JP3944644B2 - 質量測定チップの製造方法 - Google Patents
質量測定チップの製造方法 Download PDFInfo
- Publication number
- JP3944644B2 JP3944644B2 JP2003057500A JP2003057500A JP3944644B2 JP 3944644 B2 JP3944644 B2 JP 3944644B2 JP 2003057500 A JP2003057500 A JP 2003057500A JP 2003057500 A JP2003057500 A JP 2003057500A JP 3944644 B2 JP3944644 B2 JP 3944644B2
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric vibrating
- vibrating piece
- flat plate
- mass measuring
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Description
【発明の属する技術分野】
本発明は質量測定チップ、質量測定装置および質量測定チップの製造方法に係り、特に圧電振動片を用いて検体溶液における特定物質の濃度等を測定する質量測定チップに関するものである。
【0002】
【従来の技術】
食品や生化学、環境などの分野で、特定物質の有無や濃度等を測定するため、水晶振動子マイクロバランス法が利用されている。その具体的な方法は、まず圧電振動片における一方の励振電極の表面に、検出すべき特定物質の感応膜を塗布する。そして、検出物質を含む検体溶液中にその圧電振動片を浸漬する。すると、検体溶液中の検出物質が感応膜と結合し、励振電極の質量が増加する。この励振電極の質量増加にともなって、圧電振動片の共振周波数が低下する。これにより、検体溶液中における検出物質の有無を判断することができる。
【0003】
ところで、圧電振動片を検体溶液中に浸漬する際に、その両面に形成した励振電極が相互に短絡すると、圧電振動片を発振させることができなくなる。そこで、感応膜を塗布しない他方の励振電極を被覆部材等で覆うことにより、当該励振電極を検体溶液から封止して、電極間の短絡を防止する必要がある。
【0004】
図7に、特許文献1に記載された質量測定チップの説明図を示す。なお、図7(1)は平面図であり、図7(2)は図7(1)のG−G線における側面断面図である。この質量測定チップ503は、矩形状の圧電平板の両面に円形状の励振電極522a,522bを形成した圧電振動片520を備えている。また、圧電振動片520の一方面側には、絶縁性薄板からなる被覆部材550が接着剤558によって接着されている。これにより、一方面側の励振電極522bが検体溶液から封止され、電極間の短絡が防止されている。さらに、各励振電極にはリード線524が取り付けられ、リード線524の検体溶液に浸漬する部分は接着剤558によって被覆されている。
【0005】
図8に、従来の質量測定装置の説明図を示す。質量測定装置501において、上述した質量測定チップ503は外部の発振回路540に接続されている。質量の測定は、励振電極522aの表面に上述した感応膜(不図示)を塗布した上で、質量測定チップ503を検体溶液7中に浸漬して行う。まず、発振回路540により質量測定チップ503の圧電振動片を発振させ、周波数カウンタ5により圧電振動片の共振周波数を測定する。上述したように、検体溶液中の検出物質が感応膜と結合し励振電極の質量が増加すると、圧電振動片の共振周波数が低下する。そこで、コンピュータ6によりこの共振周波数の低下量等を解析して、検体溶液中の特定物質の有無および濃度等を算出する。
【0006】
【特許文献1】
特開平6−138125号公報
【0007】
【発明が解決しようとする課題】
近時、質量測定チップには、高感度化、小型化およびマルチセンサ化が要求されている。
質量測定チップを高感度化するには、圧電振動片を高周波化する必要がある。
そして圧電振動片を高周波化するには、振動部の肉厚を薄くする必要がある。しかし、図7に示す従来の質量測定チップ503において、肉厚の薄い圧電振動片520を実装すると、接着時の加圧や接着剤558の固化により圧電振動片520に応力が作用し、圧電振動片520が破損する場合がある。一方、図8に示す従来の質量測定装置501では、質量測定チップ503の圧電振動片と発振回路540との電気長が長いため、伝送経路の損失が大きくなる。そして、この状態で高周波の圧電振動片を検体溶液中に浸漬して使用すると、圧電振動片の発振が不安定になる。以上の理由から、質量測定チップの高感度化に対応できないという問題がある。
また、質量測定チップを小型化するには、圧電振動片を小型化する必要がある。しかし圧電振動片を小型化すると、製造工程における取り扱いが困難になるという問題がある。
【0008】
一方、質量測定チップのマルチセンサ化とは、同時に多種類の検出物質の測定を可能にすることをいう。質量測定チップをマルチセンサ化するには、多数の圧電振動片を同時に使用する必要がある。しかし、図7に示す質量測定チップ503では、圧電振動片520の個片と被覆部材550の個片とを接合して質量測定チップ503を製造するため、多数の圧電振動片を備えた質量測定チップを効率的に製造することができない。その結果、質量測定チップのマルチセンサ化に対応できないという問題がある。
【0009】
本発明は上記問題点に着目し、高感度化、小型化およびマルチセンサ化に対応することが可能な、質量測定チップ、質量測定装置および質量測定チップの製造方法の提供を目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る質量測定チップは、貫通孔を有する平板と、前記平板の一方面側に配置された圧電振動片とを有し、前記貫通孔を通して前記圧電振動片の励振電極を前記平板の他方面側に露出させつつ、前記貫通孔が密閉封止されるように、前記圧電振動片を前記平板に接合した構成とした。圧電振動片を平板に接合するので、肉厚の薄い圧電振動片の場合でも、実装時の加圧や接着剤の固化により圧電振動片に大きな応力が作用することはなく、圧電振動片の破損を防止することができる。したがって、肉厚の薄い高周波の圧電振動片を使用することが可能となり、質量測定チップを高感度化することができる。
【0011】
また、複数の貫通孔を有する平板と、前記平板の一方面側に配置された複数の圧電振動片とを有し、前記各貫通孔を通して前記各圧電振動片の励振電極を前記平板の他方面側に露出させつつ、前記各貫通孔が密閉封止されるように、前記各圧電振動片を前記平板に接合した構成とした。これにより、低コストで質量測定チップをマルチセンサ化することができる。
【0012】
また、前記圧電振動片は逆メサ型圧電振動片であって、前記圧電振動片の厚肉の周縁部を前記平板に接合する構成としてもよい。逆メサ型圧電振動片では、厚肉の周縁部により薄肉の振動部が保護されて、振動部の破壊が防止される。これにより、高周波の圧電振動片を使用することが可能となり、質量測定チップを高感度化することができる。
【0013】
また前記平板は、前記圧電振動片を構成する圧電材料と熱膨張係数が同等のガラス材料によって構成してもよい。これにより、平板および圧電振動片の熱膨張率および熱収縮率が同等となるので、両者の接合部における破壊を防止することができる。
【0014】
また、前記平板の一方面側に発振回路を形成して、前記発振回路と前記圧電振動片とを電気的に接続する構成としてもよい。これにより、発振回路と圧電振動片との電気長が短くなって、伝送経路の損失が小さくなる。よって、高周波の圧電振動片を検体溶液中で安定して発振させることが可能となり、質量測定チップを高感度化することができる。
【0015】
また、接着剤または低融点ガラスを介して、前記圧電振動片を前記平板に接合する構成としてもよい。これにより、貫通孔を良好に密閉封止することができる。また、前記圧電振動片を前記平板に陽極接合する構成としてもよい。この場合、接合部からガスが発生しないので、ガス分子の付着による圧電振動片の周波数変化を防止することができる。
【0016】
また、前記平板の一方面側に筐体を設けて、前記平板の一方面側を外部から封止する構成としてもよい。この場合、圧電振動片の上下面に形成した電極相互の短絡がないので、質量測定チップを検体溶液に浸漬して使用することができる。
【0017】
一方、本発明に係る質量測定チップの製造方法は、平板に複数の貫通孔を形成する工程と、前記平板の一方面側に複数の圧電振動片を接合することにより、前記各貫通孔を通して前記各圧電振動片の励振電極を前記平板の他方面側に露出させつつ、前記各貫通孔を密閉封止する工程と、前記各圧電振動片を接合する工程の後に、前記平板を個片に分離する工程を有する構成とした。この場合、平板を製造トレイとして使用することが可能になり、圧電振動片を小型化した場合でも、製造工程における取り扱いが容易になる。したがって、質量測定チップを小型化することができる。また、平板を個片に分離すれば通常の質量測定チップが完成し、平板を個片に分離しなければ、マルチセンサ化されたしつ量測定チップを得ることができる。したがって、特段の製造コストを要することなく、質量測定チップをマルチセンサ化することができる。また、前記圧電振動片は、圧電材料を平板状に切り出す工程と、前記平板状に切り出された前記圧電材料に凹部を形成して薄肉部を形成する工程と、前記薄肉部に励振電極を形成する工程と、を含む製造工程によって逆メサ型に形成することを特徴とする。
【0018】
【発明の実施の形態】
本発明に係る質量測定チップ、質量測定装置および質量測定チップの製造方法の好ましい実施の形態を、添付図面に従って詳細に説明する。なお、本実施形態では圧電振動片として逆メサ型圧電振動片を使用するが、平板状のATカット圧電振動片など他の圧電振動片を使用することも可能である。
【0019】
図1に、本実施形態に係る質量測定チップの説明図を示す。なお、図1(1)は平面図であり、図1(2)は図1(1)のA−A線における側面断面図であり、図1(3)は底面図である。本実施形態に係る質量測定チップ2は、貫通孔12を有する平板10と、平板10の下面側に配置された圧電振動片20とを有し、貫通孔12を通して圧電振動片20の励振電極22aを平板10の上面側に露出させつつ、貫通孔12が密閉封止されるように圧電振動片20を平板10に接合し、さらに発振回路を構成するIC40を平板10の下面側に接合して、圧電振動片20とIC40とを電気的に接続したものである。
【0020】
本実施形態に係る質量測定チップは、従来の質量測定チップを高感度化したものである。質量測定チップの感度は、次式で表すことができる。
【数1】
ただし、dfは圧電振動片の共振周波数の変化量、f0は圧電振動片の共振周波数の初期値、ρは圧電材料の密度、μは圧電材料のせん断応力、dmは励振電極に結合した検出物質の質量、Aは励振電極の面積である。上式からわかるように、圧電振動片の共振周波数の初期値f0が高いほど、その変化量dfが大きくなり、質量測定チップが高感度化する。例えば、f0を従来の27MHzから150MHzまで高周波化すれば、感度を30倍にすることができる。そして圧電振動片を高周波化するには、圧電振動片の振動部における肉厚を薄くすればよい。
【0021】
そこで本実施形態では、圧電振動片20としていわゆる逆メサ型圧電振動片を使用する。逆メサ型圧電振動片は、水晶等の圧電材料を平板状に切り出し、その中央に凹部を形成して薄肉化し、その薄肉部の両面に励振電極22a,22bを形成したものである。また、圧電振動片20の周縁の厚肉部には、励振電極22a,22bと導通する接続電極24a,24bを形成する。なお、各電極はAu/CrまたはAg/Crの2層によって構成する。このような逆メサ型圧電振動片では、周縁の厚肉部により中央の薄肉振動部が保護されるので、外力による振動部の破壊を防止することができる。これにより、高周波の圧電振動片が利用可能となり、質量測定チップを高感度化することができる。一方、本実施形態で使用するIC40は、発振回路を構成する集積回路素子である。
【0022】
また、圧電振動片20およびIC40を実装する平板10を形成する。平板10は、圧電材料と同等の熱膨張係数を有する材料で構成するのが好ましい。なお、代表的な圧電材料である水晶の熱膨張係数は、X方向(長手方向)が13.8×10-6/℃程度であり、Y方向(厚さ方向)が9.61×10-6/℃程度である。そこで、熱膨張係数が11.0×10-6/℃程度のソーダガラスにより平板10を構成する。これにより、平板10および圧電振動片20の熱膨張率および熱収縮率が同等となるので、両者の接合部における破壊を防止することができる。一方、平板10の中央部には貫通孔12を形成する。貫通孔12は、矩形や円形など任意の形状に形成すればよいが、少なくとも圧電振動片20の上面側における励振電極22aの全体が貫通孔12を通して平板10の上面側に露出する大きさに形成する。また、平板10の下面上に配線パターン14を形成する。配線パターン14は、Au/CrまたはAg/Crの2層により、貫通孔12の周辺部からIC40の実装位置付近にかけて形成する。
【0023】
そして、平板10の下面側に圧電振動片20を配置する。圧電振動片20は、励振電極22aの全体が貫通孔12を通して平板10の上面側に露出するように配置する。また、接続電極24aが配線パターン14と対面するように圧電振動片20を配置する。そして、圧電振動片の周縁厚肉部を、平板10の貫通孔12の周辺部に対して、接着剤18により接合する。なお、貫通孔12を密閉封止すべく、貫通孔12の周辺部の全周を接着剤18により接合する。ここで、Agペースト等の導電性接着剤を使用することにより、圧電振動片20の上面側の接続電極24aと配線パターン14とを電気的に接続することができる。
【0024】
一方、平板10の下面側に接着剤38を介してIC40を接合する。そして、圧電振動片20とIC40とを電気的に接続する。具体的には、配線パターン14とIC40とをワイヤボンディングで接続することにより、IC40から圧電振動片20の上面側の励振電極22aに対して通電可能とする。また、圧電振動片20の下面側の接続電極24bとIC40とをワイヤボンディングで接続することにより、IC40から圧電振動片20の下面側の励振電極22bに対して通電可能とする。
【0025】
図2に、質量測定チップの変形例の説明図を示す。なお、図2(1)は図2(2)のB−B線における側面断面図であり、図2(2)は底面図である。質量測定チップの具体的な構成は、上記以外の様々な構成とすることができる。図2に示す質量測定チップ102では、圧電振動片120の上面側の接続電極124aを、圧電振動片120の側面および下面に延長形成する。なお、圧電振動片120の下面には、上面側の接続電極124aと下面側の接続電極124bとを並べて配置する。一方、平板110の下面上には配線パターンを形成しない。そして、平板110と圧電振動片120とを、Si系等の絶縁性接着剤118により接合する。なお、平板110の下面に低融点ガラスを介して圧電振動片120を接合してもよい。さらに、圧電振動片120の下面上に形成した接続電極124a,124bとIC140とを、ワイヤボンディングにより接続する。この質量測定チップ102では、平板110の下面に配線パターンを形成しないので、製造コストを削減することができる。
【0026】
図3に、陽極接合の説明図を示す。なお、図3(1)は図3(2)のC−C線における側面断面図であり、図3(2)は底面図である。平板210と圧電振動片220との接合は、陽極接合によって行うことも可能である。陽極接合する圧電振動片220には、図2の圧電振動片120と同様に、Au/CrまたはAg/Crの2層により励振電極および接続電極を形成する。これと同時に、圧電振動片220の上面側の周縁部全周に、Au/CrまたはAg/Crの2層により下層側接合電極226rを形成する。さらにその下層側接合電極226rの上層に、Al材料により上層側接合電極226sを形成する。一方、陽極接合する平板210は、NaやLiなどのアルカリ金属を含むガラス材料によって構成する。そして、平板210の下面に圧電振動片220を密着させてプラス電極を接続し、平板210の上面にダミー電極219を密着させてマイナス電極を接続し、数百から千Vの電圧を印加する。この状態で、300℃〜350℃の雰囲気中に所定時間保持すれば、圧電振動片220の上層側接続電極226sと平板210との間が陽極接合される。このように、平板210と圧電振動片220とを陽極接合すれば、接合部からガスが発生しないので、ガス分子の付着による圧電振動片の周波数変化を防止することができる。
【0027】
図1に示す質量測定チップ2は、貫通孔12に検体溶液を滴下して使用すれば、検出物質の濃度等を測定することが可能である。しかし、質量測定チップ2を検体溶液に浸漬して使用する場合には、圧電振動片20の上下面に形成した電極が検体溶液により短絡するのを防止する必要がある。この場合には、図4に示すように、質量測定チップ2の平板10の下面に筐体50を設けて、新たな質量測定チップ3を形成すればよい。筐体50は、プラスチック材料等によって構成し、平板10の下面全体を被覆できる大きさに形成する。この筐体50は接着剤58等を介して平板10に接合する。なお、IC40から周波数カウンタ5(図6参照)への配線は、ビニルチューブ52等で被覆する。この質量測定チップ3では圧電振動片20の上下面に形成した電極相互の短絡がないので、質量測定チップ3を検体溶液に浸漬して使用することができる。
【0028】
次に、上述した本実施形態に係る質量測定チップの製造方法について説明する。本実施形態に係る質量測定チップは、平板の個片と圧電振動片の個片とを形成した上で、両者を接合して製造することも可能である。しかし以下の方法によれば、複数の質量測定チップを同時に製造することができる。
【0029】
図5に、本実施形態に係る質量測定チップの製造方法の説明図を示す。なお、図5(1)は図5(2)のE−E線における側面断面図であり、図5(2)は底面図である。本実施形態では、複数の平板を形成可能な大きさの平板材料ウエハ8において、複数の質量測定チップを形成する。まず、平板材料ウエハ8における各質量測定チップ形成領域に、エッチング等により貫通孔12を形成する。これと並行して、複数の圧電振動片20を形成しておく。次に、ウエハ8の下面における各貫通孔12の周辺部全周に接着剤(不図示)を塗布する。なお、各圧電振動片20の上面における周縁部全周に接着剤(不図示)を塗布してもよい。次に、各貫通孔12をふさぐように各圧電振動片20を接合する。そして、切断線9に沿ってウエハ8を切断し、個片に分離する。その後、各個片にICを実装して、ICと圧電振動片20とを電気的に接続すれば、質量測定チップが完成する。
【0030】
なお、ウエハ8の各質量測定チップの形成領域にICを実装し、これらと各圧電振動片20とを電気的に接続した後に、ウエハ8を個片に分離してもよい。この場合、複数の質量測定チップをほぼ同時に製造することが可能となり、製造時間の短縮化、製造工程の簡略化および製造コストの削減を図ることができる。なお、あらかじめウエハ8の切断線9に溝を形成しておくとよい。これにより、ウエハ8の切断時における不規則な割れの発生を回避することが可能になり、高価なICを無駄に廃棄することがなくなる。
【0031】
なお、ウエハ8の各質量測定チップの形成領域にICを実装し、これらと各圧電振動片20とを電気的に接続した段階で、マルチセンサ化された質量測定チップを得ることができる。このマルチセンサ化された質量測定チップは、各圧電振動片の励振電極に異なる感応膜を塗布した上で検体溶液に浸漬する。これにより、1回で多種類の検出物質を測定することができる。このように本実施形態では、質量測定チップの製造工程において、ウエハ8を個片に分離すれば通常の質量測定チップが完成し、ウエハ8を個片に分離しなければマルチセンサ化された質量測定チップを得ることができる。したがって、特段の製造コストを要することなく、質量測定チップをマルチセンサ化することができる。
【0032】
また、平板状のATカット圧電振動片を実装する場合には、各圧電振動片の上面のみに電極を形成してウエハに接合し、各圧電振動片の下面を研磨した後に、その下面に電極を形成することも可能である。この場合、研磨により各圧電振動片の厚さが均一化され、共振周波数のばらつきを低減することができる。
【0033】
また、貫通孔を形成した平板材料ウエハに対して、複数の圧電振動片を形成した圧電材料ウエハを接合してもよい。この場合には、平板材料ウエハと圧電材料ウエハとを同時に切断して個片に分離すればよい。これにより、さらなる製造時間の短縮化、製造工程の簡略化および製造コストの削減が可能となる。
【0034】
次に、上述した本実施形態に係る質量測定チップの使用方法について説明する。
図6に、本実施形態に係る質量測定装置の説明図を示す。本実施形態に係る質量測定チップ3は、周波数カウンタ5に接続する。周波数カウンタ5は、質量測定チップ3における圧電振動片の共振周波数を測定するものである。また、周波数カウンタ5はコンピュータ6に接続する。コンピュータ6は、周波数カウンタ5が測定した圧電振動片の共振周波数から、励振電極に付着した検出物質の質量を算出するものである。加えて、検出物質の付着量の経時変化から、検体溶液7中における検出物質の濃度等を解析し得るようにコンピュータ6を構成するのが好ましい。
【0035】
質量測定の具体的手順は以下の通りである。まず、図4に示す質量測定チップ3において、圧電振動片20の上面側の励振電極22aに検出物質の感応膜を塗布する。次に、発振回路を構成するIC40により圧電振動片20を発振させる。なお、図6に示す周波数カウンタ5により、圧電振動片の共振周波数を連続的に計測しておく。そして、図6に示すように、検体溶液7中に質量測定チップ3を浸漬する。検体溶液7中では、圧電振動片の励振電極上の感応膜に対して検出物質が結合する。これにより励振電極の質量が増加して、圧電振動片の共振周波数が低下する。この共振周波数の低下量等をコンピュータ6で解析することにより、検出物質の有無および濃度等を算出することができる。
【0036】
なお、質量測定チップを検体溶液に浸漬して使用するだけでなく、質量測定チップに検体溶液を滴下して使用することも可能である。具体的には、図4に示す質量測定チップ3において、圧電振動片20の上面側の励振電極22aに検出物質の感応膜を塗布した後、貫通孔12を通して検体溶液を滴下すればよい。なお、検体溶液を滴下して使用する場合には、筐体50により圧電振動片20の下面側の励振電極22bを被覆する必要がない。したがって、図1に示す質量測定チップ2を使用することも可能である。また、質量測定チップを検体ガスに暴露して使用することにより、検体ガス中の特定物質の質量を測定することも可能である。
【0037】
また、励振電極に感応膜を塗布した状態で商品化する場合など、感応膜の塗布から測定までの時間が長い場合には、感応膜の性能が劣化するおそれがある。ところが本実施形態では、平板の上面にシールを貼り付けて、貫通孔を閉塞することができる。これにより、励振電極の周囲を気密封止することが可能となり、感応膜の性能の劣化を防止することができる。なお測定時には、平板の上面に貼り付けたシールをはがして使用すればよい。
【0038】
以上に詳述した本実施形態に係る質量測定チップにより、高感度化、小型化およびマルチセンサ化に対応することが可能となる。
すなわち本実施形態では、貫通孔を有する平板と、平板の下面側に配置された圧電振動片とを有し、貫通孔を通して圧電振動片の励振電極を平板の上面側に露出させつつ、貫通孔が密閉封止されるように、圧電振動片を平板に接合した構成とした。圧電振動片を平板に接合するので、肉厚の薄い圧電振動片の場合でも、実装時の加圧や接着剤の固化により圧電振動片に大きな応力が作用することはなく、圧電振動片の破損を防止することができる。したがって、肉厚の薄い高周波の圧電振動片を使用することが可能となり、質量測定チップを高感度化することができる。
【0039】
また本実施形態では、発振回路を構成するICを平板の下面側に接合して、そのICと圧電振動片とを電気的に接続した構成とした。これにより、圧電振動片とICとの電気長が短くなって、伝送経路の損失が小さくなる。よって、高周波の圧電振動片を検体溶液中で安定して発振させることが可能となり、質量測定チップを高感度化することができる。
【0040】
また本実施形態では、平板に複数の貫通孔を形成する工程と、平板の一方面側に複数の圧電振動片を接合することにより、各貫通孔を通して各圧電振動片の励振電極を平板の他方面側に露出させつつ、各貫通孔を密閉封止する工程と、平板を個片に分離する工程とを有する構成とした。この場合、平板材料ウエハを製造トレイとして使用することが可能になり、圧電振動片を小型化した場合でも、製造工程における取り扱いが容易になる。したがって、質量測定チップを小型化することができる。また、平板を個片に分離すれば通常の質量測定チップが完成し、平板を個片に分離しなければマルチセンサ化された質量測定チップを得ることができる。したがって、特段の製造コストを要することなく、質量測定チップをマルチセンサ化することができる。
【0041】
なお、本実施形態では、本発明に係る質量測定チップないし質量測定装置をバイオセンサとして使用する方法について説明したが、本発明に係る質量測定チップないし質量測定装置は、例えば、においセンサや水分センサ、メッキ膜厚モニタ、イオンセンサ、粘度/密度計などとして使用することも可能である。まず、においセンサとして使用する場合には、におい物質を選択的に吸着する感応膜を励振電極の表面に塗布すればよい。また、水分センサとして使用する場合には吸水膜を塗布すればよい(特開平7−209165号公報参照)。
【0042】
一方、メッキ膜厚モニタとして使用する場合には、メッキ対象物とともに質量測定チップをメッキ液中に浸漬する。この場合、励振電極の表面に付着したメッキ膜厚の増加とともに、圧電振動片の共振周波数が低下する。したがって、メッキ対象物のメッキ膜厚を検知することができる。また、イオンセンサとして使用する場合には、圧電振動片の一方の電極を検体溶液に接触させて作用電極とし、銀−塩化銀電極または白金線を対極とする電解セルを用いて、ある電解電圧で一定時間電着させる。そして、圧電振動片の周波数変化量を測定することにより、検体溶液中のイオンの定量分析を行うことができる。
【0043】
一方、本発明に係る質量測定チップないし質量測定装置により、質量以外の微小量を測定することも可能である。以下に、本発明に係る質量測定チップないし質量測定装置を、粘度/密度計として使用する場合の測定原理を説明する。ATカット圧電振動子は、その表面に沿って厚み滑り振動する。このATカット圧電振動子を液体中に浸漬して発振させると、液体との間にせん断応力を生じる。そこで、ニュートンの粘性の式と水晶振動子の振動の式とから、液体の粘性による周波数変化量を表す次式が導かれる。
【数2】
ただし、dfは圧電振動片の共振周波数の変化量、f0は圧電振動片の共振周波数の初期値、ηは液体の粘度、ρLは液体の密度、μは圧電材料の弾性率である。上式において、液体の粘度ηまたは液体の密度ρLのいずれか一方を一定とすれば、いずれか他方と共振周波数の変化量とが一対一に対応する。したがって、共振周波数の変化量を測定することにより、液体の粘度変化または液体の密度変化を求めることができる。
【図面の簡単な説明】
【図1】 本実施形態に係る質量測定チップの説明図である。
【図2】 質量測定チップの変形例の説明図である。
【図3】 陽極接合の説明図である。
【図4】 筐体を設けた質量測定チップの側面断面図である。
【図5】 本実施形態に係る質量測定チップの製造方法の説明図である。
【図6】 本実施形態に係る質量測定装置の説明図である。
【図7】 従来の質量測定チップの説明図である。
【図8】 従来の質量測定装置の説明図である。
【符号の説明】
2………質量測定チップ、10………平板、12………貫通孔、14………配線パターン、18………接着剤、20………圧電振動片、22a,22b………励振電極、24a,24b………接続電極、38………接着剤、40………IC。
Claims (2)
- 平板に複数の貫通孔を形成する工程と、
前記平板の一方面側に複数の圧電振動片を接合することにより、前記各貫通孔を通して前記各圧電振動片の励振電極を前記平板の他方面側に露出させつつ、前記各貫通孔を密閉封止する工程と、
前記各圧電振動片を接合する工程の後に、前記平板を個片に分離する工程を有することを特徴とする質量測定チップの製造方法。 - 請求項1の質量測定チップの製造方法において、
前記圧電振動片は、圧電材料を平板状に切り出す工程と、前記平板状に切り出された前記圧電材料に凹部を形成して薄肉部を形成する工程と、前記薄肉部に励振電極を形成する工程と、を含む製造工程によって逆メサ型に形成することを特徴とする質量測定チップの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003057500A JP3944644B2 (ja) | 2003-03-04 | 2003-03-04 | 質量測定チップの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003057500A JP3944644B2 (ja) | 2003-03-04 | 2003-03-04 | 質量測定チップの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004264255A JP2004264255A (ja) | 2004-09-24 |
JP3944644B2 true JP3944644B2 (ja) | 2007-07-11 |
Family
ID=33120904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003057500A Expired - Fee Related JP3944644B2 (ja) | 2003-03-04 | 2003-03-04 | 質量測定チップの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3944644B2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007010523A (ja) * | 2005-06-30 | 2007-01-18 | Kyocera Kinseki Corp | 微少質量測定用センサー |
JP4669767B2 (ja) * | 2005-09-30 | 2011-04-13 | 株式会社アルバック | センサ及びこれを使用した装置 |
WO2007037386A1 (ja) * | 2005-09-30 | 2007-04-05 | Ulvac, Inc. | センサ及びこれを使用した装置 |
JP4781784B2 (ja) * | 2005-10-31 | 2011-09-28 | 京セラキンセキ株式会社 | 微少質量測定用センサの構造 |
JP4432990B2 (ja) | 2007-03-22 | 2010-03-17 | セイコーエプソン株式会社 | センサ及び電子機器 |
-
2003
- 2003-03-04 JP JP2003057500A patent/JP3944644B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004264255A (ja) | 2004-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9034264B2 (en) | Biosensor | |
US7148611B1 (en) | Multiple function bulk acoustic wave liquid property sensor | |
JP3876842B2 (ja) | 質量測定チップおよび質量測定装置 | |
JP3717696B2 (ja) | Qcmセンサデバイス | |
US8269568B2 (en) | Method for manufacturing piezoelectric vibrator, piezoelectric vibrator, and oscillator | |
JP4618492B2 (ja) | 弾性表面波センサ | |
JP3944644B2 (ja) | 質量測定チップの製造方法 | |
JP3933340B2 (ja) | マルチチャンネルqcmセンサデバイス | |
US20140203688A1 (en) | Method for manufacturing electronic device, electronic device | |
JP4616123B2 (ja) | 分析用マイクロセンサ | |
JP2004286585A (ja) | 質量測定チップおよびその製造方法ならびに質量測定装置 | |
JP4223997B2 (ja) | 分析用マイクロセンサ | |
JP4530361B2 (ja) | 物質検出素子の製造方法 | |
JP4707104B2 (ja) | 振動素子の製造方法 | |
JP4567393B2 (ja) | マイクロリアクターおよびマイクロリアクターシステム | |
JP2003240694A (ja) | マルチチャネル微量質量センサ | |
JP2004264256A (ja) | 質量測定方法および質量測定装置 | |
KR100336084B1 (ko) | 큐씨엠 센서 | |
JP2004245785A (ja) | 質量測定用圧電振動子、質量測定装置および質量測定方法 | |
JP3954430B2 (ja) | 濃度測定方法 | |
JP2005274578A (ja) | Qcmセンサデバイス | |
JP6267447B2 (ja) | 感知装置及び圧電センサ | |
JP2008164472A (ja) | Qcmセンサー | |
Day et al. | Biosensor | |
JP2004245719A (ja) | 質量測定方法および質量測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040916 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060905 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070313 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070326 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061106 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110420 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110420 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120420 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140420 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |