JP6797409B2 - Catalyst surface standard etching method and its equipment - Google Patents

Catalyst surface standard etching method and its equipment Download PDF

Info

Publication number
JP6797409B2
JP6797409B2 JP2017003359A JP2017003359A JP6797409B2 JP 6797409 B2 JP6797409 B2 JP 6797409B2 JP 2017003359 A JP2017003359 A JP 2017003359A JP 2017003359 A JP2017003359 A JP 2017003359A JP 6797409 B2 JP6797409 B2 JP 6797409B2
Authority
JP
Japan
Prior art keywords
transition metal
processed
catalyst
tool
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017003359A
Other languages
Japanese (ja)
Other versions
JP2018113366A (en
Inventor
和人 山内
和人 山内
大雪 藤
大雪 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2017003359A priority Critical patent/JP6797409B2/en
Publication of JP2018113366A publication Critical patent/JP2018113366A/en
Application granted granted Critical
Publication of JP6797409B2 publication Critical patent/JP6797409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、触媒表面基準エッチング方法及びその装置に係わり、更に詳しくはSi、SiC、GaN等の半導体材料や、光学ガラスに代表される固体酸化物材料等の被加工物を、砥粒や有害薬液を使用せず、平面若しくは任意曲面に平坦化加工することが可能な触媒表面基準エッチング方法及びその装置に関するものである。 The present invention relates to a catalyst surface reference etching method and its apparatus, and more specifically, a workpiece such as a semiconductor material such as Si, SiC, GaN or a solid oxide material represented by optical glass is subjected to abrasive grains or harmful substances. The present invention relates to a catalyst surface-based etching method and an apparatus thereof capable of flattening a flat surface or an arbitrary curved surface without using a chemical solution.

従来から、半導体デバイスの製造分野では、Siウェハを始めSi基板の表面を、高品位に平坦化加工する方法若しくは研磨する方法(ポリッシング)は各種提供されている。代表的には、研磨剤(砥粒)自体が有する表面化学作用又は研磨液に含まれる化学成分の作用によって、研磨剤と研磨対象物の相対運動による機械的研磨(表面除去)効果を増大させ、高速かつ平滑な研磨面を得るCMP(Chemical Mechanical Polishing)がある。 Conventionally, in the field of manufacturing semiconductor devices, various methods (polishing) have been provided for flattening or polishing the surface of a Si substrate including a Si wafer with high quality. Typically, the surface chemical action of the polishing agent (abrasive grains) itself or the action of chemical components contained in the polishing liquid increases the mechanical polishing (surface removal) effect due to the relative movement between the polishing agent and the object to be polished. There is CMP (Chemical Mechanical Polishing) that obtains a high-speed and smooth polished surface.

CMP用の研磨剤には、例えばSi基板の研磨に、主にコロイダルシリカ(SiO)や酸化セリウム(CeO)若しくはランタンを含む酸化セリウムの微粒子が用いられ、更に硬いSiC基板の研磨には、ダイヤモンド砥粒が使用されている。しかし、砥粒を使用する以上、被加工面に砥粒による引っ掻き傷や内部に潜傷が残るばかりでなく、レアアースである酸化セリウムを多用しているので、将来的には資源の枯渇化の問題に晒されるのは避けられない。また、CMPはコロイダルシリカ等の微粒子を用いるので、研磨液の処理がコスト高となり、またクリーンルームとの相性が悪い等の問題がある。 As the polishing agent for CMP, for example, fine particles of cerium oxide containing colloidal silica (SiO 2 ), cerium oxide (CeO 2 ) or lanthanum are mainly used for polishing a Si substrate, and for polishing a harder SiC substrate. , Diamond abrasive grains are used. However, as long as abrasive grains are used, not only scratches and latent scratches due to the abrasive grains remain on the surface to be processed, but also cerium oxide, which is a rare earth element, is heavily used, so resources will be depleted in the future. It is inevitable to be exposed to problems. Further, since CMP uses fine particles such as colloidal silica, there are problems that the treatment of the polishing liquid is costly and the compatibility with the clean room is poor.

そこで、本発明者らによって、研磨剤や砥粒を使用せず、被加工物を平面若しくは任意曲面に平坦化加工することが可能な触媒表面基準エッチング(CARE:CAtalyst-Referred Etching)法が提案されて来た。CARE法は、研磨剤や砥粒を全く使用しない加工技術であり、加工によって被加工面にスクラッチや加工変質層を全く導入しない、つまり結晶学的損傷の無い理想的な加工方法である。CARE法は、開発初期においては、フッ化水素溶液を加工液に用いて、SiC等の難加工物を加工することを目的に開発されて来たが、処理空間の気密性や排気ガスや廃液の処理設備が必要になるといった問題があった。 Therefore, the present inventors have proposed a catalyst surface reference etching (CARE: CAtalyst-Referred Etching) method capable of flattening a workpiece to a flat surface or an arbitrary curved surface without using an abrasive or abrasive grains. Has been done. The CARE method is a processing technique that does not use any abrasives or abrasive grains, and is an ideal processing method that does not introduce any scratches or work-altered layers on the surface to be processed by processing, that is, there is no crystallographic damage. In the early stages of development, the CARE method was developed for the purpose of processing difficult-to-process products such as SiC using a hydrogen fluoride solution as the processing liquid, but the airtightness of the processing space, exhaust gas, and waste liquid have been developed. There was a problem that the processing equipment was required.

このような状況のもと、CARE法の加工原理の理解も進み、本発明者によって、砥粒やフッ化水素溶液等の有害薬液を使用せず、Si、SiC、GaN等の半導体材料や、光学ガラスに代表される固体酸化物材料等の被加工物を、平面若しくは任意曲面に平坦化加工することが可能な触媒表面基準エッチング方法が提案されるに至った(特許文献1〜3)。 Under these circumstances, the understanding of the processing principle of the CARE method has progressed, and the present inventor has made semiconductor materials such as Si, SiC, and GaN without using harmful chemicals such as abrasive grains and hydrogen fluoride solution. A catalyst surface-referenced etching method capable of flattening a workpiece such as a solid oxide material represented by optical glass into a flat surface or an arbitrary curved surface has been proposed (Patent Documents 1 to 3).

特許文献1には、水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を加工基準面として用い、水の存在下で、前記被加工物と加工基準面とを接触若しくは極接近させて配し、前記加工基準面の電位を、自然電位を含みH及びOが発生しない範囲とし、前記被加工物と加工基準面とを相対運動させて、前記分解生成物を被加工物表面から除去することを特徴とする固体酸化膜の加工方法が開示されている。 Patent Document 1 uses a catalytic substance as a processing reference surface, which assists the formation of decomposition products by hydrolysis by cutting and adsorbing back bonds between oxygen elements and other elements that dissociate water molecules to form solid oxides. In use, in the presence of water, the workpiece and the machining reference surface are placed in contact with or very close to each other, and the potential of the machining reference surface is set to a range including natural potential and H 2 and O 2 are not generated. A method for processing a solid oxide film, which comprises removing the decomposition product from the surface of the workpiece by relatively moving the workpiece and the machining reference plane, is disclosed.

特許文献1に記載の加工方法は、レアアースを始め、研磨剤や砥粒を一切使用せず、またフッ化水素等の取り扱いが難しく、環境負荷の大きな溶液を一切使用せず、原理的に水のみを用いるCARE(Water−CARE)であり、光学材料などの固体酸化膜を、加工変質層を導入することなく加工することが可能な画期的なものであった。 The processing method described in Patent Document 1 does not use any abrasives or abrasive grains such as rare earths, is difficult to handle hydrogen fluoride, etc., does not use any solution having a large environmental load, and in principle water. It is a CARE (Water-CARE) that uses only a single oxide, and is an epoch-making one that can process a solid oxide film such as an optical material without introducing a processing alteration layer.

特許文献2は、Siの酸化とSi酸化膜の加水分解の双方を促進する触媒物質を加工基準面に用いて、水の存在下で、Si基板を加工するというものである。また、特許文献3は、SiC、GaN、AlGaN、AlNの単結晶を被加工物とし、被加工物の直接的な加水分解、あるいは被加工物表面の酸化膜の加水分解を促進する機能を備えた触媒物質を加工基準面として用い、水の存在下で、前記被加工物と加工基準面とを所定圧力で接触若しくは極接近させて配し、前記加工基準面の電位を、酸素発生電位を基準として±1Vの範囲に設定して触媒表面に酸素が吸着した状態を作り、前記被加工物と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によって被加工物表面の直接的な加水分解あるいは被加工物表面の酸化と該酸化膜の加水分解を加工基準面に近い表面凸部から優先的に進行させ、分解生成物を除去するものである。 Patent Document 2 is to process a Si substrate in the presence of water by using a catalytic substance that promotes both oxidation of Si and hydrolysis of a Si oxide film as a processing reference plane. Further, Patent Document 3 has a function of using a single crystal of SiC, GaN, AlGaN, or AlN as a workpiece and promoting direct hydrolysis of the workpiece or hydrolysis of an oxide film on the surface of the workpiece. Using the catalyst substance as the processing reference surface, in the presence of water, the workpiece and the processing reference surface are placed in contact with or extremely close to each other at a predetermined pressure, and the potential of the processing reference surface is set to the oxygen generation potential. A state in which oxygen is adsorbed on the catalyst surface is set as a reference in the range of ± 1 V, the workpiece and the machining reference surface are moved relative to each other, and the catalyst function provided on the machining reference surface allows the surface of the workpiece to be moved. Direct hydrolysis or oxidation of the surface of the work piece and hydrolysis of the oxide film are preferentially promoted from the surface convex portion close to the processing reference surface to remove the decomposition product.

特許第5754754号公報Japanese Patent No. 5754754 特開2015−162600号公報JP-A-2015-162600 特開2015−173216号公報JP 2015-173216

CARE法において、触媒の最適化は重要である。これまでは、触媒物質として酸化や薬品耐性に優れたPtが主に用いられていた。しかし、Ptは高価であるとともに、被加工面に付着すると除去が難しく、その汚染は電子デバイスの性能を著しく低下させる可能性がある。CAREの加工原理において、触媒の持つd電子が本質的な作用を果たす。そのようなd電子を有する遷移金属の中で、d軌道電子占有率がPtよりも低いNiは、加工速度(除去速度)が速く、触媒として有効であることが基礎実験から確かめられていた。加工コストの低減や加工後の洗浄の容易性からNiへの移行は有意であるが、酸化による触媒機能の劣化が著しく、実用に耐え得なかった。 In the CARE method, catalyst optimization is important. Until now, Pt, which has excellent oxidation and chemical resistance, has been mainly used as a catalyst substance. However, Pt is expensive and difficult to remove if it adheres to the surface to be processed, and the contamination can significantly reduce the performance of the electronic device. In the processing principle of CARE, the d-electrons of the catalyst play an essential role. Among such transition metals having d-electrons, it has been confirmed from basic experiments that Ni, which has a d-orbital electron occupancy lower than Pt, has a high processing speed (removal speed) and is effective as a catalyst. The shift to Ni was significant because of the reduction in processing cost and the ease of cleaning after processing, but the catalytic function deteriorated significantly due to oxidation, and it could not be put into practical use.

そこで、本発明が前述の状況に鑑み、解決しようとするところは、これまでにSi、SiC、GaN等の半導体材料や、光学ガラスに代表される固体酸化物材料等の被加工物を、砥粒や有害薬液を使用せず、平面若しくは任意曲面に平坦化加工することが可能な加工方法として確立しているWater−CAREにおいて、触媒物質を最適化し、低コストで加工速度が速く、しかも長時間安定した加工が可能な触媒表面基準エッチング方法及びその装置を提供する点にある。 Therefore, in view of the above-mentioned situation, the present invention has been trying to solve the problem by grinding semiconductor materials such as Si, SiC, and GaN and workpieces such as solid oxide materials represented by optical glass. In Water-CARE, which has been established as a processing method that can flatten a flat surface or an arbitrary curved surface without using grains or harmful chemicals, the catalytic material is optimized, the processing speed is fast, and the processing speed is long. The point is to provide a catalyst surface-referenced etching method and an apparatus thereof capable of time-stable processing.

本発明は、前述の課題解決のために、以下に構成する触媒表面基準エッチング方法及びその装置を提供する。 The present invention provides a catalyst surface-based etching method and an apparatus therefor for solving the above-mentioned problems.

(1)
被加工物の被加工面の加水分解を促進する触媒機能を備えた遷移金属を加工面に設けた工具を用い、水の存在下で、前記被加工面と前記加工面とを所定圧力で接触させるとともに、被加工面と加工面とを相対運動させて、該加工面に備わった触媒機能によって被加工面の加水分解を、前記加工面に接触する部分から優先的に進行させ、分解生成物を除去することにより、被加工物を平面若しくは任意曲面に平坦化加工することが可能な触媒表面基準エッチング方法において、
少なくとも前記工具の加工面と被加工物の被加工面とを、水と遷移金属イオンを含む加工液中に配置し、前記加工面を加工液に対して負電位状態にして該加工面に遷移金属を析出させて触媒機能を備えた遷移金属膜を形成する析出過程と、前記加工面を加工液に対して正電位状態にして該加工面の遷移金属膜を溶解させる溶解過程と、を交互に繰り返すエッチング工程を含むことを特徴とする触媒表面基準エッチング方法。
(1)
Using a tool provided with a transition metal having a catalytic function to promote hydrolysis of the work surface of the work piece on the work surface, the work surface and the work surface are brought into contact with each other at a predetermined pressure in the presence of water. At the same time, the surface to be processed and the surface to be processed are moved relative to each other, and the hydrolysis of the surface to be processed is preferentially promoted from the portion in contact with the surface to be processed by the catalytic function provided on the surface to be processed. In the catalyst surface reference etching method, which can flatten the workpiece to a flat surface or an arbitrary curved surface by removing
At least the machined surface of the tool and the machined surface of the work piece are placed in a machining liquid containing water and transition metal ions, and the machining surface is brought into a negative potential state with respect to the machining liquid to transition to the machining surface. The precipitation process of precipitating metal to form a transition metal film having a catalytic function and the melting process of putting the processed surface in a positive potential state with respect to the processing liquid to dissolve the transition metal film of the processed surface are alternated. A catalyst surface-referenced etching method comprising an etching step repeated in the above.

(2)
前記析出過程は、前記溶解過程によって前記加工面の遷移金属膜を溶解によって除去できる程度の膜厚に遷移金属を析出する過程である(1)記載の触媒表面基準エッチング方法。
(2)
The catalyst surface reference etching method according to (1), wherein the precipitation process is a process of precipitating a transition metal having a thickness that can be removed by melting the transition metal film on the processed surface by the melting process.

(3)
前記溶解過程は、前記加工面に析出した遷移金属膜の酸化が進み、触媒としての活性が失われる前に正電位状態にして該加工面の遷移金属膜を溶解させる過程である(1)又は(2)記載の触媒表面基準エッチング方法。
(3)
The dissolution process is a process of dissolving the transition metal film on the processed surface in a positive potential state before the transition metal film deposited on the processed surface is oxidized and loses its activity as a catalyst (1) or. (2) The catalyst surface reference etching method according to (2).

(4)
前記加工面を加工液に対して正電位状態にして該加工面の遷移金属膜を溶解させる溶解過程を一定時間持続させて、不活性遷移金属膜を溶解させるクリーニング工程を更に含み、前記エッチング工程とクリーニング工程とを交互に繰り返すことを特徴とする(1)〜(3)何れか1に記載の触媒表面基準エッチング方法。
(4)
The etching step further includes a cleaning step of melting the inactive transition metal film by sustaining the melting process of melting the transition metal film of the machined surface in a positive potential state with respect to the machining liquid for a certain period of time. The catalyst surface-based etching method according to any one of (1) to (3), wherein the process and the cleaning process are alternately repeated.

(5)
前記遷移金属がニッケルであり、前記加工液としてニッケル塩の水溶液を用いてなる(1)〜(4)何れか1に記載の触媒表面基準エッチング方法。
(5)
The catalyst surface reference etching method according to any one of (1) to (4), wherein the transition metal is nickel and an aqueous solution of a nickel salt is used as the processing liquid.

(6)
前記遷移金属がニッケルであり、前記加工液としてニッケル塩に酸を加えた水溶液を用いてなる(1)〜(4)何れか1に記載の触媒表面基準エッチング方法。
(6)
The catalyst surface reference etching method according to any one of (1) to (4), wherein the transition metal is nickel, and an aqueous solution obtained by adding an acid to a nickel salt is used as the processing liquid.

(7)
被加工物の被加工面の加水分解を促進する触媒機能を備えた遷移金属を加工面に設けた工具を用い、水の存在下で、前記被加工面と前記加工面とを所定圧力で接触させるとともに、被加工面と加工面とを相対運動させて、該加工面に備わった触媒機能によって被加工面の加水分解を、前記加工面に接触する部分から優先的に進行させ、分解生成物を除去することにより、被加工物を平面若しくは任意曲面に平坦化加工することが可能な触媒表面基準エッチング装置において、
弾性変形可能なパッドの表面に前記遷移金属よりイオン化傾向が小さく且つ化学的に安定な導電膜を形成した加工面を有する工具と、
少なくとも前記工具の加工面と被加工物の被加工面とを、水と遷移金属イオンを含む加工液中に配置するための容器と、
前記被加工物を保持し、被加工面と前記工具の加工面とを所定圧力で接触させるとともに、被加工面と加工面とを相対運動させるための駆動機構と、
前記被加工面に接触した工具の加工面とは異なる部分に対向して加工液中に配置した対向電極と、
前記工具の加工面と対向電極間に電圧を印加するための電源と、
加工液に対する前記工具の加工面の電位を制御するとともに、前記駆動機構を制御する制御部と、
を備え、前記加工面を加工液に対して負電位状態にして該加工面に遷移金属を析出させて触媒機能を備えた遷移金属膜を形成する析出過程と、前記加工面を加工液に対して正電位状態にして該加工面の遷移金属膜を溶解させる溶解過程と、を交互に繰り返すエッチング工程を含むことを特徴とする触媒表面基準エッチング装置。
(7)
Using a tool provided with a transition metal having a catalytic function to promote hydrolysis of the work surface of the work piece on the work surface, the work surface and the work surface are brought into contact with each other at a predetermined pressure in the presence of water. At the same time, the surface to be machined and the surface to be machined are moved relative to each other, and the hydrolysis of the surface to be machined is preferentially promoted from the portion in contact with the surface to be machined by the catalytic function provided on the surface to be machined. In a catalyst surface reference etching apparatus capable of flattening a work piece to a flat surface or an arbitrary curved surface by removing
A tool having a machined surface on the surface of an elastically deformable pad that has a lower ionization tendency than the transition metal and a chemically stable conductive film.
A container for arranging at least the machined surface of the tool and the machined surface of the work piece in a working liquid containing water and transition metal ions.
A drive mechanism for holding the work piece, bringing the work surface and the work surface of the tool into contact with each other at a predetermined pressure, and making the work surface and the work surface move relative to each other.
A counter electrode arranged in the machining fluid so as to face a portion different from the machining surface of the tool in contact with the workpiece surface.
A power supply for applying a voltage between the machined surface of the tool and the counter electrode,
A control unit that controls the potential of the machined surface of the tool with respect to the working liquid and controls the drive mechanism.
The process of forming a transition metal film having a catalytic function by depositing a transition metal on the processing surface in a negative potential state with respect to the processing liquid, and the processing surface with respect to the processing liquid. A catalyst surface reference etching apparatus including an etching step of alternately repeating a melting process of melting a transition metal film on a processed surface in a positive potential state.

(8)
前記加工面を加工液に対して正電位状態にして該加工面の遷移金属膜を溶解させる溶解過程を一定時間持続させて、不活性遷移金属膜を溶解させるクリーニング工程を更に含み、前記エッチング工程とクリーニング工程とを交互に繰り返すことを特徴とする(7)記載の触媒表面基準エッチング装置。
(8)
The etching step further includes a cleaning step of melting the inactive transition metal film by sustaining the melting process of melting the transition metal film of the machined surface in a positive potential state with respect to the machining liquid for a certain period of time. (7) The catalyst surface reference etching apparatus according to (7), wherein the process and the cleaning process are alternately repeated.

(9)
前記遷移金属がニッケルであり、前記加工液としてニッケル塩の水溶液を用いてなる(7)又は(8)記載の触媒表面基準エッチング装置。
(9)
The catalyst surface reference etching apparatus according to (7) or (8), wherein the transition metal is nickel and an aqueous solution of a nickel salt is used as the processing liquid.

(10)
前記遷移金属がニッケルであり、前記加工液としてニッケル塩に酸を加えた水溶液を用いてなる(7)又は(8)記載の触媒表面基準エッチング装置。
(10)
The catalyst surface reference etching apparatus according to (7) or (8), wherein the transition metal is nickel, and an aqueous solution obtained by adding an acid to a nickel salt is used as the processing liquid.

以上にしてなる本発明の触媒表面基準エッチング方法及びその装置は、以下に示す効果を奏する。 The catalyst surface-based etching method and the apparatus thereof of the present invention as described above have the following effects.

本発明のエッチング工程によれば、触媒機能を備えた遷移金属膜を工具の加工面に電気化学的に成膜し、該遷移金属膜の性能が劣化する前に、電気化学的に溶解して除去し、これを繰り返すことによって、常に安定した遷移金属の触媒機能を維持することができ、加工速度を高い状態で安定化させることができる。また、不活性になった遷移金属膜がエッチング工程の溶解過程だけでは、完全に除去できない場合でも、溶解過程を一定時間持続させるクリーニング工程をエッチング工程の後に実行することにより、完全に遷移金属膜を溶解して除去することができ、常に工具の加工面をクリーンな状態に保つことができる。 According to the etching process of the present invention, a transition metal film having a catalytic function is electrochemically formed on the machined surface of the tool, and the transition metal film is electrochemically dissolved before the performance of the transition metal film deteriorates. By removing and repeating this, the catalytic function of the transition metal can always be maintained stable, and the processing speed can be stabilized in a high state. Further, even if the inactive transition metal film cannot be completely removed only by the melting process of the etching process, the transition metal film can be completely removed by executing the cleaning step of sustaining the melting process for a certain period of time after the etching process. Can be melted and removed, and the machined surface of the tool can always be kept clean.

また、本発明は、化学的に安定なPtよりも加工速度が速く且つ安価であるが、触媒機能低下の早いNiを触媒として用いることができ、大幅なコストの低減化と同時に大幅な加工速度の高速化を図ることができる。また、前記遷移金属がニッケルであり、前記加工液としてニッケル塩の水溶液を用いて、析出過程を電解めっきプロセスとすることにより、余計な薬液を必要としないので、加水分解によるエッチングプロセスを阻害することがないのである。更に、前記加工液として、ニッケル塩に酸を加えた水溶液を用いと、Ni膜の溶解過程において、Niの溶出を促進する作用があり、Ni膜の除去をより完全に行うことができる。 Further, in the present invention, the processing speed is faster and cheaper than that of the chemically stable Pt, but Ni, whose catalytic function is rapidly deteriorated, can be used as a catalyst, and the processing speed can be significantly reduced at the same time as the cost can be significantly reduced. Can be speeded up. Further, since the transition metal is nickel and an aqueous solution of nickel salt is used as the processing solution and the precipitation process is an electroplating process, an extra chemical solution is not required, so that the etching process by hydrolysis is inhibited. There is no such thing. Further, when an aqueous solution obtained by adding an acid to a nickel salt is used as the processing liquid, it has an effect of promoting the elution of Ni in the process of dissolving the Ni film, and the Ni film can be removed more completely.

本発明のベースとなっているCARE法の加工概念図である。It is a processing conceptual diagram of the CARE method which is the basis of this invention. 従来のWater−CARE法によって、石英ガラスを各種遷移金属を触媒として加工した例を示すグラフである。It is a graph which shows the example which processed quartz glass by using various transition metals as a catalyst by the conventional Water-CARE method. 従来のWater−CARE法によって、SiCを各種遷移金属を触媒として加工した例を示すグラフである。It is a graph which shows the example which processed SiC by various transition metals as a catalyst by the conventional Water-CARE method. 従来のWater−CARE法によって、石英ガラスをNiを触媒として加工した場合の加工速度の時間変化を示すグラフである。It is a graph which shows the time change of the processing speed when quartz glass is processed using Ni as a catalyst by the conventional Water-CARE method. SUS上のNi膜を純水に浸漬する前後において、CV測定により得られたサイクリックボルタモグラムである。It is a cyclic voltammogram obtained by CV measurement before and after immersing the Ni film on SUS in pure water. 加工液と工具表面のAu膜の界面における電子状態の概念図であり、(a)はAu膜が自然電位の初期状態、(b)はAu膜が負電位の析出状態、(c)はAu膜が正電位の溶解状態を示す。It is a conceptual diagram of the electronic state at the interface between the working liquid and the Au film on the tool surface, (a) is the initial state of the Au film having a natural potential, (b) is the state of precipitation of the Au film having a negative potential, and (c) is the Au The membrane shows a positive potential dissolved state. Au表面でのNiの析出、溶解反応の過程を示し、CV測定により得られたサイクリックボルタモグラムである。It is a cyclic voltammogram obtained by CV measurement showing the process of precipitation and dissolution reaction of Ni on the Au surface. 本発明の平面化加工装置の簡略断面図である。It is a simplified sectional view of the flattening processing apparatus of this invention. エッチング工程における電圧印加波形を示すグラフである。It is a graph which shows the voltage application waveform in the etching process. エッチング工程とクリーニング工程を繰り返す場合の電圧印加波形を示すグラフである。It is a graph which shows the voltage application waveform at the time of repeating an etching process and a cleaning process. 本発明によって石英ガラスを加工した場合の加工速度の時間変化を示すグラフである。It is a graph which shows the time change of the processing speed when quartz glass is processed by this invention. 本発明によってSiCを加工した場合の加工速度の時間変化を示すグラフである。It is a graph which shows the time change of the processing speed when SiC is processed by this invention. 本発明の局所加工装置の簡略断面図である。It is a simplified sectional view of the local processing apparatus of this invention. 同じく要部の拡大断面図である。Similarly, it is an enlarged sectional view of a main part.

本発明の触媒表面基準エッチング方法は、被加工物の被加工面の加水分解を促進する触媒機能を備えた遷移金属を加工面に設けた工具を用い、水の存在下で、前記被加工面と前記加工面とを所定圧力で接触させるとともに、被加工面と加工面とを相対運動させて、該加工面に備わった触媒機能によって被加工面の加水分解を、前記加工面に接触する部分から優先的に進行させ、分解生成物を除去することにより、被加工物を平面若しくは任意曲面に平坦化加工することが可能な触媒表面基準エッチング方法において、少なくとも前記工具の加工面と被加工物の被加工面とを、水と遷移金属イオンを含む加工液中に配置し、前記加工面を加工液に対して負電位状態にして該加工面に遷移金属を析出させて触媒機能を備えた遷移金属膜を形成する析出過程と、前記加工面を加工液に対して正電位状態にして該加工面の遷移金属膜を溶解させる溶解過程と、を交互に繰り返すエッチング工程を含むことを特徴とするものである。ここで、前記遷移金属膜は、遷移金属の単体であっても、また触媒活性を有する酸化物であっても良い。 The catalyst surface reference etching method of the present invention uses a tool provided with a transition metal having a catalytic function to promote hydrolysis of the work surface of the work piece on the work surface in the presence of water. And the machined surface are brought into contact with each other at a predetermined pressure, and the surface to be machined and the machined surface are moved relative to each other, and the catalyst function provided on the machined surface causes hydrolysis of the machined surface to come into contact with the machined surface. In a catalyst surface-based etching method capable of flattening a work piece to a flat surface or an arbitrary curved surface by preferentially advancing from the above and removing decomposition products, at least the machined surface and the work piece of the tool. The surface to be processed is placed in a processing liquid containing water and transition metal ions, and the processing surface is placed in a negative potential state with respect to the processing liquid to deposit a transition metal on the processing surface to provide a catalytic function. It is characterized by including an etching process in which a precipitation process for forming a transition metal film and a melting process in which the processing surface is brought into a positive potential state with respect to the processing liquid to dissolve the transition metal film on the processing surface are alternately repeated. It is something to do. Here, the transition metal film may be a simple substance of the transition metal or an oxide having catalytic activity.

ここで、前記析出過程は、前記溶解過程によって前記加工面の遷移金属膜を溶解によって除去できる程度の膜厚に遷移金属を析出する過程である。また、前記溶解過程は、前記加工面に析出した遷移金属膜の酸化が進み、触媒としての活性が失われる前に正電位状態にして該加工面の遷移金属膜を溶解させる過程である。 Here, the precipitation process is a process of precipitating the transition metal to a film thickness that can be removed by melting the transition metal film on the processed surface by the melting process. Further, the dissolution process is a process of dissolving the transition metal film on the processed surface in a positive potential state before the oxidation of the transition metal film deposited on the processed surface proceeds and the activity as a catalyst is lost.

本発明において、原理上、触媒としてd軌道電子占有率が低い各種の遷移金属を用いることが可能であるが、最も好ましいのはNiである。つまり、前記遷移金属がニッケルであり、前記加工液としてニッケル塩の水溶液を用いることが好ましく、更に前記加工液としてニッケル塩に酸を加えた水溶液を用いることも好ましい。本実施形態では、ニッケル塩として硫酸ニッケル、酸として硫酸を用いたが、これに限定されるものではない。尚、d軌道電子占有率が高い遷移金属でも、酸化されてd軌道に空準位が生じて触媒活性を取得するものを用いることも可能である。 In the present invention, in principle, various transition metals having a low d-orbital electron occupancy can be used as the catalyst, but Ni is the most preferable. That is, the transition metal is nickel, and it is preferable to use an aqueous solution of nickel salt as the processing liquid, and it is also preferable to use an aqueous solution obtained by adding an acid to the nickel salt as the processing liquid. In the present embodiment, nickel sulfate is used as the nickel salt and sulfuric acid is used as the acid, but the present invention is not limited to this. It is also possible to use a transition metal having a high d-orbital electron occupancy rate, which is oxidized to generate an empty level in the d-orbital and acquire catalytic activity.

<CAREの説明>
本発明がベースとする触媒表面基準エッチング(Catalyst-Referred Etching;CARE)法は、触媒存在下のみで進行するエッチング反応を利用するものである。つまり、CARE法は、工具の加工面に触媒機能を付与し、水を主体とした加工液中で被加工物の被加工面と工具の加工面(基準面)とを所定圧力で接触させながら、相対的に運動させることで、加工面近傍のみにエッチング領域が作りだされ、化学的に基準面の転写を行うものである。そのため、結晶学的なダメージの導入がない平坦な表面が得られる。ここで、CARE法の加工メカニズムは、第一原理計算シミュレーションより加水分解反応であることが分かっており、その反応経路において触媒は水の解離吸着反応を支援し、加水分解による分解生成物を水中に溶出させるものである。工具の加工面を平面状、例えば円盤状とすれば、平坦化加工ができ、加工面を球状、リング状とすれば曲面加工ができる。
<Explanation of CARE>
The Catalyst-Referred Etching (CARE) method based on the present invention utilizes an etching reaction that proceeds only in the presence of a catalyst. That is, in the CARE method, a catalytic function is imparted to the machined surface of the tool, and the machined surface of the work piece and the machined surface (reference surface) of the tool are brought into contact with each other at a predetermined pressure in a water-based machining liquid. By relatively moving, an etching region is created only in the vicinity of the machined surface, and the reference surface is chemically transferred. Therefore, a flat surface without the introduction of crystallographic damage can be obtained. Here, the processing mechanism of the CARE method is known to be a hydrolysis reaction from the first-principles calculation simulation, and in the reaction path, the catalyst supports the dissociation and adsorption reaction of water, and the decomposition product by hydrolysis is put into water. It is intended to be eluted in. If the machined surface of the tool is flat, for example, a disk, flattening can be performed, and if the machined surface is spherical or ring-shaped, curved surface can be machined.

図1にCARE法により、被加工面が平坦化される概念図を示している。被加工物1の被加工面2を工具3で平面状に平坦化加工する様子を示している。前記工具3は、十分に平坦度が保証されたパッド4に触媒となる遷移金属膜5(加工面)を成膜したものを用いる。ここで、パッド4は、通常、バイトンゴム硬度90を使用している。前記工具3の遷移金属膜5が触媒機能を備えた加工面となる。そして、少なくとも前記工具3の加工面と被加工物1の被加工面2とを水を含む加工液中に配置し、前記工具3の加工面5のごく近傍のみに触媒活性領域を作り出す(図1(a)参照)。次に、加工液中で被加工物1と工具3を所定圧力で接触させ相互に回転させる(図1(b)参照)。それにより、工具3の加工面5が転写面となり、化学エッチングが促進し、被加工面2の凸部のみが選択的に除去されるのである(図1(c)参照)。 FIG. 1 shows a conceptual diagram in which the surface to be machined is flattened by the CARE method. The state in which the workpiece surface 2 of the workpiece 1 is flattened into a flat surface by a tool 3 is shown. As the tool 3, a tool in which a transition metal film 5 (processed surface) serving as a catalyst is formed on a pad 4 whose flatness is sufficiently guaranteed is used. Here, the pad 4 usually uses a Byton rubber hardness 90. The transition metal film 5 of the tool 3 serves as a machined surface having a catalytic function. Then, at least the machined surface of the tool 3 and the machined surface 2 of the workpiece 1 are arranged in a working liquid containing water, and a catalytically active region is created only in the immediate vicinity of the machined surface 5 of the tool 3 (FIG. 1 (a)). Next, the workpiece 1 and the tool 3 are brought into contact with each other at a predetermined pressure in the machining fluid and rotated with each other (see FIG. 1 (b)). As a result, the machined surface 5 of the tool 3 becomes a transfer surface, chemical etching is promoted, and only the convex portion of the machined surface 2 is selectively removed (see FIG. 1C).

これまで、触媒にPt、加工液に純水を用いたWater−CARE法によって、Si基板を始め、SiC、GaN基板表面を原子レベルに平坦化可能であることが確認されている。また、加工対象物(被加工物)は、これら半導体材料に限定されず、結晶状態やアモルファス状態(ガラス)の固体酸化物材料の平坦化加工も可能であることが確認されている。Water-CARE法は、室温且つ純水中で行われるため様々な遷移金属を触媒として使用することが可能である。しかしながら、従来のCARE法では、触媒表面が被毒され、加工速度が低下する等の課題も残っており、本発明は後述するように、触媒表面の最適化を図って、低コストで高能率な加工を達成するものである。 So far, it has been confirmed that the surface of a SiC or GaN substrate, including a Si substrate, can be flattened at the atomic level by the Water-CARE method using Pt as a catalyst and pure water as a processing liquid. Further, it has been confirmed that the object to be processed (workpiece) is not limited to these semiconductor materials, and that a solid oxide material in a crystalline state or an amorphous state (glass) can be flattened. Since the Water-CARE method is carried out at room temperature and in pure water, various transition metals can be used as catalysts. However, the conventional CARE method still has problems such as poisoning of the catalyst surface and a decrease in processing speed. As will be described later, the present invention optimizes the catalyst surface to reduce cost and high efficiency. Achieves various processing.

また、本発明で使用する水は、不純物が少なく特性が一定である純水又は超純水を用いることが、清純な加工環境を実現し、加工条件の正確な制御において必要である。一般的に、純水は電気抵抗率が1〜10MΩ・cm程度、超純水は電気抵抗率が15MΩ・cm以上とされている。 Further, as the water used in the present invention, it is necessary to use pure water or ultrapure water having few impurities and constant characteristics in order to realize a pure processing environment and to accurately control the processing conditions. Generally, pure water has an electric resistivity of about 1 to 10 MΩ · cm, and ultrapure water has an electric resistivity of 15 MΩ · cm or more.

<各種遷移金属の加工速度比較>
そして、被加工面の加水分解を促進する触媒機能を備えた物質として、遷移金属を用いることができ、仕事関数の大きなPtをはじめ、Pd、Ru、Ni、Co、Cr、Mo等を用いることが可能である。その中で、代表的な遷移金属として、Au、Cu,Pt、Ni、Crについて、同一加工条件で石英ガラス(SiO)と4H−SiC(0001)の加工速度を比較した結果を図2に示す。尚、図2の石英ガラスの加工時間は5分、図3のSiCの加工時間は1時間である。図2及び図3において、左側の縦軸は加工速度(nm/h)、右側の縦軸は遷移金属のd軌道電子占有率(%)であり、白丸は加工速度、黒三角はd軌道電子占有率を表わしている。
<Comparison of processing speeds of various transition metals>
Then, a transition metal can be used as a substance having a catalytic function to promote hydrolysis of the surface to be processed, and Pd, Ru, Ni, Co, Cr, Mo and the like having a large work function can be used. Is possible. Among them, FIG. 2 shows the results of comparing the processing speeds of quartz glass (SiO 2 ) and 4H-SiC (0001) under the same processing conditions for Au, Cu, Pt, Ni, and Cr as typical transition metals. Shown. The processing time of the quartz glass of FIG. 2 is 5 minutes, and the processing time of SiC of FIG. 3 is 1 hour. In FIGS. 2 and 3, the vertical axis on the left side is the processing speed (nm / h), the vertical axis on the right side is the d-orbital electron occupancy rate (%) of the transition metal, the white circles are the processing speeds, and the black triangles are the d-orbital electrons. It represents the occupancy rate.

石英ガラス、SiCいずれにおいても複数種類の遷移金属において加工が進行しており、Pt以外の遷移金属を用いたCARE法によってもエッチングが可能であることが明らかである。また、d軌道電子占有率と加工速度の間には明らかな相関があり、一般に知られる分子の吸着特性と同様に、Cr、Ni、Ptを用いた場合は加工が進行し、Auを使用した場合は、加工が全く進行しなかった。以上の結果は、CARE法において触媒が水分子の解離を促進するというシミュレーション結果とも良い一致を示す。尚、d軌道が完全に占有されているCuにおいて加工が進行しているが、これは表面が僅かに酸化したことでd軌道に空準位が生じたことが原因と考えられる。Ni、Crに関して異なる傾向を示しているが、石英ガラス、SiCにおける加工速度の依存性は類似の傾向を示しており、同等のメカニズムで加工が進行していると考えられる。よって、CARE法が酸化物材料、半導体材料に対して有効であり、NiやCrに代表される、d軌道に空準位の多い遷移金属触媒を用いることでCARE法においてより効率的な反応を誘起することが可能であると示唆された。 In both quartz glass and SiC, processing is proceeding with a plurality of types of transition metals, and it is clear that etching is also possible by the CARE method using transition metals other than Pt. In addition, there is a clear correlation between the d-orbital electron occupancy and the processing speed, and similar to the generally known adsorption characteristics of molecules, processing proceeded when Cr, Ni, and Pt were used, and Au was used. In that case, the processing did not proceed at all. The above results are in good agreement with the simulation results that the catalyst promotes the dissociation of water molecules in the CARE method. The processing is proceeding in Cu where the d-orbital is completely occupied, and it is considered that this is because the surface is slightly oxidized and an empty level is generated in the d-orbital. Although different tendencies are shown for Ni and Cr, the dependence of the machining speed on quartz glass and SiC shows similar tendencies, and it is considered that machining is proceeding by the same mechanism. Therefore, the CARE method is effective for oxide materials and semiconductor materials, and by using a transition metal catalyst with many empty levels in the d-orbital represented by Ni and Cr, a more efficient reaction can be performed in the CARE method. It was suggested that it could be induced.

以上のことから、d軌道の空位準位が多いCr、Ni、Ptなどの遷移金属は本加工法における触媒として有効に機能すると考えられる。但し、Crは、pH−電位図において水素、酸素の発生しない領域では単体金属としてベアな状態で存在しえないことが分かっているが、石英ガラスの加工はできたので、単体金属状態でなくても酸化物状態で触媒活性を備えていることが推測できる。一方で,d軌道が完全に電子に占有されているAuを触媒として使用しても加工が一切進行しない。Cuは、前述の理由で加工は可能であるものの、加工速度が遅いことが分かっている。これらは、あくまでも従来タイプのWater−CAREでの現象であるが、本発明による方法によって、CrもCuも触媒として使用できる可能性はある。 From the above, it is considered that transition metals such as Cr, Ni, and Pt, which have many vacant levels in the d-orbital, function effectively as catalysts in this processing method. However, it is known that Cr cannot exist as a simple substance in a bare state in the region where hydrogen and oxygen are not generated in the pH-potential diagram, but since quartz glass can be processed, it is not in a simple metal state. However, it can be inferred that it has catalytic activity in the oxide state. On the other hand, even if Au, whose d-orbital is completely occupied by electrons, is used as a catalyst, the processing does not proceed at all. Although Cu can be processed for the reasons described above, it is known that the processing speed is slow. These are only phenomena in the conventional type Water-CARE, but there is a possibility that both Cr and Cu can be used as catalysts by the method according to the present invention.

本発明の加工メカニズムは、現象論的には以下のようであると考える。被加工物の表面に、少なくとも表面にd電子軌道がフェルミレベル近傍にある触媒物質が接触若しくは極接近すると、つまり被加工物の表面近傍にd電子軌道が近づくと、d電子は、水分子の解離や、酸化膜のバックボンドがルーズになる際の両方の現象に対して反応の障壁を下げる作用をする。現象論的には、触媒物質が酸化膜に近づくと、酸化膜を構成する酸素元素と他の元素とのバックボンドの結合力が弱くなり、水分子が解離して酸化膜の酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物を生成する。また、触媒物質が被加工面に近づくと、表面を直接的に加水分解する現象も起こる。そして、加水分解によって生成した分解生成物を加工液中に溶出させるという原理である。ここで、被加工面に工具の加工面を所定圧力で接触させて擦ることにより、分解生成物に機械的な力を与え、水中への溶出を促進させるのである。 The processing mechanism of the present invention is considered to be phenomenologically as follows. When a catalytic material whose d-electron orbital is near the Fermi level is in contact with or very close to the surface of the work piece, that is, when the d-electron orbital is close to the surface of the work piece, the d-electrons are of water molecules. It acts to lower the barrier of reaction to both dissociation and the loosening of the back bond of the oxide film. Phenomenonically, when the catalytic substance approaches the oxide film, the binding force of the back bond between the oxygen element constituting the oxide film and other elements weakens, the water molecules dissociate, and the oxygen element and others in the oxide film dissociate. The back bond of the element is cut and adsorbed to produce a decomposition product by hydrolysis. In addition, when the catalytic substance approaches the surface to be processed, a phenomenon of directly hydrolyzing the surface also occurs. Then, the principle is that the decomposition product produced by hydrolysis is eluted into the processing liquid. Here, the machined surface of the tool is brought into contact with the machined surface at a predetermined pressure and rubbed, thereby applying a mechanical force to the decomposition product and promoting elution into water.

触媒機能を有する遷移金属の電位については、加工速度に影響を及ぼすことが分かっているが、自然電位のままでも加工は進行する。遷移金属の電位を正に大きくするとOが発生し、また負に大きくするとHが発生し、気泡が加工の妨げになる場合には、H及びOが発生しない範囲で調整することが必要である。 It is known that the potential of the transition metal having a catalytic function affects the processing speed, but the processing proceeds even if the natural potential remains. If the potential of the transition metal is positively increased, O 2 is generated, and if it is negatively increased, H 2 is generated, and if bubbles interfere with processing, adjust within a range in which H 2 and O 2 are not generated. is required.

<工具の加工面のNi活性化>
水分子の解離反応において優れた触媒作用を示すNiはCARE法における触媒として有効に機能すると考えられる。実際に、図2及び図3に示すように、Niを用いることでPtと比べるとSiCは約13倍,石英ガラスは約3倍の加工速度が得られることが分かっている。また、SiCやGaNなどの半導体基板表面の金属汚染はその性能を著しく低下させる原因となるが、Niによる金属汚染はPtと比べ酸性薬液による洗浄によって簡易に除去が可能である。以上のことからNiはCARE法における触媒として非常に有望であると考えられる。一方で、Niは、その高い化学活性から表面の酸化や、分解生成物による被毒が顕著になり、時間の経過とともに急激に加工速度が低下する。そのため、Niの活性状態を維持することが重要になる。
<Ni activation of the machined surface of the tool>
Ni, which exhibits excellent catalytic action in the dissociation reaction of water molecules, is considered to function effectively as a catalyst in the CARE method. In fact, as shown in FIGS. 2 and 3, it is known that by using Ni, a processing speed of about 13 times that of SiC and about 3 times that of quartz glass can be obtained as compared with Pt. Further, metal contamination on the surface of a semiconductor substrate such as SiC or GaN causes a significant decrease in its performance, but metal contamination by Ni can be easily removed by cleaning with an acidic chemical solution as compared with Pt. From the above, Ni is considered to be very promising as a catalyst in the CARE method. On the other hand, due to its high chemical activity, surface oxidation and poisoning by decomposition products become remarkable, and the processing speed of Ni sharply decreases with the passage of time. Therefore, it is important to maintain the active state of Ni.

図4は、石英ガラスを、Niめっき膜を触媒とし、加工液を純水とした平坦化加工装置を用いて加工実験を行った結果を示している。図4の縦軸は加工速度、横軸は加工時間の経過を表わしている。尚、加工回数は5回とし、加工速度はその平均を取った。この結果、時間が経過するにつれ加工速度が大きく減少する傾向にあることが確かめられた。これは、Ni表面が酸化膜に覆われ触媒活性部が大幅に減少したことが原因であると考えられる。 FIG. 4 shows the results of a processing experiment using a flattening processing apparatus using quartz glass, a Ni plating film as a catalyst, and a processing liquid of pure water. The vertical axis of FIG. 4 represents the machining speed, and the horizontal axis represents the passage of machining time. The number of times of processing was set to 5, and the average processing speed was taken. As a result, it was confirmed that the processing speed tends to decrease significantly as time passes. It is considered that this is because the Ni surface is covered with an oxide film and the catalytically active portion is significantly reduced.

図5に、SUS片に形成したNiめっき膜の純水へ浸漬する前(実線)と浸漬した後(点線)におけるサイクリックボルタンメトリー (Cyclic vltammetry;CV)測定の結果示している。CV測定では調査したい電極表面の電位を溶液に対して変化させ、そのときの電流値をモニタリングし、電流値のピークなどから電極表面の化学状態を考察することが可能となる。それにより得られた波形は、サイクリックボルタモグラムと呼ばれる。純水浸漬後のCV測定は、試料片を10分間純水に浸漬させ、その直後にKOH溶液(pH13)中で行った。純水による酸化の影響をより明確にするため、酸素吸着から酸素発生領域で電位を走査させた。その結果、Niめっき膜は純水に浸漬すると、電流の応答が弱く、つまり活性が大きく低下することが分かった。これはNiめっき膜表面が酸化膜で被覆されることにより電子の享受が少なくなったためである。加工速度の低下がNi膜表面の酸化であることが確認できた。Niめっき膜は、純水浸漬後にも弱いながらも電流の応答があるので、電気化学的に触媒表面の酸化の抑制が可能である。一方、スパッタリング膜で成膜した場合には、純水浸漬後に電流の応答が消失することを確認している。つまり、触媒としてのNi膜は、電気化学めっきにより成膜することが重要である。また、電気化学めっきには、電解めっきと無電解めっきがあるが、無電解めっきは使用する薬液の種類が多く、加水分解による加工プロセスに支障を来たす恐れもあるため、単純な薬液を使用する電解めっきを選択した。 FIG. 5 shows the results of cyclic voltammetry (CV) measurement before (solid line) and after (dotted line) immersion of the Ni plating film formed on the SUS piece in pure water. In CV measurement, it is possible to change the potential of the electrode surface to be investigated with respect to the solution, monitor the current value at that time, and consider the chemical state of the electrode surface from the peak of the current value. The resulting waveform is called a cyclic voltammogram. The CV measurement after immersion in pure water was carried out by immersing the sample piece in pure water for 10 minutes and immediately after that, in a KOH solution (pH 13). In order to clarify the effect of oxidation by pure water, the potential was scanned in the oxygen evolution region from oxygen adsorption. As a result, it was found that when the Ni plating film was immersed in pure water, the current response was weak, that is, the activity was greatly reduced. This is because the surface of the Ni plating film is coated with the oxide film, so that the enjoyment of electrons is reduced. It was confirmed that the decrease in processing speed was the oxidation of the Ni film surface. Since the Ni plating film has a weak but current response even after being immersed in pure water, it is possible to electrochemically suppress the oxidation of the catalyst surface. On the other hand, it has been confirmed that when the film is formed with a sputtering film, the current response disappears after immersion in pure water. That is, it is important that the Ni film as a catalyst is formed by electrochemical plating. In addition, there are electrolytic plating and electroless plating in electrochemical plating, but since there are many types of chemicals used in electrochemical plating and there is a risk of interfering with the processing process due to hydrolysis, a simple chemical is used. Electroplating was selected.

<Ni活性化の具体的手法>
加工雰囲気で常に活性なNiを維持するためには,in-situでの工具の加工面への成膜が理想的である。しかし、成膜のみを行うと表面が硬化し、機械的作用によって加工後表面にダメージを残す可能性が考えられる。そのため、膜厚を一定に保つためにはin-situでNi膜の析出と溶解を連続的に施すことにした。そこで、NiイオンとNiの電気制御による可逆反応を利用する。図6にその概念図を示す。本発明では電極に電気伝導性に優れ、化学的にも安定なAuを用いた。加工液にはNiイオンが多数存在する硫酸ニッケル水溶液を使用した。勿論、スルファミン酸ニッケル等、通常のNiめっき液に使用可能な各種のニッケル塩を用いることが可能である。図6の垂直方向の軸は加工液及びAu電極の電位を示し、右側がAu、左側が加工液を示している。太線は加工液、細線はAu電極の電位を示している。Au電極の自然電位を硫酸ニッケル溶液(加工液)中で測定すると加工液に対し正電位になるため、図6(a)に示す関係になる。このときAu電極から溶液へ向かう電子の移動は起こらない。一方、図6(b)はAu電極の電位を加工液に対して負電位にした際を示している。このとき界面の系を安定化するために、Au電極の持つ電子は加工液へ移動する。そして加工液中に存在するNiイオンと結合することで、Niイオンが還元されAu電極表面にNiが析出する。このように析出したNi膜を再び溶解させるためには図6(b)から図6(c)の状態へと電位を変化させAu電極を正電位にすることで電子を加工液からAu電極へ移動させ、Niの酸化反応によってNiは再びイオンとなり、加工液へ溶解する。このような析出・溶解に相当する酸化還元反応を交互に行うことで、Au電極表面でNiの化学的な状態を制御できる。
<Specific method of Ni activation>
In order to maintain active Ni at all times in the machining atmosphere, it is ideal to form a film on the machined surface of the tool in-situ. However, if only film formation is performed, the surface may be hardened and damage may be left on the surface after processing due to mechanical action. Therefore, in order to keep the film thickness constant, it was decided to continuously deposit and dissolve the Ni film in-situ. Therefore, a reversible reaction between Ni ions and Ni by electrical control is used. FIG. 6 shows the conceptual diagram. In the present invention, Au, which has excellent electrical conductivity and is chemically stable, is used for the electrode. A nickel sulfate aqueous solution containing a large number of Ni ions was used as the processing liquid. Of course, it is possible to use various nickel salts such as nickel sulfamate that can be used in a normal Ni plating solution. The vertical axis in FIG. 6 shows the potential of the working liquid and the Au electrode, the right side shows Au, and the left side shows the working liquid. The thick line shows the processing liquid, and the thin line shows the potential of the Au electrode. When the natural potential of the Au electrode is measured in a nickel sulfate solution (processing solution), it becomes a positive potential with respect to the processing solution, so that the relationship shown in FIG. 6A is obtained. At this time, the movement of electrons from the Au electrode to the solution does not occur. On the other hand, FIG. 6B shows the case where the potential of the Au electrode is set to a negative potential with respect to the processing liquid. At this time, in order to stabilize the interface system, the electrons of the Au electrode move to the processing liquid. Then, by combining with Ni ions existing in the processing liquid, Ni ions are reduced and Ni is deposited on the surface of the Au electrode. In order to dissolve the Ni film precipitated in this way again, the potential is changed from FIG. 6 (b) to the state shown in FIG. 6 (c) to make the Au electrode a positive potential, so that electrons are transferred from the processing liquid to the Au electrode. After being moved, Ni becomes ions again by the oxidation reaction of Ni and dissolves in the processing liquid. By alternately performing such redox reactions corresponding to precipitation and dissolution, the chemical state of Ni can be controlled on the Au electrode surface.

図7は、Au表面でのNiの析出、溶解反応をCV測定により調査した結果を示す。電極にはAuをCARE法でパッドとして使用するフッ素ゴム上にスパッタリング成膜したものを、加工液には0.01Mの硫酸ニッケル水溶液を使用した。中央の点線は電流密度ゼロの値を示している。電流値の応答が確認され、電位掃引により表面状態に確かな変化が生じていることがわかる。先ず0V vs.標準水素電極 (Standard hydrogen electrode;SHE)付近から始まる負方向へのなだらかな電流密度の低下(矢印(1))はNiの析出を示している(以下、電圧値の単位は全てvs.SHE表記とする)。また、矢印(2)のように負から正電位へ掃引を行うときに電流密度が上昇しているがこれはNiの溶解に相当する。以上より、Au膜上へのNiの析出、溶解反応が電位掃引により制御可能であることが示された。このCV測定結果から得られたNiの析出、溶解電位を利用し、実際の加工における電位制御値とした。 FIG. 7 shows the results of investigating the precipitation and dissolution reactions of Ni on the Au surface by CV measurement. As the electrode, Au was sputtered on a fluororubber used as a pad by the CARE method, and a 0.01 M nickel sulfate aqueous solution was used as the processing liquid. The dotted line in the center shows the value of zero current density. The response of the current value is confirmed, and it can be seen that the surface state is definitely changed by the potential sweep. First, a gentle decrease in current density in the negative direction (arrow (1)) starting near 0 V vs. standard hydrogen electrode (SHE) indicates Ni precipitation (hereinafter, all voltage value units are all). vs. SHE notation). Further, as shown by the arrow (2), the current density increases when sweeping from the negative potential to the positive potential, which corresponds to the dissolution of Ni. From the above, it was shown that the precipitation and dissolution reactions of Ni on the Au film can be controlled by potential sweep. The precipitation and dissolution potentials of Ni obtained from the CV measurement results were used as potential control values in actual processing.

<本発明の方法を実現するための装置>
次に、本発明の平面化加工装置Aを図8に示す。平面化加工装置Aは、被加工物21の被加工面21Aと工具22の加工面22Aを水中に浸漬した状態で加工を行う構造である。具体的には、平坦化加工装置Aは、弾性変形可能なパッド23の表面に前記遷移金属よりイオン化傾向が小さく且つ化学的に安定な導電膜24を形成した加工面22Aを有する工具22と、少なくとも前記工具22の加工面22Aと被加工物21の被加工面21Aとを、水と遷移金属イオンを含む加工液25中に配置するための容器26と、前記被加工物21を保持し、被加工面21Aと前記工具22の加工面22Aとを所定圧力で接触させるとともに、被加工面21Aと加工面22Aとを相対運動させるための駆動機構27と、前記被加工面21Aに接触した工具22の加工面22Aとは異なる部分に対向して加工液25中に配置した対向電極28と、前記工具22の加工面22Aと対向電極28間に電圧を印加するための電源29と、加工液25に対する前記工具22の加工面22Aの電位を制御するとともに、前記駆動機構27を制御する制御部(図示せず)とを備えたものである。
<Device for realizing the method of the present invention>
Next, the flattening processing apparatus A of the present invention is shown in FIG. The flattening processing apparatus A has a structure in which processing is performed in a state where the work surface 21A of the work piece 21 and the work surface 22A of the tool 22 are immersed in water. Specifically, the flattening apparatus A includes a tool 22 having a processed surface 22A having a conductive film 24 formed on the surface of an elastically deformable pad 23 having a lower ionization tendency than the transition metal and being chemically stable. A container 26 for arranging at least the machined surface 22A of the tool 22 and the machined surface 21A of the work piece 21 in the work liquid 25 containing water and transition metal ions, and the work piece 21 are held. A drive mechanism 27 for bringing the work surface 21A and the work surface 22A of the tool 22 into contact with each other at a predetermined pressure and for relatively moving the work surface 21A and the work surface 22A, and a tool in contact with the work surface 21A. A counter electrode 28 arranged in the machining fluid 25 facing a portion different from the machining surface 22A of the tool 22, a power supply 29 for applying a voltage between the machining surface 22A and the counter electrode 28 of the tool 22, and a machining fluid. It is provided with a control unit (not shown) that controls the potential of the machined surface 22A of the tool 22 with respect to 25 and controls the drive mechanism 27.

前記被加工物21は平板形状を想定し、被加工面21Aを平面状に平坦化加工することを目的としている。前記工具22は、金属の円盤30の上面にフッ素ゴム製のパッド23を設け、その上に導電膜24としてAuを厚さ100nmにスパッタリング成膜したものを用いた。前記加工液25としては、水を含む硫酸ニッケルの水溶液を用いた。従って、加工液25の中にはNiイオンを含むことになる。前記工具22としての円盤30は垂直な回転軸31によって回転可能になっている。一方、前記被加工物21は、垂直な回転軸32と軸方向への加圧機構を設けたホルダー33に保持され、前記被加工物21の被加工面21Aを、前記工具22の加工面22Aの半径部分に互いの軸を偏心状態として所定圧力で接触させている。前記駆動機構27は、前記工具22の回転軸31、ホルダー33の回転軸32及び加圧機構によって構成され、制御部で回転数と加工圧力が制御されている。また、正確な電位を測定するために、標準電極34も備えている。 The work piece 21 is assumed to have a flat plate shape, and the purpose is to flatten the work surface 21A into a flat surface. As the tool 22, a fluororubber pad 23 was provided on the upper surface of the metal disk 30, and Au was sputtered to a thickness of 100 nm as a conductive film 24 on the pad 23. As the processing liquid 25, an aqueous solution of nickel sulfate containing water was used. Therefore, the processing liquid 25 contains Ni ions. The disk 30 as the tool 22 is rotatable by a vertical rotation shaft 31. On the other hand, the work piece 21 is held by a holder 33 provided with a vertical rotating shaft 32 and a pressurizing mechanism in the axial direction, and the work surface 21A of the work work 21 is changed to the work surface 22A of the tool 22. The axes of each other are brought into contact with each other at a predetermined pressure in an eccentric state. The drive mechanism 27 is composed of a rotary shaft 31 of the tool 22, a rotary shaft 32 of the holder 33, and a pressurizing mechanism, and the rotation speed and the machining pressure are controlled by the control unit. It also includes a standard electrode 34 for accurate potential measurement.

本発明では、Niはプロセス系の中に留まり、プロセス系外へ持ち出されることがなく、つまり消費されないので、通常の電解ニッケルめっきのように陽極にNiを用いる必要はない。前記対向電極28には、スパッタリング成膜した厚さ10nmのPt電極35を用いており、Ni膜の析出効率と溶解効率を考慮して前記工具22の加工面22Aの半径部分の略全部が覆われる大きさに設定している。そして、前記加工面22A(Au導電膜24)を加工液25に対して負電位状態にして該加工面22AにNiを析出させて触媒機能を備えたNi膜を形成する析出過程と、前記加工面22Aを加工液25に対して正電位状態にして該加工面22AのNi膜を溶解させる溶解過程と、を交互に繰り返すエッチング工程によって、前記被加工物21の被加工面21Aを平坦化加工するのである。 In the present invention, Ni stays in the process system and is not taken out of the process system, that is, it is not consumed. Therefore, it is not necessary to use Ni for the anode as in ordinary electrolytic nickel plating. As the counter electrode 28, a Pt electrode 35 having a thickness of 10 nm formed by sputtering is used, and substantially the entire radial portion of the machined surface 22A of the tool 22 is covered in consideration of the precipitation efficiency and dissolution efficiency of the Ni film. It is set to a size that can be used. Then, the process of placing the processed surface 22A (Au conductive film 24) in a negative potential state with respect to the processing liquid 25 and depositing Ni on the processed surface 22A to form a Ni film having a catalytic function, and the processing. The work surface 21A of the work piece 21 is flattened by an etching process in which the surface 22A is brought into a positive potential state with respect to the work liquid 25 and the melting process of dissolving the Ni film of the work surface 22A is repeated alternately. To do.

前記被加工物21をφ35の石英ガラスとし、加工液は0.01Mの硫酸ニッケル水溶液とした。尚、本実施形態では、原理的にNi膜は数原子層の厚さがあれば触媒として機能するので、硫酸ニッケルの濃度は非常に薄いものを用いたが、濃度は任意である。前述のように、Niが膜として存在している場合、その表面は容易に酸化されることが明らかになっている。酸化膜の生成により工具22の加工面22Aの電位制御も困難になることが予測され、表面の酸化が進行する前にNi膜を溶出させる必要がある。つまり、Ni膜の析出、溶解を短時間で交互に行うことが理想であると考え、電圧をパルス状に印加した。印加電圧値はNi析出を目的とした−0.2VとNi溶解を目的とした0.4Vとし、各電位の保持時間を1秒とした。図9に、エッチング工程における印加電圧の波形を示している。図9において、負電位(−0.2V)に維持している状態が析出過程であり、正電位(0.4V)に維持している状態が溶解過程である。更に、このパルス印加による加工を5分間行ったのちに工具22からNiが溶解されていることを確かめるために電圧印加なし(Auの自然電位0.4V)による加工を5分間行った。図10は、おおよその印加電圧波形を示している。 The workpiece 21 was made of φ35 quartz glass, and the working liquid was a 0.01 M nickel sulfate aqueous solution. In the present embodiment, in principle, the Ni film functions as a catalyst if it has a thickness of several atomic layers. Therefore, a nickel sulfate having a very low concentration is used, but the concentration is arbitrary. As mentioned above, it has been clarified that when Ni is present as a film, its surface is easily oxidized. It is predicted that the formation of the oxide film will make it difficult to control the potential of the machined surface 22A of the tool 22, and it is necessary to elute the Ni film before the surface oxidation progresses. That is, considering that it is ideal to alternately deposit and dissolve the Ni film in a short time, the voltage was applied in a pulse shape. The applied voltage values were −0.2 V for Ni precipitation and 0.4 V for Ni dissolution, and the holding time of each potential was 1 second. FIG. 9 shows the waveform of the applied voltage in the etching process. In FIG. 9, the state of maintaining the negative potential (−0.2 V) is the precipitation process, and the state of maintaining the positive potential (0.4 V) is the dissolution process. Further, after the machining by applying the pulse was performed for 5 minutes, the machining was performed for 5 minutes without applying a voltage (Au's natural potential of 0.4 V) in order to confirm that Ni was dissolved from the tool 22. FIG. 10 shows an approximate applied voltage waveform.

前記工具22の回転数は60rpm、加工圧力は15kPaである。それによる加工結果を図11に示す。白丸はパルス印加を行った場合の加工速度、黒丸は自然電位による加工速度を示している。パルス印加時には加工速度が大幅に増加し、印加をしない場合では加工速度は殆ど0に近い値を示した。3、5点目で加工速度が1点目の約1/2倍になっているが,これは1点目の加工開始約1分後にAu膜が大幅に剥離してしまいNi析出領域が減少したことが原因である。加工液に純水を使用し、触媒としてPtを用いた時の加工速度は約100nm/hとなっているが、パルス印加を施した加工では約500nm/hとなり、析出した活性なNiによる超高速加工が実現できた。また、自然電位では加工はほとんど進行しなかった。これはNiがパッド表面から溶解し、下地であるAuが露出したためであると考えられる。AuはCARE法において触媒活性が極めて小さく、その加工速度はほぼ0であることが知られている。以上よりパルス印加によるNiの析出、溶解を繰り返すことで常に活性なNiを表面上に維持し安定かつ高能率な加工が実現可能であることが示された。つまり、工具の加工面に形成された導電膜が、加工液中における自然電位が正電位になる場合、自然電位のままでも析出遷移金属膜の溶解ができるので、電源によって電圧を印加する必要はない。つまり、硫酸ニッケル水溶液中に置かれたAu膜の自然電位は0.4Vであるので、前述の正電位状態にするとは、自然電位のままの状態を意味している。 The rotation speed of the tool 22 is 60 rpm, and the machining pressure is 15 kPa. The processing result by this is shown in FIG. White circles indicate the processing speed when a pulse is applied, and black circles indicate the processing speed due to the natural potential. When the pulse was applied, the machining speed increased significantly, and when no pulse was applied, the machining speed showed a value close to zero. At the 3rd and 5th points, the processing speed is about 1/2 times that of the 1st point, but this is because the Au film is significantly peeled off about 1 minute after the start of processing at the 1st point, and the Ni precipitation region is reduced. It is the cause. When pure water is used as the processing liquid and Pt is used as the catalyst, the processing speed is about 100 nm / h, but in the processing with pulse application, it is about 500 nm / h, which is due to the precipitated active Ni. High-speed machining was realized. In addition, the processing hardly proceeded at the natural potential. It is considered that this is because Ni melted from the pad surface and Au, which is the base, was exposed. It is known that Au has extremely low catalytic activity in the CARE method and its processing speed is almost zero. From the above, it was shown that stable and highly efficient processing can be realized by constantly maintaining active Ni on the surface by repeating precipitation and dissolution of Ni by applying a pulse. That is, when the natural potential of the conductive film formed on the machined surface of the tool becomes a positive potential in the working liquid, the precipitation transition metal film can be dissolved even at the natural potential, so it is necessary to apply a voltage by a power source. Absent. That is, since the natural potential of the Au film placed in the nickel sulfate aqueous solution is 0.4 V, the above-mentioned positive potential state means the state of the natural potential.

ここで、Auの自然電位(0.4V)を積極的に利用して、不活性になったNi膜を完全に除去することができる。不活性になったNi膜がエッチング工程(A)の溶解過程だけでは、完全に除去できない場合でも、図10に示すように、溶解過程を一定時間持続させるクリーニング工程(B)をエッチング工程(A)の後に実行することにより、完全にNi膜を溶解して除去することができ、常に工具22の加工面22Aをクリーンな状態に保つことができる。図10は、エッチング工程(A)とクリーニング工程(B)を交互に行うことが可能な印加電圧波形を示している。それぞれの工程の時間は任意に設定可能である。更に、Ni膜の溶解を支援するために、加工液に硫酸を加えることも有効である。尚、硫酸以外にも硝酸や塩酸等の他の酸を加えてNi膜の溶解を支援することが可能であるが、被加工物の用途によっては、残留すると性能に悪影響を及ぼすこともあるので、最適なものを選択する。 Here, the natural potential (0.4 V) of Au can be positively utilized to completely remove the inactive Ni film. Even if the inactive Ni film cannot be completely removed by the melting process of the etching step (A) alone, as shown in FIG. 10, the cleaning step (B) that sustains the melting process for a certain period of time is performed by the etching step (A). ), The Ni film can be completely dissolved and removed, and the machined surface 22A of the tool 22 can always be kept in a clean state. FIG. 10 shows an applied voltage waveform capable of alternately performing the etching step (A) and the cleaning step (B). The time of each process can be set arbitrarily. Further, it is also effective to add sulfuric acid to the processing liquid to support the dissolution of the Ni film. In addition to sulfuric acid, it is possible to add other acids such as nitric acid and hydrochloric acid to support the dissolution of the Ni film, but depending on the application of the work piece, if it remains, it may adversely affect the performance. , Choose the best one.

次に、被加工物21を4H−SiC(0001)4°off-axisとし、加工液を0.1Mの硫酸ニッケル、硫酸(pH12)の水溶液として同じく平坦化加工を行った。工具22の回転数は60rpm、加工圧力は25kPa、90分毎の加工速度を測定した。その結果を図12に示す。本発明を用いることにより、Ni膜の活性を保ち、長時間加工速度を維持することができることを確認できた。尚、エッチング工程(A)において、析出過程と溶解過程が同じ時間間隔であると、加工速度は連続エッチングした場合の1/2になり、更にエッチング工程(A)とクリーニング工程(B)を同じ時間間隔で繰り返した場合、加工速度は連続エッチングした場合の1/4になるが、連続エッチングでは触媒の活性が低下して加工速度が大幅に低下するので、長時間の加工において本発明の有利性が顕著になる。 Next, the workpiece 21 was set to 4H-SiC (0001) 4 ° off-axis, and the processing liquid was an aqueous solution of 0.1 M nickel sulfate and sulfuric acid (pH 12), and the same flattening process was performed. The rotation speed of the tool 22 was 60 rpm, the machining pressure was 25 kPa, and the machining speed was measured every 90 minutes. The result is shown in FIG. By using the present invention, it was confirmed that the activity of the Ni film can be maintained and the processing speed can be maintained for a long time. In the etching step (A), if the precipitation process and the melting process have the same time interval, the processing speed is halved as in the case of continuous etching, and the etching step (A) and the cleaning step (B) are the same. When repeated at time intervals, the processing speed is 1/4 that of continuous etching, but continuous etching reduces the activity of the catalyst and significantly reduces the processing speed, which is advantageous in the present invention in long-time processing. The sex becomes remarkable.

最後に、図13及び図14に基づき局所加工装置Bを説明する。この局所加工装置Bは、原理的に任意曲面を数値制御加工できる装置となる。つまり、局所加工装置Bは、触媒として遷移金属を表面に形成した回転体を回転させながら被加工物表面に接触させることで、被加工物の一部領域のみを加工する単位加工痕を、被加工物の被加工面の全面に走査し、その滞在時間を制御して加工深さを制御するものである。 Finally, the local processing apparatus B will be described with reference to FIGS. 13 and 14. In principle, this local processing device B is a device capable of numerically controlling an arbitrary curved surface. That is, the local processing apparatus B creates a unit processing mark that processes only a part of the work piece by bringing the rotating body having the transition metal formed on the surface as a catalyst into contact with the surface of the work piece while rotating it. The machining depth is controlled by scanning the entire surface of the workpiece to be machined and controlling the staying time thereof.

前記局所加工装置Bは、水槽41に溜めた加工液42中に被加工物43を保持し、ステッピングモータ44に連結した鉛直方向の回転軸45の先端に取付けた回転体からなる工具46を、加工液42中で前記被加工物43の表面に一定の接触圧で接触させながら回転させて加工する装置である。更に詳しくは、Zステージ47の上に設けた水平板48の上に、前記水槽41とXYステージ49が固定され、該XYステージ49で駆動させる被加工物ホルダー50が前記水槽41の内部まで延び、前記被加工物43を保持している。振れを最小限にするために前記回転軸45は2重のベアリング51,51によって固定されており、前記工具46を取り付けるヘッド部52との接続部分はテーパー形状とすることで脱着ごとに発生する位置ずれを抑制している。前記工具46は、Oリングの表面に導電膜として所定の厚さのAuをスパッタリング成膜したものを用いた。Oリングは、フッ素ゴム製のP44規格サイズ(外径50.7mm,太さ3.5mm)を用いた。前記ステッピングモータ44、回転軸45及びベアリング51,51は同一の垂直板53に取付けられ、該垂直板53の上端を架台54に板バネ55で連結され、天秤型のバランサー56により回転軸45の鉛直性を調整するようになっている。 The local processing device B holds a work piece 43 in a processing liquid 42 stored in a water tank 41, and uses a tool 46 made of a rotating body attached to the tip of a vertical rotation shaft 45 connected to a stepping motor 44. It is an apparatus for processing by rotating the surface of the workpiece 43 in the processing liquid 42 while contacting the surface with a constant contact pressure. More specifically, the water tank 41 and the XY stage 49 are fixed on the horizontal plate 48 provided on the Z stage 47, and the workpiece holder 50 driven by the XY stage 49 extends to the inside of the water tank 41. Holds the work piece 43. The rotating shaft 45 is fixed by double bearings 51 and 51 in order to minimize runout, and the connection portion with the head portion 52 to which the tool 46 is attached has a tapered shape so that it is generated for each attachment / detachment. The misalignment is suppressed. As the tool 46, a tool having a predetermined thickness of Au sputtered on the surface of the O-ring as a conductive film was used. For the O-ring, a fluororubber P44 standard size (outer diameter 50.7 mm, thickness 3.5 mm) was used. The stepping motor 44, the rotating shaft 45, and the bearings 51, 51 are attached to the same vertical plate 53, the upper end of the vertical plate 53 is connected to the gantry 54 by a leaf spring 55, and the rotating shaft 45 is connected by a balance type balancer 56. It is designed to adjust the verticality.

Xステージを操作することで被加工物43を工具46の方向に任意量移動させることが可能であり、電気マイクロメータを用いて回転軸45の移動量を制御することで被加工物43の表面と工具46間の接触圧を調整する。工具46上の導電膜(Au膜)は、ロータリージョイント57を介して電気的にポテンショスタットへと接続されており、更に前記加工液42中で、前記工具46の外周に対向して対向電極58を配置し、前記工具46上の導電膜と該対向電極58間に電源59より電圧を印加して、工具46の導電膜の電位を制御できるようにしている。前記対向電極58は、表面に所定の厚さのPt膜をスパッタリング成膜している。前記加工液42として、前記同様に硫酸ニッケルの水溶液や、硫酸ニッケルに硫酸を加えた水溶液を用い、前記工具46として用いたゴムリング表面の導電膜を負電位状態にして、その導電膜の表面に触媒としてNi膜を析出させ、また前記工具46の導電膜を正電位状態にしてNi膜を溶解するのである。この装置Bにおいても加工条件、加工方法は前述のものと同様である。 The workpiece 43 can be moved by an arbitrary amount in the direction of the tool 46 by operating the X stage, and the surface of the workpiece 43 is controlled by controlling the amount of movement of the rotating shaft 45 using an electric micrometer. Adjust the contact pressure between the tool and the tool 46. The conductive film (Au film) on the tool 46 is electrically connected to the potentiostat via a rotary joint 57, and further, in the working liquid 42, the counter electrode 58 faces the outer periphery of the tool 46. Is arranged, and a voltage is applied from the power source 59 between the conductive film on the tool 46 and the counter electrode 58 so that the potential of the conductive film of the tool 46 can be controlled. The counter electrode 58 has a Pt film having a predetermined thickness formed on the surface thereof by sputtering. Similarly, as the processing liquid 42, an aqueous solution of nickel sulfate or an aqueous solution of nickel sulfate added with sulfuric acid is used to bring the conductive film on the surface of the rubber ring used as the tool 46 into a negative potential state, and the surface of the conductive film is brought into a negative potential state. A Ni film is precipitated as a catalyst, and the conductive film of the tool 46 is brought into a positive potential state to dissolve the Ni film. In this device B as well, the processing conditions and processing method are the same as those described above.

この場合、局所加工装置Bは、各ステージを数値制御して駆動し、前記被加工物43と前記工具46の相対位置を変化させることにより、単位加工痕を移動させて、工具46の導電膜の曲率より小さな任意曲面を創出することができる数値制御(NC)加工装置となる。 In this case, the local machining apparatus B numerically controls and drives each stage and changes the relative positions of the workpiece 43 and the tool 46 to move the unit machining marks and conduct the conductive film of the tool 46. It is a numerical control (NC) processing device that can create an arbitrary curved surface smaller than the curvature of.

A 平面化加工装置、
B 局所加工装置、
1 被加工物
2 被加工面
3 工具
4 パッド
5 遷移金属膜(加工面)
21 被加工物
21A 被加工面
22 工具
22A 加工面
23 パッド
24 導電膜(Au膜)
25 加工液
26 容器
27 駆動機構
28 対向電極
29 電源
30 円盤
31 回転軸
32 回転軸
33 ホルダー
34 標準電極
35 Pt電極
41 水槽
42 加工液
43 被加工物
44 ステッピングモータ
45 回転軸
46 工具
47 ステージ
48 水平板
49 ステージ
50 被加工物ホルダー
51 ベアリング
52 ヘッド部
53 垂直板
54 架台
55 板バネ
56 バランサー
57 ロータリージョイント
58 対向電極
59 電源
A flattening machine,
B Local processing equipment,
1 Work piece 2 Work surface 3 Tool 4 Pad 5 Transition metal film (machined surface)
21 Work piece 21A Work surface 22 Tool 22A Work surface 23 Pad 24 Conductive film (Au film)
25 Machining liquid 26 Container 27 Drive mechanism 28 Opposite electrode 29 Power supply 30 Disk 31 Rotating shaft 32 Rotating shaft 33 Holder 34 Standard electrode 35 Pt electrode 41 Water tank 42 Machining liquid 43 Work piece 44 Stepping motor 45 Rotating shaft 46 Tool 47 Stage 48 Horizontal Plate 49 Stage 50 Workpiece holder 51 Bearing 52 Head 53 Vertical plate 54 Stand 55 Leaf spring 56 Balancer 57 Rotary joint 58 Opposite electrode 59 Power supply

Claims (10)

被加工物の被加工面の加水分解を促進する触媒機能を備えた遷移金属を加工面に設けた工具を用い、水の存在下で、前記被加工面と前記加工面とを所定圧力で接触させるとともに、被加工面と加工面とを相対運動させて、該加工面に備わった触媒機能によって被加工面の加水分解を、前記加工面に接触する部分から優先的に進行させ、分解生成物を除去することにより、被加工物を平面若しくは任意曲面に平坦化加工することが可能な触媒表面基準エッチング方法において、
少なくとも前記工具の加工面と被加工物の被加工面とを、水と遷移金属イオンを含む加工液中に配置し、前記加工面を加工液に対して負電位状態にして該加工面に遷移金属を析出させて触媒機能を備えた遷移金属膜を形成する析出過程と、前記加工面を加工液に対して正電位状態にして該加工面の遷移金属膜を溶解させる溶解過程と、を交互に繰り返すエッチング工程を含むことを特徴とする触媒表面基準エッチング方法。
Using a tool provided with a transition metal having a catalytic function to promote hydrolysis of the work surface of the work piece on the work surface, the work surface and the work surface are brought into contact with each other at a predetermined pressure in the presence of water. At the same time, the surface to be processed and the surface to be processed are moved relative to each other, and the hydrolysis of the surface to be processed is preferentially promoted from the portion in contact with the surface to be processed by the catalytic function provided on the surface to be processed. In the catalyst surface reference etching method, which can flatten the workpiece to a flat surface or an arbitrary curved surface by removing
At least the machined surface of the tool and the machined surface of the work piece are placed in a machining liquid containing water and transition metal ions, and the machining surface is brought into a negative potential state with respect to the machining liquid to transition to the machining surface. The precipitation process of precipitating metal to form a transition metal film having a catalytic function and the melting process of putting the processed surface in a positive potential state with respect to the processing liquid to dissolve the transition metal film of the processed surface are alternated. A catalyst surface-referenced etching method comprising an etching step repeated in the above.
前記析出過程は、前記溶解過程によって前記加工面の遷移金属膜を溶解によって除去できる程度の膜厚に遷移金属を析出する過程である請求項1記載の触媒表面基準エッチング方法。 The catalyst surface-based etching method according to claim 1, wherein the precipitation process is a process of depositing a transition metal to a thickness such that the transition metal film on the processed surface can be removed by dissolution by the dissolution process. 前記溶解過程は、前記加工面に析出した遷移金属膜の酸化が進み、触媒としての活性が失われる前に正電位状態にして該加工面の遷移金属膜を溶解させる過程である請求項1又は2記載の触媒表面基準エッチング方法。 The dissolution process is a process of dissolving the transition metal film on the processed surface in a positive potential state before the transition metal film deposited on the processed surface is oxidized and loses its activity as a catalyst. 2. The catalyst surface reference etching method according to 2. 前記加工面を加工液に対して正電位状態にして該加工面の遷移金属膜を溶解させる溶解過程を一定時間持続させて、不活性遷移金属膜を溶解させるクリーニング工程を更に含み、前記エッチング工程とクリーニング工程とを交互に繰り返すことを特徴とする請求項1〜3何れか1項に記載の触媒表面基準エッチング方法。 The etching step further includes a cleaning step of melting the inactive transition metal film by sustaining the melting process of melting the transition metal film of the machined surface in a positive potential state with respect to the machining liquid for a certain period of time. The catalyst surface-referenced etching method according to any one of claims 1 to 3, wherein the process and the cleaning step are alternately repeated. 前記遷移金属がニッケルであり、前記加工液としてニッケル塩の水溶液を用いてなる請求項1〜4何れか1項に記載の触媒表面基準エッチング方法。 The catalyst surface-based etching method according to any one of claims 1 to 4, wherein the transition metal is nickel, and an aqueous solution of a nickel salt is used as the processing liquid. 前記遷移金属がニッケルであり、前記加工液としてニッケル塩に酸を加えた水溶液を用いてなる請求項1〜4何れか1項に記載の触媒表面基準エッチング方法。 The catalyst surface-based etching method according to any one of claims 1 to 4, wherein the transition metal is nickel, and an aqueous solution obtained by adding an acid to a nickel salt is used as the processing liquid. 被加工物の被加工面の加水分解を促進する触媒機能を備えた遷移金属を加工面に設けた工具を用い、水の存在下で、前記被加工面と前記加工面とを所定圧力で接触させるとともに、被加工面と加工面とを相対運動させて、該加工面に備わった触媒機能によって被加工面の加水分解を、前記加工面に接触する部分から優先的に進行させ、分解生成物を除去することにより、被加工物を平面若しくは任意曲面に平坦化加工することが可能な触媒表面基準エッチング装置において、
弾性変形可能なパッドの表面に前記遷移金属よりイオン化傾向が小さく且つ化学的に安定な導電膜を形成した加工面を有する工具と、
少なくとも前記工具の加工面と被加工物の被加工面とを、水と遷移金属イオンを含む加工液中に配置するための容器と、
前記被加工物を保持し、被加工面と前記工具の加工面とを所定圧力で接触させるとともに、被加工面と加工面とを相対運動させるための駆動機構と、
前記被加工面に接触した工具の加工面とは異なる部分に対向して加工液中に配置した対向電極と、
前記工具の加工面と対向電極間に電圧を印加するための電源と、
加工液に対する前記工具の加工面の電位を制御するとともに、前記駆動機構を制御する制御部と、
を備え、前記加工面を加工液に対して負電位状態にして該加工面に遷移金属を析出させて触媒機能を備えた遷移金属膜を形成する析出過程と、前記加工面を加工液に対して正電位状態にして該加工面の遷移金属膜を溶解させる溶解過程と、を交互に繰り返すエッチング工程を含むことを特徴とする触媒表面基準エッチング装置。
Using a tool provided with a transition metal having a catalytic function to promote hydrolysis of the work surface of the work piece on the work surface, the work surface and the work surface are brought into contact with each other at a predetermined pressure in the presence of water. At the same time, the surface to be processed and the surface to be processed are moved relative to each other, and the hydrolysis of the surface to be processed is preferentially promoted from the portion in contact with the surface to be processed by the catalytic function provided on the surface to be processed. In a catalyst surface reference etching apparatus capable of flattening a work piece to a flat surface or an arbitrary curved surface by removing
A tool having a machined surface on the surface of an elastically deformable pad that has a lower ionization tendency than the transition metal and a chemically stable conductive film.
A container for arranging at least the machined surface of the tool and the machined surface of the work piece in a working liquid containing water and transition metal ions.
A drive mechanism for holding the work piece, bringing the work surface and the work surface of the tool into contact with each other at a predetermined pressure, and making the work surface and the work surface move relative to each other.
A counter electrode arranged in the machining fluid so as to face a portion different from the machining surface of the tool in contact with the workpiece surface.
A power supply for applying a voltage between the machined surface of the tool and the counter electrode,
A control unit that controls the potential of the machined surface of the tool with respect to the working liquid and controls the drive mechanism.
The process of forming a transition metal film having a catalytic function by depositing a transition metal on the processing surface in a negative potential state with respect to the processing liquid, and the processing surface with respect to the processing liquid. A catalyst surface reference etching apparatus including an etching step of alternately repeating a melting process of melting a transition metal film on a processed surface in a positive potential state.
前記加工面を加工液に対して正電位状態にして該加工面の遷移金属膜を溶解させる溶解過程を一定時間持続させて、不活性遷移金属膜を溶解させるクリーニング工程を更に含み、前記エッチング工程とクリーニング工程とを交互に繰り返すことを特徴とする請求項7記載の触媒表面基準エッチング装置。 The etching step further includes a cleaning step of melting the inactive transition metal film by sustaining the melting process of melting the transition metal film of the machined surface in a positive potential state with respect to the machining liquid for a certain period of time. The catalyst surface reference etching apparatus according to claim 7, wherein the process and the cleaning process are alternately repeated. 前記遷移金属がニッケルであり、前記加工液としてニッケル塩の水溶液を用いてなる請求項7又は8記載の触媒表面基準エッチング装置。 The catalyst surface reference etching apparatus according to claim 7 or 8, wherein the transition metal is nickel, and an aqueous solution of a nickel salt is used as the processing liquid. 前記遷移金属がニッケルであり、前記加工液としてニッケル塩に酸を加えた水溶液を用いてなる請求項7又は8記載の触媒表面基準エッチング装置。 The catalyst surface reference etching apparatus according to claim 7 or 8, wherein the transition metal is nickel, and an aqueous solution obtained by adding an acid to a nickel salt is used as the processing liquid.
JP2017003359A 2017-01-12 2017-01-12 Catalyst surface standard etching method and its equipment Active JP6797409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017003359A JP6797409B2 (en) 2017-01-12 2017-01-12 Catalyst surface standard etching method and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017003359A JP6797409B2 (en) 2017-01-12 2017-01-12 Catalyst surface standard etching method and its equipment

Publications (2)

Publication Number Publication Date
JP2018113366A JP2018113366A (en) 2018-07-19
JP6797409B2 true JP6797409B2 (en) 2020-12-09

Family

ID=62912404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017003359A Active JP6797409B2 (en) 2017-01-12 2017-01-12 Catalyst surface standard etching method and its equipment

Country Status (1)

Country Link
JP (1) JP6797409B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097022A (en) * 2018-12-17 2020-06-25 株式会社荏原製作所 Catalyst used in catalyst reference etching, processing pad having catalyst, and catalyst reference etching apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195690A (en) * 1997-01-09 1998-07-28 Toyoda Gosei Co Ltd Method for plating on base material
RU2286233C2 (en) * 2001-05-08 2006-10-27 Конинклейке Филипс Электроникс Н.В. Method of removal of cathode deposits by means of bipolar pulses
JP4887266B2 (en) * 2007-10-15 2012-02-29 株式会社荏原製作所 Flattening method
JP5364959B2 (en) * 2009-03-27 2013-12-11 国立大学法人大阪大学 Polishing method and polishing apparatus
JP6206847B2 (en) * 2014-03-12 2017-10-04 国立大学法人大阪大学 Wide band gap semiconductor substrate processing method and apparatus
KR102431971B1 (en) * 2014-04-18 2022-08-16 가부시키가이샤 에바라 세이사꾸쇼 Substrate processing device and substrate processing method

Also Published As

Publication number Publication date
JP2018113366A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP5963223B2 (en) Glass material processing method and apparatus
EP3142142B1 (en) Method for processing wide-bandgap semiconductor substrate
US7449098B1 (en) Method for planar electroplating
JP7095765B2 (en) Silicon carbide substrate and its manufacturing method
JP4982742B2 (en) Catalytic chemical processing method and apparatus using magnetic fine particles
US7651625B2 (en) Catalyst-aided chemical processing method and apparatus
JP5007384B2 (en) Catalyst-assisted chemical processing method and apparatus
JP2008081389A (en) Catalyst-aided chemical processing method and apparatus
JP2007283410A (en) Catalyst support type chemical machining method
JP6797409B2 (en) Catalyst surface standard etching method and its equipment
JP6188152B2 (en) Method and apparatus for planarizing Si substrate
US7807036B2 (en) Method and system for pad conditioning in an ECMP process
US11446785B2 (en) Methods to clean chemical mechanical polishing systems
JP2013040373A (en) METHOD FOR MANUFACTURING SiC WAFER
JP2023103839A (en) Semiconductor wafer surface processing method

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201111

R150 Certificate of patent or registration of utility model

Ref document number: 6797409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250