウムはオーバフロー方式による自由液面をもち、これにより温度変化による二次系内でのナトリウム体積膨張が吸収される。また、前記の構成によれば、従来設置されていた二次系主循環ポンプの代替として電磁ポンプ22が蒸気発生器10aに内蔵合体されているため、機器配置が簡素化し、配管長も短縮化される。したがって、建屋などの付帯設備の小型化、ひいてはプラント建設コストの低減が図れる。また、電磁ポンプ22の補修は、蒸気発生器に接続される配管を切断しなくても、引き抜き補修が可能となり、保守,補修性が向上し、運転し易いプラントとなる。
【0028】
このように、本実施形態の蒸気発生器によれば、蒸気管台11aと給水管台11bとを本体胴14の上部外側部と下鏡板14bとにそれぞれ設置し、液体金属入口ノズル15および電磁ポンプ出口ノズル23を本体胴4の上部に設置したことから、液体金属配管と水・蒸気配管とが互いに分離される。また、電磁ポンプ出口ノズル23を本体胴14よりも上部に配置することにより、蒸気発生器10aの全高を低くすることができる。
【0029】
さらに、電磁ポンプ22は、内筒16および平板26を介して支持フランジ25にボルトで接合されていること、および電磁ポンプ出口ノズル23と連絡管24とは嵌合構造によって接合されていることから、万一、電磁ポンプ22の補修が必要になった場合にも、本体胴14から容易に引き抜くことができる等の作用効果が奏される。
【0030】
また、本実施形態では、ヘリカルコイル型の伝熱管束17の上部プレナム13の内液面部にオーバフローノズル20が設置されている。このオーバフローノズル20にはオーバフロー管20aが接続され、このオーバフロー管20aはヘリカルコイル型伝熱管束17の一部を利用して構成してある。オーバフローした液体金属ナトリウムは、下鏡板14bに設けられたオーバフローノズル管20aの下端から図示しないオーバフロータンクに流出する。
【0031】
このような構成によれば、オーバフロー管20aを設置することにより、プラントの起動・停止に伴う液体金属の膨張・収縮による蒸気発生器内の液体金属ナトリウムの液面の変動高さを考慮する必要がなくなり、蒸気発生器全高の低減が可能となる。
【0032】
なお、本実施形態では、万一の伝熱管13の破損事故に備え、下鏡板14bに破損時の発生圧力を蒸気発生器の下部に設置されたダンプタンク(図示せず)に開放するため、該ダンプタンクと連通するための連通配管40が設けられている。この連通配管40の途中には、圧力解放板が設置されている。
【0033】
このような構成によれば、下鏡板14bの圧力開放ラインが形成されるので、事故時においても信頼性の高い圧力解放系を供給でき、主系統における発生圧力の低減および反応生成物の移動を抑止することができる。また、事故後の補修範囲の縮小化および構造材への影響も抑止することができる。
【0034】
また、本体胴14の下部には、蒸気発生器10aを建屋躯体である架台27に支持するための支持スカート21が設けられ、蒸気発生器10aを下置き支持しており、この支持スカート21の具体的な設置レベルは、蒸気発生器10aの上方向への熱膨張による変位量が、図示しない中間熱交換器の上方向への熱膨張による変位量とほぼ等しくなるような位置としている。
【0035】
このように、支持スカート21を蒸気発生器の本体胴14の下部に設けることにより、以下の効果がある。
【0036】
まず、蒸気発生器10aの下部は、内包する液体金属ナトリウムの温度が給水側の熱交換より低温となった部位であり、そこを支持スカート21による支持位置とすることで、支持スカート21に生じる熱応力を小さくすることができ、支持スカート21の構造健全性上有利なものとなる。
【0037】
また、蒸気発生器を下置きとすることで、蒸気発生器は、運転中は上方向に熱膨張する。これに従い、液体金属入口ノズル15および電磁ポンプ出口ノズル23にも上方向への変位量が生じる。
【0038】
ここで、液体金属入口ノズル15および電磁ポンプ出口ノズル23に接続する図示しない二次主冷却系配管は中間熱交換器に接続されているが、その中間熱交換器と二次主冷却系配管接続部も熱膨張により上方向に延びる構造となっている。そこで、中間熱交換器および蒸気発生器が互いに上方向にほぼ同じ変位量で延びることから両者の相対変位は相殺され、引き回される二次主冷却系配管には強制変位が作用せず、二次主冷却系配管の構造健全性上有利なものとなる。
【0039】
図3および図4は本実施形態の変形例を示している。
【0040】
この変形例では、本体胴14の上部プレナム13内に複数の電磁ポンプ30を環状配置で設けてある。これらの電磁ポンプ30の上方に、1つの電磁ポンプ出口ノズル23が、複数の電磁ポンプ30の吐出流量を混合して流出させるために、上鏡板14a部に配置して設けてある。その他の構成は図1と略同様である。
【0041】
このような構成によれば、中規模の電磁ポンプ30を複数配置することにより、万一、1基が故障しても他の3基による運転が可能となり、プラント稼働率の向上に繋る。
【0042】
図5は、本発明に係る蒸気発生器の第2実施形態を示している。
【0043】
本実施形態の蒸気発生器10bでは、内筒16内に電磁ポンプ50をヘリカルコイル型伝熱管束17の内側レベルまで懸架し、上部フランジである平板26により吊下げ支持している。内筒16の下方には、下端部を蒸気発生器のコールドプレナム51側に解放し、その内部にガス空間プレナム52を有するバッファ53が設置されている。
【0044】
この蒸気発生器10bの入口ノズル54から流入した高温の液体金属ナトリウムは、内筒16の周囲のヘリカルコイル型伝熱管束17を下降する間に熱交換した後、蒸気発生器底部で反転し、内筒16内を上昇する。上昇した液体金属ナトリウムは、電磁ポンプ50に吸い込まれ、出口配管55を通って図示しない二次主冷却系配管に送り出される。
【0045】
また、蒸気発生器底部には、放出系ノズル56が設けられており、万一、伝熱管束17にリークが生じた場合には、ナトリウム・水反応時の圧力により、放出系ノズル56の下流に設置された図示しないラプチャーディスクが破壊し、反応生成物は、放出系ノズル56の下流側の図示しないダンプタンク内に放出される。
【0046】
本実施形態によれば、電磁ポンプ50をヘリカルコイル型伝熱管束17の内方に設置することにより、電磁ポンプ50の周辺温度を低くすることができる。すなわち、入口ノズル54から流入した高温の液体金属ナトリウムが伝熱管束17に沿って下降するに従い熱交換により温度が低下する領域に、電磁ポンプ50を設置することで、電磁ポンプ50に対するナトリウムの熱的影響を緩和し、電磁ポンプ50の健全性向上を図ることができる。
【0047】
また、ガス空間プレナム52を有するバッファ53を設置することにり、ナトリウム・水反応が生じた場合に発生する大きな圧力を緩和することができる。すなわち、ナトリウム・水反応が生じると、そのとき発生する圧力が伝播し、蒸気発生器のみならず、蒸気発生器に繋る図示しない中間熱交換器、ダンプタンク等の機器に影響し、構造設計上の重要な要因とになっている。本実施形態ではバッファ53を設置することにより、ナトリウム・水反応時の圧力を緩和することができ、圧力を受ける機器の設計の合理化、健全性の向上を図ることができる。
【0048】
図6および図7は、本発明の第3実施形態を示している。
【0049】
本実施形態の蒸気発生器10cでは、センターパイプとしての内筒16内に電磁ポンプ60を蒸気発生器の上部フランジ25から吊り下げ支持している。
【0050】
この電磁ポンプ60は吸込口61を電磁ポンプ上方に設け、吐出口62を下方に設けている。この吐出口62は、蒸気発生器底部に溶接固定された出口配管63に嵌合部からの漏れを抑制するようピストンリングシール64を設けた部分で嵌合される。
【0051】
入口ノズル65から入った高温の液体金属ナトリウムが、内筒16の周囲の伝熱管束17の間を下降する間に伝熱管束17内の水と熱交換した後、約300°となって、蒸気発生器底部で反転し、内筒16を上昇する。上昇した液体金属ナトリウムは、電磁ポンプ60の周囲を上昇し、吸込口61から電磁ポンプ60に吸い込まれ、電磁ポンプ本体で加圧される。そして、吐出口62から吐出され、出口配管63を通って、図示しない二次主冷却系配管に送り出される。ピストンリングシール64を設けた嵌合部は、電磁ポンプ60と出口配管63との間の熱膨張変位差を吸収する。
【0052】
本実施形態によれば、電磁ポンプ60の出口配管63を蒸気発生器底部に設けたことにより、熱交換して約350°と温度の低くなったナトリウムを内包する出口配管63を、ほぼ同じ温度のナトリウム中を通して蒸気発生器底部に貫通させることができ、上部の高温ナトリウム(約500℃)領域で蒸気発生器壁を貫通する場合に比べて出口配管貫通部の構造信頼性を高めることができる。
【0053】
なお、本実施形態においては、図8および図9に示すように、大容量の電磁ポンプ1基に代えて、複数基の小型の電磁ポンプ60aを並列に設置する構成としてもよい。この場合、1基で用いた場合の1/4の流量の小型のポンプを4基設置している。
【0054】
このような構成によれば、蒸気発生器10cの外径は多少大きくなるが、電磁ポンプ60aの1基毎に図示しない逆流防止装置を設け、1基故障時にも残りのポンプを運転することにより、1基設置で電磁ポンプが故障した場合のように流量が0となることはない。
【0055】
図10は、本発明の第4実施形態を示している。
【0056】
本実施形態の蒸気発生器10dでは、図8,9に示した第3実施形態の変形例と同様に、内筒16内に図6,7に示した電磁ポンプの約1/4の容量を有する同仕様の4基の電磁ポンプ70が設置されている。但し、この電磁ポンプ70は図11,12に示すように、上下2基ずつのもの70a,70a,70b,70bに分かれており、上部2基の電磁ポンプ70aは、蒸気発生器上部の支持フランジ25の平板26から、支持筒71を介して吊り下げ支持されている。下部2基の電磁ポンプ70bは、上部2基の電磁ポンプ70aに接続された支持板72を介して支持されている。
【0057】
上部2基の電磁ポンプ70aは、上部に吸い込み口73を有し、吐出口74は、出口配管75に嵌合されている。出口配管75は、蒸気発生器底部に設けた吐出ヘッダ76に溶接固定されている。
【0058】
下部2基の電磁ポンプ70bは、上部2基の電磁ポンプ70aの並びと平面上で直角に交差した配置で設置され、上面側の吸込み口77を有し、吐出口76は、吐出ヘッダに嵌合接続される。前記4基の電磁ポンプ70から吐出された液体金属ナトリウムは、吐出ヘッダ76に集まり、蒸気発生器10dから吐出される。
【0059】
このように構成された本実施形態の電磁ポンプ内蔵型の蒸気発生器10dによれば、図6に示した蒸気発生器とほぼ同一径の内筒16内に4基の電磁ポンプ70を設置することができ、図示しない例えば逆止弁のような逆流防止装置を設けることで、電磁ポンプが1基故障しても、残りのポンプを運転することにより、電磁ポンプ1基のみ設置の場合のように流量が0となることはない。なお、本実施形態の変形例としては、図示しないが1基設置時の電磁ポンプ容量の1/2容量の電磁ポンプを2基上下に並べて設置した構成とすることも可能である。
【0060】
図13〜図15は、本発明の第5実施形態を示している。
【0061】
本実施形態の蒸気発生器10eでは電磁ポンプ80の外側ステータ81を支持するケーシング82の下端に、内側に突出した内側ステータサポート83が設けられ、この内側ステータサポート83上に内側ステータ84が固定設置支持されている。
【0062】
また、内側ステータ84の上部には、振れ止め用サポート85が設けられ、外側ステータダクト86との間で接触支持されている。内側ステータ84の頂部には、ケーブル配管87が溶接により接続され、ケーブル配管87は、出口配管88を貫通し、上部ガス空間で開口する。
【0063】
以上のように構成された電磁ポンプ80により、内側ステータ84は、内側ステータサポート83により支持され、また内側コイルに電源供給を行う図示していない内側ステータケーブルは、ケーブル配管86内を通して外部に引き出される。
【0064】
以上のように構成された電磁ポンプ80により、内側ステータ84の重量を、上部で外側ダクト86により支持する場合は、ステータ支持のために外側ダクトの厚肉化または支持構造の追加が必要であったものが、もともと外側ステータ80を支持するために厚肉構造であったケーシング87により支持することができ、構造を簡素化することができる。
【0065】
また、内側ステータ用電源ケーブルを通過させるケーブル配管87を内側ステータ84の頂部に設けたことにより、電源ケーブルを最短距離で上部へ導くことができ、図示しない蒸気発生器外へ取り出すことができる。
【0066】
図16および図17は、本発明の第6実施形態を示している。
【0067】
本実施形態の蒸気発生器10fの基本構成は、図6に示した第3実施形態と略同様であるが、電磁ポンプ90が本体胴14の上方に設けられたコンクリート製の据付床91から支持円筒92を介してこれと一体となった内筒16内に吊り下げ支持される点が異なる。また、支持円筒92と蒸気発生器上部とは、ベローズ93により結合されている。
【0068】
このように構成された電磁ポンプ内蔵型の蒸気発生器において、電磁ポンプ90は、据付床91から支持円筒92によって吊り下げ支持される、なお、据付床91は、建屋から支持された支持構造物等を適用してもよい。また、蒸気発生器上部と支持円筒92とを結合するベローズ93により、蒸気発生器の熱膨張変位と支持円筒92との熱膨張変位差とを吸収しながら、蒸気発生器内の雰囲気と外気の気密を保持している。
【0069】
図18は、本発明に係る冷却システムの実施形態としての第7実施形態を示している。
【0070】
この図18に示すように、本実施形態の冷却システムでは、蒸気発生器100のホットプレナム内にオーバーフローノズル101が設置され、設定液位を超えた液体金属ナトリウム102は、オーバーフローノズル101を介し、オーバーフローライン103を介して下降するようになっている。オーバーフローライン103は、伝熱管104とともにヘリカルコイルを構成しており、オーバーフローした高温の液体金属ナトリウムは下降するに従って蒸気発生器100の胴部内を流れる液体金属ナトリウム102の温度低下に伴って温度が下がる。
【0071】
低温となったオーバーフローナトリウムは、蒸気発生器100より低いレベルに設置されたオーバーフロータンク105に流入する。オーバーフロータンク105に流入した液体金属ナトリウムは、オーバーフロータンク105内に設置されたコールドトラップ106により純化された後、汲上げ電磁ポンプ107により汲み上げられ、再び蒸気発生器100に戻される。即ち、本実施形態では、オーバーフロータンク105が全ループ兼用となっている。
【0072】
このように構成された本実施形態の冷却システムによると、オーバーフロータンク105内にコールドトラップ106を内蔵したことにより、ナトリウム純化系機器の配置スペースを削減することができ、コンパクトな配置設計が可能となる。
【0073】
図19は第7実施形態の変形例を示している。即ち、この図19の変形例では、汲上げ電磁ポンプ107により汲み上げられた液体ナトリウムを、二次主冷却系のコールドレグ配管108に、還流ライン109を介して戻すようにしたものである。
【0074】
このような構成によっても、前記同様に、機器配置スペースの削減、構成のコンパクト化等の効果が奏される。
【0075】
【発明の効果】
以上で詳述したように、本発明によれば、ナトリウム配管切断等を必要とすることなく、電磁ポンプを単独で蒸気発生器から引き抜くことが可能な電磁ポンプ内蔵型の蒸気発生器を実現することができ、それによりポンプと蒸気発生器とを接続するナトリウム配管が削減でき、配置スペースも削減することができる。したがって、液体金属冷却型原子炉の二次冷却系を簡素化し、プラント建設コストを低減することができる等の優れた効果が奏される。
【図面の簡単な説明】
【図1】本発明に係る蒸気発生器の第1実施形態を示す全体断面図。
【図2】図1のA−A線断面図。
【図3】前記第1実施形態の変形例を示す全体断面図。
【図4】図3のB−B線断面図。
【図5】本発明に係る蒸気発生器の第2実施形態を示す全体断面図。
【図6】本発明に係る蒸気発生器の第3実施形態を示す全体断面図。
【図7】図6のC−C線断面図。
【図8】前記第3実施形態の変形例を示す全体断面図。
【図9】図8のD−D線断面図。
【図10】本発明に係る蒸気発生器の第4実施形態を示す全体断面図。
【図11】図10のE−E線断面図。
【図12】図10のF−F線断面図。
【図13】本発明に係る蒸気発生器の第5実施形態を示す要部断面図。
【図14】図13のG−G線断面図。
【図15】図13のH−H線断面図。
【図16】本発明に係る蒸気発生器の第6実施形態を示す全体断面図。
【図17】図16のI−I線断面図。
【図18】本発明に係る冷却システムの実施形態である第7実施形態を示す系統図。
【図19】図18の変形例を示す系統図。
【図20】従来の蒸気発生器の構成を説明するための構成図。
【符号の説明】
1 原子炉容器
2 炉心
3 冷却材
4 一次ポンプ
5 中間熱交換器
6 蒸気発生器
7 二次主循環ポンプ
8a,8b,8c 配管
10a,10b,10c,10d,10e 蒸気発生器
13 伝熱管
14 本体胴
14a 上鏡板
14b 下鏡板
11a 蒸気管台
11b 給水管台
12 給水管板
15 液体金属入口ノズル
15a リングヘッダ
16 内筒
17 ヘリカルコイル型伝熱管束
19 蒸気管板
20 オーバフローノズル
20a オーバフロー管
21 支持スカート
22 電磁ポンプ
23 電磁ポンプノズル
24 連絡管
25 フランジ
26 平板
27 架台
40 連通配管
30 電磁ポンプ
50 電磁ポンプ
51 コールドプレナム
52 ガス空間プレナム
53 バッファ
54 入口ノズル
55 出口配管
56 放出系ノズル
60,60a 電磁ポンプ
61 吸込口
62 吐出口
63 出口配管
64 ピストンリングシール
65 入口ノズル
70,70a,70a,70b,70b 電磁ポンプ
72 支持板
73 吸い込み口
74 吐出口
75 出口配管
76 吐出ヘッダ
77 吸込み口
80 電磁ポンプ
81 外側ステータ
82 ケーシング
83 ステータサポート
84 内側ステータ
85 振れ止め用サポート
86 外側ステータダクト
87 ケーブル配管
88 出口配管
90 電磁ポンプ
91 据付床
92 支持円筒
93 ベローズ
100 蒸気発生器
101 オーバーフローノズル
102 液体金属ナトリウム
103 オーバーフローライン
104 伝熱管
105 オーバーフロータンク
106 コールドトラップ
107 汲上げ電磁ポンプ
108 コールドレグ配管
109 還流ライン

Claims (8)

  1. 液体金属をその内部で流下させる縦長な円筒状の本体胴と、この本体胴の内部中心位置に同軸的に配置され、その内部に前記本体胴内で流下した液体金属を下端側から導入し得る内筒と、この内筒の上部に設けられ、導入した液体金属に上昇流を起こさせる電磁ポンプと、前記本体胴と内筒との間にその内筒を囲む配置で設けられ、その内部に水を流通させることにより液体金属と水との熱交換を行って蒸気を発生させるヘリカルコイル型の伝熱管束とを備えた液体金属冷却型原子炉の蒸気発生器において、
    前記電磁ポンプは、前記本体胴の上部にボルトで吊り下げ状態で支持され、かつ前記電磁ポンプの出口部は、前記本体胴の上部の電磁ポンプ出口ノズルと連絡管により着脱可能に嵌合され、
    さらに、本体胴の上部に液体金属入口ノズルが上方から接続され、その液体金属入口ノズルから入った液体金属はヘリカルコイル型の伝熱管束の上部プレナムに排出される構成とされており、かつ前記上部プレナムの液面部にオーバフローノズルを有するオーバフロー管が前記伝熱管束の一部を利用して外部に連通していることを特徴とする液体金属冷却型原子炉の蒸気発生器。
  2. 請求項1記載の液体金属冷却型原子炉の蒸気発生器において、本体胴の下部にはこの本体胴の下方に設置されたダンプと連通する連通管が設けられ、かつ、その連通管の途中に液体金属と水との反応時の圧力を解放する圧力解放板が設置されていることを特徴とする液体金属冷却型原子炉の蒸気発生器。
  3. 請求項1記載の液体金属冷却型原子炉の蒸気発生器において、本体胴の低温部位である下部または伝熱管束位置に、その本体胴を支持するためのスカートを設けたことを特徴とする液体金属冷却型原子炉の蒸気発生器。
  4. 請求項1記載の液体金属冷却型原子炉の蒸気発生器において、ヘリカルコイル型伝熱管束の内側に設置された内筒の内部に電磁ポンプを内包設置し、かつ、その下方にナトリウム−水反応事故時に発生する圧力波を吸収するためのガス空間プレナムを設けたことを特徴とする液体金属冷却型原子炉の蒸気発生器。
  5. 液体金属をその内部で流下させる縦長な円筒状の本体胴と、この本体胴の内部中心位置に同軸的に配置され、その内部に前記本体胴内で流下した液体金属を下端側から導入し得る内筒と、この内筒内に設けられ、導入した液体金属に上昇流を起こさせる電磁ポンプと、前記本体胴と内筒との間にその内筒を囲む配置で設けられ、その内部に水を流通させることにより液体金属と水との熱交換を行って蒸気を発生させるヘリカルコイル型の伝熱管束とを備えた液体金属冷却型原子炉の蒸気発生器において、
    前記電磁ポンプは、前記内筒の上部に設置されたフランジと結合されて吊り下げ状態で支持され、かつ前記内筒の内部に内包設置され、その電磁ポンプの吐出ノズルを出口配管と連絡させ、この出口配管を前記本体胴の下部の鏡板を貫通するよう設置するとともに外部に連通させたことを特徴とする液体金属冷却型原子炉の蒸気発生器。
  6. 請求項5記載の液体金属冷却型原子炉の蒸気発生器において、内包する電磁ポンプを2基並列した構成とし、その並列した電磁ポンプを上下2段設置として、合計4基の電磁ポンプを並列運転するようにしたことを特徴とする液体金属冷却型原子炉の蒸気発生器。
  7. 請求項6記載の液体金属冷却型原子炉の蒸気発生器において、内包される電磁ポンプは流路構成が二重円筒管構成とされ、かつ二重円筒管の両側に電磁コイルを配置するアニュラリニア型ダブルステータ電磁ポンプであり、その内側ステータの支持は、ステータ下部にて外側と剛接合されており、また、内側ステータの上部は、外側ダクトと軸方向でスライド可能な支持構造とされ、内側ステータ上部には外側ダクトを貫通する電線管が連通することを特徴とする液体金属冷却型原子炉の蒸気発生器。
  8. 請求項1から7までのいずれかに記載の蒸気発生器を用いた冷却システムであって、オーバフロー管は蒸気発生器の本体胴の下部からに外部に導出されてオーバフロータンクに連通し、そのオーバフロータンク内にはオーバフローしたナトリウムの純化を行うためのコールドトラップが内蔵され、そのコールドトラップで純化したナトリウムは前記蒸気発生器のホットプレナムに汲み上げられるようにしたことを特徴とする液体金属冷却型原子炉の冷却システム。
JP18546997A 1997-07-10 1997-07-10 液体金属冷却型原子炉の蒸気発生器および冷却システム Expired - Lifetime JP3950517B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18546997A JP3950517B2 (ja) 1997-07-10 1997-07-10 液体金属冷却型原子炉の蒸気発生器および冷却システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18546997A JP3950517B2 (ja) 1997-07-10 1997-07-10 液体金属冷却型原子炉の蒸気発生器および冷却システム

Publications (2)

Publication Number Publication Date
JPH1130686A JPH1130686A (ja) 1999-02-02
JP3950517B2 true JP3950517B2 (ja) 2007-08-01

Family

ID=16171328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18546997A Expired - Lifetime JP3950517B2 (ja) 1997-07-10 1997-07-10 液体金属冷却型原子炉の蒸気発生器および冷却システム

Country Status (1)

Country Link
JP (1) JP3950517B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660125B2 (ja) * 2004-06-17 2011-03-30 株式会社東芝 電磁ポンプ内蔵型中間熱交換器
JP2011075490A (ja) * 2009-10-01 2011-04-14 Toshiba Corp 液体金属冷却型原子炉
JP2012088240A (ja) * 2010-10-21 2012-05-10 Toshiba Corp 冷却装置および原子力蒸気供給システム
CN105911087B (zh) * 2016-06-01 2019-05-07 西安交通大学 一种大型核反应堆熔融池自然对流换热试验系统及方法
CN108986941B (zh) * 2017-06-02 2024-02-09 核动力运行研究所 一种传热管检修定位装置结构
CN112652414B (zh) * 2020-12-16 2022-11-01 中国人民解放军海军工程大学 反应堆蒸汽发生器c型管束
CN115440401A (zh) * 2022-08-16 2022-12-06 核动力运行研究所 一种铅铋堆直流蒸汽发生器

Also Published As

Publication number Publication date
JPH1130686A (ja) 1999-02-02

Similar Documents

Publication Publication Date Title
RU2408094C2 (ru) Ядерный реактор, в частности ядерный реактор с жидкометаллическим охлаждением
JP6542233B2 (ja) 原子炉圧力容器のための熱制御システム及び原子炉圧力容器チューブシート
CN114220569B (zh) 一种紧凑型球床高温气冷堆一回路装置
JP3950517B2 (ja) 液体金属冷却型原子炉の蒸気発生器および冷却システム
JPH0271196A (ja) ナトリウム冷却型原子炉用の組合せ体
JP2010066191A (ja) 中間熱交換器及び高速増殖炉プラント
JPS62185192A (ja) 原子炉圧力容器
US4909981A (en) Nuclear reactor
JPH0380277B2 (ja)
US4761261A (en) Nuclear reactor
JPH0426079B2 (ja)
JPH052959B2 (ja)
JP3720949B2 (ja) 液体金属冷却型原子炉の冷却設備
JP2554721B2 (ja) 液体金属冷却型原子炉の冷却装置
JPH07260994A (ja) 電磁ポンプ内蔵型中間熱交換器
JP2508538Y2 (ja) 高速増殖炉の冷却ユニット
JPH03128481A (ja) 二重タンク型原子炉
JP4660125B2 (ja) 電磁ポンプ内蔵型中間熱交換器
JPH03110500A (ja) 原子炉の蒸気発生装置
JPS63193092A (ja) 液体金属冷却型原子炉の冷却装置
JPS60195487A (ja) 一体構造式加圧水型原子炉
JPH0660722B2 (ja) 蒸気発生器
JPS6358290A (ja) 液体金属冷却型原子炉の冷却装置
JPS6381294A (ja) タンク型高速増殖炉
JPS62278485A (ja) 原子炉構造

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050930

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

EXPY Cancellation because of completion of term