JP3942282B2 - Polishing method and apparatus - Google Patents

Polishing method and apparatus Download PDF

Info

Publication number
JP3942282B2
JP3942282B2 JP23499598A JP23499598A JP3942282B2 JP 3942282 B2 JP3942282 B2 JP 3942282B2 JP 23499598 A JP23499598 A JP 23499598A JP 23499598 A JP23499598 A JP 23499598A JP 3942282 B2 JP3942282 B2 JP 3942282B2
Authority
JP
Japan
Prior art keywords
polishing
polished
water
ions
vicinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23499598A
Other languages
Japanese (ja)
Other versions
JP2000052235A5 (en
JP2000052235A (en
Inventor
勇蔵 森
憲雄 木村
充彦 白樫
康 當間
明 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP23499598A priority Critical patent/JP3942282B2/en
Publication of JP2000052235A publication Critical patent/JP2000052235A/en
Publication of JP2000052235A5 publication Critical patent/JP2000052235A5/ja
Application granted granted Critical
Publication of JP3942282B2 publication Critical patent/JP3942282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリッシング方法及び装置に関し、特に、半導体ウエハ、金属、セラミックス等の被研磨材を平坦かつ鏡面状に研磨するのに用いるポリッシング方法及び装置に関するものである。
【0002】
【従来の技術】
近年、半導体デバイスの高集積化が進むにつれて回路の配線が微細化し、配線間距離もより狭くなりつつある。これに伴い、光リソグラフィなどで回路形成を行なう場合に焦点深度が浅くなるので、ステッパの結像面のより高い平坦度を必要とする。半導体ウエハの表面を平坦化する手段として、図5に示すように、上面に研磨クロス(研磨布)10を貼り付けた研磨テーブル12と、基板(半導体ウエハ)Wを保持しつつ研磨テーブル12に押しつけるトップリング14とを具備した化学・機械的研磨装置(CMP)が用いられている。
【0003】
このような構成の研磨装置において、トップリング14の下面に基板Wを保持し、基板Wを回転している研磨テーブル12の上面の研磨クロス10に昇降シリンダにより押圧する。一方、研磨砥液ノズル16から研磨砥液Qを流すことにより、研磨クロス10に研磨砥液Qが保持され、基板Wの研磨される面(下面)と研磨クロス10の間に研磨砥液Qが存在する状態で研磨が行われる。スラリーとしては、例えばシリコンウエハを研磨する場合には、KOH等でpHを調整したケミカル溶液中にシリカの微粒子等を分散させたものが用いられる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記の従来の技術においては、研磨後のウエハの後洗浄を充分に行わなければならない、あるいは、スラリーや洗浄液の排液処理のための負荷が大きい等の課題があった。
【0005】
本発明は、ケミカルの使用を抑制しつつ、研磨後のウエハの洗浄や排液処理の負荷を減少させ、かつ効率的に研磨を行なう方法及び装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1に記載の発明は、被研磨材の被研磨面と、少なくとも一部にイオン交換体を含む通水性を有する研磨部材の研磨面の間に超純水、又は砥粒を懸濁させた純水を供給しつつ、前記被研磨面の近傍に所定の電界を形成して水中のイオンを前記被研磨面の近傍に偏在させながら前記被研磨面と前記研磨面を互いに接触させつつ相対移動させることにより、前記被研磨面を化学機械的に研磨することを特徴とするポリッシング方法である。
【0007】
これにより、超純水中のOH-イオン又はH+イオンを前記被研磨面の近傍に偏在させ、ケミカルを用いることなしに、化学・機械的研磨を行なうことができる。
【0008】
請求項2に記載の発明は、前記イオン交換体は、水の解離を促進して前記被研磨面近傍のイオンを増加させることを特徴とする請求項1に記載のポリッシング方法である。
【0010】
磨部材を、イオン交換膜と通常の研磨パッドで構成してもよいし、イオン交換不織布のようなイオン交換体を含む素材やイオン交換体からなる素材で形成してもよく、もしくはイオン交換膜の上にイオン交換不織布を取り付けることによりイオン交換膜のイオン偏在化作用をさらに助長するようにしても良い。このような素材は、研磨部材中のイオンの移動性を高めるので、イオンの移動に必要な電圧を大幅に低下させることができる。イオン交換不織布はそれ自身がOHイオン又はHイオンを保持する機能を有するので、被研磨材面の近くに偏在したイオンを維持して処理速度を高める作用をも有する。
【0011】
請求項に記載の発明は、研磨面を有し、少なくとも一部にイオン交換体を含む通水性を有する研磨部材と、被研磨材を把持し、被研磨材の被研磨面を前記研磨面に接触させる把持装置と、前記研磨部材及び把持装置を前記被研磨面と前記研磨面とを互いに接触させつつ相対移動させる移動手段と、前記研磨部材の研磨面及び前記被研磨部材の被研磨面の間に超純水、又は砥粒を懸濁させた純水を供給する超純水供給装置と、前記被研磨面の近傍の水中のイオンを偏在させる電界を形成する電界形成手段とを有することを特徴とするポリッシング装置である。
請求項に記載の発明は、前記電界形成手段は、電圧を制御することにより前記被研磨面の近傍における水中のイオンの濃度を調整することを特徴とする請求項記載のポリッシング装置である。
【0013】
求項に記載の発明は、前記研磨部材は、イオン交換体からなる素材と、イオン交換膜が積層されていることを特徴とする請求項3又は4記載のポリッシング装置である。
【0014】
【発明の実施の形態】
以下、本発明に係るポリッシング装置の実施の形態を、図1ないし図4に基づいて説明する。このポリッシング装置は、表面に研磨クロスを貼付したターンテーブル12と、これに対向して配置されたトップリング(基板把持装置)14とを有する点は図5に示す従来のポリッシング装置と同様である。
【0015】
ターンテーブル12及びトップリング14にはこれらをそれぞれのシャフト周りに水平面内で回転させる駆動装置が設けられ、トップリング14には真空吸着等の方法で基板を下面に保持する保持機構と、被研磨材である基板Wの下側被研磨面をターンテーブル12の研磨クロス10の面上に押し付ける押圧機構が設けられている。
【0016】
ターンテーブル12とトップリング14の間には、トップリング14側を正とする所定の電圧を付加する直流電源20が設けられている。電源20からの配線は、それぞれ摺動端子や内部配線を介してトップリング14の基板取付面及びターンテーブル12の工具取付面を形成する定盤22に接続されている。定盤22の工具取付面には、水の解離を促進する触媒としてイオン交換膜24が貼付され、さらにその上面に研磨クロス10が貼付されている。これらのイオン交換膜24とクロス10で研磨部材が構成されている。
【0017】
イオン交換膜24としては、陽イオン交換膜、陰イオン交換膜のいずれをも用いることができる。素材としては周知の任意のものを採用することができるが、厚さ、気孔率、強度、弾性等の特性は研磨クロス10の裏面に配するのに好適なように設定することが望ましい。
【0018】
このポリッシング装置は、図5のものと異なり、研磨クロス10と基板Wの間に研磨液をターンテーブル12内部から供給する内部給水方式を採っている。すなわち、定盤22には複数の給水溝(又は孔)26と排水溝(又は孔)28が設けられ、定盤22の裏面側にはこれらの給水又は排水溝(又は孔)に連通する給水・排水マニホールド30が形成されている。この給水・排水マニホールド30はそれぞれシャフト12aを貫通する内部流路32,34及び流体継手等を介して外部の給水・排水配管に連絡されている。
【0019】
以下、この実施の形態のポリッシング装置による研磨工程を説明する。給水配管より、超純水を研磨液としてターンテーブル12のマニホールド30に供給すると、この研磨液は、図2に示すように定盤22の給水溝からイオン交換膜24へと供給され、通水性の研磨クロス10を介して研磨クロスと基板Wの被研磨面の間に供給される。
【0020】
ここで、トップリング14とターンテーブル12の間にトップリング14が正となる所定の電圧を印加すると研磨液中に電界が形成され、これによって超純水中のH+イオン及びOH-イオンが移動する。この結果、図2に示すように、基板W面近傍ではOH-イオンが濃化し、定盤22近傍ではH+イオンが濃化する。基板W近傍のOH-イオンの濃度は、基板Wの材質やその他の研磨条件によって適宜選択され、その濃度は電源電圧を制御することにより調整される。
【0021】
このようなイオンの分離は、陽イオン交換膜又は陰イオン交換膜の存在によって促進される。すなわち、図3(a)に示すように陽イオン交換膜を用いた場合には、水のイオン化が促進され、基板W側のH+イオンのみが定盤22側に移動し、図3(b)に示すように陰イオン交換膜を用いた場合には、定盤22側のOH-イオンのみが基板W側に移動し、それぞれ基板W近傍にOH-イオンが局在化しやすくなる。なお、強酸性イオン交換膜の一例としては、ナフィオン117(Dupont社製)のものが挙げられる。
【0022】
図4に、純水中でイオン交換膜を用いて所定の電圧をかけた場合のイオン偏在化効果を、用いない場合と比較して示す。図4では、試料、電極に各々白金(Pt)を用い、イオン交換膜は厚さ200μmのナフィオン117(Dupont社製)を用いた。図4から分かるように、イオン交換膜を使用した方が電流が多く流れ、即ち水の解離が多く起こっていることが分かる。また、イオン交換膜に加えてさらにイオン交換繊維をも用いた場合には、より多くの電流が流れることも分かっている。
【0023】
超純水中でイオン交換膜を用いて所定の電圧をかけてイオンを偏在させ、これによって金属(銅)板の表面の加工を行った結果を、表1に示す。ここでは、容器内に満たした超純水中に、陰極となる白金電極板と陽極となる銅製の試料を一定のギャップを保持して浸漬するとともに、両電極間に陽イオン交換膜(ナフィオン117)を配設し、前記容器の全体を気密容器内に収容して、その内部をArガスでパージする構造である。これにより、超純水中でイオン交換膜を用いてイオンを偏在させることで、加工が可能であることが分かる。
【0024】
【表1】

Figure 0003942282
【0025】
図2の状態で、トップリング14により基板Wを研磨クロス10面上に押し付けながら、トップリング14及びターンテーブル12を各々水平面内で回転させて研磨を行なう。基板Wの近傍にはOH-イオンが所定の濃度で濃化しているので、基板W上のシリコンやシリコン酸化膜の溶解が促進され、化学的・機械的研磨がケミカルによるpH調整を行わずに達成できる。
【0026】
給水溝26から供給された研磨液の多くの部分は、上述したように研磨クロス10の表面に供給され、研磨作用を行った後にターンテーブル12の回転に伴う遠心力によって、研磨屑を同伴しつつ研磨クロス10の周辺側に流れ、縁部から飛散する。イオン交換膜24の裏面側の研磨液にはH+イオンが濃化するが、これは給水溝26と交互に配置された排水溝28から排出される。
【0027】
+イオンが濃化した研磨液は、ターンテーブル12から飛散した研磨液と合流させることにより、それに含まれるOH-イオンと中和してしまうので、特別な処理をする必要が無い。以上のように、この化学的・機械的研磨工程では、pH調整のためのケミカルを用いていないので、研磨後の基板Wの洗浄や、ケミカルを含む排液の処理の手間が軽減される。
【0028】
研磨クロス10は、従来から用いられている通常の研磨クロスを用いても良いが、本実施の形態では、例えばイオン交換不織布のようなイオン交換体を含む素材やイオン交換体からなる素材で形成している。これにより、イオン交換膜24のイオン偏在化作用をさらに助長することができ、水の解離を促進する触媒としての役割を有する。イオン交換不織布は、例えば−N(CHOHのような強塩基性の官能基を有するイオン交換体を含む繊維であり、グラフト重合法、放射線グラフト重合法によって作製する。このような素材は、研磨部材中のイオンの移動性を高めるので、イオンの移動に必要な電圧を大幅に低下させることができる。さらに、イオン交換不織布はそれ自身がOHイオン又はHイオンを保持する機能を有するので、基板Wの被研磨面近傍に偏在したイオンを維持して処理速度を高める作用をも有する。
【0029】
上記においては、研磨クロス10とイオン交換膜24を別体としたが、これを一体に形成してもよい。これにより、研磨部材としての高い機能性を有するより特化した研磨クロスを提供することができ、現場で2層構造を形成する必要もないので作業性も良い。また、イオン交換膜を用いず、研磨部材をイオン交換不織布のみで構成してもよい。
【0030】
また、上記においては、研磨液をターンテーブル12側から供給する内部給水方式を採用し、砥粒は用いていないが、図5に示すような研磨砥液ノズル16からの外部給水方式も研磨条件に応じて採用することができ、この場合は砥粒を用いても良い。砥粒を用いる場合も、従来のようなKOHベースのスラリーは用いずに、純水中にSiO2粒子などの砥粒を懸濁させたものを用いる。砥粒を介在させることにより、機械的作用が促進され、研磨速度が増す。
【0031】
この場合、H+イオンが濃化した研磨液は、先の実施の形態のように定盤22に排水溝28を設けて排水してもよく、また、遠心力により定盤22の縁部から排出するようにしてもよい。後者の場合には、定盤22の中心から縁部に向かう排水促進溝を形成してもよい。また、内部給水方式と外部給水方式を併用してもよい。
【0032】
なお、上記においては、OH-イオンを基板側に濃化させる例を説明したが、銅配線などの金属を研磨する場合には、H+イオンを基板側に濃化させるように電極や、陰イオン交換膜を配置する。
【0033】
【発明の効果】
以上説明したように、この発明によれば、超純水中のOH-イオン又はH+イオンを前記被研磨面の近傍に偏在させることにより、ケミカルを用いることなしに、化学・機械的研磨を行なうことができる。従って、ケミカルの使用を抑制しつつ、研磨後のウエハの洗浄や排液処理の負荷を減少させ、かつ効率的に研磨を行なうことができる。
【図面の簡単な説明】
【図1】この発明の1つの実施の形態のポリッシング装置の構成を示す断面図である。
【図2】図1の要部を拡大して示す図である。
【図3】図1のポリッシング装置の作用を説明する模式図である。
【図4】イオン交換膜を用いた場合のイオン偏在化効果を、用いない場合と比較して示す図である。
【図5】従来のポリッシング装置の構成を示す図である。
【符号の説明】
10 研磨クロス
12 ターンテーブル
14 トップリング
20 電源
22 定盤
24 イオン交換膜
26 給水溝
28 排水溝
30 マニホールド
W 基板(半導体ウエハ)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polishing method and apparatus, and more particularly to a polishing method and apparatus used for polishing a material to be polished such as a semiconductor wafer, metal, ceramics, etc. to a flat and mirror surface.
[0002]
[Prior art]
In recent years, as semiconductor devices are highly integrated, circuit wiring is becoming finer and the distance between wirings is becoming narrower. Along with this, the depth of focus becomes shallow when circuit formation is performed by optical lithography or the like, so that a higher flatness of the imaging surface of the stepper is required. As means for flattening the surface of the semiconductor wafer, as shown in FIG. 5, a polishing table 12 having a polishing cloth (polishing cloth) 10 attached to the upper surface and a polishing table 12 while holding a substrate (semiconductor wafer) W are provided. A chemical / mechanical polishing apparatus (CMP) having a top ring 14 to be pressed is used.
[0003]
In the polishing apparatus having such a configuration, the substrate W is held on the lower surface of the top ring 14, and the substrate W is pressed against the polishing cloth 10 on the upper surface of the polishing table 12 rotating by the lifting cylinder. On the other hand, by flowing the polishing abrasive liquid Q from the polishing abrasive liquid nozzle 16, the polishing abrasive liquid Q is held on the polishing cloth 10, and the polishing abrasive liquid Q is interposed between the surface (lower surface) of the substrate W to be polished and the polishing cloth 10. Polishing is performed in the presence of. As a slurry, for example, when a silicon wafer is polished, a slurry in which fine particles of silica are dispersed in a chemical solution whose pH is adjusted with KOH or the like is used.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional technique, there are problems such as sufficient post-cleaning of the polished wafer, and a large load for slurry and cleaning liquid drainage treatment.
[0005]
An object of the present invention is to provide a method and an apparatus for reducing the load of cleaning and draining a wafer after polishing while suppressing the use of chemicals and efficiently polishing.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, ultrapure water or abrasive grains are suspended between a surface to be polished of a material to be polished and a polishing surface of a water-permeable polishing member containing at least a part of an ion exchanger. While supplying the pure water , the surface to be polished and the polishing surface are brought into contact with each other while forming a predetermined electric field in the vicinity of the surface to be polished and causing ions in water to be unevenly distributed in the vicinity of the surface to be polished. In this polishing method, the surface to be polished is polished chemically and mechanically by relative movement .
[0007]
Thereby, OH ions or H + ions in ultrapure water are unevenly distributed in the vicinity of the surface to be polished, and chemical / mechanical polishing can be performed without using chemicals.
[0008]
The invention according to claim 2, wherein the ion exchanger, Ru polishing method der of claim 1, wherein the Turkey to promote dissociation of water increases the said surface to be polished vicinity ions .
[0010]
The Migaku Ken member may be constituted by an ion exchange membrane and a normal polishing pad may be formed of a material consisting of material and ion exchanger comprising an ion exchanger such as ion exchange switching is not woven, or may further promote the ionic localization of the action of the ion exchange membrane by attaching an ion exchange switching is not woven on the ion-exchange membrane. Since such a material increases the mobility of ions in the polishing member, the voltage required for the movement of ions can be greatly reduced. Ion exchange switching is not woven fabric itself OH - because it has the function of retaining ions or H + ions, have also an effect of increasing the processing speed while maintaining the ion which is eccentrically distributed to the vicinity of the abrasive surface.
[0011]
The invention according to claim 3, have a polishing surface, a polishing member to have a water permeability comprising an ion exchanger at least a portion to grip the object to be polished, the polishing of the polished surface of the object to be polished A gripping device to be brought into contact with a surface, a moving means for moving the polishing member and the gripping device relative to each other while bringing the polished surface and the polishing surface into contact with each other, a polishing surface of the polishing member, and a polishing target of the polishing member An ultrapure water supply device that supplies ultrapure water or pure water in which abrasive grains are suspended between surfaces; and an electric field forming means that forms an electric field that unevenly distributes ions in water near the surface to be polished. A polishing apparatus characterized by comprising:
The invention according to claim 4 is the polishing apparatus according to claim 3 , wherein the electric field forming means adjusts the concentration of ions in the water in the vicinity of the surface to be polished by controlling the voltage. .
[0013]
The invention described in Motomeko 5, wherein the abrasive member comprises a material made of an ion exchanger, a polishing apparatus according to claim 3 or 4, wherein the ion exchange membrane is laminated.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a polishing apparatus according to the present invention will be described below with reference to FIGS. This polishing apparatus is the same as the conventional polishing apparatus shown in FIG. 5 in that it has a turntable 12 with a polishing cloth affixed to the surface and a top ring (substrate gripping apparatus) 14 disposed opposite thereto. .
[0015]
The turntable 12 and the top ring 14 are provided with a driving device for rotating them around the respective shafts in a horizontal plane. The top ring 14 has a holding mechanism for holding the substrate on the lower surface by a method such as vacuum suction, and a polishing target. A pressing mechanism for pressing the lower surface to be polished of the substrate W, which is a material, onto the surface of the polishing cloth 10 of the turntable 12 is provided.
[0016]
Between the turntable 12 and the top ring 14, there is provided a DC power source 20 for applying a predetermined voltage with the top ring 14 side being positive. Wiring from the power source 20 is connected to a surface plate 22 that forms a substrate mounting surface of the top ring 14 and a tool mounting surface of the turntable 12 via sliding terminals and internal wiring, respectively. An ion exchange membrane 24 is attached to the tool mounting surface of the surface plate 22 as a catalyst for promoting the dissociation of water, and the polishing cloth 10 is further attached to the upper surface thereof. The ion exchange membrane 24 and the cloth 10 constitute a polishing member.
[0017]
As the ion exchange membrane 24, either a cation exchange membrane or an anion exchange membrane can be used. Any known material can be used as the material, but it is desirable to set characteristics such as thickness, porosity, strength, and elasticity so as to be suitable for the rear surface of the polishing cloth 10.
[0018]
Unlike the one shown in FIG. 5, this polishing apparatus adopts an internal water supply method in which a polishing liquid is supplied between the polishing cloth 10 and the substrate W from the inside of the turntable 12. That is, the surface plate 22 is provided with a plurality of water supply grooves (or holes) 26 and drainage grooves (or holes) 28, and the back surface of the surface plate 22 is supplied with water supply or drainage grooves (or holes). A drainage manifold 30 is formed. The water supply / drainage manifold 30 is connected to an external water supply / drainage pipe via internal flow paths 32, 34 penetrating the shaft 12a and a fluid coupling.
[0019]
Hereinafter, the polishing process by the polishing apparatus of this embodiment will be described. When ultrapure water is supplied from the water supply pipe to the manifold 30 of the turntable 12 as a polishing liquid, the polishing liquid is supplied from the water supply groove of the surface plate 22 to the ion exchange membrane 24 as shown in FIG. Is supplied between the polishing cloth and the polished surface of the substrate W via the polishing cloth 10.
[0020]
Here, when a predetermined voltage is applied between the top ring 14 and the turntable 12 so that the top ring 14 is positive, an electric field is formed in the polishing liquid, thereby causing H + ions and OH ions in the ultrapure water to flow. Moving. As a result, as shown in FIG. 2, OH ions are concentrated near the substrate W surface, and H + ions are concentrated near the surface plate 22. The concentration of OH ions in the vicinity of the substrate W is appropriately selected depending on the material of the substrate W and other polishing conditions, and the concentration is adjusted by controlling the power supply voltage.
[0021]
Such ion separation is facilitated by the presence of a cation exchange membrane or an anion exchange membrane. That is, when a cation exchange membrane is used as shown in FIG. 3A, water ionization is promoted, and only H + ions on the substrate W side move to the surface plate 22 side, and FIG. ), When an anion exchange membrane is used, only the OH ions on the surface plate 22 side move to the substrate W side, and the OH ions are likely to be localized in the vicinity of the substrate W, respectively. An example of a strongly acidic ion exchange membrane is Nafion 117 (Dupont).
[0022]
FIG. 4 shows the ion uneven distribution effect when a predetermined voltage is applied using an ion exchange membrane in pure water as compared with the case where it is not used. In FIG. 4, platinum (Pt) was used for each of the sample and the electrode, and Nafion 117 (Dupont) having a thickness of 200 μm was used for the ion exchange membrane. As can be seen from FIG. 4, it can be seen that more current flows, that is, more water dissociates when the ion exchange membrane is used. It has also been found that more current flows when ion exchange fibers are used in addition to the ion exchange membrane.
[0023]
Table 1 shows the results of uneven distribution of ions by applying a predetermined voltage using an ion exchange membrane in ultrapure water, thereby processing the surface of the metal (copper) plate. Here, a platinum electrode plate serving as a cathode and a copper sample serving as an anode are immersed in ultrapure water filled in a container while maintaining a certain gap, and a cation exchange membrane (Nafion 117 is interposed between both electrodes). ), The entire container is housed in an airtight container, and the inside is purged with Ar gas. Thereby, it turns out that a process is possible by making ion unevenly distributed using an ion exchange membrane in ultrapure water.
[0024]
[Table 1]
Figure 0003942282
[0025]
In the state shown in FIG. 2, the top ring 14 and the turntable 12 are each rotated in a horizontal plane while the substrate W is pressed onto the surface of the polishing cloth 10 by the top ring 14, and polishing is performed. Since OH ions are concentrated at a predetermined concentration in the vicinity of the substrate W, dissolution of silicon and silicon oxide film on the substrate W is promoted, and chemical and mechanical polishing is not performed by chemical pH adjustment. Can be achieved.
[0026]
Many portions of the polishing liquid supplied from the water supply groove 26 are supplied to the surface of the polishing cloth 10 as described above, and are accompanied by polishing debris by centrifugal force accompanying the rotation of the turntable 12 after performing the polishing action. While flowing to the peripheral side of the polishing cloth 10, it is scattered from the edge. Although H + ions are concentrated in the polishing liquid on the back surface side of the ion exchange membrane 24, it is discharged from drain grooves 28 arranged alternately with the water supply grooves 26.
[0027]
The polishing liquid enriched with H + ions is neutralized with the OH ions contained in the polishing liquid scattered from the turntable 12, so that no special treatment is required. As described above, in this chemical / mechanical polishing step, no chemical for pH adjustment is used, so that the labor of cleaning the substrate W after polishing and processing of the waste liquid containing the chemical can be reduced.
[0028]
The polishing cloth 10 may be a conventional polishing cloth that has been used conventionally, but in the present embodiment, the polishing cloth 10 is formed of a material including an ion exchanger such as an ion exchange nonwoven fabric or a material made of an ion exchanger. is doing. Thereby, the ion uneven distribution effect of the ion exchange membrane 24 can be further promoted, and it has a role as a catalyst for promoting the dissociation of water. Ion exchange switching is not woven fabric, for example, a fiber comprising an ion exchanger having strongly basic functional groups such as -N (CH 3) 3 OH, to produce the graft polymerization method, by radiation-induced graft polymerization. Since such a material increases the mobility of ions in the polishing member, the voltage required for the movement of ions can be greatly reduced. Further, ion-exchange switching is not woven fabric itself OH - because it has the function of retaining ions or H + ions, have also an effect of increasing the processing speed while maintaining the ion which is eccentrically distributed on the polished surface vicinity of the substrate W .
[0029]
In the above description, the polishing cloth 10 and the ion exchange membrane 24 are separated, but they may be formed integrally. As a result, a more specialized polishing cloth having high functionality as a polishing member can be provided, and it is not necessary to form a two-layer structure in the field, so that workability is good. Further, without using the ion-exchange membrane, the abrasive member may be constituted of only the ion-exchange switching is not woven.
[0030]
Further, in the above, an internal water supply method for supplying the polishing liquid from the turntable 12 side is adopted and no abrasive grains are used. However, an external water supply method from the polishing abrasive liquid nozzle 16 as shown in FIG. In this case, abrasive grains may be used. Also in the case of using abrasive grains, a slurry obtained by suspending abrasive grains such as SiO 2 particles in pure water is used without using a conventional KOH-based slurry. By interposing the abrasive grains, the mechanical action is promoted and the polishing rate is increased.
[0031]
In this case, the polishing liquid in which H + ions are concentrated may be drained by providing a drain groove 28 on the surface plate 22 as in the previous embodiment, or from the edge of the surface plate 22 by centrifugal force. You may make it discharge | emit. In the latter case, a drainage promotion groove from the center of the surface plate 22 toward the edge may be formed. Moreover, you may use together an internal water supply system and an external water supply system.
[0032]
In the above description, an example in which OH ions are concentrated on the substrate side has been described. However, when polishing a metal such as a copper wiring, an electrode or negative electrode is used to concentrate H + ions on the substrate side. An ion exchange membrane is placed.
[0033]
【The invention's effect】
As described above, according to the present invention, chemical and mechanical polishing can be performed without using chemicals by unevenly distributing OH ions or H + ions in ultrapure water in the vicinity of the surface to be polished. Can be done. Therefore, it is possible to reduce the load of cleaning and draining the wafer after polishing while suppressing the use of chemicals, and to perform polishing efficiently.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a polishing apparatus according to an embodiment of the present invention.
FIG. 2 is an enlarged view showing a main part of FIG.
FIG. 3 is a schematic diagram for explaining the operation of the polishing apparatus of FIG. 1;
FIG. 4 is a diagram showing an ion uneven distribution effect when an ion exchange membrane is used in comparison with a case where no ion exchange membrane is used.
FIG. 5 is a diagram showing a configuration of a conventional polishing apparatus.
[Explanation of symbols]
10 Polishing cloth 12 Turntable 14 Top ring 20 Power supply 22 Surface plate 24 Ion exchange membrane 26 Water supply groove 28 Drainage groove 30 Manifold W Substrate (semiconductor wafer)

Claims (5)

被研磨材の被研磨面と、少なくとも一部にイオン交換体を含む通水性を有する研磨部材の研磨面の間に超純水、又は砥粒を懸濁させた純水を供給しつつ、前記被研磨面の近傍に所定の電界を形成して水中のイオンを前記被研磨面の近傍に偏在させながら前記被研磨面と前記研磨面を互いに接触させつつ相対移動させることにより、前記被研磨面を化学機械的に研磨することを特徴とするポリッシング方法。While supplying ultrapure water or pure water in which abrasive grains are suspended between a surface to be polished of a material to be polished and a polishing surface of a polishing member having water permeability including at least a part of an ion exchanger , By forming a predetermined electric field in the vicinity of the surface to be polished and causing ions in water to be unevenly distributed in the vicinity of the surface to be polished, the surface to be polished and the polishing surface are moved relative to each other while being in contact with each other. A polishing method comprising polishing a surface chemically and mechanically. 前記イオン交換体は、水の解離を促進して前記被研磨面近傍のイオンを増加させることを特徴とする請求項1に記載のポリッシング方法。The ion exchanger is polishing method according to claim 1, wherein the Turkey to promote dissociation of water increases the said surface to be polished vicinity ions. 研磨面を有し、少なくとも一部にイオン交換体を含む通水性を有する研磨部材と、
被研磨材を把持し、被研磨材の被研磨面を前記研磨面に接触させる把持装置と、
前記研磨部材及び把持装置を前記被研磨面と前記研磨面とを互いに接触させつつ相対移動させる移動手段と、
前記研磨部材の研磨面及び前記被研磨部材の被研磨面の間に超純水、又は砥粒を懸濁させた純水を供給する超純水供給装置と、
前記被研磨面の近傍の水中のイオンを偏在させる電界を形成する電界形成手段とを有することを特徴とするポリッシング装置。
The polished surface was perforated, the polishing member to have a water permeability comprising an ion exchanger at least partially,
A gripping device for gripping a material to be polished and bringing a surface to be polished into contact with the polishing surface;
Moving means for moving the polishing member and the gripping device relative to each other while bringing the polished surface and the polishing surface into contact with each other ;
An ultrapure water supply device for supplying ultrapure water between the polishing surface of the polishing member and the polishing surface of the member to be polished , or pure water in which abrasive grains are suspended ;
A polishing apparatus comprising: an electric field forming unit configured to form an electric field that unevenly distributes ions in water in the vicinity of the surface to be polished.
前記電界形成手段は、電圧を制御することにより前記被研磨面の近傍における水中のイオンの濃度を調整することを特徴とする請求項記載のポリッシング装置。4. The polishing apparatus according to claim 3 , wherein the electric field forming means adjusts the concentration of ions in water in the vicinity of the surface to be polished by controlling a voltage. 前記研磨部材は、イオン交換体からなる素材と、イオン交換膜が積層されていることを特徴とする請求項3又は4記載のポリッシング装置。The polishing apparatus according to claim 3 or 4 , wherein the polishing member is formed by laminating a material made of an ion exchanger and an ion exchange membrane.
JP23499598A 1998-08-06 1998-08-06 Polishing method and apparatus Expired - Fee Related JP3942282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23499598A JP3942282B2 (en) 1998-08-06 1998-08-06 Polishing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23499598A JP3942282B2 (en) 1998-08-06 1998-08-06 Polishing method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006139857A Division JP4409539B2 (en) 2006-05-19 2006-05-19 Polishing apparatus and polishing member

Publications (3)

Publication Number Publication Date
JP2000052235A JP2000052235A (en) 2000-02-22
JP2000052235A5 JP2000052235A5 (en) 2005-10-27
JP3942282B2 true JP3942282B2 (en) 2007-07-11

Family

ID=16979508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23499598A Expired - Fee Related JP3942282B2 (en) 1998-08-06 1998-08-06 Polishing method and apparatus

Country Status (1)

Country Link
JP (1) JP3942282B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999055493A1 (en) * 1998-04-28 1999-11-04 Ebara Corporation Polishing grinding wheel and substrate polishing method with this grinding wheel
JP2001064799A (en) 1999-08-27 2001-03-13 Yuzo Mori Electrolytic working method and device
US6638143B2 (en) * 1999-12-22 2003-10-28 Applied Materials, Inc. Ion exchange materials for chemical mechanical polishing
JP4141114B2 (en) 2000-07-05 2008-08-27 株式会社荏原製作所 Electrolytic processing method and apparatus
JP4043234B2 (en) * 2001-06-18 2008-02-06 株式会社荏原製作所 Electrolytic processing apparatus and substrate processing apparatus
TWI224531B (en) 2001-09-11 2004-12-01 Ebara Corp Substrate processing apparatus and method
JP4409807B2 (en) * 2002-01-23 2010-02-03 株式会社荏原製作所 Substrate processing method
TWI275436B (en) 2002-01-31 2007-03-11 Ebara Corp Electrochemical machining device, and substrate processing apparatus and method
JP2004255479A (en) * 2003-02-24 2004-09-16 Ebara Corp Electrochemical machining method and electrochemical machining device
WO2004041467A1 (en) * 2002-11-08 2004-05-21 Ebara Corporation Electrochemical machining device and electrochemical machining method
US7527723B2 (en) 2004-01-16 2009-05-05 Ebara Corporation Electrolytic processing apparatus and electrolytic processing method
JP6188152B2 (en) * 2014-02-27 2017-08-30 国立大学法人大阪大学 Method and apparatus for planarizing Si substrate

Also Published As

Publication number Publication date
JP2000052235A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
JP3311203B2 (en) Semiconductor device manufacturing method, semiconductor manufacturing apparatus, and chemical mechanical polishing method for semiconductor wafer
JP3942282B2 (en) Polishing method and apparatus
US7160176B2 (en) Methods and apparatus for electrically and/or chemically-mechanically removing conductive material from a microelectronic substrate
US20070020918A1 (en) Substrate processing method and substrate processing apparatus
KR20050092130A (en) Plating device and plating method
TW200305470A (en) Electrochemical machining device and electrochemical machining method
JP4409539B2 (en) Polishing apparatus and polishing member
JP2000052235A5 (en)
JP2006502310A (en) Electrolytic processing equipment
TW200403121A (en) Polishing apparatus and polishing method
US20040256237A1 (en) Electrolytic processing apparatus and method
JP2008524434A (en) Flattening method and flattening apparatus
US20040182715A1 (en) Process and apparatus for air bubble removal during electrochemical processing
JP4233376B2 (en) Substrate processing method
JP4423354B2 (en) Plating method
TW200425301A (en) Electropolishing apparatus and polishing method
JP2004015028A (en) Method of processing substrate and semiconductor device
JPH10324865A (en) Production of abrasive and polishing method
KR100300898B1 (en) Method and apparatus for electrochemical mechanical planarization
JP2005042158A (en) Method and apparatus for plating
JP4172945B2 (en) Method and apparatus for regenerating ion exchanger for electrolytic processing
JP4076430B2 (en) Substrate processing equipment
JP4130073B2 (en) Ion exchanger regeneration method and regeneration apparatus
US7563356B2 (en) Composite processing apparatus and method
JP3426866B2 (en) Apparatus and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070403

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees