JP2008081389A - Catalyst-aided chemical processing method and apparatus - Google Patents

Catalyst-aided chemical processing method and apparatus Download PDF

Info

Publication number
JP2008081389A
JP2008081389A JP2006328331A JP2006328331A JP2008081389A JP 2008081389 A JP2008081389 A JP 2008081389A JP 2006328331 A JP2006328331 A JP 2006328331A JP 2006328331 A JP2006328331 A JP 2006328331A JP 2008081389 A JP2008081389 A JP 2008081389A
Authority
JP
Japan
Prior art keywords
catalyst
workpiece
processing
processed
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006328331A
Other languages
Japanese (ja)
Inventor
Kazuto Yamauchi
和人 山内
Yasuhisa Sano
泰久 佐野
Hideyuki Hara
英之 原
Junji Murata
順二 村田
Keita Yagi
圭太 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Osaka University NUC
Original Assignee
Ebara Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Osaka University NUC filed Critical Ebara Corp
Priority to JP2006328331A priority Critical patent/JP2008081389A/en
Priority to US11/892,780 priority patent/US7651625B2/en
Priority to EP20110006032 priority patent/EP2381008A2/en
Priority to EP20070016757 priority patent/EP1894900A3/en
Publication of JP2008081389A publication Critical patent/JP2008081389A/en
Priority to US12/636,069 priority patent/US20100147463A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst-aided chemical processing method, by which hard-to-process materials, especially SiC, GaN, or the like, whose importance as electronic device materials increases these days, can be processed with high processing efficiency and high precision even for a space wavelength range of not less than several tens of μm. <P>SOLUTION: The catalyst-aided chemical processing method comprises: putting a workpiece 28 such as GaN or SiC in a processing liquid 22 in which halogen-containing molecules such as hydrofluoric acid or the like are dissolved; and moving the workpiece 28 and a catalyst 26 composed of molybdenum or a molybdenum compound relative to each other while bringing the catalyst 26 into contact with or close proximity to the surface to be processed of the workpiece 28, thereby processing the surface to be processed of the workpiece 28. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、触媒支援型化学加工方法及び装置に係わり、更に詳しくは、化学的な反応が可能な触媒作用を利用して被加工物を加工する触媒支援型化学加工方法及び装置に関する。   The present invention relates to a catalyst-assisted chemical processing method and apparatus, and more particularly, to a catalyst-assisted chemical processing method and apparatus for processing a workpiece using a catalytic action capable of chemical reaction.

一般的に機械的な加工は、古くから様々な場面で使用されている。たとえば、機械研磨では、工具を加工したい表面に押し付けることで、機械的作用により材料欠陥を導入し表面の原子を剥ぎ取って加工する。このような機械研磨法では、結晶格子にダメージを与えてしまう上に、高精度な面を得ることが非常に困難となる。ゆえに、高精度でものを作成するためには、格子欠陥を発生させることなく加工できる化学的な加工を用いる必要がある。   In general, mechanical processing has been used in various scenes since ancient times. For example, in mechanical polishing, a tool is pressed against a surface to be processed, thereby introducing a material defect by a mechanical action and stripping off the surface atoms for processing. Such a mechanical polishing method damages the crystal lattice and makes it very difficult to obtain a highly accurate surface. Therefore, in order to create a thing with high accuracy, it is necessary to use chemical processing that can be processed without generating lattice defects.

超微粉体を分散した懸濁液を被加工物の被加工面に沿って流動させて、該超微粉体を被加工面上に略無荷重の状態で接触させ、その際の超微粉体と被加工面との界面での相互作用(一種の化学結合)により、被加工面原子を原子単位に近いオーダで除去して加工する、いわゆるEEM(Elastic Emission Machining)による加工は既に知られている(特許文献1〜4)。   The suspension in which the ultrafine powder is dispersed is caused to flow along the work surface of the work piece, and the ultra fine powder is brought into contact with the work surface with almost no load. We already know the processing by so-called EEM (Elastic Emission Machining), which processes by removing the atoms on the surface to be processed in an order close to atomic units by the interaction (a kind of chemical bond) at the interface between the powder and the surface to be processed (Patent Documents 1 to 4).

また、高電圧を印加した加工電極により発生させた反応ガスに基づく中性ラジカルを被加工物の被加工面に供給し、この中性ラジカルと被加工面の原子又は分子とのラジカル反応によって生成した揮発性物質を気化させて除去し、加工電極を被加工面に対して相対的に変化させて加工するものであって、反応ガスの種類と被加工物の材質に応じて決定される、加工時間と加工量との間の相関データと、前加工面と目的加工面の座標データとに基づきその座標差に応じて加工時間を数値制御して加工するプラズマCVM(Chemical Vaporization Machining)も提案されている(特許文献5)。   In addition, neutral radicals based on the reaction gas generated by the machining electrode to which a high voltage is applied are supplied to the work surface of the workpiece, and generated by a radical reaction between the neutral radicals and atoms or molecules on the work surface. The volatile material is removed by vaporization, and the processing electrode is processed while being changed relative to the surface to be processed, which is determined according to the type of reaction gas and the material of the workpiece. Plasma CVM (Chemical Vaporization Machining) is also proposed to perform machining by numerically controlling the machining time according to the coordinate difference based on the correlation data between the machining time and machining amount and the coordinate data of the previous machining surface and the target machining surface. (Patent Document 5).

更に、回転電極を高速に回転させることで、該回転電極の表面でガスを巻き込むことによって加工ギャップを横切るガス流を形成して加工する回転電極を用いた高密度ラジカル反応による高能率加工方法も提案されている(特許文献6)。   Furthermore, there is also a high-efficiency processing method by high-density radical reaction using a rotating electrode that rotates and rotates the rotating electrode to form a gas flow across the processing gap by entraining gas on the surface of the rotating electrode. It has been proposed (Patent Document 6).

前述のEEMやプラズマCVMは、化学的な加工として非常に優れている。EEMは、原子スケールで平滑な面を得ることが可能であり、プラズマCVMでは機械的な加工に匹敵する高能率な加工が高精度で可能である。   The aforementioned EEM and plasma CVM are very excellent as chemical processing. The EEM can obtain a smooth surface on an atomic scale, and the plasma CVM can perform highly efficient processing comparable to mechanical processing with high accuracy.

EEMは、その加工原理から考えて、高周波の空間波長に対して非常に平滑な面を得ることが可能である。EEMは、超純水によりSiO等の微粒子を表面に供給し、微粒子の表面の原子と被加工物表面の原子が化学的に結合することで加工が進むことが特徴である。このとき、微粒子の表面が非常に平坦な面であり、それが基準面となって、表面に転写されていると考えられる。ゆえに、原子配列を乱すことなく、原子サイズのオーダで平坦な表面を作ることが可能となる。しかしEEMは、その加工原理のゆえ、数十μm以上の空間波長域を平坦化しにくい。 EEM can obtain a very smooth surface with respect to a high-frequency spatial wavelength in view of its processing principle. EEM is characterized in that fine particles such as SiO 2 are supplied to the surface with ultrapure water, and the processing proceeds by the atoms on the surface of the fine particles and the atoms on the surface of the workpiece being chemically bonded. At this time, the surface of the fine particles is a very flat surface, which is considered to be a reference surface and transferred to the surface. Therefore, it is possible to create a flat surface with an atomic size order without disturbing the atomic arrangement. However, EEM is difficult to flatten the spatial wavelength region of several tens of μm or more because of its processing principle.

また、プラズマCVMは、活性なラジカルを利用しているので、非常に高効率な加工法である。プラズマCVMの加工は、プラズマ中の中性ラジカルと被加工物表面の化学反応を利用しており、1気圧という高圧力雰囲気下において高密度のプラズマを発生させ、プラズマ中で生成した中性ラジカルを加工物表面の原子に作用させ、揮発性の物質に変えることで加工している。ゆえに、被加工面の原子配列を乱すことなく、従来の機械加工に匹敵する加工能率を持っている。しかし、基準面を持たない加工法であるため、指数面による影響を受けやすい。   Plasma CVM is an extremely efficient processing method because it uses active radicals. The processing of plasma CVM uses a chemical reaction between neutral radicals in the plasma and the surface of the workpiece, and generates a high-density plasma in a high-pressure atmosphere of 1 atm. Is made to act on atoms on the surface of the workpiece, and is converted into a volatile substance. Therefore, it has a machining efficiency comparable to conventional machining without disturbing the atomic arrangement of the work surface. However, since the processing method does not have a reference surface, it is easily affected by the index surface.

一方、化学機械的研磨(CMP)は、SiOやCrを砥粒として用い、機械的作用を小さくし、化学的作用によって無擾乱表面を形成しようとするものである。例えば、特許文献7に示すように、酸化触媒作用のある砥粒を分散させた酸化性研磨液にダイヤモンド薄膜を浸漬し、砥粒で薄膜表面を擦過しながらダイヤモンド薄膜を研磨する方法が開示されている。ここで、砥粒として酸化クロムや酸化鉄を用い、この砥粒を過酸化水素水、硝酸塩水溶液又はそれらの混合液に分散させた研磨液を用いることが開示されている。 On the other hand, chemical mechanical polishing (CMP) uses SiO 2 or Cr 2 O 3 as abrasive grains to reduce the mechanical action and attempt to form an undisturbed surface by the chemical action. For example, as shown in Patent Document 7, a method is disclosed in which a diamond thin film is immersed in an oxidizing polishing liquid in which abrasive grains having an oxidation catalytic action are dispersed, and the diamond thin film is polished while rubbing the thin film surface with abrasive grains. ing. Here, it is disclosed that chromium oxide or iron oxide is used as abrasive grains, and a polishing liquid in which the abrasive grains are dispersed in a hydrogen peroxide solution, a nitrate aqueous solution or a mixture thereof is disclosed.

更に、ハロゲン化水素酸からなる処理液中に被加工物を配し、白金、金またはセラミックス系固体触媒からなる触媒を被加工物の被加工面に接触若しくは極接近させて配し、触媒の表面でハロゲン化水素を分子解離して生成したハロゲンラジカルと被加工物の表面原子との化学反応で生成したハロゲン化合物を溶出させることによって被加工物を加工する加工法が提案されている(特許文献8)。   Further, the workpiece is disposed in a treatment liquid composed of hydrohalic acid, and a catalyst composed of platinum, gold, or a ceramic solid catalyst is disposed in contact with or in close proximity to the workpiece surface of the workpiece, There has been proposed a processing method for processing a workpiece by eluting a halogen compound generated by a chemical reaction between a halogen radical generated by molecular dissociation of hydrogen halide on the surface and a surface atom of the workpiece (patent) Reference 8).

特公平2−25745号公報Japanese Patent Publication No. 2-25745 特公平7−16870号公報Japanese Patent Publication No. 7-16870 特公平6−44989号公報Japanese Patent Publication No. 6-44989 特開2000−167770号公報JP 2000-167770 A 特許第2962583号公報Japanese Patent No. 2962583 特許第3069271号公報Japanese Patent No. 3069271 特許第3734722号公報Japanese Patent No. 3734722 特開2006−114632号公報JP 2006-114632 A

本発明は、前述の状況に鑑み、難加工物、特に近年電子デバイスの材料として重要性が高まっているSiCやGaN等を、加工効率が高く且つ数十μm以上の空間波長領域にわたって精度が高く加工することが可能な新しい加工法を提案することを目的とする。その加工法は、機械的な加工法であれば、表面に格子欠陥が導入され高精度な加工が困難となるから、結晶学的に考えて、化学的な加工法でなければならない。本発明では、化学的な反応によって基準面を転写するという原理を利用するが、その基準面が変化しないということが重要である。なぜなら、基準面が変化すると、加工が進むに従って加工表面が変化してしまうからである。そこで、本発明は、基準面が変化せず、化学的な反応が可能な触媒作用を利用した触媒支援型化学加工方法及び装置を提案する。   In view of the above-mentioned situation, the present invention has a high processing efficiency and high accuracy over a spatial wavelength region of several tens of μm or more in difficult-to-work materials, particularly SiC and GaN, which have recently been increasing in importance as materials for electronic devices. The purpose is to propose a new processing method that can be processed. If the processing method is a mechanical processing method, lattice defects are introduced on the surface and high-precision processing becomes difficult, so that it must be a chemical processing method in consideration of crystallography. In the present invention, the principle of transferring the reference surface by a chemical reaction is used, but it is important that the reference surface does not change. This is because if the reference surface changes, the processing surface changes as processing proceeds. Therefore, the present invention proposes a catalyst-assisted chemical processing method and apparatus utilizing a catalytic action that allows a chemical reaction without changing the reference plane.

本発明は、前述の課題を解決するため、ハロゲンを含む分子が溶けた処理液中に被加工物を配し、モリブデンまたはモリブデン化合物からなる触媒を被加工物の被加工面に接触または極近接させながら該触媒と被加工物とを相対移動させて被加工物の被加工面を加工することを特徴とする触媒支援型化学加工方法を提供する(請求項1)。   In order to solve the above-mentioned problems, the present invention arranges a workpiece in a treatment solution in which molecules containing halogen are dissolved, and contacts or close proximity of a catalyst made of molybdenum or a molybdenum compound with the workpiece surface of the workpiece. The catalyst-assisted chemical processing method is characterized in that the processing surface of the workpiece is processed by moving the catalyst and the workpiece relative to each other.

ここで、前記処理液がフッ化水素酸(HF水溶液)であることが好ましい(請求項2)。また、前記被加工物が、Si、SiC、GaN、サファイヤ、ルビー及びダイヤモンドの内から選ばれた1種であることが好ましい(請求項3)。   Here, it is preferable that the treatment liquid is hydrofluoric acid (HF aqueous solution). Moreover, it is preferable that the workpiece is one selected from Si, SiC, GaN, sapphire, ruby and diamond.

前記触媒を表面に有する平坦な定盤の該表面に、前記処理液の存在の下で、ホルダーで保持した被加工物の被加工面を接触させながら、前記定盤と前記被加工物とを相対的に移動させて被加工物の被加工面を平坦に加工することができる(請求項4)。   The surface plate and the work piece are brought into contact with the work surface of the work piece held by a holder in the presence of the processing liquid on the surface of the flat surface plate having the catalyst on the surface. The surface to be processed of the workpiece can be processed flat by being moved relatively.

また、本発明は、ハロゲンを含む分子が溶けた処理液中に該被加工物を配し、白金、金、セラミックス系固体触媒、モリブデン、又はモリブデン化合物からなる触媒を被加工物の加工面に接触若しくは極接近させて配し、被加工物を加工する触媒支援型化学加工方法であって、前記加工中に被加工物の被加工面と前記触媒の間に電圧を印加する電圧印加工程、前記加工中または加工前に被加工物の被加工面に光を照射する光照射工程、前記加工中における該被加工物の温度を制御する被加工物温度制御工程、前記処理液の温度を制御する処理液温度制御工程、及び前記触媒の温度を制御する触媒温度制御工程のうちの1種又は2種以上を組み合わせて適用し、被加工物を加工することを特徴とする触媒支援型化学加工方法を提供する(請求項5)。   Further, the present invention provides the workpiece in a processing solution in which molecules containing halogen are dissolved, and a catalyst made of platinum, gold, a ceramic-based solid catalyst, molybdenum, or a molybdenum compound is provided on the processing surface of the workpiece. A catalyst-assisted chemical processing method for processing a workpiece by placing it in contact or in close proximity, and applying a voltage between the workpiece surface of the workpiece and the catalyst during the processing, A light irradiation step of irradiating light on the workpiece surface during or before the machining, a workpiece temperature control step for controlling the temperature of the workpiece during the machining, and a temperature control of the processing liquid A processing solution temperature control step, and a catalyst temperature control step for controlling the temperature of the catalyst. A method is provided (claims) ).

加工中に被加工物の被加工面と触媒との間に電圧を印加することで、ハロゲンを含む分子の解離反応を補助し、触媒表面でのハロゲン原子の生成量を増加させて、加工速度を高めることができる。
加工中または加工前に被加工物の被加工面に光を照射し、被加工物の被加工面を光で励起させることで、被加工面を活性にして加工速度を高めることができる。
By applying a voltage between the work surface of the work piece and the catalyst during processing, the dissociation reaction of the halogen-containing molecules is assisted, and the amount of halogen atoms generated on the catalyst surface is increased, thereby processing speed. Can be increased.
By irradiating the work surface of the workpiece with light during or before processing and exciting the work surface of the workpiece with light, the work surface can be activated to increase the processing speed.

アレニウスの式で知られるように、化学反応は反応温度が高ければ、それだけ反応速度は大きくなる。このため、被加工物の加工中における該被加工物の温度、処理液の温度及び触媒の温度の少なくとも1つを制御し、反応温度を制御することで、加工速度を変化させることができる。   As is known from the Arrhenius equation, the higher the reaction temperature, the higher the chemical reaction. For this reason, the processing speed can be changed by controlling at least one of the temperature of the workpiece, the temperature of the processing liquid, and the temperature of the catalyst during the processing of the workpiece and controlling the reaction temperature.

本発明の触媒支援型化学加工装置は、表面にモリブデンまたはモリブデン化合物からなる触媒を有する定盤と、被加工物を保持し該被加工物の被加工面を前記定盤に接触させるホルダーと、前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物との間にハロゲンを含む分子が溶けた処理液を供給する処理液供給部と、前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物とを相対移動させる駆動部を有する(請求項6)。   The catalyst-assisted chemical processing apparatus of the present invention includes a surface plate having a catalyst made of molybdenum or a molybdenum compound on the surface, a holder for holding the workpiece and bringing the processing surface of the workpiece into contact with the surface plate, A treatment liquid supply unit for supplying a treatment liquid in which molecules containing halogen are dissolved between the surface plate and a workpiece held in contact with the surface plate, and held by the surface plate and the holder. And a drive unit that relatively moves the workpiece brought into contact with the surface plate (Claim 6).

本発明の更に他の触媒支援型化学加工装置は、表面に、白金、金、セラミックス系固体触媒、モリブデン、又はモリブデン化合物からなる触媒を有する定盤と、被加工物を保持し該被加工物の被加工面を前記定盤に接触させるホルダーと、前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物との間にハロゲンを含む分子が溶けた処理液を供給する処理液供給部と、前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物とを相対移動させる駆動部と、被加工物の被加工面と前記触媒の間に電圧を印加する電源、被加工物の被加工面に光を照射する光源、前記加工中における該被加工物の温度を制御する被加工物温度制御機構、前記処理液の温度を制御する処理液温度制御機構、及び前記触媒の温度を制御する触媒温度制御機構のうちの1種又は2種以上を有する(請求項7)。   Still another catalyst-assisted chemical processing apparatus according to the present invention includes a surface plate having a catalyst made of platinum, gold, a ceramic solid catalyst, molybdenum, or a molybdenum compound on the surface, and a workpiece that holds the workpiece. A processing solution in which molecules containing halogen are dissolved is supplied between a holder for bringing a surface to be processed into contact with the surface plate, and a workpiece held by the surface plate and the holder to be in contact with the surface plate. A voltage is applied between a processing liquid supply unit, a driving unit that relatively moves a workpiece held by the surface plate and the holder and brought into contact with the surface plate, and a work surface of the workpiece and the catalyst. A power source to be applied, a light source for irradiating light on the work surface of the work piece, a work piece temperature control mechanism for controlling the temperature of the work piece during the work, and a treatment liquid temperature control for controlling the temperature of the treatment liquid Mechanism and catalyst temperature control for controlling the temperature of the catalyst Having one or more of the mechanism (claim 7).

本発明の触媒支援型化学加工方法は、加工基準面にモリブデン(Mo)またはモリブデン化合物からなる触媒を用い、該触媒の表面で処理液中のハロゲンを含む分子を解離させてハロゲンラジカルを生成し、このハロゲンラジカル並びにこのハロゲンラジカルが水分子を分解して生成したOHラジカルが被加工面に作用することで加工が進展する。本発明では、砥粒や研磨材を用いずに、触媒機能を果たすモリブデンまたはモリブデン化合物を処理液中で被加工面に接触または極近接させ、モリブデンまたはモリブデン化合物と被加工面を相対移動させることにより常に新しい被加工面が出現して加工が進む。ここで、触媒表面で生成されたラジカルは、触媒表面から離れると急激に不活性化するので、ラジカルは、基準面となる触媒表面上若しくは表面の極近傍のみにしか存在せず、それにより空間的に制御された状態で加工できる。   The catalyst-assisted chemical processing method of the present invention uses a catalyst made of molybdenum (Mo) or a molybdenum compound as a processing reference surface, and generates halogen radicals by dissociating halogen-containing molecules in the treatment liquid on the surface of the catalyst. The processing proceeds by the halogen radicals and the OH radicals generated by decomposing water molecules by the halogen radicals acting on the surface to be processed. In the present invention, molybdenum or a molybdenum compound that performs a catalytic function is brought into contact with or in close proximity to a work surface in a processing solution without using abrasive grains or an abrasive, and the molybdenum or molybdenum compound and the work surface are moved relative to each other. As a result, a new work surface always appears and processing proceeds. Here, the radicals generated on the catalyst surface are inactivated rapidly when they are separated from the catalyst surface, so that the radicals are present only on the catalyst surface, which is the reference surface, or in the immediate vicinity of the surface. Can be processed in a controlled manner.

本発明の触媒支援型化学加工方法は、加工基準面を有する化学的な加工であるので、EEMやプラズマCVMでは困難であった数十μm以上の空間波長領域を高度に平坦化加工することができる。また、Siの加工は勿論であるが、これまで加工が難しかったSiCやGaN、更にはサファイヤ、ルビー、ダイヤモンドの高精度な加工ができるようになり、半導体製造工程においても使用できる可能性がある。   Since the catalyst-assisted chemical processing method of the present invention is a chemical processing having a processing reference surface, it is possible to highly planarize a spatial wavelength region of several tens of μm or more, which was difficult with EEM and plasma CVM. it can. In addition to Si processing, SiC and GaN, which have been difficult to process, and sapphire, ruby and diamond can be processed with high precision and may be used in semiconductor manufacturing processes. .

本発明の触媒支援型化学加工方法は、加工基準面に白金、金又はセラミックス系固体触媒、モリブデン、又はモリブデン化合物からなる触媒を用い、該触媒表面でハロゲンを含む分子が溶けた処理液が分子解離してハロゲンラジカルを生成し、触媒に接触若しくは極接近した被加工物の表面原子とハロゲンラジカルとの化学反応で生成したハロゲン化合物を、溶出させることによって被加工物を加工する。ここで、被加工物に対して常態では溶解性を示さない、又はほとんど溶解性を示さないハロゲン化水素酸からなる処理液を使用すると、触媒表面で生成されたハロゲンラジカルは、触媒表面から離れると急激に不活性化するので、ハロゲンラジカルは基準面となる触媒表面上は若しくは表面の極近傍のみにしか存在せず、それにより触媒からなる基準面直下でのみ加工が進行する化学的な加工法となり得る。   The catalyst-assisted chemical processing method of the present invention uses a platinum, gold or ceramic solid catalyst, molybdenum, or a molybdenum compound catalyst on the processing reference surface, and a treatment liquid in which molecules containing halogen are dissolved on the catalyst surface is a molecule. The workpiece is processed by dissociating to generate halogen radicals and eluting halogen compounds generated by chemical reaction between the surface atoms of the workpiece and the halogen radicals that are in contact with or in close proximity to the catalyst. Here, when a treatment liquid made of hydrohalic acid that is not or hardly soluble in a workpiece in a normal state is used, halogen radicals generated on the catalyst surface are separated from the catalyst surface. Chemical process where the halogen radicals exist only on the catalyst surface, which is the reference surface, or only in the immediate vicinity of the surface, so that the processing proceeds only directly below the reference surface consisting of the catalyst. Can be law.

次に、実施形態に基づき、本発明を更に詳細に説明する。本発明の加工原理は、ハロゲンを含む分子が溶けた処理液中に被加工物を配し、モリブデンまたはモリブデン化合物からなる触媒を被加工物の被加工面に接触または極近接させながら該触媒と被加工物とを相対移動させて被加工物の被加工面を加工するというものである。   Next, the present invention will be described in more detail based on embodiments. The processing principle of the present invention is that a workpiece is disposed in a treatment solution in which molecules containing halogen are dissolved, and the catalyst made of molybdenum or a molybdenum compound is brought into contact with or in close proximity to the workpiece surface of the workpiece. The workpiece surface is processed by moving the workpiece relative to the workpiece.

処理液として、フッ化水素酸(HF水溶液)を使用した、本発明の加工法の概念図を図1に示す。図1(a)に示すように、モリブデン(Mo)からなる触媒1をフッ化水素(HF)が溶けた処理液中に配置すると、触媒1の表面でHF6が解離されてH原子7とハロゲンラジカル(Fラジカル)8が生成される。このFラジカル8は、寿命は短いが、反応性が非常に強いため、図1(b)に示すように、モリブデン(Mo)からなる触媒1と被加工物2の被加工面とを、フッ化水素酸(HF水溶液)中で接触または極接近させると、接触部分の被加工面表面原子が化学反応により処理液中に溶解される。そして、図1(c)に示すように、触媒1を被加工物2の被加工面から離すと、触媒表面で生成されるラジカルが被加工物表面に作用しなくなる為に溶解反応が止まる。従って、触媒1が接触または極接近している間だけ、被加工物2の被加工面が加工される。   The conceptual diagram of the processing method of this invention which uses hydrofluoric acid (HF aqueous solution) as a process liquid is shown in FIG. As shown in FIG. 1A, when a catalyst 1 made of molybdenum (Mo) is placed in a treatment solution in which hydrogen fluoride (HF) is dissolved, HF 6 is dissociated on the surface of the catalyst 1 to form H atoms 7 and halogen. A radical (F radical) 8 is generated. Although this F radical 8 has a short lifetime but is very reactive, as shown in FIG. 1 (b), the catalyst 1 made of molybdenum (Mo) and the work surface of the work piece 2 are in contact with each other. When contacting or extremely approaching in hydrofluoric acid (HF aqueous solution), the surface atoms of the surface to be processed at the contact portion are dissolved in the treatment liquid by a chemical reaction. Then, as shown in FIG. 1C, when the catalyst 1 is separated from the workpiece surface of the workpiece 2, the radical reaction generated on the catalyst surface does not act on the workpiece surface, so that the dissolution reaction stops. Therefore, the work surface of the work piece 2 is processed only while the catalyst 1 is in contact or in close proximity.

ここで、被加工物2がSiCの場合には、下記の(化学式1)に示すように、Fラジカル(F・)によってSiC表面がフッ素化され、その部分が優先的に加工されるものと推測される。   Here, when the workpiece 2 is SiC, as shown in the following (Chemical Formula 1), the SiC surface is fluorinated by F radicals (F.), and the portion is preferentially processed. Guessed.

(化学式1)
SiC+8F・→SiF↑+CF
(Chemical formula 1)
SiC + 8F ・ → SiF 4 ↑ + CF 4

このような本発明に係る触媒支援型化学加工法には、次の3つの特徴がある。(1)基準面(触媒)上でのみ反応種(ハロゲンラジカル)が作られる。(2)基準面から離れると、反応種(ハロゲンラジカル)は不活性化する。(3)基準面の物性は長時間変化しない。   Such a catalyst-assisted chemical processing method according to the present invention has the following three characteristics. (1) Reactive species (halogen radicals) are created only on the reference surface (catalyst). (2) When separated from the reference plane, reactive species (halogen radicals) are inactivated. (3) The physical properties of the reference surface do not change for a long time.

このような特徴をもつために得られる本発明の利点を次に述べる。それは、「基準面上でのみ反応種が作られる」ために、化学エッチングとは異なり表面の面指数に影響されずに加工することが可能となる。「基準面から離れると反応種が不活性化する」ために、基準面を転写する化学的加工法となり、EEMで見られたような原子スケールでの平坦化が期待できる。「基準面の物性が長時間変化しない」ために、基準面が転写され加工が進行しても、該基準面の表面が変化しない。つまり、以上のようなことから、この触媒支援型化学加工法は、効率的な超精密加工法となりうる可能性があると考えられる。   The advantages of the present invention obtained by having such characteristics will be described below. Since “reactive species are created only on the reference surface”, it can be processed without being affected by the surface index of the surface unlike chemical etching. Since “reactive species are inactivated when leaving the reference plane”, it becomes a chemical processing method for transferring the reference plane, and flattening at the atomic scale as seen by EEM can be expected. Since “the physical properties of the reference surface do not change for a long time”, even if the reference surface is transferred and processing proceeds, the surface of the reference surface does not change. In other words, from the above, it is considered that this catalyst-assisted chemical processing method may be an efficient ultraprecision processing method.

ここで、前記処理液としては、フッ化水素酸が挙げられるが、フッ化水素酸に限らず、被加工物、加工条件等の組合せにより、その他のハロゲン化水素溶液も用いることができる。   Here, although the hydrofluoric acid is mentioned as said process liquid, not only hydrofluoric acid but another hydrogen halide solution can also be used by the combination of a to-be-processed object, processing conditions, etc.

(実施例1)
本発明の触媒支援型化学加工法の加工原理を確認するために、加工装置を作製した。その基礎実験用加工装置の概念図を図2に示す。この加工装置は、底面に加工試料10を固定して内部を薬液で満たす上方に開口した薬液槽12と、薬液槽12を一方向に往復運動させる駆動機構14と、薬液槽12の底面に固定した加工試料10の表面(被加工面)に所定の押圧力で接触するコイン状触媒16を備えている。コイン状触媒16は、その下端において加工試料10の表面に点状に接触し、加工試料10は、コイン状触媒16の表面と平行に往復運動することで、加工試料10の表面を線状に沿って深さ方向に加工(溝加工)するようになっている。
(Example 1)
In order to confirm the processing principle of the catalyst-assisted chemical processing method of the present invention, a processing apparatus was produced. A conceptual diagram of the processing apparatus for the basic experiment is shown in FIG. This processing apparatus is fixed to the bottom surface of the chemical solution tank 12, the chemical solution tank 12 that is opened upward to fix the processing sample 10 on the bottom surface and fills the inside with the chemical solution, the drive mechanism 14 that reciprocates the chemical solution tank 12 in one direction. The coin-shaped catalyst 16 that contacts the surface (processed surface) of the processed sample 10 with a predetermined pressing force is provided. The coin-shaped catalyst 16 comes into contact with the surface of the processed sample 10 at its lower end, and the processed sample 10 reciprocates in parallel with the surface of the coin-shaped catalyst 16, thereby linearizing the surface of the processed sample 10. It is designed to be processed (grooved) in the depth direction along.

そして、コイン状触媒16の材料として純度99.95%のモリブデン(Mo)を、薬液としてフッ化水素酸(50%HF)をそれぞれ使用して、フッ化水素酸中に浸漬させたGaNからなる加工試料10の表面にコイン状触媒16を接触させながら加工試料10を10mm/secで往復運動させて、加工試料(GaN)10の表面を3時間に亘って溝加工した。   Then, molybdenum (Mo) having a purity of 99.95% is used as a material for the coin-shaped catalyst 16 and hydrofluoric acid (50% HF) is used as a chemical solution, respectively, and is made of GaN soaked in hydrofluoric acid. The processed sample 10 was reciprocated at 10 mm / sec while the coin-shaped catalyst 16 was in contact with the surface of the processed sample 10 to groove the surface of the processed sample (GaN) 10 for 3 hours.

この時の加工結果を図3及び図4に示す。ここで、図3は、加工後の加工試料表面の斜視図を示し、図4は、加工後の加工試料の断面プロファイルを示す。図3及び図4に示すように、GaNからなる加工試料の表面には、モリブデンからなるコイン状触媒と接触して線状に加工された2条に延びる溝(凹部)が形成されており、これにより、モリブデンからなるコイン状触媒によりGaNが加工できることが判る。   The processing results at this time are shown in FIGS. Here, FIG. 3 shows a perspective view of the processed sample surface after processing, and FIG. 4 shows a cross-sectional profile of the processed sample after processing. As shown in FIGS. 3 and 4, on the surface of the processed sample made of GaN, grooves (concave portions) extending in two lines that are processed into a linear shape in contact with a coin-shaped catalyst made of molybdenum are formed, Thereby, it turns out that GaN can be processed with the coin-shaped catalyst which consists of molybdenum.

比較例1として、コイン状触媒16として純度99.98%のプラチナ(Pt)を使用し、その他の条件は実施例1と同様にして、GaNからなる加工試料10の表面を3時間に亘って加工した。
この時の加工結果を図5及び図6に示す。ここで、図5は、加工後の加工試料表面の斜視図を示し、図6は、加工後の加工試料の断面プロファイルを示す。図5及び図6に示すように、加工後のGaNからなる加工試料の表面は、溝(凹部)が形成されることなく、平坦面となっており、これにより、プラチナからなるコイン状触媒では、GaNを加工できないことが判る。
As Comparative Example 1, platinum (Pt) having a purity of 99.98% was used as the coin-shaped catalyst 16, and the other conditions were the same as in Example 1, and the surface of the processed sample 10 made of GaN was applied for 3 hours. processed.
The processing results at this time are shown in FIGS. Here, FIG. 5 shows a perspective view of the processed sample surface after processing, and FIG. 6 shows a cross-sectional profile of the processed sample after processing. As shown in FIGS. 5 and 6, the surface of the processed sample made of GaN after processing is a flat surface without forming a groove (concave portion). It turns out that GaN cannot be processed.

一般的に化学エッチングが困難とされているGaNを、フッ化水素酸(50%HF)中で、モリブデンからなる触媒で擦るだけで容易に加工することができた。また、基準面であるコイン触媒の直下のみ加工されたので、基準面が転写されたと考えられる。即ち、新しく提案した触媒支援型化学加工法の有用性を示すことができた。また、フッ化水素酸(50%HF)は、安価で比較的取扱いが容易であるので、本発明は実用的な観点からも有益であると言える。   GaN, which is generally difficult to chemically etch, can be easily processed by simply rubbing it with a catalyst made of molybdenum in hydrofluoric acid (50% HF). In addition, it is considered that the reference surface was transferred because only the coin catalyst which is the reference surface was processed. That is, the usefulness of the newly proposed catalyst-assisted chemical processing method could be demonstrated. Further, hydrofluoric acid (50% HF) is inexpensive and relatively easy to handle, so that the present invention can be said to be beneficial from a practical viewpoint.

例えばFラジカルは、非常に活性であるため、例えばモリブデンの触媒作用による解離吸着のみでは、十分な量のFラジカルを生成することが難しい。そこで、処理液として、フッ化水素酸(HF水溶液)を使用した場合に、モリブデン触媒と被加工物との間に電圧を印加することで、HFの解離反応を補助し、触媒表面でのハロゲン原子の生成量を増加させて、加工速度を高めることができる。このように、処理液として、HF水溶液を使用した場合、モリブデン触媒と被加工物との間に印加する電圧は、下記の反応式に示す、HF分解反応の標準電極電圧値である3V程度が好ましい。
+2H+2e=2HF+3.053eV
For example, since F radicals are very active, it is difficult to generate a sufficient amount of F radicals only by dissociative adsorption by the catalytic action of molybdenum, for example. Therefore, when hydrofluoric acid (HF aqueous solution) is used as the treatment liquid, a voltage is applied between the molybdenum catalyst and the workpiece to assist the dissociation reaction of HF, and halogen on the catalyst surface. By increasing the amount of atoms generated, the processing speed can be increased. Thus, when an HF aqueous solution is used as the treatment liquid, the voltage applied between the molybdenum catalyst and the workpiece is about 3 V, which is the standard electrode voltage value of the HF decomposition reaction shown in the following reaction formula. preferable.
F 2 + 2H + + 2e = 2HF + 3.053 eV

図7は、処理液として、フッ化水素酸(HF水溶液)を使用し、モリブデン(Mo)からなる触媒1と被加工物2との間に電圧を印加して被加工物2の表面を加工するようにした加工法の概念図を示す。図7に示すように、陽極と陰極とを反転可能な電源40を備え、この電源40の一方の極から延び、スイッチ42を介装した導線44aを触媒1に、電源40の他方の極から延びる導線44bを被加工物2にそれぞれ接続している。その他は、図1に示すものと同様である。   In FIG. 7, hydrofluoric acid (HF aqueous solution) is used as a treatment liquid, and a voltage is applied between the catalyst 1 made of molybdenum (Mo) and the workpiece 2 to process the surface of the workpiece 2. The conceptual diagram of the processing method made to do is shown. As shown in FIG. 7, a power source 40 capable of reversing the anode and the cathode is provided, and a lead wire 44a extending from one pole of the power source 40 and having a switch 42 interposed between the catalyst 1 and the other pole of the power source 40. The extending conducting wires 44b are connected to the workpiece 2, respectively. Others are the same as those shown in FIG.

この場合にあっても、図7(a)に示すように、フッ化水素(HF)が溶けた処理液中に触媒1と被加工物2を配置すると、触媒1の表面でHF6が解離されてH原子7とハロゲンラジカル(Fラジカル)8が生成される。この状態で、図7(b)に示すように、スイッチ42をONにして、触媒1と被加工物2との間に、例えば触媒1が陽極となる電圧を印加すると、触媒1の表面(被加工物2との対向面)が活性領域1aとなり、触媒1の表面でのHF6の解離反応が促進されて、多量のFラジカル8が生成される。この状態で、図7(c)に示すように、触媒1を被加工物2の被加工面に接触または極接近させると、接触部分の被加工面表面原子が化学反応により処理液中に溶解される。この時、Fラジカル8が多量に存在する触媒1の活性領域1aによって、被加工物2の加工が促進される。   Even in this case, as shown in FIG. 7A, when the catalyst 1 and the workpiece 2 are arranged in the treatment liquid in which hydrogen fluoride (HF) is dissolved, HF6 is dissociated on the surface of the catalyst 1. Thus, H atoms 7 and halogen radicals (F radicals) 8 are generated. In this state, as shown in FIG. 7 (b), when the switch 42 is turned ON and a voltage is applied between the catalyst 1 and the workpiece 2 so that the catalyst 1 becomes an anode, for example, the surface of the catalyst 1 ( The surface facing the workpiece 2) becomes the active region 1a, the dissociation reaction of HF6 on the surface of the catalyst 1 is promoted, and a large amount of F radicals 8 are generated. In this state, as shown in FIG. 7 (c), when the catalyst 1 is brought into contact with or very close to the work surface of the work piece 2, the surface atoms of the work surface at the contact portion are dissolved in the processing liquid by a chemical reaction. Is done. At this time, processing of the workpiece 2 is promoted by the active region 1a of the catalyst 1 in which a large amount of F radicals 8 are present.

そして、図7(d)に示すように、触媒1を被加工物2の被加工面から離すと、触媒表面で生成されるラジカルが被加工物表面に作用しなくなる為に溶解反応が止まり、更に、スイッチ42をOFFとすることで、触媒1の表面は活性領域でなくなる。従って、触媒1が接触または極接近している間だけ、被加工物2の被加工面が加工される。   And as shown in FIG.7 (d), when the catalyst 1 is separated from the to-be-processed surface of the to-be-processed object 2, since the radical produced | generated on the catalyst surface will not act on the to-be-processed surface, a dissolution reaction will stop, Further, by turning off the switch 42, the surface of the catalyst 1 is no longer an active region. Therefore, the work surface of the work piece 2 is processed only while the catalyst 1 is in contact or in close proximity.

(実施例2〜7)
図7に示す加工原理を確認するために、加工装置を作製した。その基礎実験用加工装置の概念図を図8に示す。この加工装置の図2に示す加工装置と異なる点は、加工試料10とコイン状触媒16との間に、電源18を介して、電圧を印加できるようにしている点である。その他の構成は、図2に示す加工装置と同様である。
(Examples 2 to 7)
In order to confirm the processing principle shown in FIG. 7, a processing apparatus was produced. FIG. 8 shows a conceptual diagram of the basic experimental processing apparatus. The processing device is different from the processing device shown in FIG. 2 in that a voltage can be applied between the processed sample 10 and the coin-shaped catalyst 16 via the power source 18. Other configurations are the same as those of the processing apparatus shown in FIG.

そして、コイン状触媒16の材料として純度99.95%のモリブデン(Mo)を、薬液としてフッ化水素酸(50%HF)をそれぞれ使用して、フッ化水素酸中に浸漬させたSiCからなる加工試料10の表面にコイン状触媒16を、付加加重74gで接触させながら加工試料10を3mm/secで往復運動させて、加工試料(SiC)10の表面を1時間に亘って溝加工した。この加工時に、加工試料10とコイン状触媒16との間に、コイン状触媒16を陽極とした1Vの電圧を印加した(実施例2)。   Then, molybdenum (Mo) having a purity of 99.95% is used as a material for the coin-shaped catalyst 16 and hydrofluoric acid (50% HF) is used as a chemical solution, respectively, and SiC is immersed in hydrofluoric acid. While the coin-shaped catalyst 16 was brought into contact with the surface of the processed sample 10 with an additional load of 74 g, the processed sample 10 was reciprocated at 3 mm / sec to groove the surface of the processed sample (SiC) 10 for 1 hour. During this processing, a voltage of 1 V was applied between the processed sample 10 and the coin-shaped catalyst 16 with the coin-shaped catalyst 16 as an anode (Example 2).

この時の加工結果を図9及び図10に示す。ここで、図9は、加工後の加工試料表面の斜視図を示し、図10は、加工後の加工試料の断面プロファイルを示す。これにより、加工試料表面に、約200nmの深さの溝を加工することができた。参考として、図11に加工前の加工試料の表面を、図12及び図13に、加工試料10とコイン状触媒16との間に電圧を印加することなく、加工試料(SiC)10の加工を行った時の結果を示す。ここで、図12(a)は、加工試料表面の斜視図を、図12(b)は、図12(a)の部分拡大図を、図13は、加工後の加工試料の断面プロファイルをそれぞれ示す。この場合、加工試料表面に、約175nmの深さの溝を加工することができた。   The processing results at this time are shown in FIGS. Here, FIG. 9 shows a perspective view of the processed sample surface after processing, and FIG. 10 shows a cross-sectional profile of the processed sample after processing. As a result, a groove having a depth of about 200 nm could be processed on the processed sample surface. For reference, the surface of the processed sample before processing is shown in FIG. 11, and the processed sample (SiC) 10 is processed without applying a voltage between the processed sample 10 and the coin-shaped catalyst 16 in FIGS. 12 and 13. Results are shown when done. 12A is a perspective view of the surface of the processed sample, FIG. 12B is a partially enlarged view of FIG. 12A, and FIG. 13 is a cross-sectional profile of the processed sample after processing. Show. In this case, a groove having a depth of about 175 nm could be processed on the processed sample surface.

これにより、加工試料(SiC)10とコイン状触媒16との間に、コイン状触媒16を陽極とした1Vの電圧を印加しながらSiCを加工することにより、電圧を印加することなく加工を行った場合より、SiCの加工速度が高められることが判る。   Thus, processing is performed without applying a voltage by processing SiC while applying a voltage of 1 V with the coin-shaped catalyst 16 as an anode between the processed sample (SiC) 10 and the coin-shaped catalyst 16. It can be seen that the processing speed of SiC can be increased.

実施例3として、加工試料10とコイン状触媒16との間に、コイン状触媒16を陽極とした2Vの電圧を印加し、その他の条件は実施例2と同様にして、SiCからなる加工試料10の表面を1時間に亘って加工した。この時の加工結果を図14及び図15に示す。ここで、図14は、加工後の加工試料表面の斜視図を示し、図15は、加工後の加工試料の断面プロファイルを示す。これにより、加工試料表面に、約200〜250nmの深さの溝を加工することができた。   As Example 3, a 2 V voltage with the coin-shaped catalyst 16 as an anode was applied between the processed sample 10 and the coin-shaped catalyst 16, and the other conditions were the same as in Example 2, and the processed sample made of SiC. Ten surfaces were processed for 1 hour. The processing results at this time are shown in FIGS. Here, FIG. 14 shows a perspective view of the processed sample surface after processing, and FIG. 15 shows a cross-sectional profile of the processed sample after processing. As a result, a groove having a depth of about 200 to 250 nm could be processed on the processed sample surface.

実施例4として、加工試料10とコイン状触媒16との間に、コイン状触媒16を陽極とした3Vの電圧を印加し、その他の条件は実施例2と同様にして、SiCからなる加工試料10の表面を1時間に亘って加工した。この時の加工結果を図16及び図17に示す。ここで、図16は、加工後の加工試料表面の斜視図を示し、図17は、加工後の加工試料の断面プロファイルを示す。これにより、加工試料表面に、約200〜250nmの深さの溝を形成することができた。   As Example 4, a 3 V voltage using the coin-shaped catalyst 16 as an anode was applied between the processed sample 10 and the coin-shaped catalyst 16, and the other conditions were the same as in Example 2, and the processed sample made of SiC was used. Ten surfaces were processed for 1 hour. The processing results at this time are shown in FIGS. Here, FIG. 16 shows a perspective view of the processed sample surface after processing, and FIG. 17 shows a cross-sectional profile of the processed sample after processing. As a result, a groove having a depth of about 200 to 250 nm could be formed on the processed sample surface.

この実施例3及び4より、処理液として、HF水溶液を使用した場合、モリブデン触媒と被加工物との間に印加する電圧は、HF分解反応の標準電極電圧値である3V程度が好ましいことが判る。   From Examples 3 and 4, when an aqueous HF solution is used as the treatment liquid, the voltage applied between the molybdenum catalyst and the workpiece is preferably about 3 V, which is the standard electrode voltage value of the HF decomposition reaction. I understand.

実施例5として、加工試料10とコイン状触媒16との間に、コイン状触媒16を陰極とした1V(−1V)の電圧を印加し、その他の条件は実施例2と同様にして、SiCからなる加工試料10の表面を1時間に亘って加工した。この時の加工結果を図18及び図19に示す。ここで、図18は、加工後の加工試料表面の斜視図を示し、図19は、加工後の加工試料の断面プロファイルを示す。これにより、加工試料表面に、約100nmの深さの溝を形成することができた。   As Example 5, a voltage of 1V (-1V) using the coin-shaped catalyst 16 as a cathode was applied between the processed sample 10 and the coin-shaped catalyst 16, and the other conditions were the same as in Example 2 except that SiC. The surface of the processed sample 10 made of was processed for 1 hour. The processing results at this time are shown in FIGS. Here, FIG. 18 shows a perspective view of the processed sample surface after processing, and FIG. 19 shows a cross-sectional profile of the processed sample after processing. As a result, a groove having a depth of about 100 nm could be formed on the surface of the processed sample.

実施例6として、加工試料10とコイン状触媒16との間に、コイン状触媒16を陰極とした2V(−2V)の電圧を印加し、その他の条件は実施例2と同様にして、SiCからなる加工試料10の表面を1時間に亘って加工した。この時の加工結果を図20及び図21に示す。ここで、図20は、加工後の加工試料表面の斜視図を示し、図21は、加工後の加工試料の断面プロファイルを示す。これにより、加工試料表面に、約80nmの深さの溝を形成することができた。   As Example 6, a voltage of 2 V (−2 V) using the coin-shaped catalyst 16 as a cathode was applied between the processed sample 10 and the coin-shaped catalyst 16, and the other conditions were the same as in Example 2 except that SiC. The surface of the processed sample 10 made of was processed for 1 hour. The processing results at this time are shown in FIGS. Here, FIG. 20 shows a perspective view of the processed sample surface after processing, and FIG. 21 shows a cross-sectional profile of the processed sample after processing. As a result, a groove having a depth of about 80 nm could be formed on the surface of the processed sample.

実施例7として、加工試料10とコイン状触媒16との間に、コイン状触媒16を陰極とした3V(−3V)の電圧を印加し、その他の条件は実施例2と同様にして、SiCからなる加工試料10の表面を1時間に亘って加工した。この時の加工結果を図22及び図23に示す。ここで、図22は、加工後の加工試料表面の斜視図を示し、図23は、加工後の加工試料の断面プロファイルを示す。これにより、加工試料表面に、約100nmの深さの溝を形成することができた。   As Example 7, a voltage of 3 V (−3 V) using the coin-shaped catalyst 16 as a cathode was applied between the processed sample 10 and the coin-shaped catalyst 16, and the other conditions were the same as in Example 2 except that SiC. The surface of the processed sample 10 made of was processed for 1 hour. The processing results at this time are shown in FIGS. Here, FIG. 22 shows a perspective view of the processed sample surface after processing, and FIG. 23 shows a cross-sectional profile of the processed sample after processing. As a result, a groove having a depth of about 100 nm could be formed on the surface of the processed sample.

上記実施例2〜4と実施例5〜7とを比較すると、処理液としてフッ化水素酸を、触媒としてモリブデンをそれぞれ使用し、SiCを加工する場合には、触媒と被加工物との間に触媒を陽極とした印加することで、電圧を印加しない場合と比較して、SiCの加工速度を速めることができるが、触媒と被加工物との間に触媒を陰極とした電圧を印加すると、逆にSiCの加工速度が遅くなり、しかも印加する電圧を高めると、表面平形状が悪化することが判る。   When comparing Examples 2 to 4 and Examples 5 to 7, when hydrofluoric acid is used as the treatment liquid and molybdenum is used as the catalyst, and SiC is processed, the space between the catalyst and the workpiece is determined. By applying the catalyst to the anode as compared with the case where no voltage is applied, the processing speed of SiC can be increased, but if a voltage using the catalyst as the cathode is applied between the catalyst and the workpiece, On the contrary, it can be seen that when the SiC processing speed is reduced and the applied voltage is increased, the surface flatness deteriorates.

なお、上記の例では、処理液としてフッ化水素酸を、触媒としてモリブデンをそれぞれ使用し、触媒と被加工物との間に電圧を印加しながら被加工物の表面を加工するようにしている。このように、触媒と被加工物との間に電圧を印加しながら被加工物の表面を加工する場合には、触媒として、モリブデンの他に、白金、金、セラミックス系固体触媒またはモリブデン合金を使用しても良い。これによっても、図7(b)に示すのと同様に、白金や金等からなる触媒の表面(被加工物との対向面)を活性領域となし、触媒表面でのハロゲンラジカルの解離反応を促進させ、多量のハロゲンラジカルを生成させて、加工速度と向上させることができる。   In the above example, hydrofluoric acid is used as the treatment liquid and molybdenum is used as the catalyst, and the surface of the workpiece is processed while applying a voltage between the catalyst and the workpiece. . Thus, when processing the surface of a workpiece while applying a voltage between the catalyst and the workpiece, platinum, gold, a ceramic solid catalyst or a molybdenum alloy is used as a catalyst in addition to molybdenum. May be used. Also in this manner, as shown in FIG. 7B, the surface of the catalyst made of platinum, gold, or the like (the surface facing the workpiece) is used as an active region, and the halogen radical dissociation reaction on the catalyst surface is performed. It can be promoted and a large amount of halogen radicals can be generated to improve the processing speed.

例えば、SiCやGaN等のワイドバンドギャップ材料は、化学的に非常に安定であり、このため、モリブデン触媒作用による解離吸着で生成したハロゲン原子が反応しても、十分な反応速度を得ることが難しい。そこで、反応時に被加工物表面(被加工面)に光を照射して被加工面を活性にすることで加工速度を高めることができる。この時に照射する光の波長は、被加工物のバンドギャップに相当する波長以下、例えば4H−SiCのバンドギャップは3.26eVであるので、SiCを加工する場合には383nm以下、GaNのバンドギャップは3.42eVであるので、GaNを加工する場合には365nm以下であることが好ましい。   For example, wide band gap materials such as SiC and GaN are chemically very stable, so that even when halogen atoms generated by dissociative adsorption by molybdenum catalysis react, a sufficient reaction rate can be obtained. difficult. Therefore, the processing speed can be increased by irradiating the workpiece surface (work surface) with light during the reaction to activate the work surface. The wavelength of the light irradiated at this time is equal to or less than the wavelength corresponding to the band gap of the workpiece, for example, the band gap of 4H-SiC is 3.26 eV. Therefore, when processing SiC, the band gap of GaN is 383 nm or less. Is 3.42 eV, and when processing GaN, it is preferably 365 nm or less.

図24は、処理液としてフッ化水素酸(HF水溶液)を、触媒1としてモリブデン(Mo)をそれぞれ使用して、被加工物2の表面(被加工面)に光を照射して被加工物2の表面を加工するようにした加工法の概念図を示す。図24に示すように、触媒1の上方には光源50が、触媒1と光源50との間に励起光透過窓52がそれぞれ設けられ、触媒1の内部には、上下に貫通して光を通過させる多数の光通過孔1bが設けられている。その他は、図1に示すものと同様である。このように、触媒1と光源50との間に、光源1からの光を透過する励起光透過窓52を入れることで、光源1がフッ化水素(HF)等が溶けた処理液により腐食されるのを防ぐことができる。この励起光透過窓52に用いる材質は、CaF等のフッ化物ガラスであることが好ましい。 In FIG. 24, hydrofluoric acid (HF aqueous solution) is used as the treatment liquid, and molybdenum (Mo) is used as the catalyst 1, and the surface (working surface) of the work piece 2 is irradiated with light to process the work piece. The conceptual diagram of the processing method which processed the surface of 2 is shown. As shown in FIG. 24, a light source 50 is provided above the catalyst 1, and an excitation light transmission window 52 is provided between the catalyst 1 and the light source 50, and light passes through the catalyst 1 vertically. A number of light passage holes 1b are provided. Others are the same as those shown in FIG. Thus, by inserting the excitation light transmission window 52 that transmits light from the light source 1 between the catalyst 1 and the light source 50, the light source 1 is corroded by the treatment liquid in which hydrogen fluoride (HF) or the like is dissolved. Can be prevented. The material used for the excitation light transmitting window 52 is preferably a fluoride glass such as CaF 2 .

この場合にあっても、図24(a)に示すように、フッ化水素(HF)が溶けた処理液中に触媒1と被加工物2を配置すると、触媒1の表面でHFが解離されてH原子7とハロゲンラジカル(Fラジカル)8が生成される。そして、被加工物2の表面(被加工面)に、例えば被加工物2のバンドギャップに相当する波長以下の光を光源50から照射して、被加工物2の表面(被加工面)を励起部分2aとなして活性化させる。この状態で、図24(b)に示すように、触媒1を被加工物2の被加工面に接触または極接近させると、接触部分の被加工面表面原子が化学反応により処理液中に溶解される。この時、被加工面は、光で励起された励起部分2aとなっており、活性にしてあるので、加工速度が高くなる。そして、図24(c)に示すように、触媒1を被加工物2の被加工面から離すと、触媒表面で生成されるラジカルが被加工物表面に作用しなくなる為に溶解反応が止まり、更に、光の照射を停止すると、被加工物2の表面は活性部分ではなくなる。従って、触媒1が接触または極接近している間だけ、被加工物2の被加工面が加工される。   Even in this case, as shown in FIG. 24A, when the catalyst 1 and the workpiece 2 are arranged in the treatment liquid in which hydrogen fluoride (HF) is dissolved, HF is dissociated on the surface of the catalyst 1. Thus, H atoms 7 and halogen radicals (F radicals) 8 are generated. Then, the surface (working surface) of the workpiece 2 is irradiated with light having a wavelength equal to or less than the wavelength corresponding to the band gap of the workpiece 2 from the light source 50, for example, and the surface (working surface) of the workpiece 2 is irradiated. The excited portion 2a is activated. In this state, as shown in FIG. 24 (b), when the catalyst 1 is brought into contact with or very close to the work surface of the work piece 2, the surface atoms of the work surface at the contact portion are dissolved in the processing liquid by a chemical reaction. Is done. At this time, the surface to be processed is an excited portion 2a excited by light and is activated, so that the processing speed is increased. Then, as shown in FIG. 24 (c), when the catalyst 1 is separated from the workpiece surface of the workpiece 2, the radical reaction generated on the catalyst surface does not act on the workpiece surface, so that the dissolution reaction stops, Further, when the light irradiation is stopped, the surface of the workpiece 2 is not an active part. Therefore, the work surface of the work piece 2 is processed only while the catalyst 1 is in contact or in close proximity.

なお、上記の例では、処理液としてフッ化水素酸を、触媒としてモリブデンをそれぞれ使用し、被加工物の表面に(被加工面)に光を照射しながら被加工物の表面を加工するようにしている。このように、被加工物の表面に(被加工面)に光を照射しながら被加工物の表面を加工する場合には、触媒として、モリブデンの他に、白金、金、セラミックス系固体触媒またはモリブデン合金を使用しても良い。これによっても、図24(a)に示すのと同様に、被加工面を光で励起された励起部分となして活性にして、加工速度と向上させることができる。   In the above example, hydrofluoric acid is used as the treatment liquid and molybdenum is used as the catalyst, and the surface of the workpiece is processed while irradiating light on the surface of the workpiece (processing surface). I have to. Thus, when processing the surface of the workpiece while irradiating light on the surface of the workpiece (processing surface), in addition to molybdenum, platinum, gold, a ceramic solid catalyst or A molybdenum alloy may be used. Also by this, as shown in FIG. 24 (a), the processing surface can be activated by being an excited portion excited by light, and the processing speed can be improved.

なお、アレニウスの式で知られるように、化学反応は反応温度が高くなれば、それだけ反応速度は大きくなる。本加工法は、化学反応に基づいている。したがって、被加工物の温度、処理液の温度及び触媒の温度の少なくとも1つを制御して、化学反応が生じるときの温度を制御することで、加工速度を制御することができる。   As is known from the Arrhenius equation, the reaction rate of a chemical reaction increases as the reaction temperature increases. This processing method is based on chemical reactions. Therefore, the processing speed can be controlled by controlling at least one of the temperature of the workpiece, the temperature of the treatment liquid, and the temperature of the catalyst to control the temperature at which the chemical reaction occurs.

本発明の実施の形態のポリッシング装置に適用した触媒支援型化学加工装置の簡略斜視図を図25に示す。このポリッシング装置(触媒支援型化学加工装置)20は、内部を処理液22で満たす容器24と、容器24内に回転自在に配置された、モリブデンまたはモリブデン合金からなる触媒定盤26と、表面(被加工面)を下向きにして被加工物28を着脱自在に保持するホルダー30を有している。ホルダー30は、加工性、対薬品性及び温度に対する耐性に優れた、例えばSiCによって構成されているが、硬質塩化ビニルまたはPEEK材で構成してもよく、触媒定盤26の回転軸芯と平行且つ偏心した位置に設けた上下動自在な回転軸32の先端に連結されている。ホルダー30は、回転軸32に対してピボット支持(ボール軸受け支持)されているので、触媒定盤26の表面に、ホルダー30の被加工物保持面が追従することができ、被加工物28が触媒定盤26に面接触できるようになっている。   FIG. 25 shows a simplified perspective view of a catalyst-assisted chemical processing apparatus applied to the polishing apparatus according to the embodiment of the present invention. The polishing apparatus (catalyst-assisted chemical processing apparatus) 20 includes a container 24 filled with a treatment liquid 22, a catalyst surface plate 26 made of molybdenum or a molybdenum alloy and rotatably disposed in the container 24. A holder 30 is provided for holding the workpiece 28 in a detachable manner with the workpiece surface facing downward. The holder 30 is made of, for example, SiC excellent in processability, chemical resistance and temperature resistance, but may be made of hard vinyl chloride or PEEK material, and is parallel to the rotational axis of the catalyst surface plate 26. And it is connected with the front-end | tip of the rotating shaft 32 which can be moved up and down provided in the eccentric position. Since the holder 30 is pivotally supported (ball bearing supported) with respect to the rotating shaft 32, the workpiece holding surface of the holder 30 can follow the surface of the catalyst surface plate 26, and the workpiece 28 is The catalyst surface plate 26 can be brought into surface contact.

これにより、容器24内を処理液で満たし、ホルダー30で保持した被加工物28を触媒定盤26に所定の圧力で押付けながら、触媒定盤26及び被加工物28を回転させて、被加工物28の表面(下面)を平坦に加工する。なお、触媒定盤26の表面に、適宜編目状、同心円状、またはスパイラル状の溝構造を設けることにより、該触媒定盤26の回転に伴って、加工領域に新鮮な処理液を供給することが可能となる。   Accordingly, the catalyst platen 26 and the workpiece 28 are rotated while the vessel 24 is filled with the processing liquid and the workpiece 28 held by the holder 30 is pressed against the catalyst platen 26 with a predetermined pressure. The surface (lower surface) of the object 28 is processed to be flat. In addition, the surface of the catalyst surface plate 26 is appropriately provided with a knitted, concentric, or spiral groove structure so that fresh processing liquid is supplied to the processing region as the catalyst surface plate 26 rotates. Is possible.

なお、処理液で満たされた容器24内に触媒定盤26と被加工物28が配置された浸漬型の形態に限らず、触媒定盤26の上方に配置したノズル(図示せず)から触媒定盤26と被加工物28の間に処理液を供給するようにしてもよい。処理液を循環利用する場合は、スラッジを除去するために、精製して再利用するのが好ましい。また、図25とは、上下を逆にした形態でもよい。その場合には、被加工物をその被加工面を上向きにして配置し、それに対向するように上方に配置された触媒定盤を、被加工物に軽く接触または微小間隔を設けて近づけてもよい。   In addition, the catalyst platen 26 and the workpiece 28 are not limited to the immersion type in which the catalyst platen 26 and the workpiece 28 are arranged in the container 24 filled with the treatment liquid, and the catalyst is supplied from a nozzle (not shown) arranged above the catalyst platen 26. A processing liquid may be supplied between the surface plate 26 and the workpiece 28. When the treatment liquid is recycled, it is preferably purified and reused in order to remove sludge. Moreover, the form which turned upside down with FIG. 25 may be sufficient. In that case, the work surface is arranged with the work surface facing upward, and the catalyst surface plate placed above the work surface may be brought close to the work piece with light contact or with a small interval. Good.

そして、触媒定盤26の材料として、モリブデン(Mo)またはモリブデン化合物を、処理液22としてフッ化水素酸またはハロゲンを含む分子が溶けた溶液をそれぞれ使用して、SiCウェーハ等からなる被加工物28の表面を加工する。   Then, molybdenum (Mo) or a molybdenum compound is used as a material for the catalyst surface plate 26, and a solution in which molecules containing hydrofluoric acid or halogen are used as the treatment liquid 22, respectively, and a workpiece made of a SiC wafer or the like. 28 surfaces are processed.

(実施例8)
図25に示すポリッシング装置において、触媒定盤26の材料として純度99.95%のモリブデン(Mo)を、処理液22としてフッ化水素酸(50%HF)をそれぞれ使用し、フッ化水素酸中に浸漬させたSiCウェーハからなる加工試料の表面を、触媒定盤26及び加工試料を共に20rpmで回転させながら、2インチウェーハに対して5kgの加重を掛けて、18時間に亘って平坦に加工した。加工の前後で加工試料(SiCウェーハ)の重量を測定したところ、加工前2.4368gであった加工試料の重量が加工後に2.4357gに変化しており、加工量は0.0011gで、これはSiCの厚さ換算で1.8μmに相当する。
(Example 8)
In the polishing apparatus shown in FIG. 25, molybdenum (Mo) having a purity of 99.95% is used as the material of the catalyst surface plate 26, and hydrofluoric acid (50% HF) is used as the treatment liquid 22, respectively. The surface of a processed sample composed of a SiC wafer immersed in the substrate is processed flat for 18 hours by applying a load of 5 kg to a 2-inch wafer while rotating both the catalyst surface plate 26 and the processed sample at 20 rpm. did. When the weight of the processed sample (SiC wafer) was measured before and after processing, the weight of the processed sample, which was 2.4368 g before processing, changed to 2.4357 g after processing, and the processing amount was 0.0011 g. It corresponds to 1.8 μm in terms of thickness.

比較例2として、触媒定盤26の材料として純度99.98%のプラチナ(Pt)を使用し、その他の条件は実施例2と同じにして、SiCウェーハからなる加工試料の表面を18時間に亘って平坦に加工した。加工の前後で加工試料(SiCウェーハ)の重量を測定したところ、加工前2.4310gであった加工試料の重量が加工後に2.4308gに変化しており、加工量は0.0002gで、これはSiCの厚さ換算で0.3μmに相当する。   As Comparative Example 2, platinum (Pt) having a purity of 99.98% was used as the material of the catalyst surface plate 26, and the other conditions were the same as in Example 2, and the surface of the processed sample made of the SiC wafer was kept for 18 hours. It was processed to be flat. When the weight of the processed sample (SiC wafer) was measured before and after processing, the weight of the processed sample, which was 2.4310 g before processing, was changed to 2.4308 g after processing, and the processing amount was 0.0002 g. It corresponds to 0.3 μm in terms of thickness.

これにより、SiCの加工(研磨)に際し、触媒定盤26として、モリブデンを使用することで、プラチナを使用した場合と比較して、約6倍の加工速度が得られることが判る。これは、HFが解離してH原子とFラジカルが生成される反応が、プラチナよりもモリブデンからなる触媒定盤26の表面で起こり易くなるためであると考えられる。   Thus, it can be seen that, when processing (polishing) SiC, using molybdenum as the catalyst surface plate 26 provides a processing speed of about 6 times that when using platinum. This is thought to be because the reaction in which HF dissociates and H atoms and F radicals are generated is more likely to occur on the surface of the catalyst plate 26 made of molybdenum than platinum.

図26は、ポリッシング装置に適用した本発明の他の実施の形態の触媒支援型化学加工装置の簡略斜視図を示す。この図26に示すポリッシング装置(触媒支援型化学加工装置)20aの図25に示すポリッシング装置(触媒支援型化学加工装置)20と異なる点は、陽極と陰極とを反転可能な電源34を備え、この電源34の一方の極から延び、スイッチ36を介装した導線38aを触媒定盤26に、電源34の他方の極から延びる導線38bを被加工物28にそれぞれ接続するようにしている点である。この例にあっては、触媒定盤26として、モリブデンまたはモリブデン合金の他に、白金、金またはセラミックス系固体触媒を使用することができる。   FIG. 26 is a simplified perspective view of a catalyst-assisted chemical processing apparatus according to another embodiment of the present invention applied to a polishing apparatus. The polishing apparatus (catalyst assisted chemical processing apparatus) 20a shown in FIG. 26 differs from the polishing apparatus (catalyst assisted chemical processing apparatus) 20 shown in FIG. 25 in that it includes a power source 34 that can invert the anode and the cathode, A conductor 38a extending from one pole of the power supply 34 and having a switch 36 interposed therebetween is connected to the catalyst surface plate 26, and a conductor 38b extending from the other pole of the power supply 34 is connected to the workpiece 28. is there. In this example, platinum, gold, or a ceramic solid catalyst can be used as the catalyst surface plate 26 in addition to molybdenum or a molybdenum alloy.

なお、図24に概略的に示すように、触媒定盤26の内部に多数の光通過孔を設けるとともに、触媒定盤26の下方に光源を配置して、被加工物28の表面(被加工面)に、好ましくは被加工物28のバンドギャップに相当する波長以下の光を照射するようにしてもよい。この時、光源とフッ化水素(HF)等が溶けた処理液の間に、光源からの光を透過する励起光透過窓を入れることにより、光源がフッ化水素(HF)等が溶けた処理液により腐食されるのを防ぐことができる。励起光透過窓に用いる材質は、CaF等のフッ化物ガラスであることが好ましい。 As schematically shown in FIG. 24, a large number of light passage holes are provided inside the catalyst surface plate 26, and a light source is disposed below the catalyst surface plate 26, so that the surface of the workpiece 28 (the object to be processed). The surface) may be irradiated with light having a wavelength corresponding to the band gap of the workpiece 28 or less. At this time, an excitation light transmission window that transmits light from the light source is inserted between the light source and the treatment liquid in which hydrogen fluoride (HF) is dissolved, so that the light source is dissolved in hydrogen fluoride (HF) or the like. Corrosion by liquid can be prevented. The material used for the excitation light transmitting window is preferably a fluoride glass such as CaF 2 .

この例にあっては、容器24内を処理液で満たし、ホルダー30で保持した被加工物28を触媒定盤26に所定の圧力で押付けながら、触媒定盤26及び被加工物28を回転させて、被加工物28の表面(下面)を平坦に加工する。この時、必要に応じて、触媒定盤26と被加工物28との間に、例えば触媒定盤26を陽極とした所定の電圧を印加する。また、光源を備えた場合には、必要に応じて、被加工物28の表面(被加工面)に、所定の周波数の光を照射する。   In this example, the catalyst platen 26 and the workpiece 28 are rotated while the workpiece 24 is filled with the processing liquid and the workpiece 28 held by the holder 30 is pressed against the catalyst platen 26 with a predetermined pressure. Thus, the surface (lower surface) of the workpiece 28 is processed to be flat. At this time, a predetermined voltage using, for example, the catalyst platen 26 as an anode is applied between the catalyst platen 26 and the workpiece 28 as necessary. Moreover, when a light source is provided, the light of a predetermined frequency is irradiated to the surface (processed surface) of the workpiece 28 as needed.

図27は、ポリッシング装置に適用した本発明の他の実施の形態の触媒支援型化学加工装置の簡略斜視図を示す。この図27に示すポリッシング装置(触媒支援型化学加工装置)20bの図25に示すポリッシング装置(触媒支援型化学加工装置)20と異なる点は、以下の通りである。すなわち、ホルダー30の内部には、該ホルダー30で保持した被加工物28の温度を制御する温度制御機構としてのヒータ70が回転軸32に延びて埋設されている。容器24の上方には、熱交換器72によって所定の温度に制御した処理液を容器24の内部に供給する温度制御機構としての処理液供給ノズル74が配置されている。更に、触媒定盤26の内部には、該触媒定盤26の温度を制御する温度制御機構としての流体流路76が設けられている。   FIG. 27 shows a simplified perspective view of a catalyst-assisted chemical processing apparatus according to another embodiment of the present invention applied to a polishing apparatus. The polishing apparatus (catalyst-assisted chemical processing apparatus) 20b shown in FIG. 27 is different from the polishing apparatus (catalyst-assisted chemical processing apparatus) 20 shown in FIG. 25 as follows. That is, a heater 70 as a temperature control mechanism for controlling the temperature of the workpiece 28 held by the holder 30 is embedded in the holder 30 so as to extend to the rotary shaft 32. Above the container 24, a processing liquid supply nozzle 74 is disposed as a temperature control mechanism for supplying the processing liquid controlled to a predetermined temperature by the heat exchanger 72 into the container 24. Furthermore, a fluid flow path 76 as a temperature control mechanism for controlling the temperature of the catalyst surface plate 26 is provided inside the catalyst surface plate 26.

なお、この例では、被加工物28の温度を制御する温度制御機構としてのヒータ70、処理液の温度を制御する温度制御機構としての処理液供給ノズル74、及び触媒定盤26の温度を制御する温度制御機構としての流体流路76を設けた例を示しているが、いずれか1つを設けるようにしてもよい。また、この例にあっては、図26に示す例と同様に、触媒定盤26として、モリブデンまたはモリブデン合金の他に、白金、金またはセラミックス系固体触媒を使用することができる。   In this example, the heater 70 as a temperature control mechanism for controlling the temperature of the workpiece 28, the treatment liquid supply nozzle 74 as a temperature control mechanism for controlling the temperature of the treatment liquid, and the temperature of the catalyst surface plate 26 are controlled. Although an example in which the fluid flow path 76 is provided as a temperature control mechanism is shown, any one may be provided. In this example, as in the example shown in FIG. 26, platinum, gold, or a ceramic solid catalyst can be used as the catalyst platen 26 in addition to molybdenum or a molybdenum alloy.

アレニウスの式で知られるように、化学反応は反応温度が高ければ、それだけ反応速度は大きくなる。この例によれば、被加工物28、処理液及び触媒定盤26の温度の少なくとも1つの制御して、反応温度を制御することで、加工速度を変化させることができる。   As is known from the Arrhenius equation, the higher the reaction temperature, the higher the chemical reaction. According to this example, the processing speed can be changed by controlling the reaction temperature by controlling at least one of the temperatures of the workpiece 28, the treatment liquid, and the catalyst surface plate 26.

本発明は、上記実施例で例示した一軸加工や平面加工に限らず、三次元形状の試料に対して、球状または円筒状に構成された触媒を接触させて所望の形状に加工するなど、各種の除去加工に応用できる。また、上述した電圧印加、光照射、温度制御はこれらを単独でも、また適宜組み合わせて加工を促進させるようにしてもよい。   The present invention is not limited to the uniaxial processing and planar processing exemplified in the above embodiment, and various types of processing such as processing to a desired shape by bringing a spherical or cylindrical catalyst into contact with a three-dimensional sample. It can be applied to the removal process. Further, the above-described voltage application, light irradiation, and temperature control may be performed alone or in an appropriate combination to promote processing.

本発明の触媒支援型化学加工方法の加工概念図を示し、(a)はハロゲンを含む分子が溶けた処理液中に配置されたモリブデン触媒表面上で、該ハロゲンを含む分子が解離し反応種であるハロゲンラジカルが生成される概念を、(b)は(a)に示すモリブデン触媒と被加工物の加工表面を接触又は極接近させることで、触媒表面で生成された反応種と被加工物表面原子の化学反応により被加工物表面原子が処理液中に溶解して加工が進行する概念を、(c)は(b)に示すモリブデン触媒と被加工物の加工表面が離れる為に、加工反応が止まる様子をそれぞれ示している。The processing conceptual diagram of the catalyst-assisted chemical processing method of the present invention is shown, wherein (a) is a reaction species in which the halogen-containing molecules are dissociated on the molybdenum catalyst surface disposed in the treatment liquid in which the halogen-containing molecules are dissolved. (B) is a concept in which the molybdenum catalyst shown in (a) is brought into contact with or in close proximity to the work surface of the work piece, and the reaction species produced on the catalyst surface and the work piece. The concept that the workpiece surface atoms are dissolved in the processing liquid by the chemical reaction of the surface atoms and the processing proceeds, (c) is because the molybdenum catalyst shown in (b) is separated from the processing surface of the workpiece. Each shows how the reaction stops. 図1に示す方法を実施する基礎実験用加工装置の概念を示す斜視図である。It is a perspective view which shows the concept of the processing apparatus for basic experiments which implements the method shown in FIG. 実施例1における加工後の加工試料表面を示す斜視図である。2 is a perspective view showing a processed sample surface after processing in Example 1. FIG. 実施例1における加工後の加工試料の断面プロファイルである。2 is a cross-sectional profile of a processed sample after processing in Example 1. 比較例1における加工後の加工試料表面を示す斜視図である。6 is a perspective view showing a processed sample surface after processing in Comparative Example 1. FIG. 比較例1における加工後の加工試料の断面プロファイルである。3 is a cross-sectional profile of a processed sample after processing in Comparative Example 1. 本発明の他の触媒支援型化学加工方法の加工概念図を示し、(a)は図1(a)相当図を、(b)は触媒と被加工物との間に電圧を印加した時の概念を、(c)は図1(b)相当図を、(d)は図1(c)相当図を示す。The processing conceptual diagram of the other catalyst assistance type chemical processing method of this invention is shown, (a) is a figure equivalent to Fig.1 (a), (b) is when a voltage is applied between a catalyst and a to-be-processed object. (C) is a diagram corresponding to FIG. 1 (b), and (d) is a diagram corresponding to FIG. 1 (c). 図7に示す方法を実施する基礎実験用加工装置の概念を示す斜視図である。It is a perspective view which shows the concept of the processing apparatus for basic experiments which implements the method shown in FIG. 実施例2における加工後の加工試料表面を示す斜視図である。6 is a perspective view showing a processed sample surface after processing in Example 2. FIG. 実施例2における加工後の加工試料の断面プロファイルである。3 is a cross-sectional profile of a processed sample after processing in Example 2. 加工前の加工試料表面を示す斜視図である。It is a perspective view which shows the process sample surface before a process. (a)は加工試料とコイン状触媒との間に電圧を印加することなく加工試料(GaN)の加工を行った時の加工試料表面を示す斜視図で、(b)は(a)の部分拡大図である。(A) is a perspective view which shows the processed sample surface when processing a processed sample (GaN) without applying a voltage between a processed sample and a coin-shaped catalyst, (b) is the part of (a) It is an enlarged view. 加工試料とコイン状触媒との間に電圧を印加することなく加工試料(SiC)の加工を行った時の加工試料の断面プロファイルである。It is a cross-sectional profile of a processed sample when the processed sample (SiC) is processed without applying a voltage between the processed sample and the coin-shaped catalyst. 実施例3における加工後の加工試料表面を示す斜視図である。6 is a perspective view showing a processed sample surface after processing in Example 3. FIG. 実施例3における加工後の加工試料の断面プロファイルである。6 is a cross-sectional profile of a processed sample after processing in Example 3. 実施例4における加工後の加工試料表面を示す斜視図である。It is a perspective view which shows the process sample surface after the process in Example 4. FIG. 実施例4における加工後の加工試料の断面プロファイルである。6 is a cross-sectional profile of a processed sample after processing in Example 4. 実施例5における加工後の加工試料表面を示す斜視図である。FIG. 10 is a perspective view showing a processed sample surface after processing in Example 5. 実施例5における加工後の加工試料の断面プロファイルである。7 is a cross-sectional profile of a processed sample after processing in Example 5. 実施例6における加工後の加工試料表面を示す斜視図である。It is a perspective view which shows the process sample surface after the process in Example 6. FIG. 実施例6における加工後の加工試料の断面プロファイルである。10 is a cross-sectional profile of a processed sample after processing in Example 6. 実施例7における加工後の加工試料表面を示す斜視図である。It is a perspective view which shows the process sample surface after the process in Example 7. FIG. 実施例7における加工後の加工試料の断面プロファイルである。10 is a cross-sectional profile of a processed sample after processing in Example 7. 本発明の更に他の触媒支援型化学加工方法の加工概念図を示し、(a)は被加工物の被加工面に光を照射している概念を(b)は触媒と被加工物の加工表面を接触又は極接近させることで、触媒表面で生成された反応種と被加工物表面原子の化学反応により被加工物表面原子が処理液中に溶解して加工が進行する概念を、(c)は触媒と被加工物の加工表面が離れる為に、加工反応が止まる様子をそれぞれ示している。The processing conceptual diagram of the further another catalyst assisted chemical processing method of this invention is shown, (a) is the concept which irradiates light to the to-be-processed surface of a workpiece, (b) is processing of a catalyst and a to-be-processed object. The concept that the workpiece surface atoms are dissolved in the processing liquid by the chemical reaction between the reactive species generated on the catalyst surface and the workpiece surface atoms by bringing the surface into contact or in close proximity, and the processing proceeds (c ) Shows how the processing reaction stops due to the separation of the catalyst and the processed surface of the workpiece. 本発明の実施の形態のポリッシング装置に適用した触媒支援型化学加工装置の概要を示す斜視図である。It is a perspective view which shows the outline | summary of the catalyst assistance type chemical processing apparatus applied to the polishing apparatus of embodiment of this invention. 本発明の他の実施の形態のポリッシング装置に適用した触媒支援型化学加工装置の概要を示す斜視図である。It is a perspective view which shows the outline | summary of the catalyst assistance type chemical processing apparatus applied to the polishing apparatus of other embodiment of this invention. 本発明の更に他の実施の形態のポリッシング装置に適用した触媒支援型化学加工装置の概要を示す斜視図である。It is a perspective view which shows the outline | summary of the catalyst assistance type chemical processing apparatus applied to the polishing apparatus of further another embodiment of this invention.

符号の説明Explanation of symbols

1 触媒
2 被加工物
6 フッ化水素(HF)
7 H原子
8 Fラジカル
10 加工試料
12 薬液槽
14 駆動機構
16 コイン状触媒
18,34,40 電源
20,20a,20b ポリッシング装置(触媒支援型化学加工装置)
22 処理液
24 容器
26 触媒定盤
28 被加工物
30 ホルダー
32 回転軸
50 光源
70 ヒータ(温度制御機構)
74 処理液供給ノズル(温度制御機構)
76 流体流路(温度制御機構)
1 Catalyst 2 Workpiece 6 Hydrogen fluoride (HF)
7 H atom 8 F radical 10 Processing sample 12 Chemical solution tank 14 Drive mechanism 16 Coin-shaped catalyst 18, 34, 40 Power source 20, 20a, 20b Polishing device (catalyst-assisted chemical processing device)
22 Processing liquid 24 Container 26 Catalyst surface plate 28 Workpiece 30 Holder 32 Rotating shaft 50 Light source 70 Heater (temperature control mechanism)
74 Treatment liquid supply nozzle (temperature control mechanism)
76 Fluid flow path (temperature control mechanism)

Claims (7)

ハロゲンを含む分子が溶けた処理液中に被加工物を配し、モリブデンまたはモリブデン化合物からなる触媒を被加工物の被加工面に接触または極近接させながら該触媒と被加工物とを相対移動させて被加工物の被加工面を加工することを特徴とする触媒支援型化学加工方法。   The workpiece is placed in a treatment solution in which molecules containing halogen are dissolved, and the catalyst and the workpiece are moved relative to each other while the catalyst made of molybdenum or a molybdenum compound is in contact with or in close proximity to the workpiece surface. A catalyst-assisted chemical processing method characterized by processing a processed surface of a workpiece. 前記処理液は、フッ化水素酸である請求項1記載の触媒支援型化学加工方法。   The catalyst-assisted chemical processing method according to claim 1, wherein the treatment liquid is hydrofluoric acid. 前記被加工物が、Si、SiC、GaN、サファイヤ、ルビー及びダイヤモンドの内から選ばれた1種である請求項1または2記載の触媒支援型化学加工方法。   The catalyst-assisted chemical processing method according to claim 1 or 2, wherein the workpiece is one selected from Si, SiC, GaN, sapphire, ruby and diamond. 前記触媒を表面に有する平坦な定盤の該表面に、前記処理液の存在の下で、ホルダーで保持した被加工物の被加工面を接触させながら、前記定盤と前記被加工物とを相対的に移動させて被加工物の被加工面を平坦に加工することを特徴とする請求項1乃至3のいずれかに記載の触媒支援型化学加工方法。   The surface plate and the work piece are brought into contact with the work surface of the work piece held by a holder in the presence of the processing liquid on the surface of the flat surface plate having the catalyst on the surface. The catalyst-assisted chemical processing method according to any one of claims 1 to 3, wherein the processing surface of the workpiece is processed flat by being moved relatively. ハロゲンを含む分子が溶けた処理液中に該被加工物を配し、白金、金、セラミックス系固体触媒、モリブデン、又はモリブデン化合物からなる触媒を被加工物の加工面に接触若しくは極接近させて配し、被加工物を加工する触媒支援型化学加工方法であって、
前記加工中に被加工物の被加工面と前記触媒の間に電圧を印加する電圧印加工程、前記加工中または加工前に被加工物の被加工面に光を照射する光照射工程、前記加工中における該被加工物の温度を制御する被加工物温度制御工程、前記処理液の温度を制御する処理液温度制御工程、及び前記触媒の温度を制御する触媒温度制御工程のうちの1種又は2種以上を組み合わせて適用し、被加工物を加工することを特徴とする触媒支援型化学加工方法。
The workpiece is placed in a treatment solution in which molecules containing halogen are dissolved, and a catalyst made of platinum, gold, a ceramic-based solid catalyst, molybdenum, or a molybdenum compound is brought into contact with or in close proximity to the machining surface of the workpiece. A catalyst-assisted chemical processing method for processing a workpiece,
A voltage applying step of applying a voltage between the workpiece surface of the workpiece and the catalyst during the machining, a light irradiation step of irradiating the workpiece surface of the workpiece during or before the machining, the machining One of a workpiece temperature control step for controlling the temperature of the workpiece in the inside, a treatment liquid temperature control step for controlling the temperature of the treatment liquid, and a catalyst temperature control step for controlling the temperature of the catalyst or A catalyst-assisted chemical processing method characterized by processing a workpiece by applying two or more types in combination.
表面にモリブデンまたはモリブデン化合物からなる触媒を有する定盤と、
被加工物を保持し該被加工物の被加工面を前記定盤に接触させるホルダーと、
前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物との間にハロゲンを含む分子が溶けた処理液を供給する処理液供給部と、
前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物とを相対移動させる駆動部を有することを特徴とする触媒支援型化学加工装置。
A surface plate having a catalyst made of molybdenum or a molybdenum compound on the surface;
A holder for holding a workpiece and contacting the surface of the workpiece with the surface plate;
A treatment liquid supply unit for supplying a treatment liquid in which molecules containing halogen are dissolved between the surface plate and a workpiece held by the holder and brought into contact with the surface plate;
A catalyst-assisted chemical processing apparatus, comprising: a drive unit configured to relatively move the surface plate and a workpiece held by the holder and brought into contact with the surface plate.
表面に、白金、金、セラミックス系固体触媒、モリブデン、又はモリブデン化合物からなる触媒を有する定盤と、
被加工物を保持し該被加工物の被加工面を前記定盤に接触させるホルダーと、
前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物との間にハロゲンを含む分子が溶けた処理液を供給する処理液供給部と、
前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物とを相対移動させる駆動部と、
被加工物の被加工面と前記触媒の間に電圧を印加する電源、被加工物の被加工面に光を照射する光源、前記加工中における該被加工物の温度を制御する被加工物温度制御機構、前記処理液の温度を制御する処理液温度制御機構、及び前記触媒の温度を制御する触媒温度制御機構のうちの1種又は2種以上を有することを特徴とする触媒支援型化学加工装置。
A surface plate having a catalyst made of platinum, gold, a ceramic solid catalyst, molybdenum, or a molybdenum compound on the surface;
A holder for holding a workpiece and contacting the surface of the workpiece with the surface plate;
A treatment liquid supply unit for supplying a treatment liquid in which molecules containing halogen are dissolved between the surface plate and a workpiece held by the holder and brought into contact with the surface plate;
A drive unit for relatively moving the surface plate and the work piece held by the holder and brought into contact with the surface plate;
A power source for applying a voltage between the workpiece surface of the workpiece and the catalyst, a light source for irradiating light on the workpiece surface of the workpiece, and a workpiece temperature for controlling the temperature of the workpiece during the machining A catalyst-assisted chemical processing comprising a control mechanism, a treatment liquid temperature control mechanism for controlling the temperature of the treatment liquid, and a catalyst temperature control mechanism for controlling the temperature of the catalyst. apparatus.
JP2006328331A 2006-08-28 2006-12-05 Catalyst-aided chemical processing method and apparatus Pending JP2008081389A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006328331A JP2008081389A (en) 2006-08-28 2006-12-05 Catalyst-aided chemical processing method and apparatus
US11/892,780 US7651625B2 (en) 2006-08-28 2007-08-27 Catalyst-aided chemical processing method and apparatus
EP20110006032 EP2381008A2 (en) 2006-08-28 2007-08-27 Catalyst-aided chemical processing method and apparatus
EP20070016757 EP1894900A3 (en) 2006-08-28 2007-08-27 Catalyst-aided chemical processing method and apparatus
US12/636,069 US20100147463A1 (en) 2006-08-28 2009-12-11 Catalyst-aided chemical processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006231095 2006-08-28
JP2006328331A JP2008081389A (en) 2006-08-28 2006-12-05 Catalyst-aided chemical processing method and apparatus

Publications (1)

Publication Number Publication Date
JP2008081389A true JP2008081389A (en) 2008-04-10

Family

ID=39352599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006328331A Pending JP2008081389A (en) 2006-08-28 2006-12-05 Catalyst-aided chemical processing method and apparatus

Country Status (1)

Country Link
JP (1) JP2008081389A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110463A1 (en) 2009-03-27 2010-09-30 Osaka University POLISHING METHOD, POLISHING APPARATUS AND GaN WAFER
JP2012064972A (en) * 2007-10-15 2012-03-29 Ebara Corp Flattening method
WO2014112409A1 (en) * 2013-01-18 2014-07-24 Hoya株式会社 Method for manufacturing mask blank substrate, method for manufacturing mask blank and method for manufacturing transfer mask
WO2014126174A1 (en) * 2013-02-13 2014-08-21 昭和電工株式会社 SURFACE-PROCESSING METHOD FOR MONOCRYSTALLINE SiC SUBSTRATES, MANUFACTURING METHOD THEREFOR, AND GRINDING PLATE FOR SURFACE-PROCESSING OF MONOCRYSTALLINE SiC SUBSTRATES
JP2014233826A (en) * 2013-06-05 2014-12-15 キヤノン株式会社 Manufacturing method of component and processing device
JP2014235406A (en) * 2013-06-05 2014-12-15 キヤノン株式会社 Manufacturing method and processing device of component
US8936729B2 (en) 2011-12-20 2015-01-20 Kabushiki Kaisha Toshiba Planarizing method
WO2015008572A1 (en) 2013-07-19 2015-01-22 国立大学法人名古屋工業大学 Metallic polishing pad and production method therefor
US9144879B2 (en) 2013-02-05 2015-09-29 Kabushiki Kaisha Toshiba Planarization method and planarization apparatus
JP2015173216A (en) * 2014-03-12 2015-10-01 国立大学法人大阪大学 Processing method and apparatus for wide bandgap semiconductor substrate
JP2015231939A (en) * 2011-12-06 2015-12-24 国立大学法人大阪大学 Method for working glass material and device therefor
US10199242B2 (en) 2014-12-31 2019-02-05 Osaka University Planarizing processing method and planarizing processing device
US10770301B2 (en) 2016-03-11 2020-09-08 Toho Engineering Co., Ltd. Planarization processing device
US10879087B2 (en) 2017-03-17 2020-12-29 Toshiba Memory Corporation Substrate treatment apparatus and manufacturing method of semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184917A (en) * 1992-01-09 1993-07-27 Yuuha Mikakutou Seimitsu Kogaku Kenkyusho:Kk Method for producing fine powder and apparatus therefor
JP2006114632A (en) * 2004-10-13 2006-04-27 Kazuto Yamauchi Catalyst-assisted chemical processing method
JP2006121111A (en) * 1999-11-16 2006-05-11 Denso Corp Mechanochemical polishing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184917A (en) * 1992-01-09 1993-07-27 Yuuha Mikakutou Seimitsu Kogaku Kenkyusho:Kk Method for producing fine powder and apparatus therefor
JP2006121111A (en) * 1999-11-16 2006-05-11 Denso Corp Mechanochemical polishing apparatus
JP2006114632A (en) * 2004-10-13 2006-04-27 Kazuto Yamauchi Catalyst-assisted chemical processing method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064972A (en) * 2007-10-15 2012-03-29 Ebara Corp Flattening method
JP2010251699A (en) * 2009-03-27 2010-11-04 Osaka Univ Polishing method and polishing apparatus
EP2412009A1 (en) * 2009-03-27 2012-02-01 Osaka University POLISHING METHOD, POLISHING APPARATUS AND GaN WAFER
EP2412009A4 (en) * 2009-03-27 2013-07-17 Univ Osaka POLISHING METHOD, POLISHING APPARATUS AND GaN WAFER
US9233449B2 (en) 2009-03-27 2016-01-12 Osaka University Polishing method, polishing apparatus and GaN wafer
WO2010110463A1 (en) 2009-03-27 2010-09-30 Osaka University POLISHING METHOD, POLISHING APPARATUS AND GaN WAFER
JP2015231939A (en) * 2011-12-06 2015-12-24 国立大学法人大阪大学 Method for working glass material and device therefor
US8936729B2 (en) 2011-12-20 2015-01-20 Kabushiki Kaisha Toshiba Planarizing method
US10310373B2 (en) 2013-01-18 2019-06-04 Hoya Corporation Method for manufacturing mask blank substrate, method for manufacturing mask blank and method for manufacturing transfer mask
JPWO2014112409A1 (en) * 2013-01-18 2017-01-19 Hoya株式会社 Mask blank substrate manufacturing method, mask blank manufacturing method, and transfer mask manufacturing method
JP5882504B2 (en) * 2013-01-18 2016-03-09 Hoya株式会社 Mask blank substrate manufacturing method, mask blank manufacturing method, and transfer mask manufacturing method
WO2014112409A1 (en) * 2013-01-18 2014-07-24 Hoya株式会社 Method for manufacturing mask blank substrate, method for manufacturing mask blank and method for manufacturing transfer mask
US10283383B2 (en) 2013-02-05 2019-05-07 Toshiba Memory Corporation Planarization method and planarization apparatus
US9144879B2 (en) 2013-02-05 2015-09-29 Kabushiki Kaisha Toshiba Planarization method and planarization apparatus
JP2014151425A (en) * 2013-02-13 2014-08-25 Showa Denko Kk SURFACE PROCESSING METHOD OF SINGLE CRYSTAL SiC SUBSTRATE, ITS MANUFACTURING METHOD AND GRINDING PLATE FOR SURFACE PROCESSING OF SINGLE CRYSTAL SiC SUBSTRATE
WO2014126174A1 (en) * 2013-02-13 2014-08-21 昭和電工株式会社 SURFACE-PROCESSING METHOD FOR MONOCRYSTALLINE SiC SUBSTRATES, MANUFACTURING METHOD THEREFOR, AND GRINDING PLATE FOR SURFACE-PROCESSING OF MONOCRYSTALLINE SiC SUBSTRATES
US10453693B2 (en) 2013-02-13 2019-10-22 Showa Denko K.K. Surface machining method for single crystal SiC substrate, manufacturing method thereof, and grinding plate for surface machining single crystal SiC substrate
US9960048B2 (en) 2013-02-13 2018-05-01 Showa Denko K.K. Surface machining method for single crystal SiC substrate, manufacturing method thereof, and grinding plate for surface machining single crystal SiC substrate
US9620374B2 (en) 2013-02-13 2017-04-11 Showa Denko K.K. Surface machining method for single crystal SiC substrate, manufacturing method thereof, and grinding plate for surface machining single crystal SiC substrate
JP2014235406A (en) * 2013-06-05 2014-12-15 キヤノン株式会社 Manufacturing method and processing device of component
JP2014233826A (en) * 2013-06-05 2014-12-15 キヤノン株式会社 Manufacturing method of component and processing device
US9815170B2 (en) 2013-07-19 2017-11-14 Nagoya Institute Of Technology Metallic abrasive pad and method for manufacturing same
KR20160043962A (en) 2013-07-19 2016-04-22 국립대학법인 나고야공업대학 Metallic polishing pad and production method therefor
WO2015008572A1 (en) 2013-07-19 2015-01-22 国立大学法人名古屋工業大学 Metallic polishing pad and production method therefor
JP2015173216A (en) * 2014-03-12 2015-10-01 国立大学法人大阪大学 Processing method and apparatus for wide bandgap semiconductor substrate
US10199242B2 (en) 2014-12-31 2019-02-05 Osaka University Planarizing processing method and planarizing processing device
US10665480B2 (en) 2014-12-31 2020-05-26 Osaka University Planarizing processing method and planarizing processing device
US10770301B2 (en) 2016-03-11 2020-09-08 Toho Engineering Co., Ltd. Planarization processing device
US10879087B2 (en) 2017-03-17 2020-12-29 Toshiba Memory Corporation Substrate treatment apparatus and manufacturing method of semiconductor device
US11784064B2 (en) 2017-03-17 2023-10-10 Kioxia Corporation Substrate treatment apparatus and manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JP2008081389A (en) Catalyst-aided chemical processing method and apparatus
JP5007384B2 (en) Catalyst-assisted chemical processing method and apparatus
JP4873694B2 (en) Catalyst-assisted chemical processing method
US7651625B2 (en) Catalyst-aided chemical processing method and apparatus
JP5963223B2 (en) Glass material processing method and apparatus
JP6206847B2 (en) Wide band gap semiconductor substrate processing method and apparatus
JP4982742B2 (en) Catalytic chemical processing method and apparatus using magnetic fine particles
JP4506399B2 (en) Catalyst-assisted chemical processing method
JP2008136983A (en) Catalyst-aided chemical processing method and apparatus
JP5358996B2 (en) Method for manufacturing SiC single crystal substrate
JP5103631B2 (en) Processing method
WO2012003780A1 (en) Processing method for photochemical/electrochemical planishing-polishing in nano-precision and device thereof
JP2011146695A (en) Polishing method and apparatus
CN103924287B (en) Electroluminescent chemically polishing method
JP6188152B2 (en) Method and apparatus for planarizing Si substrate
JP2015127078A (en) Processing method and processing device
JP2009113272A (en) Cutting method of hard material
JP2009099609A (en) Processing device and processing method
JP2011120989A (en) Surface processing method
JP2006036594A (en) Pore machining method of diamond
JPH11214337A (en) Method for chemical removal induced by friction and apparatus thereof
JP2010219475A (en) Plasma processing method and processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A521 Written amendment

Effective date: 20120525

Free format text: JAPANESE INTERMEDIATE CODE: A821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423