JP6188152B2 - Method and apparatus for planarizing Si substrate - Google Patents

Method and apparatus for planarizing Si substrate Download PDF

Info

Publication number
JP6188152B2
JP6188152B2 JP2014037307A JP2014037307A JP6188152B2 JP 6188152 B2 JP6188152 B2 JP 6188152B2 JP 2014037307 A JP2014037307 A JP 2014037307A JP 2014037307 A JP2014037307 A JP 2014037307A JP 6188152 B2 JP6188152 B2 JP 6188152B2
Authority
JP
Japan
Prior art keywords
processing
substrate
water
reference surface
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014037307A
Other languages
Japanese (ja)
Other versions
JP2015162600A (en
Inventor
和人 山内
和人 山内
藍 礒橋
藍 礒橋
泰久 佐野
泰久 佐野
鈴木 辰俊
辰俊 鈴木
鈴木 大介
大介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Toho Engineering Co Ltd
Original Assignee
Osaka University NUC
Toho Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Toho Engineering Co Ltd filed Critical Osaka University NUC
Priority to JP2014037307A priority Critical patent/JP6188152B2/en
Priority to PCT/JP2015/055469 priority patent/WO2015129765A1/en
Publication of JP2015162600A publication Critical patent/JP2015162600A/en
Application granted granted Critical
Publication of JP6188152B2 publication Critical patent/JP6188152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Weting (AREA)

Description

本発明は、Si基板の平坦化加工方法及びその装置に係わり、更に詳しくは環境負荷の少ないSi基板の平坦化加工方法及びその装置に関するものである。   The present invention relates to a method and apparatus for planarizing a Si substrate, and more particularly to a method and apparatus for planarizing a Si substrate with less environmental impact.

従来から、半導体デバイスの製造分野では、Siウェハを始めSi基板の表面を、高品位に平坦化加工する方法若しくは研磨する方法(ポリッシング)は各種提供されている。代表的には、CMP(Chemical Mechanical Polishing)がある。また、最近ではSiC等の難加工物や光学ガラス等の固体酸化物を加工する新たな技術として、CARE(CAtalyst-Referred Etching)が提案されている。   2. Description of the Related Art Conventionally, in the field of manufacturing semiconductor devices, various methods for flattening or polishing the surface of a Si substrate including a Si wafer or polishing (polishing) have been provided. Typically, there is CMP (Chemical Mechanical Polishing). Recently, CARE (Catalyst-Referred Etching) has been proposed as a new technique for processing difficult-to-work products such as SiC and solid oxides such as optical glass.

CMPは、研磨剤(砥粒)自体が有する表面化学作用又は研磨液に含まれる化学成分の作用によって、研磨剤と研磨対象物の相対運動による機械的研磨(表面除去)効果を増大させ、高速かつ平滑な研磨面を得る技術である。一般には、研磨対象物をキャリアと呼ばれる部材で保持し、研磨布または研磨パッドを張った平板(ラップ)に押し付けて、各種化学成分および硬質の微細な砥粒を含んだスラリーを流しながら、一緒に相対運動させることで研磨を行う。化学成分が研磨対象物の表面を変化させることで、研磨剤単体で研磨する場合に比べて加工速度を向上することができる。また、研磨剤単体で研磨する場合に残る表面の微細な傷や表面付近に残る加工変質層がきわめて少なくなり、理想的な平滑面を得ることができる。ここで、CMP用の研磨剤には、主にコロイダルシリカ(SiO2)や酸化セリウム(CeO2)若しくはランタンを含む酸化セリウムの微粒子を被加工物の材質に応じて用いられる。例えば、Si基板のCMPによる一般的な最終仕上げの加工速度は、0.12μm/min(7.2μm/hr)程度であるとされる。 CMP increases the mechanical polishing (surface removal) effect due to the relative movement of the polishing agent and the object to be polished by the surface chemical action of the polishing agent (abrasive grains) itself or the action of chemical components contained in the polishing liquid. This is a technique for obtaining a smooth polished surface. Generally, an object to be polished is held by a member called a carrier, pressed against a flat plate (lap) with a polishing cloth or polishing pad, and a slurry containing various chemical components and hard fine abrasive grains is allowed to flow together. Polishing is performed by making the relative movement. By changing the surface of the object to be polished by the chemical component, the processing speed can be improved as compared with the case of polishing with a single abrasive. In addition, the fine scratches on the surface remaining when polishing with a single abrasive and the work-affected layer remaining in the vicinity of the surface are extremely reduced, and an ideal smooth surface can be obtained. Here, fine particles of cerium oxide mainly containing colloidal silica (SiO 2 ), cerium oxide (CeO 2 ), or lanthanum are used as polishing agents for CMP depending on the material of the workpiece. For example, the processing speed of the general final finishing by CMP of the Si substrate is supposed to be about 0.12 μm / min (7.2 μm / hr).

しかし、レアアースであるセリウムは産出国が偏在しているので、その安定供給には地政学的リスクを伴い、現に近年価格が乱高下して産業界に大きな問題を提起したことは記憶に新しい。また、将来的にはレアアース資源の枯渇化の問題に晒されるのは避けられない。また、CMPはコロイダルシリカ等の微粒子を用いるので、研磨液の処理がコスト高となり、またクリーンルームとの相性が悪い等の問題がある。   However, cerium, a rare earth, is unevenly distributed, and its stable supply is accompanied by geopolitical risks, and it has recently been remembered that the price has fluctuated in recent years and has caused major problems in the industry. In the future, it will be unavoidable to be exposed to the problem of depletion of rare earth resources. Further, since CMP uses fine particles such as colloidal silica, there are problems such as high cost for the treatment of the polishing liquid and poor compatibility with the clean room.

本発明者は、特許文献1によって、被加工物に対して常態では溶解性を示さないハロゲンを含む分子が溶けた処理液中に該被加工物を配し、白金、金又はセラミックス系固体触媒からなる触媒を被加工物の加工面に接触若しくは極接近させて配し、前記触媒の表面で生成したハロゲンラジカルと被加工物の表面原子との化学反応で生成したハロゲン化合物を、溶出させることによって被加工物を加工することを特徴とする触媒支援型化学加工方法を提案している。具体的には、ハロゲンを含む分子が溶けた処理液として、フッ化水素溶液又は塩化水素溶液を用いて、Si、SiC、サファイア等を加工する例が示されている。   According to Patent Document 1, the present inventor arranges a workpiece in a treatment solution in which a molecule containing a halogen that is not normally soluble in the workpiece is dissolved, and forms a platinum, gold or ceramic solid catalyst. A catalyst composed of the material is placed in contact with or in close proximity to the processing surface of the workpiece, and the halogen compound generated by the chemical reaction between the halogen radicals generated on the surface of the catalyst and the surface atoms of the workpiece is eluted. Has proposed a catalyst-assisted chemical processing method characterized by processing a workpiece. Specifically, an example is shown in which Si, SiC, sapphire, or the like is processed using a hydrogen fluoride solution or a hydrogen chloride solution as a treatment solution in which molecules containing halogen are dissolved.

この触媒基準面に基づく加工方法は、本発明者によってCAREと命名された超精密な平坦化技術である。CAREは、研磨剤や砥粒を全く使用しない加工技術であり、加工によって被加工面にスクラッチや加工変質層を全く導入しない理想的な加工方法であるが、ハロゲンを含む分子が溶けた処理液、特にフッ化水素溶液を用いるので、処理空間の気密性や排気ガスや廃液の処理設備が必要になるので、CMPよりも取り扱いと装置コストが高くなるといった問題がある。元々CAREは、SiC等の難加工物を、加工変質層を導入することなく高効率、高精度に加工することを目的に開発された技術であり、Siのように半導体業界においてCMPを始めとして研磨方法が既に確立されているものまで加工対象として研究開発されたものではない。勿論、フッ化水素溶液を用いるCARE(HF−CARE)でもSiを高速に加工することができるが、フッ化水素による溶出が表面の凹部でも進むため、Si表面がポーラス化するという問題があり、Si基板を工業的に加工する手段としては考えていなかった。   This processing method based on the catalyst reference surface is an ultra-precision flattening technique named CARE by the present inventor. CARE is a processing technique that does not use abrasives or abrasive grains at all, and is an ideal processing method that does not introduce scratches or work-affected layers at all on the surface to be processed, but a processing solution in which molecules containing halogen are dissolved. In particular, since a hydrogen fluoride solution is used, airtightness of the processing space and processing equipment for exhaust gas and waste liquid are required, so that there are problems that handling and apparatus costs are higher than CMP. CARE was originally developed for the purpose of processing difficult-to-work materials such as SiC with high efficiency and high accuracy without introducing a work-affected layer. It has not been researched and developed as an object to be processed until a polishing method has already been established. Of course, even CARE (HF-CARE) using a hydrogen fluoride solution can process Si at a high speed, but since elution by hydrogen fluoride proceeds even in the concave portion of the surface, there is a problem that the Si surface becomes porous. It was not considered as a means for industrially processing the Si substrate.

一方、特許文献2には、微量の不可避不純物を除き超純水のみを用い、超純水中に配設したイオン交換機能又は触媒機能を有する固体表面での電気化学反応を利用してイオン積を増大させ、この水酸基又は水酸基イオンの濃度が増大した超純水中に被加工物を浸漬し、該被加工物を陽極とし、又は被加工物の電位を高く維持して、該被加工物の表面に水酸基イオンを引き寄せて、被加工物を水酸基又は水酸基イオンによる化学的溶出反応若しくは酸化反応によって除去加工若しくは酸化被膜形成加工する加工方法が開示されている。   On the other hand, Patent Document 2 uses only ultrapure water except for a small amount of inevitable impurities, and uses an ion reaction function or a catalytic function on a solid surface having a catalytic function disposed in the ultrapure water. The workpiece is immersed in ultrapure water having an increased concentration of hydroxyl groups or hydroxyl ions, the workpiece is used as an anode, or the workpiece is maintained at a high potential. A processing method is disclosed in which hydroxyl ions are attracted to the surface of the substrate and the workpiece is removed or oxidized by a chemical elution reaction or oxidation reaction with hydroxyl groups or hydroxyl ions.

この特許文献2に記載の加工方法は、基本的には高電圧を印加する電解加工であり、水中の水酸基又は水酸基イオンの濃度を増大させる水酸基増加処理が重要な要件となっている。この水酸基増加処理として、イオン交換機能又は触媒機能を有する固体表面を用いるが、被加工物と接触して損傷し、被加工物表面に付着するなどの問題があった。そのため、基本的にはイオン交換機能又は触媒機能を有する固体表面と被加工物は非接触状態で、固体表面で生成した水酸基又は水酸基イオンを被加工物表面に供給して加工を進行させるのであるが、この加工方法には加工基準面が存在せず、精度の高い表面が得られない、加工速度が遅いなどの理由で実用化に至ってない。   The processing method described in Patent Document 2 is basically electrolytic processing in which a high voltage is applied, and a hydroxyl group increasing treatment for increasing the concentration of hydroxyl groups or hydroxyl ions in water is an important requirement. As this hydroxyl group increasing treatment, a solid surface having an ion exchange function or a catalytic function is used, but there is a problem that the solid surface is damaged by contact with the workpiece and adheres to the workpiece surface. Therefore, basically, the solid surface having an ion exchange function or a catalytic function and the workpiece are in a non-contact state, and the processing proceeds by supplying the hydroxyl group or hydroxyl ions generated on the solid surface to the workpiece surface. However, this processing method has not been put into practical use because there is no processing reference surface, a highly accurate surface cannot be obtained, and the processing speed is low.

特許文献3には、酸素を介して1種又は2種以上の元素が結合した固体酸化物、あるいは複数の酸化物からなる多成分系の固体酸化物を被加工物とし、該被加工物の表面を平坦化加工又は任意曲面に加工する加工方法であって、水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を加工基準面として用い、水の存在下で、前記被加工物と加工基準面とを接触若しくは極接近させて配し、前記加工基準面の電位を、自然電位を含みH2及びO2が発生しない範囲とし、前記被加工物と加工基準面とを相対運動させて、前記分解生成物を被加工物表面から除去することを特徴とする固体酸化物の加工方法が開示されている。 In Patent Document 3, a solid oxide in which one or two or more elements are bonded via oxygen, or a multi-component solid oxide composed of a plurality of oxides is used as a workpiece, and A processing method for flattening the surface or processing it into an arbitrary curved surface, in which water molecules dissociate and adsorb by cutting off the back bonds of the oxygen element and other elements that constitute the solid oxide, resulting from hydrolysis Using a catalytic substance that helps the generation of as a processing reference surface, in the presence of water, the workpiece and the processing reference surface are placed in close contact or in close proximity, and the potential of the processing reference surface includes the natural potential. A solid oxide processing method characterized in that H 2 and O 2 are not generated, and the decomposition product is removed from the workpiece surface by relatively moving the workpiece and a processing reference surface. It is disclosed.

特許文献3に記載の加工方法は、レアアースを始め、研磨剤や砥粒を一切使用せず、またフッ化水素等の取り扱いが難しく、環境負荷の大きな溶液を一切使用せず、水のみを用いるCARE(Water−CARE)であり、光学材料などの固体酸化物を、加工変質層を導入することなく加工することが可能な画期的なものであった。   The processing method described in Patent Document 3 does not use any rare earth, abrasives or abrasive grains, and it is difficult to handle hydrogen fluoride or the like, does not use any solution with a large environmental load, and uses only water. CARE (Water-CARE), which was an epoch-making material capable of processing a solid oxide such as an optical material without introducing a work-affected layer.

特開2006−114632号公報JP 2006-114632 A 特開平10−58236号公報JP-A-10-58236 国際公開第2013/084934号公報International Publication No. 2013/084934

本発明者らは、脱レアアースの要請に応えるため、Si基板の表面を酸化させれば、特許文献3に記載のWater−CAREを利用してその酸化膜を除去し、それによりSi基板を工業的に利用できる程度の加工速度で平坦化加工(研磨)できるとの着想に基づき、CMP仕上げ面よりも高品位の表面が得られる加工方法を検討し、本発明に至った。   In order to meet the demand for de-rare earth, the present inventors removed the oxide film by using Water-CARE described in Patent Document 3 when the surface of the Si substrate is oxidized, thereby industrializing the Si substrate. Based on the idea that flattening (polishing) can be performed at a processing speed that can be used in general, a processing method capable of obtaining a surface with a higher quality than the CMP finished surface has been studied, and the present invention has been achieved.

つまり、本発明が前述の状況に鑑み、解決しようとするところは、レアアースを始め、研磨剤や砥粒を一切使用せず、またフッ化水素等の取り扱いが難しく、環境負荷の大きな溶液を一切使用せず、Si基板を様々な加工速度で平坦化加工でき、しかもCMP仕上げ面よりも高品位の表面が得られ、しかもクリーンルームとの相性が良いSi基板の平坦化加工方法及びその装置を提供する点にある。   In other words, in view of the above-mentioned situation, the present invention intends to solve a solution that does not use rare earths, does not use any abrasive or abrasive grains, is difficult to handle hydrogen fluoride, and has a large environmental load. Provide a Si substrate planarization method and apparatus that can planarize Si substrates at various processing speeds without using them, and that can provide a surface with a higher quality than the CMP finished surface, and that are compatible with clean rooms. There is in point to do.

本発明は、前述の課題解決のために、Si基板の表面を砥粒や研磨剤を用いずに、加工速度が10nm/h〜10μm/hで、表面粗さがRMS0.2nm以下の精度に平坦化加工する加工方法であって、Siの酸化とSi酸化膜の加水分解の双方を促進する触媒物質を加工基準面として用い、水の存在下で、前記Si基板と加工基準面とを所定圧力で接触させるとともに、該Si基板と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によってSi表面の酸化と該酸化膜の凸部からの優先的な加水分解による分解生成物の除去を進行させることを特徴とするSi基板の平坦化加工方法を構成した。   In the present invention, in order to solve the above-mentioned problems, the processing speed is 10 nm / h to 10 μm / h and the surface roughness is RMS 0.2 nm or less without using abrasive grains or abrasives on the surface of the Si substrate. A processing method for flattening, wherein a catalytic substance that promotes both oxidation of Si and hydrolysis of a Si oxide film is used as a processing reference surface, and the Si substrate and the processing reference surface are set in a predetermined manner in the presence of water. While making contact with pressure, the Si substrate and the processing reference surface are moved relative to each other, and the catalytic function provided on the processing reference surface oxidizes the Si surface and decomposes it by preferential hydrolysis from the convex portions of the oxide film. A flattening method for the Si substrate, which is characterized by advancing the removal of objects, was constructed.

また、本発明は、Si基板の表面を砥粒や研磨剤を用いずに、加工速度が10nm/h〜10μm/hで、表面粗さがRMS0.2nm以下の精度に平坦化加工する加工装置であって、水を保持する容器と、Siの酸化とSi酸化膜の加水分解の双方を促進する触媒物質を表面に形成した加工基準面を備え、水に浸漬させて前記容器内に配置される加工パットと、前記Si基板を保持して水に浸漬させ、前記加工基準面と接触させて前記容器内に配置されるホルダと、前記加工パットとホルダとを所定圧力で接触させながら相対運動させる駆動機構と、よりなり、水の存在下で、前記Si基板と加工基準面とを所定圧力で接触させるとともに、該Si基板と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によってSi表面の酸化と該酸化膜の凸部からの優先的な加水分解による分解生成物の除去を進行させることを特徴とするSi基板の平坦化加工装置を構成した。   Further, the present invention provides a processing apparatus for flattening the surface of a Si substrate with an accuracy of 10 nm / h to 10 μm / h and a surface roughness of RMS 0.2 nm or less without using abrasive grains or an abrasive. A container for holding water and a processing reference surface formed on the surface with a catalytic substance that promotes both oxidation of Si and hydrolysis of the Si oxide film, and is immersed in water and disposed in the container. Relative motion while holding the Si substrate and holding the Si substrate in contact with the processing reference surface and contacting the processing reference surface with the processing pad and the holder at a predetermined pressure. The Si substrate and the processing reference surface are brought into contact with each other at a predetermined pressure in the presence of water, and the Si substrate and the processing reference surface are moved relative to each other to provide the processing reference surface. The catalytic function of the Si surface To constitute a flattening device of the Si substrate, characterized in that advancing the removal of the decomposition product by preferential hydrolysis of the convex portion of the reduction and the oxide film.

また、本発明は、Si基板の表面を砥粒や研磨剤を用いずに、加工速度が10nm/h〜10μm/hで、表面粗さがRMS0.2nm以下の精度に平坦化加工する加工装置であって、水が飛び散らないように設ける容器と、Siの酸化とSi酸化膜の加水分解の双方を促進する触媒物質を表面に形成した加工基準面を備え、前記容器内に配置される加工パットと、前記Si基板を保持して、前記加工基準面と接触させて前記容器内に配置されるホルダと、前記加工パットとホルダとを所定圧力で接触させながら相対運動させる駆動機構と、前記加工パットの加工基準面とホルダに保持されたSi基板の間に水を供給する水供給手段と、よりなり、水の存在下で、前記Si基板と加工基準面とを所定圧力で接触させるとともに、該Si基板と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によってSi表面の酸化と該酸化膜の凸部からの優先的な加水分解による分解生成物の除去を進行させることを特徴とするSi基板の平坦化加工装置を構成した。 Further, the present invention provides a processing apparatus for flattening the surface of a Si substrate with an accuracy of 10 nm / h to 10 μm / h and a surface roughness of RMS 0.2 nm or less without using abrasive grains or an abrasive. a is processed, comprising a container provided so that water does not splash, the machining reference surface to form a catalyst material on a surface that promotes both hydrolysis of oxide and Si oxide films of Si, which is arranged in said container and Pat, while holding the Si substrate, the in contact with the processing reference surface and the holder being disposed in said container, and a drive mechanism for relative movement while contacting the processing pad and the holder at a predetermined pressure, the A water supply means for supplying water between the processing reference surface of the processing pad and the Si substrate held by the holder, and in the presence of water, the Si substrate and the processing reference surface are brought into contact with each other at a predetermined pressure. The Si substrate and Relative movement of the process reference plane, and the catalytic function provided on the process reference plane advances the oxidation of the Si surface and the removal of decomposition products by preferential hydrolysis from the convex portions of the oxide film. An Si substrate planarization processing apparatus was configured.

そして、これらの発明において、前記触媒物質が、Pt、Pd、Ru、Ni、Co、Cr、Moから選択した1種又は2種以上であることが好ましい。また、前記水は、純水又は超純水に酸化促進剤及び/又は分解生成物の溶解を助ける錯体を添加したものであるとより好ましい。更に、前記酸化促進剤が過酸化水素水であると特に好ましい。   In these inventions, the catalyst material is preferably one or more selected from Pt, Pd, Ru, Ni, Co, Cr, and Mo. In addition, the water is more preferably pure water or ultrapure water to which an oxidation accelerator and / or a complex that helps dissolution of decomposition products is added. Furthermore, the oxidation accelerator is particularly preferably hydrogen peroxide.

ここで、本発明において前記加工基準面は、硬い面の表面の全面又は部分を触媒物質で形成するもの、あるいは全面又は部分に触媒物質を成膜するもの、柔らかい面の表面の全面又は部分を触媒物質で形成する、あるいは全面又は部分に触媒物質を成膜するもの、ベース材料に触媒物質を練り込む、若しくは担持させ、表面の少なくとも一部に触媒物質が現れているものを含む概念である。また、前記加工基準面には、放射状、同心円状、螺旋状、その他のパターンに溝が形成されていても構わない。   Here, in the present invention, the processing reference surface is formed by forming the entire surface or part of the hard surface with the catalyst material, or forming the catalyst material on the entire surface or portion, or the entire surface or portion of the soft surface. It is a concept that includes a catalyst material formed on the entire surface or a part of the catalyst material, or a catalyst material that is kneaded or supported on the base material and the catalyst material appears on at least a part of the surface. . Further, the processing reference surface may be provided with grooves in a radial pattern, a concentric pattern, a spiral pattern, or other patterns.

以上にしてなる本発明のSi基板の平坦化加工方法及びその装置は、Siの酸化とSi酸化膜の加水分解の双方を促進する触媒物質を加工基準面として用い、水の存在下で、前記Si基板と加工基準面とを所定圧力で接触させるとともに、該Si基板と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によってSi表面の酸化と該酸化膜の凸部からの優先的な加水分解による分解生成物の除去を進行させ、Si基板の表面を砥粒や研磨剤を用いずに、加工速度が10nm/h〜10μm/hで、表面粗さがRMS0.2nm以下の精度に平坦化加工するので、クリーンルームとの相性が良く、半導体デバイスの製造工程への適用が容易である。また、本発明は、化学的な加工であるので、加工変質層を導入することなく、Si基板の表面を加工することができ、加工面は研磨剤や砥粒を一切使用しないので表面粗さを極めて小さくでき、CMP仕上げ面よりも高品位の表面が得られるのである。また、本発明は、Si単結晶の面方位に関係なく加工することができる。更に、本発明は、フッ化水素や他の取り扱いが難しい化学薬品や微粒子を使用しないので、廃液の処理が極めて簡単であり、環境負荷が少ない加工方法と言え、作業環境が大幅に改善されるといった利点がある。更に、レアアースを一切使用しないので、原料市況に影響されず、ランニングコストを大幅に低減することができる。その上、本発明は、加工速度の制御が容易であり、CMPのように粗研磨から精密研磨に変更するために加工液を交換する必要もない。   The Si substrate planarization processing method and apparatus according to the present invention as described above use a catalytic substance that promotes both Si oxidation and Si oxide film hydrolysis as a processing reference plane, and in the presence of water, The Si substrate and the processing reference surface are brought into contact with each other at a predetermined pressure, and the Si substrate and the processing reference surface are moved relative to each other so that the catalytic function provided on the processing reference surface causes the oxidation of the Si surface and the convex portion of the oxide film. The removal of decomposition products by preferential hydrolysis of the substrate proceeds, the surface of the Si substrate is processed at a processing speed of 10 nm / h to 10 μm / h without using abrasive grains or a polishing agent, and the surface roughness is RMS 0.2 nm. Since the flattening process is performed with the following accuracy, compatibility with a clean room is good, and application to a semiconductor device manufacturing process is easy. In addition, since the present invention is a chemical processing, the surface of the Si substrate can be processed without introducing a work-affected layer, and the processing surface does not use any abrasive or abrasive grains, so the surface roughness Can be made extremely small, and a surface having a higher quality than that of the CMP finished surface can be obtained. Further, the present invention can be processed regardless of the plane orientation of the Si single crystal. Furthermore, since the present invention does not use hydrogen fluoride or other difficult-to-handle chemicals or fine particles, the waste liquid treatment is extremely simple and it can be said to be a processing method with less environmental load, and the working environment is greatly improved. There are advantages such as. Furthermore, since no rare earth is used, the running cost can be greatly reduced without being affected by the raw material market. In addition, the present invention can easily control the processing speed, and does not need to change the processing liquid in order to change from rough polishing to precision polishing as in CMP.

Si基板の表面は、加工基準面に備わった触媒機能によって酸化される。そして、Si基板表面に形成された酸化膜に、加工基準面に備わった触媒機能によって水分子が解離して酸素元素とSi元素のバックボンドを切って吸着し、加水分解による分解生成物が除去されることにより加工が進行する。ここで、Si基板の酸化膜の凸部から優先的にエッチングされるので、CMPと同様にパット面を平均的に転写する機能が実現され、しかも砥粒や研磨剤を用いず、純粋に化学的な作用によって加工するので、CMP仕上げ面よりも高品位な表面が得られるのである。   The surface of the Si substrate is oxidized by the catalytic function provided on the processing reference surface. Then, water molecules dissociate on the oxide film formed on the Si substrate surface by the catalytic function provided on the processing reference surface, and the back bonds between the oxygen element and Si element are cut and adsorbed to remove decomposition products due to hydrolysis. As a result, processing proceeds. Here, since the etching is preferentially performed from the convex portion of the oxide film of the Si substrate, the function of transferring the pad surface on average is realized in the same manner as in CMP, and it is purely chemical without using abrasive grains or abrasives. Therefore, a surface having a higher quality than that of the CMP finished surface can be obtained.

そして、前記触媒物質が、Pt、Pd、Ru、Ni、Co、Cr、Moから選択した1種又は2種以上であると、Si表面の酸化を促進させる作用があり、また水分子から電子を奪い共有する作用が大きく、それにより水分子が解離してSi基板表面の酸化膜を構成する酸素元素とSi元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける作用が大きくなり、加工速度を高めることができる。更に、前記水は、純水又は超純水に酸化促進剤及び/又は分解生成物の溶解を助ける錯体を添加したものであると、加工速度が更に高くなる。特に、前記酸化促進剤が過酸化水素水であると、加工速度を速くすることができ、CMPにも匹敵する加工速度で加工することができる。   When the catalyst material is one or more selected from Pt, Pd, Ru, Ni, Co, Cr, and Mo, there is an action of promoting the oxidation of the Si surface, and electrons from the water molecules. It has a large shared effect, which causes water molecules to dissociate and adsorb by cutting back bonds between the oxygen element and the Si element constituting the oxide film on the Si substrate surface, and helping to generate decomposition products by hydrolysis. It becomes large and processing speed can be increased. Furthermore, the processing speed is further increased when the water is a mixture of pure water or ultrapure water to which an oxidation accelerator and / or a complex that aids the decomposition product is added. In particular, when the oxidation accelerator is hydrogen peroxide, the processing speed can be increased, and processing can be performed at a processing speed comparable to CMP.

本発明の加工装置の第1実施形態(平坦化加工装置)を示す簡略斜視図である。1 is a simplified perspective view showing a first embodiment (planarization processing apparatus) of a processing apparatus of the present invention. 本発明の加工装置の第2実施形態(平坦化加工装置)を示す簡略斜視図である。It is a simplified perspective view which shows 2nd Embodiment (planarization processing apparatus) of the processing apparatus of this invention. 6インチSi(100)基板の平坦化加工前後の表面のAFM像を示す。The AFM image of the surface before and behind planarization of a 6 inch Si (100) substrate is shown. 6インチSi(100)基板の観察位置を示す説明図である。It is explanatory drawing which shows the observation position of a 6 inch Si (100) board | substrate. 図4の観察位置での平坦化加工前後の表面のAFM像を示す。5 shows AFM images of the surface before and after planarization at the observation position in FIG. 石英ガラス(SiO2)の平坦化加工前後の表面の位相シフト干渉顕微鏡像とAFM像を示す。The phase shift interference microscope image and the AFM image of the surface before and after flattening processing of quartz glass (SiO 2 ) are shown. 加工速度の接触圧依存性を示すグラフである。It is a graph which shows the contact pressure dependence of processing speed. 各種の触媒物質(触媒金属)に対する石英ガラスの加工速度を示すグラフでる。It is a graph which shows the processing speed of quartz glass with respect to various catalyst substances (catalyst metal). 各溶液pHにおける加工速度を示したグラフである。It is the graph which showed the processing speed in each solution pH. pH1(HNO3水溶液)での加工速度の触媒電位依存性を示すグラフである。pH1 is a graph showing the catalytic potential dependence of the processing rate under (HNO 3 aqueous solution). pH3(HNO3水溶液)での加工速度の触媒電位依存性を示すグラフである。pH3 is a graph showing the catalytic potential dependence of the processing rate under (HNO 3 aqueous solution). pH7(リン酸緩衝液)での加工速度の触媒電位依存性を示すグラフである。It is a graph which shows the catalyst potential dependence of the processing speed in pH7 (phosphate buffer solution). pH11(KOH水溶液)での加工速度の触媒電位依存性を示すグラフである。It is a graph which shows the catalyst potential dependence of the processing speed in pH11 (KOH aqueous solution). 各pHにおける自然電位と加工速度のピーク位置の関係を示したグラフである。It is the graph which showed the relationship between the natural potential in each pH, and the peak position of processing speed. pH3(HNO3水溶液)での加工速度の触媒電位依存性を詳細に調べた結果を示すグラフである。pH3 is a graph showing the (HNO 3 aqueous solution) As a result of examining in detail the catalytic potential dependence of the processing rate under.

本発明のSi基板の平坦化加工方法は、Si基板の表面を砥粒や研磨剤を用いずに、加工速度が10nm/h〜10μm/hで、表面粗さがRMS0.2nm以下の精度に平坦化加工する加工方法であって、Siの酸化とSi酸化膜の加水分解の双方を促進する触媒物質を加工基準面として用い、水の存在下で、前記Si基板と加工基準面とを所定圧力で接触させるとともに、該Si基板と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によってSi表面の酸化と該酸化膜の凸部からの優先的な加水分解による分解生成物の除去を進行させるものである。ここで、RMSは二乗平均平方根粗さ(Root Mean Square)のことであり、RMSはJISではRqと表される。本発明において、平坦化加工は一般的に鏡面研磨と呼ばれている処理と同等である。また、Si基板は、SiウェハやSiエピタキシャル面でも良い。   In the Si substrate planarization processing method of the present invention, the processing speed is 10 nm / h to 10 μm / h and the surface roughness is RMS 0.2 nm or less without using abrasive grains or abrasives on the surface of the Si substrate. A processing method for flattening, wherein a catalytic substance that promotes both oxidation of Si and hydrolysis of a Si oxide film is used as a processing reference surface, and the Si substrate and the processing reference surface are set in a predetermined manner in the presence of water. While making contact with pressure, the Si substrate and the processing reference surface are moved relative to each other, and the catalytic function provided on the processing reference surface oxidizes the Si surface and decomposes it by preferential hydrolysis from the convex portions of the oxide film. Advances the removal of objects. Here, RMS is a root mean square roughness (RMS), and RMS is represented by Rq in JIS. In the present invention, the flattening process is equivalent to a process generally called mirror polishing. The Si substrate may be a Si wafer or a Si epitaxial surface.

そして、前記加工基準面は、Siの酸化とSi酸化膜の加水分解の双方を促進する触媒物質で作製する。前記加工基準面は、文字通り加工の基準面となるので、加工中に形状が変化してはならない。また、前記加工基準面は、その表面状態が被加工物の表面に転写されるので、できるだけ表面粗さが小さく、高い平坦度に形成されることが望ましい。尚、前記加工基準面と被加工物とを相対運動させることにより、加工基準面の表面粗さや平坦度は平均化されるので、被加工物の表面は加工基準面より精度の高い表面となる。   The processing reference surface is made of a catalyst material that promotes both the oxidation of Si and the hydrolysis of the Si oxide film. Since the processing reference surface is literally a processing reference surface, the shape should not change during processing. In addition, since the surface state of the processing reference surface is transferred to the surface of the workpiece, it is preferable that the processing reference surface be formed with as low a surface roughness as possible and high flatness. In addition, since the surface roughness and flatness of the processing reference surface are averaged by moving the processing reference surface and the workpiece relative to each other, the surface of the workpiece becomes a surface with higher accuracy than the processing reference surface. .

前記加工基準面を形成する触媒物質として、遷移金属元素を含み、遷移金属元素の電子のd軌道がフェルミレベル近傍の触媒物質表面を用いることが好ましい。本発明では、金属元素と反応性のある溶液は使用しないので、各種の遷移金属元素を用いることができるが、中でも硬く形状が安定している遷移金属元素が用いることが特に好ましく、仕事関数の大きなPtをはじめ、Pd、Ru、Ni、Co、Cr、Mo等を用いることが可能である。更に、加工基準面となる触媒物質は、金属元素単体でも、複数の金属元素からなる合金でもよい。ここで、d電子軌道に空きがある金属を用いると、加工速度において効果が高いことが分かっている。現実的には、Pt、Ru、Ni、Crを加工基準面に用いることが好ましい。ここで、前記触媒物質は、バルクである必要はなく、安価で形状安定性のよい母材の表面に、金属、あるいは遷移金属を蒸着、スパッタリング、電気めっき等によって形成した薄膜でも良い。また、前記触媒物質を表面に成膜する母材は、硬質の弾性材でも良く、例えばフッ素系ゴム材を用いることができる。触媒物質が導電性である場合には、外部から加工基準面の電位を制御して加工速度を制御することができる。また、遷移金属元素含む化合物で絶縁性の触媒物質でも、遷移金属元素の電子のd軌道がフェルミレベル近傍の触媒物質であれば良好に使用できるが、この場合、加工基準面の電位は自然電位のままとする。   It is preferable to use a catalyst material surface containing a transition metal element as the catalyst material for forming the processing reference surface and having an electron d orbit of the transition metal element near the Fermi level. In the present invention, since a solution reactive with a metal element is not used, various transition metal elements can be used. Among them, it is particularly preferable to use a transition metal element that is hard and has a stable shape, and has a work function of In addition to large Pt, Pd, Ru, Ni, Co, Cr, Mo, or the like can be used. Further, the catalyst material serving as the processing reference surface may be a metal element alone or an alloy composed of a plurality of metal elements. Here, it is known that the use of a metal having a vacant d-electron trajectory is highly effective in processing speed. Practically, it is preferable to use Pt, Ru, Ni, Cr for the processing reference surface. Here, the catalyst material does not need to be a bulk, and may be a thin film formed by vapor deposition, sputtering, electroplating or the like of a metal or a transition metal on the surface of a base material that is inexpensive and has good shape stability. The base material on which the catalyst material is deposited may be a hard elastic material, and for example, a fluorine rubber material can be used. When the catalyst material is conductive, the processing speed can be controlled by controlling the potential of the processing reference surface from the outside. Further, even a compound containing a transition metal element and an insulating catalyst material can be used satisfactorily if the d-orbit of electrons of the transition metal element is a catalyst material in the vicinity of the Fermi level. In this case, the potential of the processing reference plane is a natural potential. Leave as it is.

また、前記水は、不純物が少なく特性が一定である純水又は超純水を用いることが、清純な加工環境を実現し、加工条件の正確な制御において必要である。一般的に、純水は電気抵抗率が1〜10MΩ・cm程度、超純水は電気抵抗率が15MΩ・cm以上とされているが、両者に境界があるわけではない。そして、また、前記水は、純水又は超純水に酸化促進剤及び/又は分解生成物の溶解を助ける錯体を混合したものを用い、加工速度を高めることがより好ましい。ここで、前記酸化促進剤は、Si基板表面の酸化を促進させるものであり、過酸化水素水やオゾン水等を用いることができる。また、前記錯体は、分解生成物の溶解を促進するとともに、錯イオンを作り水中で安定に維持する作用をする。水(加工液)のpHの調整には、例えば酸性領域はHNO3の添加、アルカリ性領域はKOHの添加で行うことが可能である。本発明におけるSi基板の加工には、Si表面の酸化を促進するため、酸性領域の加工液を用いることが好ましい。過酸化水素水は、濃度によってpHは変化するが弱酸性である。また、HNO3は、酸化剤としての作用もある。 In addition, it is necessary to use pure water or ultrapure water, which has few impurities and constant characteristics, in order to realize a pure processing environment and to accurately control processing conditions. Generally, pure water has an electrical resistivity of about 1 to 10 MΩ · cm, and ultrapure water has an electrical resistivity of 15 MΩ · cm or more, but there is no boundary between them. In addition, it is more preferable that the water is mixed with pure water or ultrapure water mixed with an oxidation accelerator and / or a complex that helps the decomposition product to increase the processing speed. Here, the oxidation accelerator promotes oxidation of the Si substrate surface, and hydrogen peroxide water, ozone water, or the like can be used. In addition, the complex promotes dissolution of the decomposition product and also functions to form a complex ion and maintain it stably in water. The pH of water (processing fluid) can be adjusted, for example, by adding HNO 3 in the acidic region and KOH in the alkaline region. In the processing of the Si substrate in the present invention, it is preferable to use a processing solution in an acidic region in order to promote oxidation of the Si surface. The hydrogen peroxide solution is slightly acidic although the pH changes depending on the concentration. HNO 3 also acts as an oxidizing agent.

本発明の加工メカニズムは、現象論的には以下のようであると考える。先ず、Siよりも仕事関数が大きな遷移金属元素からなる触媒物質がSi基板表面に接触することにより、Si基板表面から電子が抜かれてホールが生じ、表面酸化(陽極酸化)が生じる。一方、Si基板の酸化膜(SiO2)の表面に、少なくとも表面にd電子軌道がフェルミレベル近傍にある触媒物質を有する加工基準面が接触すると、酸化膜の表面近傍にd電子軌道が近づくことになる。d電子は、水分子の解離や、酸化物のバックボンドがルーズになる際の両方の現象に対して反応の障壁を下げる作用をする。現象論的には、該触媒物質が酸化物に近づくと、酸化物を構成する酸素元素とSi元素とのバックボンドの結合力が弱くなり、水分子が解離して酸化物の酸素元素とSi元素のバックボンドを切って吸着し、加水分解による分解生成物を生成する。そして、分解生成物を加工液中に溶出させるという原理である。ここで、Si基板の酸化膜の表面に該触媒物質を有する加工基準面を接触させて擦ることにより、分解生成物に機械的な力を与えることで、水中への溶出を促進させるのである。このとき、Siの酸化を促進させる酸化促進剤と、加水分解による分解生成物の溶解を助ける錯体を、加工液に添加することによって、加工速度を大幅に速めることが可能となる。 The processing mechanism of the present invention is considered as follows from a phenomenological viewpoint. First, when a catalytic material made of a transition metal element having a work function larger than that of Si comes into contact with the surface of the Si substrate, electrons are extracted from the surface of the Si substrate, holes are generated, and surface oxidation (anodic oxidation) occurs. On the other hand, when at least the surface of the oxide film (SiO 2 ) of the Si substrate comes into contact with a processing reference surface having a catalytic material having a d-electron orbit near the Fermi level, the d-electron orbit approaches the surface of the oxide film. become. The d electrons act to lower the barrier of reaction against both the dissociation of water molecules and the phenomenon when the oxide backbond becomes loose. Phenomenologically, when the catalyst material approaches the oxide, the bonding force of the back bond between the oxygen element and the Si element constituting the oxide becomes weak, the water molecules dissociate, and the oxygen element of the oxide and the Si element. It breaks the element's back bond and adsorbs, producing a decomposition product by hydrolysis. And it is a principle that a decomposition product elutes in a processing liquid. Here, the processing reference surface having the catalyst substance is brought into contact with the surface of the oxide film of the Si substrate and rubbed to give a mechanical force to the decomposition product, thereby promoting elution into water. At this time, it is possible to significantly increase the processing speed by adding an oxidation accelerator that promotes the oxidation of Si and a complex that assists the dissolution of decomposition products by hydrolysis to the processing liquid.

また、加工基準面を形成する該触媒物質が導電性材料であれば、該触媒物質の電位を調整することにより、加工速度を制御することができる。酸化還元電位は、導電性物質(例えばPt)表面が酸化物側から電子を「抜く」、「与える」性質を変えるものである。導電性物質の電位は、最終的に目指したい精度に応じて最適な加工速度に変えるためのパラメータになる。しかし、導電性物質の電位を正に大きくするとO2が発生し、また負に大きくするとH2が発生し、気泡が加工の妨げになるので、H2及びO2が発生しない範囲で調整することが必要であり、電位の制御域は高々2V程度である。 Further, if the catalyst substance forming the processing reference surface is a conductive material, the processing speed can be controlled by adjusting the potential of the catalyst substance. The oxidation-reduction potential changes the property that the surface of a conductive substance (eg, Pt) “extracts” and “gives” electrons from the oxide side. The electric potential of the conductive material is a parameter for changing to an optimum processing speed in accordance with the accuracy to be finally aimed. However, if the potential of the conductive substance is increased positively, O 2 is generated, and if it is negatively increased, H 2 is generated, and bubbles interfere with processing. Therefore, adjustment is made within a range in which H 2 and O 2 are not generated. The potential control range is about 2V at most.

例えば、二酸化ケイ素(SiO2)の結晶は、正四面体の中心にSiが位置し、4つの頂点にOが結合した構造で、Oを介してSiが三次元的に結合されており、その加工では、Si−O−Siの結合が切れ、H2Oの加水分解によってSi−OH、OH−Siとなる。このように、加水分解によってケイ酸{[SiOx(OH)4-2xn}が生成される。ここで、0<x<2である。代表的には、オルトケイ酸(H4SiO4)、メタケイ酸(H2SiO3)、メタ二ケイ酸(H2Si25)等がある。これらの分解生成物が、水に溶出するのである。Si基板の酸化膜でも同様である。 For example, a silicon dioxide (SiO 2 ) crystal has a structure in which Si is located at the center of a regular tetrahedron and O is bonded to four vertices, and Si is three-dimensionally bonded through O, In the processing, Si—O—Si bonds are broken, and H 2 O is hydrolyzed to become Si—OH and OH—Si. Thus, silicic acid {[SiO x (OH) 4-2x ] n } is generated by hydrolysis. Here, 0 <x <2. Typically, there are orthosilicic acid (H 4 SiO 4 ), metasilicic acid (H 2 SiO 3 ), metadisilicic acid (H 2 Si 2 O 5 ) and the like. These decomposition products are eluted in water. The same applies to the oxide film of the Si substrate.

次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。図1に示した第1実施形態の加工装置Aは、被加工物と加工基準面を水中に浸漬した状態で加工を行う構造である。加工装置Aは、水1を保持する容器2と、少なくとも表面に触媒物質を有する加工基準面3を備え、水1に浸漬させて前記容器2内に配置される加工パット4と、前記被加工物5を保持して水1に浸漬させ、前記加工基準面3と接触若しくは極接近させて前記容器2内に配置されるホルダ6と、前記加工パット4とホルダ6とを接触させながら相対運動させる駆動機構7と、前記加工基準面3を形成する触媒物質の電位をH2及びO2が発生しない範囲で調整する電圧印加手段8と、よりなるものである。また、前記容器2の水1を浄化し、水位を一定に保つために水循環系9を備えている。この水循環系9は、供給管9Aと排水管9Bと、図示しない処理液精製器、バッファタンク、ポンプ等で構成される。電圧印加手段8によって、前記加工基準面3を形成する触媒物質の電位を約−0.4〜+1.4Vの範囲(零を含む)に設定する。更に、前記被加工物表面に特定波長の励起光を照射し、表面を活性化しながら加工することも好ましい。 Next, the present invention will be described in more detail based on the embodiments shown in the accompanying drawings. The processing apparatus A according to the first embodiment shown in FIG. 1 has a structure in which processing is performed in a state where a workpiece and a processing reference surface are immersed in water. The processing apparatus A includes a container 2 for holding water 1, a processing reference surface 3 having at least a catalytic substance on the surface, a processing pad 4 that is immersed in water 1 and disposed in the container 2, and the workpiece Holding the object 5 and immersing it in the water 1, making contact with the processing reference plane 3 or bringing it in close contact with the holder 6 disposed in the container 2, the processing pad 4 and the holder 6 in contact with each other. And a voltage applying means 8 for adjusting the potential of the catalyst material forming the processing reference surface 3 in a range where H 2 and O 2 are not generated. Further, a water circulation system 9 is provided to purify the water 1 in the container 2 and keep the water level constant. The water circulation system 9 includes a supply pipe 9A, a drain pipe 9B, a treatment liquid purifier (not shown), a buffer tank, a pump, and the like. The voltage application means 8 sets the potential of the catalytic material forming the processing reference surface 3 in the range of about −0.4 to +1.4 V (including zero). Furthermore, it is also preferable to irradiate the surface of the workpiece with excitation light having a specific wavelength and to process the surface while activating it.

図示した加工装置Aは、前記加工パット4が、円盤状の回転定盤であり、該定盤よりも小さな面積の被加工物5を保持した前記ホルダ6と加工パット4を、互いに平行で偏心した回転軸で、所定速度で回転させるようにしている。本実施形態では、前記加工パット4を形成した定盤の回転数を加工条件として制御する。また、前記ホルダ6は、荷重を調節して、加工基準面3に対する被加工物5の接触圧力(加工圧力)を調節できるようになっている。この加工圧力も加工条件として制御する。また、前記加工パット4やホルダ6に温度制御機能を内蔵させれば、加工温度を所定温度で一定に維持することができるので望ましい。尚、前記被加工物5の表面より加工基準面3を狭くすれば、小さな加工パット4の被加工物5の表面に対する位置と滞在時間を制御して、被加工物5の表面の局所加工量を制御し、つまり数値制御による局所加工を行うことができる。   In the illustrated processing apparatus A, the processing pad 4 is a disk-shaped rotating surface plate, and the holder 6 and the processing pad 4 holding the workpiece 5 having a smaller area than the surface plate are parallel and eccentric to each other. The rotating shaft is rotated at a predetermined speed. In the present embodiment, the rotational speed of the surface plate on which the processing pad 4 is formed is controlled as a processing condition. The holder 6 can adjust the contact pressure (processing pressure) of the workpiece 5 with respect to the processing reference surface 3 by adjusting the load. This processing pressure is also controlled as a processing condition. Further, it is desirable to incorporate a temperature control function in the processing pad 4 or the holder 6 because the processing temperature can be kept constant at a predetermined temperature. If the processing reference plane 3 is made narrower than the surface of the workpiece 5, the position and stay time of the small processing pad 4 with respect to the surface of the workpiece 5 are controlled, and the local processing amount of the surface of the workpiece 5 is controlled. In other words, local processing by numerical control can be performed.

また、図2に示した第2実施形態の加工装置Bは、被加工物と加工基準面との間に滴下した水を供給しながら加工を行う構造である。加工装置Bは、少なくとも表面に触媒物質を有する加工基準面10を備えた加工パット11と、被加工物12を前記加工基準面10に対面させて保持するホルダ13と、前記加工パット11の加工基準面10とホルダ13に保持された被加工物12とを接触若しくは極接近させながら相対運動させる駆動機構14と、前記加工パット11の加工基準面10とホルダ13に保持された被加工物12の間に水15を供給する水供給手段16と、前記加工基準面10を形成する触媒物質の電位をH2及びO2が発生しない範囲で調整する電圧印加手段17と、よりなるものである。ここで、水が飛び散らないように、前記加工パット11の周囲に容器18を設けている。この場合も、前記被加工物表面に特定波長の励起光を照射し、表面を活性化しながら加工することも好ましい。 Moreover, the processing apparatus B of 2nd Embodiment shown in FIG. 2 is a structure which processes while supplying the water dripped between the to-be-processed object and the process reference plane. The processing apparatus B includes a processing pad 11 having a processing reference surface 10 having at least a catalytic substance on the surface, a holder 13 that holds the workpiece 12 facing the processing reference surface 10, and processing of the processing pad 11. A drive mechanism 14 that moves the reference surface 10 and the workpiece 12 held on the holder 13 relative to each other while making contact or close proximity, and the workpiece 12 held on the processing reference surface 10 of the processing pad 11 and the holder 13. Water supply means 16 for supplying water 15 between them, and voltage application means 17 for adjusting the potential of the catalytic material forming the processing reference surface 10 in a range where H 2 and O 2 are not generated. . Here, a container 18 is provided around the processing pad 11 so that water does not scatter. Also in this case, it is also preferable to irradiate the surface of the workpiece with excitation light having a specific wavelength and to process the surface while activating it.

先ず、予備的な実験として、加工基準面を形成する触媒物質としてPtを用いた加工装置Aによって、表面粗さ(RMS)が0.156nmの6インチSi(100)基板を平坦化加工した。加工条件は、加工液:純水、電位:自然電位、加工圧力:200hPa、回転数:10rpmで、加工時間:4分間である。図3は、加工装置AによってSi基板の平坦化加工前後の表面状態を示すAFM像である。加工前のSi基板の表面粗さ(RMS)が0.156nmであったのが、僅か4分間の加工後には0.068nmに大幅に改善されていることが分かった。ここで、AFMは、原子間力顕微鏡(Atomic Force Microscope)のことである。この結果、本発明によりCMPと同等以上の高品位の表面が得られ、しかも砥粒や研磨剤を使用しないので、これまでCMPを設置することができなかったクリーンルームで使用することができ、半導体デバイスの製造工数を短縮することができる。   First, as a preliminary experiment, a 6-inch Si (100) substrate having a surface roughness (RMS) of 0.156 nm was planarized by a processing apparatus A using Pt as a catalyst material for forming a processing reference surface. The processing conditions are: processing fluid: pure water, potential: natural potential, processing pressure: 200 hPa, rotation speed: 10 rpm, processing time: 4 minutes. FIG. 3 is an AFM image showing the surface state before and after planarization of the Si substrate by the processing apparatus A. It was found that the surface roughness (RMS) of the Si substrate before processing was 0.156 nm, but it was greatly improved to 0.068 nm after processing for only 4 minutes. Here, AFM is an atomic force microscope. As a result, a surface having a high quality equivalent to or higher than that of CMP can be obtained according to the present invention, and since no abrasive grains or abrasives are used, it can be used in a clean room where CMP could not be installed so far. Device manufacturing man-hours can be shortened.

次に、同じく加工基準面を形成する触媒物質としてPtを用いた加工装置Aによって、6インチSi(100)基板を平坦化加工し、表面の複数個所を観察し、加工前後で比較した。加工条件は、加工液:純水、電位:自然電位、加工圧力:200hPa、回転数:10rpmで、加工時間:10分間である。ここで、加工前の6インチSi(100)基板は、CMPによる仕上げ加工面である。図4は、このSi基板の表面の観察位置1〜5を示し、具体的には観察位置は、Siウェハの直径に沿って、一方の周縁部から他方の周縁部に亘る5箇所(観察位置3は中心部)に設定している。観察位置1〜3では加工前後の表面状態をAFM像で観察し、観察位置4,5は加工後の表面状態をAFM像で観察し、その結果を図5に示す。   Next, a 6-inch Si (100) substrate was flattened by a processing apparatus A using Pt as a catalyst material for forming a processing reference surface, and a plurality of locations on the surface were observed and compared before and after processing. The processing conditions are: processing fluid: pure water, potential: natural potential, processing pressure: 200 hPa, rotation speed: 10 rpm, processing time: 10 minutes. Here, the 6-inch Si (100) substrate before processing is a finished surface by CMP. FIG. 4 shows observation positions 1 to 5 on the surface of the Si substrate. Specifically, the observation positions are five positions (observation positions) extending from one peripheral portion to the other peripheral portion along the diameter of the Si wafer. 3 is set to the center). At observation positions 1 to 3, the surface state before and after processing is observed with an AFM image, and at observation positions 4 and 5, the surface state after processing is observed with an AFM image, and the results are shown in FIG.

図5に示すように、観察位置1では、加工前のSi基板の表面粗さ(RMS)が0.054nmであったのが、10分間の加工後には0.050nmになり、観察位置2では加工前の表面粗さ(RMS)が0.057nmであったのが、加工後には0.037nmになり、観察板3では加工前の表面粗さ(RMS)が0.054nmであったのが、加工後には0.054nmになり、また観察位置4,5では加工後にそれぞれ0.041nm、0.036nmとなった。この結果、Si基板内での加工斑は観察されず、全面で均一に加工が進行していることが分かった。この場合の平均の加工速度は74.3nm/hであった。ここで、Si基板の中心部での表面粗さに改善は見られなかったが、Si基板の中心部での加工圧力が周縁部よりも低くなっていること、あるいはSi基板のホルダの回転による中心部での作用が周縁部より小さいこと等が原因として挙げられるが、これらはホルダの構造の工夫と最適化により解消できるものと考える。   As shown in FIG. 5, at the observation position 1, the surface roughness (RMS) of the Si substrate before processing was 0.054 nm, but after processing for 10 minutes, it became 0.050 nm. The surface roughness (RMS) before processing was 0.057 nm, but it was 0.037 nm after processing. In the observation plate 3, the surface roughness (RMS) before processing was 0.054 nm. After processing, the thickness was 0.054 nm, and at observation positions 4 and 5, 0.041 nm and 0.036 nm were obtained after processing, respectively. As a result, it was found that no processing spots were observed in the Si substrate, and the processing progressed uniformly over the entire surface. In this case, the average processing speed was 74.3 nm / h. Here, no improvement was observed in the surface roughness at the center of the Si substrate, but the processing pressure at the center of the Si substrate was lower than that at the periphery, or due to rotation of the holder of the Si substrate. The reason is that the action at the center is smaller than that at the periphery, and these can be solved by devising and optimizing the structure of the holder.

更に、加工液に過酸化水素水を添加して6インチSi(100)基板を平坦化加工した。加工条件は、加工液:純水+過酸化水素水(濃度5%)、電位:自然電位、加工圧力:200hPa、回転数:10rpmで、加工時間:10分間である。この場合の平均の加工速度は、480nm/hとなった。濃度5%の過酸化水素水溶液を用いることで、酸化が促進され、加工速度は約6.5倍になることが分かった。装置の都合によるが、加工圧力で1000hPa、回転数で30rpmは普通に可能であるので、更に加工速度を15倍程度速くすることは原理的であり、その場合には加工速度が7.2μm/hになる。更に、本発明は、加工条件を最適化すれば、CMP面より高品位を維持しつつ加工速度を10μm/h程度までは十分高めることが可能である。また、加工速度は、加工圧力や回転数を落とせば遅くなるので、10nm/h程度は可能である。ここで、過酸化水素水は、濃度によってpHは変化するが、弱酸性である。更に、加工液のpHや接触電位によって加工速度の制御が可能である。   Further, a 6-inch Si (100) substrate was planarized by adding hydrogen peroxide water to the processing liquid. Processing conditions are: processing solution: pure water + hydrogen peroxide solution (concentration 5%), potential: natural potential, processing pressure: 200 hPa, rotation speed: 10 rpm, processing time: 10 minutes. The average processing speed in this case was 480 nm / h. It was found that by using a 5% aqueous hydrogen peroxide solution, oxidation was accelerated and the processing speed was increased by about 6.5 times. Depending on the convenience of the apparatus, a processing pressure of 1000 hPa and a rotation speed of 30 rpm are normally possible, so it is theoretically possible to further increase the processing speed by about 15 times, in which case the processing speed is 7.2 μm / h. Furthermore, in the present invention, if the processing conditions are optimized, it is possible to sufficiently increase the processing speed up to about 10 μm / h while maintaining a higher quality than the CMP surface. Further, the processing speed can be reduced to about 10 nm / h because the processing speed and the number of rotations are reduced. Here, although the pH of the hydrogen peroxide solution varies depending on the concentration, it is weakly acidic. Furthermore, the processing speed can be controlled by the pH of the processing liquid and the contact potential.

次に、加工基準面を形成する触媒物質としてPtを用いた加工装置Aによって、石英ガラス(純SiO2)を平坦化加工した例を図6に示す。石英ガラスの加工は、Si基板の表面に形成されたSi酸化膜(SiO2)の加工を模擬することができ、表面状態が安定であるので、加工特性を調べる実験には最適である。石英ガラスは、前加工面としてCMP面を用い、加工前と加工後の表面を位相シフト干渉顕微鏡(Zygo社、NewView)と原子間力顕微鏡(AFM)で観察して加工特性を評価した。 Next, FIG. 6 shows an example in which quartz glass (pure SiO 2 ) is planarized by a processing apparatus A using Pt as a catalyst material for forming a processing reference surface. The processing of quartz glass can simulate the processing of the Si oxide film (SiO 2 ) formed on the surface of the Si substrate, and since the surface state is stable, it is optimal for experiments for examining processing characteristics. Quartz glass used a CMP surface as a pre-processed surface, and the processing characteristics were evaluated by observing the surface before and after processing with a phase shift interference microscope (Zygo, NewView) and an atomic force microscope (AFM).

図6は、石英ガラス(SiO2)の平坦化加工の結果である。加工条件は、加工圧力:200hPa、回転速度:10rpm、加工液:超純水、加工時間:1時間である。加工速度は、831nm/hであった。加工によって位相シフト干渉顕微鏡像では、加工前はrms:0.338nmが加工後にrms:0.147nmとなり表面粗さが大幅に改善している。AFM像では、加工前はrms:1.455nmが加工後にrms:0.103nmと大幅に表面粗さが改善し、加工前表面にはスクラッチが確認されたが、このようなスクラッチは除去され、原子レベルで平滑な表面を有していることがわかった。 FIG. 6 shows the result of flattening processing of quartz glass (SiO 2 ). Processing conditions are: processing pressure: 200 hPa, rotation speed: 10 rpm, processing liquid: ultrapure water, processing time: 1 hour. The processing speed was 831 nm / h. In the phase shift interference microscope image by processing, rms: 0.338 nm before processing becomes rms: 0.147 nm after processing, and the surface roughness is greatly improved. In the AFM image, rms: 1.455 nm before processing was greatly improved to rms: 0.103 nm after processing, and scratches were confirmed on the surface before processing, but such scratches were removed, It was found to have a smooth surface at the atomic level.

次に、加工速度の制御性を、触媒物質球を被加工面に所定圧力で接触させなから回転させる基礎実験装置を用いて調べた。先ず、触媒金属としてPtを用いて石英ガラスを加工した。接触圧力は約500〜2000hPa、回転速度は24rpm、加工液は純水であり、Ptの電位は自然電位である。Ptが接触した楕円形の領域のみが加工され、その加工痕における最大深さを加工量として、加工速度の接触圧力依存性を調べた結果を図7に示す。圧力が大きくなるとともに加工量が増加することがわかる。つまり、加工速度は接触圧力に比例し、200hPaから1000hPaに圧力を5倍にすると、加工速度も5倍速くなることが分かる。また、加工速度は、回転速度に対しても比例関係があり、10rpmから30rpmに回転速度を3倍にすると、加工速度も3倍速くなる。   Next, the controllability of the processing speed was examined by using a basic experimental device that rotates the catalyst material sphere without bringing it into contact with the surface to be processed at a predetermined pressure. First, quartz glass was processed using Pt as a catalyst metal. The contact pressure is about 500 to 2000 hPa, the rotation speed is 24 rpm, the working fluid is pure water, and the potential of Pt is a natural potential. FIG. 7 shows the result of examining the contact pressure dependence of the machining speed, with only the elliptical region in contact with Pt being machined, with the maximum depth at the machining trace as the machining amount. It can be seen that the machining amount increases as the pressure increases. That is, it can be seen that the processing speed is proportional to the contact pressure, and when the pressure is increased five times from 200 hPa to 1000 hPa, the processing speed is also increased five times. Further, the processing speed is proportional to the rotational speed, and when the rotational speed is tripled from 10 rpm to 30 rpm, the processing speed is also tripled.

次に、各種の触媒金属を成膜した触媒物質球を用いて、接触圧力は約1000hPa、回転速度は24rpm、加工液は純水とし、同一加工条件で石英ガラスを加工した。触媒金属の電位は自然電位である。触媒金属に対する解離吸着の起こりやすさはd軌道の電子非占有度によって定性的に整理でき、以下のようにグループ分けできることが知られている。グループAは、d軌道の空位軌道が多いCr、Fe、Moなどの4,5,6,8族元素である。グループB1は、1から3の空位d軌道が存在するNi、Coからなる9、10族元素である。グループB2は、Pt、Pdなどの9、10族元素である。グループCは、Cu、Mnからなる7、11族元素である。グループDは、d軌道が占有されているAuからなる11族元素である。グループEは、Ag、Znなどの11、12族元素である。化学吸着特性は、グループA、B1、B2、C、D、Eの順で小さくなることが知られている。   Next, quartz glass was processed under the same processing conditions using a catalyst material sphere on which various catalytic metals were formed, with a contact pressure of about 1000 hPa, a rotation speed of 24 rpm, and a processing liquid of pure water. The potential of the catalytic metal is a natural potential. It is known that the ease of dissociative adsorption to the catalytic metal can be qualitatively arranged by the degree of electron non-occupancy of d orbitals and can be grouped as follows. Group A is a group 4, 5, 6, or 8 element such as Cr, Fe, or Mo having many d orbital vacancies. Group B1 is a group 9 or 10 element made of Ni or Co having 1 to 3 vacancy d orbitals. Group B2 is a group 9 or 10 element such as Pt or Pd. Group C is a group 7 or 11 element made of Cu or Mn. Group D is a group 11 element made of Au in which d orbitals are occupied. Group E is a group 11 or 12 element such as Ag or Zn. It is known that the chemisorption characteristics become smaller in the order of groups A, B1, B2, C, D, and E.

そこで、各グループから1元素ずつ触媒金属として選んで石英ガラスを加工した。その加工速度の触媒金属依存性の結果を図8に示した。この結果、化学吸着特性と加工速度の間には明らかな相関があり,Cr(グループA)やNi(グループB1)を用いた場合の加工速度はPt(グループB2)を用いた場合に比べて最大で1桁大きいことがわかった。また、グループD又はEに属するAuやAgを使用した場合は、d軌道が電子で占有されているので加工が殆ど進行しない。以上の結果から、本発明において触媒金属はH2O分子の解離を促進していることが明らかとなった。ここで、触媒金属としてステンレススチール(SUS316)を用いた場合も大きな加工速度が得られた。SUS316には、Niが10〜14重量%、Crが16〜18重量%、Moが2〜3重量%、その他の元素も含まれているが、主にCr、Niが加工に寄与しているものと考えている。また、触媒物質としてグラファイトを用いた場合も加工できるが、加工速度はAuやAgと同レベルと遅かった。 Therefore, quartz glass was processed by selecting one element from each group as the catalyst metal. The result of the dependence of the processing speed on the catalytic metal is shown in FIG. As a result, there is a clear correlation between the chemisorption characteristics and the processing speed, and the processing speed when Cr (group A) or Ni (group B1) is used is higher than when Pt (group B2) is used. It turned out to be up to an order of magnitude larger. Further, when Au or Ag belonging to the group D or E is used, since the d orbit is occupied by electrons, the processing hardly proceeds. From the above results, it became clear that the catalytic metal promotes dissociation of H 2 O molecules in the present invention. Here, even when stainless steel (SUS316) was used as the catalyst metal, a large processing speed was obtained. SUS316 contains 10 to 14% by weight of Ni, 16 to 18% by weight of Cr, 2 to 3% by weight of Mo, and other elements, but mainly Cr and Ni contribute to the processing. I believe that. Moreover, although it can process also when graphite is used as a catalyst substance, the processing speed was as slow as Au and Ag.

この結果、単一元素からなる触媒金属としては、グループA、B1、B2の金属を用いることが、加工速度の面で好ましく、更に実用的には比較的安価で取扱いが容易なものを選択して使用する。この場合、金属元素単体の他に、複数の金属元素からなる合金を用いることも好ましい。また、Cuはd軌道が電子で占有されているので、それ自体では加工速度が遅いが、CuOとなると絶縁性でも触媒機能が備わる。このように、触媒機能に乏しい金属であっても化合物となることにより、金属元素の電子のd軌道がフェルミレベル近傍になって、それが表面に現れれば、水分子が解離して酸化膜を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質として機能する。   As a result, it is preferable to use metals of group A, B1, and B2 as the catalyst metal composed of a single element from the viewpoint of processing speed, and more practically relatively inexpensive and easy to handle. To use. In this case, it is also preferable to use an alloy composed of a plurality of metal elements in addition to the metal element alone. Further, since the d orbital of Cu is occupied by electrons, Cu itself has a low processing speed, but CuO has a catalytic function even if it is insulative. Thus, even if a metal having a poor catalytic function is formed into a compound, if the d orbit of the electron of the metal element becomes near the Fermi level and appears on the surface, the water molecule dissociates and the oxide film is formed. It functions as a catalytic substance that cuts and adsorbs back-bonds of the oxygen element and other elements to assist in the generation of decomposition products by hydrolysis.

次に、石英ガラス基板における加工速度のpH依存性を調べた。溶液のpHを変化させ、加工速度の評価を行った結果を図9に示している。加工条件は、触媒:Pt、加工圧力:400hPa、回転速度:24rpm、加工液:pH調整、加工時間:30分間である。Pt表面の吸着状態が与える影響を排除した、加工速度の溶液pH依存である。加工速度はpH2〜4の範囲の酸性溶液を用いた時に最大となり、純水使用時に比べ約4倍に増加することが明らかとなり、続いて塩基性溶液、中性溶液と続くことが分かった。この結果を考察すると、エッチング過程においてまずH2O分子から触媒の作用によってH原子が解離し、生成した水酸基がSi原子に吸着する。続いてO原子にはH原子が吸着するが、このH原子はH2O分子から解離した触媒上のH原子だけではなく、溶液中の水素イオンが移動してくるものと考えられる。そのため酸性溶液中では加工速度が大きい。一方、塩基性溶液中での加工速度が中性溶液に比べて大きいのは、加工生成物であるSi(OH)xの溶解速度は塩基性で最大であることが原因だと考えられる。加工速度を最も速くする場合には、実用的には加工液のpHを3±0.5の範囲に調整すれば良い。 Next, the pH dependence of the processing speed in the quartz glass substrate was examined. The result of changing the pH of the solution and evaluating the processing speed is shown in FIG. Processing conditions are catalyst: Pt, processing pressure: 400 hPa, rotation speed: 24 rpm, processing liquid: pH adjustment, processing time: 30 minutes. It is the solution pH dependence of the processing speed, excluding the influence of the adsorption state on the Pt surface. It was found that the processing speed was maximized when an acidic solution having a pH in the range of 2 to 4 was used, and increased by about 4 times compared to when pure water was used, followed by a basic solution and a neutral solution. Considering this result, H atoms are first dissociated from the H 2 O molecules by the action of the catalyst in the etching process, and the generated hydroxyl groups are adsorbed on the Si atoms. Subsequently, H atoms are adsorbed on the O atoms, but it is considered that not only the H atoms on the catalyst dissociated from the H 2 O molecules but also the hydrogen ions in the solution move. Therefore, the processing speed is large in an acidic solution. On the other hand, the reason why the processing rate in the basic solution is larger than that in the neutral solution is considered to be that the dissolution rate of the processed product Si (OH) x is basic and maximum. In order to make the processing speed the fastest, practically, the pH of the processing liquid may be adjusted to a range of 3 ± 0.5.

溶液を変化させることにより液中のイオン濃度だけでなく、触媒の表面電位も変化するため、pHを固定した溶液中で電位のみを制御し、加工速度の評価を行った結果を次に示す。つまり、石英ガラス基板における加工速度の触媒電位依存を、pH1,3,7,11の各溶液を用いて調べた。溶液にはHNO3水溶液、リン酸緩衝液、KOH水溶液を用いて、それぞれのpHに調整した。加工条件として、触媒金属はPt、接触圧力は約1000hPa、回転速度は24rpm、加工液は純水、加工時間は15分間である。尚、自然電位(開回路電位)の実測値は、pH1,3,7,11でそれぞれ0.68,0.57,0.32,0.17V vs. Ag/AgClであった。各溶液における加工結果を図10〜図13に示す。全ての溶液において加工速度が触媒電位に依存して変化することが明らかとなった。図12に示すpH11のKOH溶液を用いた際の加工結果を例にとり考察を行う。加工速度のピークがおよそ−0.7V vs. Ag/AgCl付近に存在しており、0.5V以上または−1.5V vs. Ag/AgCl以下の電位では加工速度はほぼ0であった。これは正負の向きについて電位を走査すると、それぞれ生成した酸素と水素が吸着するためであり、吸着量が過剰な場合は全く加工が進行しないことを示している。一方、ピーク値周辺ではPt表面の被吸着量が最小量であると考えられ、電圧非印加時に比べて約3倍の加工速度であった。この結果、加工基準面を構成する触媒物質の電位を制御することによって、加工速度を制御できることを示している。 Since not only the ion concentration in the solution but also the surface potential of the catalyst changes by changing the solution, the results of evaluating the processing speed by controlling only the potential in a solution with a fixed pH are shown below. In other words, the dependence of the processing speed on the quartz glass substrate on the catalytic potential was investigated using solutions of pH 1, 3, 7, and 11. The solution was adjusted to each pH by using an HNO 3 aqueous solution, a phosphate buffer, and a KOH aqueous solution. As processing conditions, the catalyst metal is Pt, the contact pressure is about 1000 hPa, the rotation speed is 24 rpm, the processing liquid is pure water, and the processing time is 15 minutes. The measured values of the natural potential (open circuit potential) were 0.68, 0.57, 0.32, 0.17 V vs. Ag / AgCl at pH 1, 3, 7, and 11, respectively. The processing results in each solution are shown in FIGS. It became clear that the processing speed varied depending on the catalyst potential in all solutions. The processing result when using a pH 11 KOH solution shown in FIG. 12 will be considered as an example. The peak of the processing speed exists in the vicinity of about −0.7 V vs. Ag / AgCl, and the processing speed was almost zero at a potential of 0.5 V or more or −1.5 V vs. Ag / AgCl or less. This is because when the potential is scanned in the positive and negative directions, the generated oxygen and hydrogen are adsorbed, and the processing does not proceed at all when the adsorption amount is excessive. On the other hand, in the vicinity of the peak value, the amount of adsorption on the Pt surface is considered to be the minimum amount, and the processing speed was about three times that when no voltage was applied. As a result, it is shown that the processing speed can be controlled by controlling the potential of the catalytic material constituting the processing reference surface.

各pHにおける加工速度のピーク電位と自然電位の位置を比較して図14に示す。pHがアルカリ側に移動するにつれてピーク電位は負になっている。これは、より高いpHでは水酸基あるいは酸素の触媒金属への吸着が顕著になり、それらを脱離させるためにより負の電位が必要であると理解できる。逆にpH1では水素が過剰に吸着しており、自然電位より正側の電位に設定することで最大の加工速度が得られる。図14の下側の直線は、H2の発生限界、上側の直線はO2の発生限界を示し、上下の直線の間で電位を制御することになる。 FIG. 14 shows a comparison between the peak potential of the processing speed at each pH and the position of the natural potential. As the pH moves to the alkali side, the peak potential becomes negative. This can be understood that at higher pH, the adsorption of hydroxyl groups or oxygen to the catalytic metal becomes significant, and a more negative potential is required to desorb them. Conversely, at pH 1, hydrogen is excessively adsorbed, and the maximum processing speed can be obtained by setting the potential to the positive side of the natural potential. The lower straight line in FIG. 14 indicates the H 2 generation limit, and the upper straight line indicates the O 2 generation limit, and the potential is controlled between the upper and lower straight lines.

図15は、平坦化加工装置を用いて、石英ガラスに対して加工速度が最大となるpH3の水溶液を固定し、触媒がPt、加工圧力が400hPa、回転速度は24rpm、加工時間は30分間とし、Ptの電位を更に細かく変化させて加工した結果を示している。ここでは、Ptの電位は標準水素電極(SHE)を基準に測定した。pH3の溶液を用いると最も加工速度が速くなることは前述のとおりであるが、電位を正確に制御することで幅広い加工速度を実現できること分かる。例えば、Ptの電位を1V vs. SHEから0V vs. SHEに変化させると加工速度は約1/2になる。   FIG. 15 shows that a flattening apparatus is used to fix an aqueous solution of pH 3 that maximizes the processing speed to quartz glass, the catalyst is Pt, the processing pressure is 400 hPa, the rotation speed is 24 rpm, and the processing time is 30 minutes. , The result of processing by further changing the potential of Pt. Here, the potential of Pt was measured based on a standard hydrogen electrode (SHE). As described above, the use of a pH 3 solution provides the highest processing speed, but it can be seen that a wide processing speed can be realized by accurately controlling the potential. For example, when the potential of Pt is changed from 1 V vs. SHE to 0 V vs. SHE, the processing speed becomes about ½.

本発明は、加工基準面の電位を変化させることにより、加工速度を制御できることは明らかである。また、加工液のpHを変化させても加工速度を制御できる。本発明は、加工基準面を形成する触媒物質の電位を、自然電位を含みH2及びO2が発生しない範囲で調整することにより、加工速度を制御できるので、加工速度の速い粗加工から加工速度の遅い精密加工まで加工条件を簡単に変えることができる。つまり、本発明は、被加工物を加工装置にセットしたまま、導電性の触媒物質の電位を変えるだけで、粗加工から精密加工までの一連の加工を行うことができるので作業効率が高い。それに対して、従来は、同じ加工装置を用いる場合は、加工作業を中断し、研磨パット、研磨剤や砥粒を交換する必要があり、あるいは粗加工装置と精密加工装置の専用装置を用いる場合には、それらの装置の間で被加工物を移し変える必要があった。本発明は、水によるSiO2の加水分解であるので、Si酸化膜は凸部からしか溶出せず、極めて高品質なSi面が出せるのである。 In the present invention, it is obvious that the machining speed can be controlled by changing the potential of the machining reference plane. In addition, the processing speed can be controlled by changing the pH of the processing liquid. In the present invention, the processing speed can be controlled by adjusting the potential of the catalyst material forming the processing reference surface in a range that includes natural potential and does not generate H 2 and O 2. Machining conditions can be easily changed up to low-speed precision machining. That is, according to the present invention, since a series of processing from rough processing to precision processing can be performed only by changing the electric potential of the conductive catalyst substance while the workpiece is set in the processing apparatus, the work efficiency is high. On the other hand, conventionally, when using the same processing device, it is necessary to interrupt the processing operation and replace the polishing pad, abrasive and abrasive grains, or when using a dedicated device for roughing and precision processing In other words, it was necessary to transfer the work piece between these devices. In the present invention, since SiO 2 is hydrolyzed by water, the Si oxide film is eluted only from the convex portion, and an extremely high-quality Si surface can be obtained.

A 加工装置、 B 加工装置、
1 水、 2 容器、
3 加工基準面、 4 加工パット、
5 被加工物、 6 ホルダ、
7 駆動機構、 8 電圧印加手段、
9 水循環系、 9A 供給管、
9B 排水管、 10 加工基準面、
11 加工パット、 12 被加工物、
13 ホルダ、 14 駆動機構、
15 水、 16 水供給手段、
17 電圧印加手段、 18 容器。
A processing equipment, B processing equipment,
1 water, 2 containers,
3 machining reference plane, 4 machining pad,
5 Workpiece, 6 Holder,
7 drive mechanism, 8 voltage application means,
9 Water circulation system, 9A supply pipe,
9B Drain pipe, 10 processing reference plane,
11 processing pads, 12 workpieces,
13 holder, 14 drive mechanism,
15 water, 16 water supply means,
17 Voltage application means, 18 container.

Claims (9)

Si基板の表面を砥粒や研磨剤を用いずに、加工速度が10nm/h〜10μm/hで、表面粗さがRMS0.2nm以下の精度に平坦化加工する加工方法であって、
Siの酸化とSi酸化膜の加水分解の双方を促進する触媒物質を加工基準面として用い、水の存在下で、前記Si基板と加工基準面とを所定圧力で接触させるとともに、該Si基板と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によってSi表面の酸化と該酸化膜の凸部からの優先的な加水分解による分解生成物の除去を進行させることを特徴とするSi基板の平坦化加工方法。
A processing method of flattening the surface of a Si substrate with an accuracy of 10 nm / h to 10 μm / h and a surface roughness of RMS 0.2 nm or less without using abrasive grains or an abrasive,
A catalytic substance that promotes both the oxidation of Si and the hydrolysis of the Si oxide film is used as a processing reference surface. In the presence of water, the Si substrate and the processing reference surface are brought into contact with each other at a predetermined pressure. Relative movement with the processing reference plane, and the catalytic function provided on the processing reference plane advances the oxidation of the Si surface and the removal of decomposition products by preferential hydrolysis from the convex portions of the oxide film. A method for planarizing a Si substrate.
前記触媒物質が、Pt、Pd、Ru、Ni、Co、Cr、Moから選択した1種又は2種以上である請求項1記載のSi基板の平坦化加工方法。   The method for planarizing a Si substrate according to claim 1, wherein the catalyst material is one or more selected from Pt, Pd, Ru, Ni, Co, Cr, and Mo. 前記水は、純水又は超純水に酸化促進剤及び/又は分解生成物の溶解を助ける錯体を添加したものである請求項1又は2記載のSi基板の平坦化加工方法。   3. The method for planarizing a Si substrate according to claim 1, wherein the water is obtained by adding an oxidation accelerator and / or a complex that aids dissolution of decomposition products to pure water or ultrapure water. 4. 前記酸化促進剤が過酸化水素水である請求項3記載のSi基板の平坦化加工方法。   The method for planarizing a Si substrate according to claim 3, wherein the oxidation accelerator is hydrogen peroxide. Si基板の表面を砥粒や研磨剤を用いずに、加工速度が10nm/h〜10μm/hで、表面粗さがRMS0.2nm以下の精度に平坦化加工する加工装置であって、
水を保持する容器と、
Siの酸化とSi酸化膜の加水分解の双方を促進する触媒物質を表面に形成した加工基準面を備え、水に浸漬させて前記容器内に配置される加工パットと、
前記Si基板を保持して水に浸漬させ、前記加工基準面と接触させて前記容器内に配置されるホルダと、
前記加工パットとホルダとを所定圧力で接触させながら相対運動させる駆動機構と、
よりなり、水の存在下で、前記Si基板と加工基準面とを所定圧力で接触させるとともに、該Si基板と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によってSi表面の酸化と該酸化膜の凸部からの優先的な加水分解による分解生成物の除去を進行させることを特徴とするSi基板の平坦化加工装置。
A processing apparatus for flattening the surface of an Si substrate with an accuracy of 10 nm / h to 10 μm / h and a surface roughness of RMS 0.2 nm or less without using abrasive grains or an abrasive,
A container for holding water;
A processing pad having a processing reference surface formed on the surface with a catalytic substance that promotes both oxidation of Si and hydrolysis of the Si oxide film, and a processing pad that is immersed in water and disposed in the container;
Holding the Si substrate and immersing it in water, contacting the processing reference surface and placing the holder in the container;
A drive mechanism for relatively moving the processing pad and the holder in contact with each other at a predetermined pressure;
In the presence of water, the Si substrate and the processing reference surface are brought into contact with each other at a predetermined pressure, and the Si substrate and the processing reference surface are moved relative to each other, and the Si surface is provided by a catalytic function provided on the processing reference surface. An apparatus for planarizing a Si substrate, wherein oxidation of the substrate and removal of decomposition products by preferential hydrolysis from the convex portions of the oxide film are advanced.
Si基板の表面を砥粒や研磨剤を用いずに、加工速度が10nm/h〜10μm/hで、表面粗さがRMS0.2nm以下の精度に平坦化加工する加工装置であって、
水が飛び散らないように設ける容器と、
Siの酸化とSi酸化膜の加水分解の双方を促進する触媒物質を表面に形成した加工基準面を備え、前記容器内に配置される加工パットと、
前記Si基板を保持して、前記加工基準面と接触させて前記容器内に配置されるホルダと、
前記加工パットとホルダとを所定圧力で接触させながら相対運動させる駆動機構と、
前記加工パットの加工基準面とホルダに保持されたSi基板の間に水を供給する水供給手段と、
よりなり、水の存在下で、前記Si基板と加工基準面とを所定圧力で接触させるとともに、該Si基板と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によってSi表面の酸化と該酸化膜の凸部からの優先的な加水分解による分解生成物の除去を進行させることを特徴とするSi基板の平坦化加工装置。
A processing apparatus for flattening the surface of an Si substrate with an accuracy of 10 nm / h to 10 μm / h and a surface roughness of RMS 0.2 nm or less without using abrasive grains or an abrasive,
A container provided to prevent water from splashing;
A processing pad provided on the surface with a catalyst material that promotes both oxidation of Si and hydrolysis of the Si oxide film, and a processing pad disposed in the container;
While holding the Si substrate, and a holder disposed in said container in contact with the working reference face,
A drive mechanism for relatively moving the processing pad and the holder in contact with each other at a predetermined pressure;
Water supply means for supplying water between the processing reference surface of the processing pad and the Si substrate held by the holder;
In the presence of water, the Si substrate and the processing reference surface are brought into contact with each other at a predetermined pressure, and the Si substrate and the processing reference surface are moved relative to each other, and the Si surface is provided by a catalytic function provided on the processing reference surface. An apparatus for planarizing a Si substrate, wherein oxidation of the substrate and removal of decomposition products by preferential hydrolysis from the convex portions of the oxide film are advanced.
前記触媒物質が、Pt、Pd、Ru、Ni、Co、Cr、Moから選択した1種又は2種以上である請求項5又は6記載のSi基板の平坦化加工装置。   The Si substrate planarization apparatus according to claim 5 or 6, wherein the catalyst material is one or more selected from Pt, Pd, Ru, Ni, Co, Cr, and Mo. 前記水は、純水又は超純水に酸化促進剤及び/又は分解生成物の溶解を助ける錯体を添加したものである請求項5〜7何れか1項に載のSi基板の平坦化加工装置。   8. The Si substrate flattening apparatus according to any one of claims 5 to 7, wherein the water is obtained by adding an oxidation accelerator and / or a complex that aids dissolution of decomposition products to pure water or ultrapure water. . 前記酸化促進剤が過酸化水素水である請求項8載のSi基板の平坦化加工装置。   9. The Si substrate planarization apparatus according to claim 8, wherein the oxidation accelerator is hydrogen peroxide.
JP2014037307A 2014-02-27 2014-02-27 Method and apparatus for planarizing Si substrate Active JP6188152B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014037307A JP6188152B2 (en) 2014-02-27 2014-02-27 Method and apparatus for planarizing Si substrate
PCT/JP2015/055469 WO2015129765A1 (en) 2014-02-27 2015-02-25 Silicon-substrate planarization method and device used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014037307A JP6188152B2 (en) 2014-02-27 2014-02-27 Method and apparatus for planarizing Si substrate

Publications (2)

Publication Number Publication Date
JP2015162600A JP2015162600A (en) 2015-09-07
JP6188152B2 true JP6188152B2 (en) 2017-08-30

Family

ID=54009080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014037307A Active JP6188152B2 (en) 2014-02-27 2014-02-27 Method and apparatus for planarizing Si substrate

Country Status (2)

Country Link
JP (1) JP6188152B2 (en)
WO (1) WO2015129765A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155232A (en) * 2018-03-08 2019-09-19 株式会社ジェイテックコーポレーション Cleaning method and cleaning device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6786420B2 (en) * 2017-02-27 2020-11-18 グローバルウェーハズ・ジャパン株式会社 Silicon wafer flattening method
JP2020097022A (en) * 2018-12-17 2020-06-25 株式会社荏原製作所 Catalyst used in catalyst reference etching, processing pad having catalyst, and catalyst reference etching apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3942282B2 (en) * 1998-08-06 2007-07-11 勇蔵 森 Polishing method and apparatus
JP5007384B2 (en) * 2006-10-18 2012-08-22 株式会社荏原製作所 Catalyst-assisted chemical processing method and apparatus
CN101880907B (en) * 2010-07-07 2012-04-25 厦门大学 Electrochemical levelling and polishing processing method with nanometer precision and device thereof
JP5754754B2 (en) * 2011-12-06 2015-07-29 国立大学法人大阪大学 Method and apparatus for processing solid oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155232A (en) * 2018-03-08 2019-09-19 株式会社ジェイテックコーポレーション Cleaning method and cleaning device

Also Published As

Publication number Publication date
JP2015162600A (en) 2015-09-07
WO2015129765A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
JP5963223B2 (en) Glass material processing method and apparatus
JP6206847B2 (en) Wide band gap semiconductor substrate processing method and apparatus
JP5007384B2 (en) Catalyst-assisted chemical processing method and apparatus
JP5364959B2 (en) Polishing method and polishing apparatus
JP4873694B2 (en) Catalyst-assisted chemical processing method
TW200540240A (en) Chemical-mechanical polishing composition and method for using the same
JP2008081389A (en) Catalyst-aided chemical processing method and apparatus
JP2008071857A (en) Catalytic chemical processing method and apparatus using magnetic fine particles
JP2013533614A (en) Chemical planarization of copper wafer polishing
JP6188152B2 (en) Method and apparatus for planarizing Si substrate
EP3128536B1 (en) Method for polishing gan single crystal material
Matovu et al. Chemical mechanical polishing of Ge in hydrogen peroxide-based silica slurries: role of ionic strength
US11850704B2 (en) Methods to clean chemical mechanical polishing systems
US20040197541A1 (en) Selective electroless deposition and interconnects made therefrom
JP6797409B2 (en) Catalyst surface standard etching method and its equipment
JP2002359223A (en) Cleaning liquid
TW201714211A (en) Method of chemical mechanical polishing a semiconductor substrate
JP2002075925A (en) Surface planarization treatment method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170728

R150 Certificate of patent or registration of utility model

Ref document number: 6188152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250