JP2008136983A - Catalyst-aided chemical processing method and apparatus - Google Patents

Catalyst-aided chemical processing method and apparatus Download PDF

Info

Publication number
JP2008136983A
JP2008136983A JP2006328515A JP2006328515A JP2008136983A JP 2008136983 A JP2008136983 A JP 2008136983A JP 2006328515 A JP2006328515 A JP 2006328515A JP 2006328515 A JP2006328515 A JP 2006328515A JP 2008136983 A JP2008136983 A JP 2008136983A
Authority
JP
Japan
Prior art keywords
catalyst
processing
workpiece
processed
solid catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006328515A
Other languages
Japanese (ja)
Inventor
Kazuto Yamauchi
和人 山内
Yasuhisa Sano
泰久 佐野
Junji Murata
順二 村田
Hideyuki Hara
英之 原
Keita Yagi
圭太 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Osaka University NUC
Original Assignee
Ebara Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Osaka University NUC filed Critical Ebara Corp
Priority to JP2006328515A priority Critical patent/JP2008136983A/en
Priority to US11/892,780 priority patent/US7651625B2/en
Priority to EP20070016757 priority patent/EP1894900A3/en
Priority to EP20110006032 priority patent/EP2381008A2/en
Publication of JP2008136983A publication Critical patent/JP2008136983A/en
Priority to US12/636,069 priority patent/US20100147463A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide catalyst-aided chemical processing method and apparatus which can process hard-to-process materials, especially, SiC, GaN, etc. whose importance as electronic device materials is increasing these days, with high processing efficiency and high precision even for a space wavelength range of not less than several tens μm. <P>SOLUTION: Such a principle is used in the catalyst-aided chemical processing method and apparatus that the object 10 to be processed is put in a processing liquid containing an oxidizing agent, a solid catalyst 11 for decomposing the oxidizing agent is brought into contact with or close proximity to the object to be processed to produce a compound by a chemical reaction of an active radical, which is produced on the solid catalyst and has strong oxidizing force, with an atom on the surface of the object to be processed and the produced compound is removed or eluted to process the object to be processed. The surface to be processed is processed by applying either one or a combination of two or more of a light irradiation means for irradiating the object to be processed with light during the processing, a voltage application means for applying a voltage between the object to be used and the solid catalyst during the processing and a temperature control means for controlling the temperatures of the solid catalyst, the object to be processed and/or the processing liquid during the processing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、触媒支援型化学加工方法及び加工装置に係わり、更に詳しくは処理液中の分子を触媒で分解して生成した活性種を用いて被加工物を加工する触媒支援型化学加工方法及び加工装置に関するものである。   The present invention relates to a catalyst-assisted chemical processing method and a processing apparatus, and more specifically, a catalyst-assisted chemical processing method for processing a workpiece using active species generated by decomposing molecules in a processing solution with a catalyst, and The present invention relates to a processing apparatus.

一般的に機械的な加工は、古くから様々な場面で使用されている。たとえば、機械研磨では工具を加工したい表面に押しつけることで、機械的作用により材料欠陥を導入し表面の原子をはぎとり加工する。このような機械研磨法では、結晶格子にダメージを与えてしまう上に、高精度な面を得ることが非常に困難となる。ゆえに、高精度でものを作成するためには、格子欠陥を発生させることなく加工できる化学的な加工を用いる必要がある。   In general, mechanical processing has been used in various scenes since ancient times. For example, in mechanical polishing, a tool is pressed against a surface to be processed, thereby introducing material defects by mechanical action and stripping off atoms on the surface. Such a mechanical polishing method damages the crystal lattice and makes it very difficult to obtain a highly accurate surface. Therefore, in order to create a thing with high accuracy, it is necessary to use chemical processing that can be processed without generating lattice defects.

既に、超微粉体を分散した懸濁液を被加工物の被加工面に沿って流動させて、該超微粉体を被加工面上に略無荷重の状態で接触させ、その際の超微粉体と被加工面界面での相互作用(一種の化学結合)により、被加工面原子を原子単位に近いオーダで除去して加工する、いわゆるEEM(Elastic Emission Machining)による加工は既に知られている(特許文献1〜4)。また、高電圧を印加した加工電極により発生させた反応ガスに基づく中性ラジカルを被加工物の被加工面に供給し、この中性ラジカルと被加工面の原子又は分子とのラジカル反応によって生成した揮発性物質を気化させて除去し、加工電極を被加工面に対して相対的に変化させて加工するものであって、反応ガスの種類と被加工物の材質に応じて決定される、加工時間と加工量との間の相関データと、前加工面と目的加工面の座標データとに基づきその座標差に応じて加工時間を数値制御して加工するプラズマCVM(Chemical Vaporization Machining)も提案されている(特許文献5)。更に、回転電極を高速に回転させることで、該回転電極表面でガスを巻き込むことによって加工ギャップを横切るガス流を形成して加工する回転電極を用いた高密度ラジカル反応による高能率加工方法も提案されている(特許文献6)。   Already, the suspension in which the ultrafine powder is dispersed is caused to flow along the work surface of the work piece, and the ultra fine powder is brought into contact with the work surface in a substantially unloaded state. We already know the processing by so-called EEM (Elastic Emission Machining), which removes and processes the workpiece surface atoms on the order of atomic units by the interaction (a kind of chemical bond) at the interface between the ultrafine powder and the workpiece surface. (Patent Documents 1 to 4). In addition, neutral radicals based on the reaction gas generated by the machining electrode to which a high voltage is applied are supplied to the work surface of the workpiece, and generated by a radical reaction between the neutral radicals and atoms or molecules on the work surface. The volatile material is removed by vaporization, and the processing electrode is processed while being changed relative to the surface to be processed, which is determined according to the type of reaction gas and the material of the workpiece. Plasma CVM (Chemical Vaporization Machining) is also proposed to perform machining by numerically controlling the machining time according to the coordinate difference based on the correlation data between the machining time and machining amount and the coordinate data of the previous machining surface and the target machining surface. (Patent Document 5). In addition, a high-efficiency machining method using a high-density radical reaction using a rotating electrode that forms a gas flow across the machining gap by rotating the rotating electrode at high speed to entrain gas on the surface of the rotating electrode is also proposed. (Patent Document 6).

前述のEEMやプラズマCVMは、一種の化学的な加工として非常に優れている。EEMは、原子スケールで平滑な面を得ることが可能であり、プラズマCVMではEEMと比較して精度は若干劣るものの、機械的な加工に匹敵する高能率な加工が高精度で可能である。   The aforementioned EEM and plasma CVM are excellent as a kind of chemical processing. EEM can obtain a smooth surface on an atomic scale, and although plasma CVM is slightly inferior in accuracy to EEM, highly efficient processing comparable to mechanical processing is possible with high accuracy.

EEMは、その加工原理から考えて高周波の空間波長に対して非常に平滑な面を得ることが可能である。EEMは、超純水によりSiO2等の微粒子を表面に供給し、微粒子の表面の原子と加工物表面の原子が化学的に結合することで加工が進むことが特徴である。このとき、微粒子の表面が非常に平坦な面であり、それが基準面となって、表面に転写されていると考えられる。ゆえに、原子配列を乱すことなく、原子サイズのオーダで平坦な表面を作ることが可能となる。しかしEEMは、その加工原理のゆえ数十μm以上の空間波長域を平坦化し難い。 The EEM can obtain a very smooth surface with respect to a high-frequency spatial wavelength in view of its processing principle. The EEM is characterized in that fine particles such as SiO 2 are supplied to the surface with ultrapure water, and the processing proceeds by the atoms on the surface of the fine particles and the atoms on the surface of the workpiece being chemically bonded. At this time, the surface of the fine particles is a very flat surface, which is considered to be a reference surface and transferred to the surface. Therefore, it is possible to create a flat surface with an atomic size order without disturbing the atomic arrangement. However, EEM is difficult to flatten the spatial wavelength region of several tens of μm or more because of its processing principle.

また、プラズマCVMは、活性なラジカルを利用しているので、非常に高効率な加工法である。プラズマCVMの加工は、プラズマ中の中性ラジカルと加工物表面の化学反応を利用している。1気圧という高圧力雰囲気下において高密度のプラズマを発生させ、プラズマ中で生成した中性ラジカルを加工物表面の原子に作用させ、揮発性の物質に変えることで加工している。ゆえに、被加工面の原子配列を乱すことなく、従来の機械加工に匹敵する加工能率を持っている。しかし、基準面を持たない加工法であるため、指数面による影響を受けやすい。   Plasma CVM is an extremely efficient processing method because it uses active radicals. The plasma CVM processing uses a chemical reaction between neutral radicals in the plasma and the workpiece surface. Processing is performed by generating high-density plasma in a high-pressure atmosphere of 1 atm, causing neutral radicals generated in the plasma to act on atoms on the surface of the workpiece, and changing them into volatile substances. Therefore, it has a machining efficiency comparable to conventional machining without disturbing the atomic arrangement of the work surface. However, since the processing method does not have a reference surface, it is easily affected by the index surface.

一方、化学機械研磨(CMP)は、SiO2やCr23を砥粒として用い、機械的作用を小さくし、化学的作用によって無擾乱表面を形成しようとするものである。例えば、特許文献7に示すように、酸化触媒作用のある砥粒を分散させた酸化性研磨液にダイヤモンド薄膜を浸漬し、砥粒で薄膜表面を擦過しながらダイヤモンド薄膜を研磨する方法が開示されている。ここで、砥粒として酸化クロムや酸化鉄を用い、この砥粒を過酸化水素水、硝酸塩水溶液又はそれらの混合液に分散させた研磨液を用いることが開示されている。 On the other hand, chemical mechanical polishing (CMP) uses SiO 2 or Cr 2 O 3 as abrasive grains to reduce the mechanical action and to form a non-disturbed surface by the chemical action. For example, as shown in Patent Document 7, a method is disclosed in which a diamond thin film is immersed in an oxidizing polishing liquid in which abrasive grains having an oxidation catalytic action are dispersed, and the diamond thin film is polished while rubbing the thin film surface with abrasive grains. ing. Here, it is disclosed that chromium oxide or iron oxide is used as abrasive grains, and a polishing liquid in which the abrasive grains are dispersed in a hydrogen peroxide solution, a nitrate aqueous solution or a mixture thereof is disclosed.

また、特許文献8には、被加工物に対して常態では溶解性を示さないハロゲンを含む分子が溶けた処理液中に該被加工物を配し、白金、金又はセラミックス系固体触媒からなる触媒を被加工物の加工面に接触若しくは極接近させて配し、前記触媒の表面で生成したハロゲンラジカルと被加工物の表面原子との化学反応で生成したハロゲン化合物を、溶出させることによって被加工物を加工する触媒支援型化学加工方法が提案されている。ここで、ハロゲンを含む分子がハロゲン化水素であり、具体的にはフッ化水素又は塩化水素を用いる点が開示されている。
特公平2−25745号公報 特公平7−16870号公報 特公平6−44989号公報 特開2000−167770号公報 特許第2962583号公報 特許第3069271号公報 特許第3734722号公報 特開2006−114632号公報
Further, in Patent Document 8, the workpiece is arranged in a treatment solution in which molecules containing halogen that are not normally soluble in the workpiece are dissolved, and is made of platinum, gold, or a ceramic solid catalyst. The catalyst is placed in contact with or in close proximity to the work surface of the work piece, and the halogen compound produced by the chemical reaction between the halogen radicals produced on the surface of the catalyst and the surface atoms of the work piece is eluted. Catalyst-assisted chemical processing methods for processing workpieces have been proposed. Here, it is disclosed that the molecule containing halogen is hydrogen halide, specifically hydrogen fluoride or hydrogen chloride is used.
Japanese Patent Publication No. 2-25745 Japanese Patent Publication No. 7-16870 Japanese Patent Publication No. 6-44989 JP 2000-167770 A Japanese Patent No. 2962583 Japanese Patent No. 3069271 Japanese Patent No. 3734722 JP 2006-114632 A

そこで、本発明が前述の状況に鑑み、解決しようとするところは、難加工物、特に近年電子デバイスの材料として重要性が高まっているSiCやGaN等を、加工効率が高く且つ数10μm以上の空間波長領域にわたって精度が高く加工することが可能な新しい加工法を提案することを目的とする。つまり、化学的な反応によってSiCやGaN等の難加工材料を、結晶学的に格子欠陥が導入されず、しかも空間制御性を備えて高精度に加工が可能な触媒支援型化学加工方法及び加工装置を提案する。   Therefore, in view of the above-mentioned situation, the present invention intends to solve difficult-to-process products, particularly SiC and GaN, which have recently been increasing in importance as materials for electronic devices, with high processing efficiency and several tens of μm or more. The purpose is to propose a new processing method capable of processing with high accuracy over a spatial wavelength region. In other words, a catalyst-assisted chemical processing method and processing capable of processing a difficult-to-process material such as SiC or GaN by a chemical reaction without crystallographically introducing lattice defects and having high spatial controllability. Propose the device.

前述の課題解決のために、本発明は、酸化剤を含む処理液中に被加工物を配し、該酸化剤を分解する固体触媒を被加工物の被加工面に接触、若しくは極接近させ、前記触媒上で生成した強力な酸化力を持つ活性種と被加工物の表面原子との化学反応で生成した化合物を除去、あるいは溶出させることによって被加工物を加工する触媒支援型化学加工方法において、前記加工中に、被加工物の被加工面に光を照射する光照射手段、被加工物の被加工面と固体触媒の間に電圧を印加する電圧印加手段、触媒の温度、前記被加工物、及び/又は処理液の温度を制御する温度制御手段のうちの1種又は2種以上を組み合わせて適用し、被加工面を加工することを特徴とする触媒支援型化学加工方法を提供する(請求項1)。   In order to solve the above-mentioned problems, the present invention provides a workpiece in a processing solution containing an oxidant, and brings a solid catalyst that decomposes the oxidant into contact with or close to the workpiece surface of the workpiece. Catalyst-assisted chemical processing method for processing a workpiece by removing or eluting a compound generated by a chemical reaction between an active species having a strong oxidizing power generated on the catalyst and a surface atom of the workpiece In the processing, a light irradiating means for irradiating light to the work surface of the work piece, a voltage applying means for applying a voltage between the work face of the work piece and the solid catalyst, the temperature of the catalyst, Provided is a catalyst-assisted chemical processing method characterized by processing a surface to be processed by applying one or more of temperature control means for controlling the temperature of a workpiece and / or a processing solution, in combination. (Claim 1).

ここで、前記処理液に酸化剤を安定化する安定化剤を添加することで、該酸化剤の分解速度を制御することも好ましい(請求項2)。   Here, it is also preferable to control the decomposition rate of the oxidant by adding a stabilizer for stabilizing the oxidant to the treatment liquid (claim 2).

具体的には、前記酸化剤がH22若しくはO3であること(請求項3)が好ましく、また前記固体触媒が、Fe、Ni、Co、Cu、Cr、Tiからなる遷移金属、白金、金等の貴金属、セラミックス系の金属酸化物、固体塩基性触媒から選択した1種又は2種以上の組み合わせからなること(請求項4)が好ましい。そして、前記被加工物が結晶性SiC、焼結SiC、GaN、サファイア、ルビー、ダイヤモンドの内から選ばれた1種であると本発明の効果が顕著である(請求項5)。 Specifically, the oxidizing agent is preferably H 2 O 2 or O 3 (Claim 3), and the solid catalyst is a transition metal composed of Fe, Ni, Co, Cu, Cr, Ti, platinum It is preferably composed of one or a combination of two or more selected from precious metals such as gold, ceramic metal oxides, and solid basic catalysts. And the effect of this invention is remarkable when the said to-be-processed object is 1 type chosen from crystalline SiC, sintered SiC, GaN, sapphire, ruby, and diamond (Claim 5).

そして、前記酸化剤がH22、固体触媒がFe、被加工物がSiC、GaN、又はダイヤモンドであり、フェントン反応を利用して加工することがより好ましい(請求項6)。 More preferably, the oxidizing agent is H 2 O 2 , the solid catalyst is Fe, the workpiece is SiC, GaN, or diamond, and processing is performed using the Fenton reaction.

更に、前記酸化剤がH22、安定化剤が珪酸ソーダであるとより効果的である(請求項7)。 Further, it is more effective that the oxidizing agent is H 2 O 2 and the stabilizer is sodium silicate (Claim 7).

また、前記固体触媒を微粉末として前記酸化剤の処理液中に分散させ、該固体触媒の微粉末を処理液の流動に伴って被加工物の加工面に供給して加工することも好ましい(請求項8)。   It is also preferable to disperse the solid catalyst as a fine powder in the treatment liquid of the oxidizing agent, and supply the fine powder of the solid catalyst to the processing surface of the workpiece along with the flow of the treatment liquid. Claim 8).

そして、本発明は、酸化剤を分解する固体触媒を表面に有する平坦な回転定盤及び該定盤の回転軸に対して偏心した回転軸を有するホルダーとを備え、前記触媒の表面と被加工物の被加工面の間に前記酸化剤を含む処理液を供給し、前記ホルダーに保持した被加工物を前記定盤に所定の押圧力で押圧しながら回転させて、被加工物の被加工面を平坦化加工する触媒支援型化学加工装置において、前記加工中に、被加工物の被加工面に光を照射する光照射手段、被加工物の被加工面と固体触媒の間に電圧を印加する電圧印加手段、触媒の温度、前記被加工物、及び/又は処理液の温度を制御する温度制御手段のうちの1種又は2種以上を組み合わせて適用し、被加工面を加工することを特徴とする触媒支援型化学加工装置を構成した(請求項9)。   The present invention comprises a flat rotating surface plate having a solid catalyst for decomposing an oxidant on the surface, and a holder having a rotating shaft eccentric to the rotating shaft of the surface plate, and the surface of the catalyst and the workpiece The processing liquid containing the oxidizing agent is supplied between the processing surfaces of the workpiece, and the workpiece held in the holder is rotated while being pressed against the surface plate with a predetermined pressing force. In the catalyst-assisted chemical processing apparatus for flattening the surface, during the processing, a light irradiation means for irradiating light to the processing surface of the workpiece, a voltage is applied between the processing surface of the workpiece and the solid catalyst. Applying one or more of temperature control means for controlling the voltage application means to be applied, the temperature of the catalyst, the workpiece, and / or the temperature of the treatment liquid, and machining the work surface. (Claim 9) A catalyst-assisted chemical processing apparatus characterized by the above is configured. .

あるいは、本発明は、酸化剤を含む処理液中に、該酸化剤を分解する固体触媒を微粉末として分散させ、該固体触媒の微粉末を処理液の流動に伴って被加工物の被加工面に供給する処理液及び触媒供給手段を必須とし、被加工物の被加工面に光を照射する光照射手段、被加工物の被加工面と固体触媒の間に電圧を印加する電圧印加手段、触媒の温度、前記被加工物、及び/又は処理液の温度を制御する温度制御手段のうちの1種又は2種以上を組み合わせて適用し、被加工面を加工することを特徴とする触媒支援型化学加工装置を構成した(請求項10)。   Alternatively, in the present invention, a solid catalyst for decomposing the oxidant is dispersed as a fine powder in a treatment liquid containing an oxidant, and the fine powder of the solid catalyst is processed along with the flow of the treatment liquid. The processing liquid and catalyst supply means to be supplied to the surface are essential, the light irradiation means for irradiating the work surface of the work piece with light, and the voltage application means for applying a voltage between the work face of the work piece and the solid catalyst The catalyst is characterized in that the surface to be processed is processed by applying one or a combination of two or more of temperature control means for controlling the temperature of the catalyst, the workpiece, and / or the temperature of the treatment liquid. An assisted chemical processing apparatus was constructed (claim 10).

ここで、SiCやGaN等のワイドバンドギャップ材料は化学的に非常に安定であるため、ヒドロキシルラジカルが反応しても、十分な反応速度を得ることが難しい。特にGaNは、価電子帯のエネルギーが非常に低いため、ヒドロキシルラジカルでは電子を引き抜くことができない。そこで、反応時に被加工物のバンドギャップに相当する光を照射することで、被加工物表面を活性にし加工速度を向上させることが可能となる。照射する光の波長は、被加工物のバンドギャップに相当する波長以下が好ましい。例えば、4H−SiCのバンドギャップは3.26eVであるから照射する光の波長は383nm以下、GaNのバンドギャップは3.42eVであるから照射する光の波長は365nm以下である。   Here, since wide band gap materials such as SiC and GaN are chemically very stable, it is difficult to obtain a sufficient reaction rate even when hydroxyl radicals react. In particular, GaN has a very low energy in the valence band, so that hydroxyl radicals cannot extract electrons. Therefore, by irradiating light corresponding to the band gap of the workpiece during the reaction, it becomes possible to activate the workpiece surface and improve the processing speed. The wavelength of the irradiated light is preferably equal to or less than the wavelength corresponding to the band gap of the workpiece. For example, since the band gap of 4H-SiC is 3.26 eV, the wavelength of the irradiated light is 383 nm or less, and since the band gap of GaN is 3.42 eV, the wavelength of the irradiated light is 365 nm or less.

また、遷移金属表面でのフェントン反応のみでは、反応速度を制御することができないため、加工速度の向上が困難である。ここで、上記のフェントン反応は触媒表面におけるH22分子の1電子還元反応であるため、触媒定盤と被加工物の間に電圧を印加することで、ヒドロキシルラジカルの生成を促進することが可能である。触媒を陰極にするように電圧を印加した方が、還元反応が促進されるので望ましい。 Moreover, since the reaction rate cannot be controlled only by the Fenton reaction on the transition metal surface, it is difficult to improve the processing rate. Here, since the Fenton reaction is a one-electron reduction reaction of H 2 O 2 molecules on the catalyst surface, the generation of hydroxyl radicals is promoted by applying a voltage between the catalyst surface plate and the workpiece. Is possible. It is desirable to apply a voltage so that the catalyst serves as a cathode because the reduction reaction is promoted.

そして、アレニウスの式で知られるように、化学反応は反応温度が高ければ、それだけ反応速度は大きくなる。本加工法は化学反応に基づいているため、触媒の温度、被加工物、及び/又は処理液の温度を制御することで、加工速度を変化させることができるのである。   As is known from the Arrhenius equation, the higher the reaction temperature, the higher the chemical reaction. Since the processing method is based on a chemical reaction, the processing speed can be changed by controlling the temperature of the catalyst, the workpiece, and / or the temperature of the processing liquid.

前述の光照射手段、電圧印加手段及び温度制御手段は、単独でも加工に寄与する化学反応を促進させることができるが、それらを複数組み合わせて適用することも可能である。その場合には、複数の手段を同時に適用する場合と、経時的に前後にずらせて適用する場合がある。   The light irradiation means, voltage application means, and temperature control means described above can promote chemical reactions that contribute to processing even when used alone, but a plurality of them can also be applied in combination. In that case, there are a case where a plurality of means are applied simultaneously, and a case where they are shifted back and forth over time.

以上にしてなる本発明の触媒支援型化学加工方法は、加工基準面に酸化剤を分解する固体触媒を用い、該触媒表面で酸化剤から活性種を生成し、触媒に接触若しくは極接近した被加工物の表面原子と活性種との化学反応で生成した化合物を、除去、あるいは溶出させることによって被加工物を加工するのである。本発明では、砥粒や研磨材を用いずに、固体触媒を酸化剤中で被加工面に接触させることにより、表面原子と活性種との化学反応で生成した被加工面の酸化物が除去されて、常に新しい被加工面が出現し、加工が進むのである。ここで、触媒表面で生成された活性種は、触媒表面から離れると急激に不活性化するので、活性種は基準面となる触媒表面上若しくは表面の極近傍のみにしか存在せず、それにより空間的に制御された状態で加工できるのである。   The catalyst-assisted chemical processing method of the present invention as described above uses a solid catalyst that decomposes an oxidant on the processing reference surface, generates active species from the oxidant on the surface of the catalyst, and is in contact with or in close proximity to the catalyst. The workpiece is processed by removing or eluting the compound formed by the chemical reaction between the surface atoms of the workpiece and the active species. In the present invention, the oxide on the work surface generated by the chemical reaction between the surface atoms and the active species is removed by bringing the solid catalyst into contact with the work surface in the oxidizing agent without using abrasive grains or abrasives. As a result, a new surface to be processed always appears and processing proceeds. Here, since the active species generated on the catalyst surface are inactivated rapidly when they are separated from the catalyst surface, the active species are present only on the catalyst surface which is the reference surface or in the immediate vicinity of the surface, thereby It can be processed in a spatially controlled state.

そして、本発明では、前記加工中に、被加工物の被加工面に光を照射する光照射手段、被加工物の被加工面と固体触媒の間に電圧を印加する電圧印加手段、触媒の温度、前記被加工物、及び/又は処理液の温度を制御する温度制御手段のうちの1種又は2種以上を組み合わせて適用し、被加工面を加工するので、加工に寄与する化学反応を促進させることができ、それにより加工速度を向上させることができるばかりでなく、これまで加工が非常に困難であったSiCやGaN等のワイドバンドギャップ材料が実用的レベルで化学加工することができるようになり、更にはサファイア、ルビー、ダイヤモンドの高精度な加工ができるようになり、半導体製造工程においても使用できる可能性がある。特に、酸化剤として取り扱いが容易で安価なH22若しくはO3を用いることができるので、HFを用いる方法と比較して加工コストを大幅に低減できるのである。 In the present invention, during the processing, the light irradiation means for irradiating the work surface of the work piece with light, the voltage application means for applying a voltage between the work surface of the work piece and the solid catalyst, Since one or more of temperature control means for controlling the temperature, the workpiece, and / or the temperature of the processing liquid are applied in combination to process the surface to be processed, a chemical reaction that contributes to the processing is performed. Not only can the processing speed be improved, but wide band gap materials such as SiC and GaN, which have been very difficult to process, can be chemically processed at a practical level. In addition, high-precision processing of sapphire, ruby, and diamond can be performed, and there is a possibility that it can be used in a semiconductor manufacturing process. In particular, since H 2 O 2 or O 3 which is easy to handle and inexpensive as an oxidizing agent can be used, the processing cost can be greatly reduced as compared with a method using HF.

また、酸化剤を分解する固体触媒を表面に有する平坦な回転定盤及び該定盤の回転軸に対して偏心した回転軸を有するホルダーとを備え、前記触媒の表面と被加工物の被加工面の間に前記酸化剤を含む処理液を供給し、前記ホルダーに保持した被加工物を前記定盤に所定の押圧力で押圧しながら回転させて、被加工物の被加工面を平坦化加工する触媒支援型化学加工は、加工基準面を有する化学的な加工であるので、EEMやプラズマCVMでは困難であった数十μm以上の空間波長領域を高度に平坦化加工することができる。   A flat rotating surface plate having a solid catalyst for decomposing an oxidant on the surface; and a holder having a rotating shaft eccentric to the rotating shaft of the surface plate, the surface of the catalyst and the workpiece to be processed The processing liquid containing the oxidizing agent is supplied between the surfaces, and the work piece held in the holder is rotated while pressing the work plate against the surface plate with a predetermined pressing force to flatten the work surface of the work piece. Since the catalyst-assisted chemical processing to be processed is a chemical processing having a processing reference surface, it is possible to highly planarize a spatial wavelength region of several tens of μm or more, which was difficult with EEM or plasma CVM.

次に、実施形態に基づき、本発明を更に詳細に説明する。本発明の加工原理は、酸化剤を含む処理液中に被加工物を配し、該酸化剤を分解する固体触媒を被加工物の被加工面に接触、若しくは極接近させ、前記触媒上で生成した強力な酸化力を持つ活性種と被加工物の表面原子との化学反応で生成した化合物を除去、あるいは溶出させることによって被加工物を加工するというものである。そして、加工中に、被加工物の被加工面に光を照射する光照射手段、被加工物の被加工面と固体触媒の間に電圧を印加する電圧印加手段、触媒の温度、前記被加工物、及び/又は処理液の温度を制御する温度制御手段のうちの1種又は2種以上を組み合わせて適用し、被加工面を加工することを特徴としている。ここで、本発明において、処理液中に被加工物と固体触媒を浸漬する場合と、被加工物と固体触媒の接触部分に処理液を流動供給する場合の両方を含むのである。   Next, the present invention will be described in more detail based on embodiments. The processing principle of the present invention is that a workpiece is placed in a processing solution containing an oxidant, and a solid catalyst that decomposes the oxidant is brought into contact with or in close proximity to the workpiece surface of the workpiece. The workpiece is processed by removing or eluting the compound generated by the chemical reaction between the generated active species having strong oxidizing power and the surface atoms of the workpiece. And during processing, light irradiation means for irradiating the work surface of the work piece with light, voltage application means for applying a voltage between the work surface of the work piece and the solid catalyst, the temperature of the catalyst, the work piece One or two or more types of temperature control means for controlling the temperature of the object and / or the treatment liquid are applied in combination to process the surface to be processed. Here, in the present invention, both the case where the workpiece and the solid catalyst are immersed in the treatment liquid and the case where the treatment liquid is fluidly supplied to the contact portion between the workpiece and the solid catalyst are included.

先ず、本発明の加工法の概念図を図1に示す。図中符号1は固体触媒、2は被加工物の被加工面を示している。図1(a)に示すように、酸化剤を含む処理液中で触媒1を被加工物2に接触、若しくは極接近させると、触媒1の表面で生成した活性種3と表面原子4とが反応して化合物5を作る。ここで、図中符号6は酸化剤分子、7は酸化剤分子6が解離して活性種3が生じた残余分子である。それから、図1(b)に示すように、触媒1を被加工物2から離すと、化合物5は被加工物2の被加工面から除去され、未反応の活性種3は残余分子7と結合して不活性化する。従って、触媒1が接触、若しくは極接近している間だけ前記被加工物2が加工されるのである。そして、本発明では、前述の加工中に、光照射手段、電圧印加手段及び温度制御手段を単独で又は複数組み合わせて適用しながら加工するのである。   First, the conceptual diagram of the processing method of this invention is shown in FIG. In the figure, reference numeral 1 denotes a solid catalyst, and 2 denotes a work surface of the work piece. As shown in FIG. 1A, when the catalyst 1 is brought into contact with or very close to the workpiece 2 in a treatment liquid containing an oxidizing agent, the active species 3 and surface atoms 4 generated on the surface of the catalyst 1 are formed. React to make compound 5. Here, reference numeral 6 in the figure denotes an oxidant molecule, and 7 denotes a residual molecule in which the active species 3 is generated by dissociation of the oxidant molecule 6. Then, as shown in FIG. 1 (b), when the catalyst 1 is separated from the workpiece 2, the compound 5 is removed from the workpiece surface of the workpiece 2, and the unreacted active species 3 bind to the remaining molecules 7. And inactivate. Therefore, the workpiece 2 is processed only while the catalyst 1 is in contact or in close proximity. And in this invention, it processes, applying a light irradiation means, a voltage application means, and a temperature control means individually or in combination in the above-mentioned process.

ここで、前記酸化剤として、H22若しくはO3を用い、前記固体触媒として、Fe、Ni、Co、Cu、Cr、Tiからなる遷移金属、白金、金等の貴金属、セラミックス系の金属酸化物、固体塩基性触媒から選択した1種又は2種以上の組み合わせたものを用いる。そして、前記被加工物としては、結晶性SiC、焼結SiC、GaN、サファイア、ルビー、ダイヤモンド等の難加工物を対象としているが、勿論Siの加工も可能である。特に、前記酸化剤がH22、固体触媒がFe、被加工物がSiC、GaN、又はダイヤモンドであり、フェントン反応を利用して加工することが最も好ましい実施形態である。 Here, H 2 O 2 or O 3 is used as the oxidizer, and the solid catalyst is a transition metal composed of Fe, Ni, Co, Cu, Cr, Ti, a noble metal such as platinum or gold, or a ceramic metal. One or a combination of two or more selected from oxides and solid basic catalysts is used. The object to be processed is difficult to process such as crystalline SiC, sintered SiC, GaN, sapphire, ruby, diamond, and of course, Si can be processed. In particular, it is the most preferable embodiment that the oxidizing agent is H 2 O 2 , the solid catalyst is Fe, the workpiece is SiC, GaN, or diamond, and processing is performed using the Fenton reaction.

また、前記処理液に酸化剤を安定化する安定化剤を添加することで、該酸化剤の分解速度を制御することも可能である。特に、酸化剤としてH22、触媒としてPtを用いたときは、反応速度が速過ぎて加工中に気泡が成長して支障をきたすので、安定化剤として珪酸ソーダを添加することで、過酸化水素の分解反応を抑制し気泡の成長を防ぐことができる。つまり、処理液中に安定化剤を添加することで、触媒反応を遅くすることができる。 It is also possible to control the decomposition rate of the oxidant by adding a stabilizer for stabilizing the oxidant to the treatment liquid. In particular, when H 2 O 2 is used as the oxidant and Pt is used as the catalyst, the reaction rate is too high and bubbles grow during the processing, causing trouble, so by adding sodium silicate as a stabilizer, The decomposition reaction of hydrogen peroxide can be suppressed and the growth of bubbles can be prevented. That is, the catalytic reaction can be slowed by adding a stabilizer to the treatment liquid.

また、前記固体触媒を微粉末として前記酸化剤の処理液中に分散させ、該固体触媒の微粉末を処理液の流動に伴って被加工物の加工面に供給して加工することも可能である。   It is also possible to disperse the solid catalyst as a fine powder in the treatment liquid of the oxidizing agent, and supply the fine powder of the solid catalyst to the processing surface of the workpiece as the treatment liquid flows. is there.

更に詳しく本発明の加工原理を説明する。先ず、触媒表面での活性種の生成について説明する。過酸化水素水やオゾン水の触媒分解過程では、下記に示すように強力な酸化力を持つ活性種であるヒドロキシルラジカル(反応式中では・OHと表記)や酸素原子(反応式中では・O・と表記)が生成する。これらの活性種は触媒から脱離すると直ぐに周りの分子と反応し、不活性な分子に変化するため、被加工物を触媒表面に接触もしくは極接近させることで、触媒表面を基準とした加工を行うことが可能となる。
(過酸化水素の分解反応)
The processing principle of the present invention will be described in more detail. First, generation of active species on the catalyst surface will be described. In the catalytic decomposition process of hydrogen peroxide water and ozone water, as shown below, hydroxyl radicals (represented as .OH in the reaction equation) and oxygen atoms (represented as .O in the reaction equation) that have a strong oxidizing power. Will be generated. These active species react with surrounding molecules as soon as they desorb from the catalyst, and change into inactive molecules. Therefore, the workpiece can be processed with reference to the catalyst surface by bringing the workpiece into contact with or in close proximity to the catalyst surface. Can be done.
(Hydrogen peroxide decomposition reaction)

過酸化水素は白金、金、又は固体塩基性触媒等の固体触媒表面において、
22→・OH+・OH
の反応式に従い分解され、ヒドロキシルラジカルを生成する(図2参照)。
Hydrogen peroxide is on the surface of a solid catalyst such as platinum, gold, or a solid basic catalyst.
H 2 O 2 → OH + OH
To generate hydroxyl radicals (see FIG. 2).

また、遷移金属(Fe、Ni、Co、Cu、Cr、Ti)を固体触媒として用いる場合は、下記に示す反応式に従い、ヒドロキシルラジカルを生成すると推測される。
M+nH22→Mn++n・OH+nOH-
Moreover, when using a transition metal (Fe, Ni, Co, Cu, Cr, Ti) as a solid catalyst, it is estimated that a hydroxyl radical is generated according to the following reaction formula.
M + nH 2 O 2 → M n + + n · OH + nOH

このとき、触媒である遷移金属がイオン化して溶液中へと溶解すると考えられるが、溶解量が微量であるため、触媒表面は殆ど変化しない。このヒドロキシルラジカルは非常に酸化力が強く活性であるため、SiC、GaN、ダイヤモンド等の化学的に安定な材料とも反応し、加工に用いることができる。また、触媒表面から脱離したヒドロキシルラジカルは、ヒドロキシルラジカル同士の反応により、過酸化水素分子に戻る他、溶液中の水分子や溶存酸素と反応することで活性を失い、最終的に水分子と酸素分子に分解される。過酸化水素分子や酸素分子はヒドロキシルラジカルと比べて不活性であるため、前記の化学的に安定な材料と反応することがない。   At this time, it is considered that the transition metal as the catalyst is ionized and dissolved in the solution. However, since the dissolved amount is very small, the surface of the catalyst hardly changes. Since this hydroxyl radical has a very strong oxidizing power and is active, it reacts with chemically stable materials such as SiC, GaN, diamond, and can be used for processing. In addition, hydroxyl radicals desorbed from the catalyst surface return to hydrogen peroxide molecules due to the reaction between hydroxyl radicals, and also lose activity by reacting with water molecules and dissolved oxygen in the solution. Decomposed into oxygen molecules. Since hydrogen peroxide molecules and oxygen molecules are inactive compared to hydroxyl radicals, they do not react with the above chemically stable materials.

(オゾンの分解反応)
オゾン分子は、セラミックス系の金属酸化物、固体塩基性触媒(イオン交換材料)等の固体触媒表面において、
3→O2+・O・
の反応式に従い、酸素分子と酸素原子に分解される(図3参照)。この酸素原子は非常に酸化力が強く活性であるため、SiC、GaN、ダイヤモンド等の化学的に安定な材料とも反応し、加工に用いることができる。
(Decomposition reaction of ozone)
Ozone molecules are present on the surface of solid catalysts such as ceramic metal oxides and solid basic catalysts (ion exchange materials).
O 3 → O 2 + ・ O ・
Is decomposed into oxygen molecules and oxygen atoms (see FIG. 3). Since this oxygen atom has a very strong oxidizing power and is active, it reacts with chemically stable materials such as SiC, GaN, diamond, and can be used for processing.

触媒表面から脱離した酸素原子は、溶液中の酸素分子と反応または酸素原子同士で反応して、オゾン分子または酸素分子になる。
・O・+O2→O3
・O・+・O・→O2
Oxygen atoms desorbed from the catalyst surface react with oxygen molecules in the solution or react with each other to become ozone molecules or oxygen molecules.
・ O ・ + O 2 → O 3
・ O ・ + ・ O ・ → O 2

オゾン分子や酸素分子は酸素原子と比べて不活性であるため、前記の材料と反応することがない。   Since ozone molecules and oxygen molecules are inactive compared to oxygen atoms, they do not react with the above materials.

(活性種と被加工物の反応)
ここで、被加工物がSiCである場合には、ヒドロキシルラジカルあるいは酸素原子によって、それぞれ下記の反応によってSiC表面が酸化され、その部分が優先的に加工されるものと推測する。
SiC+4・OH+O2→SiO2+2H2O+CO2
SiC+4・O・→SiO2+CO2
(Reaction between active species and workpiece)
Here, when the workpiece is SiC, it is presumed that the SiC surface is oxidized by the following reaction by hydroxyl radicals or oxygen atoms, and that part is preferentially processed.
SiC + 4.OH + O 2 → SiO 2 + 2H 2 O + CO 2
SiC + 4 · O · → SiO 2 + CO 2

また、被加工物がGaNである場合には、ヒドロキシルラジカルあるいは酸素原子によって、それぞれ下記の反応によってGaN表面が酸化され、その部分が優先的に加工されるものと推測する。
2GaN+7・OH+7/4O2→Ga23+7/2H2O+2NO2
2GaN+7・O・→Ga23+2NO2
In addition, when the workpiece is GaN, it is presumed that the GaN surface is oxidized by hydroxyl radicals or oxygen atoms by the following reactions, respectively, and that part is preferentially processed.
2GaN + 7.OH + 7 / 4O 2 → Ga 2 O 3 + 7 / 2H 2 O + 2NO 2
2GaN + 7 · O · → Ga 2 O 3 + 2NO 2

(光照射による加工速度の向上)
SiCやGaN等のワイドバンドギャップ材料は化学的に非常に安定であるため、ヒドロキシルラジカルや酸素原子が作用しても、十分な加工速度を得ることが難しい。そこで、反応中に被加工物のバンドギャップに相当する光を照射することで、被加工物表面を活性状態にして加工速度の向上を行う。被加工物10への励起光照射は、図4(a)に示すように、固体触媒11の背後に励起光光源12を配し、励起光を透過することができる励起光透過窓13を介して触媒背面から照射することにより行うものとする。前記励起光透過窓13の材質は石英(SiO2)、サファイア(Al23)、CaF2の何れかであることが好ましい。このとき固体触媒11として励起光を透過しない材料を用いる場合は、該固体触媒11に複数個の貫通穴14をあけることで、被加工物10の被加工面に励起光を照射する。励起光の波長は被加工物のバンドギャップに相当する波長以下の光を用いることが好ましい。例えば、4H−SiCのバンドギャップは3.26eVであるから照射する光の波長は383nm以下、GaNのバンドギャップは3.42eVであるから照射する光の波長は365nm以下である。
(Improve processing speed by light irradiation)
Since wide band gap materials such as SiC and GaN are chemically very stable, it is difficult to obtain a sufficient processing speed even when hydroxyl radicals or oxygen atoms act. Therefore, by irradiating light corresponding to the band gap of the workpiece during the reaction, the surface of the workpiece is activated and the processing speed is improved. As shown in FIG. 4A, the workpiece 10 is irradiated with excitation light through an excitation light transmission window 13 in which an excitation light source 12 is disposed behind the solid catalyst 11 and can transmit the excitation light. It is performed by irradiating from the back of the catalyst. The material of the excitation light transmission window 13 is preferably quartz (SiO 2 ), sapphire (Al 2 O 3 ), or CaF 2 . At this time, when a material that does not transmit excitation light is used as the solid catalyst 11, the plurality of through holes 14 are formed in the solid catalyst 11 to irradiate the processing surface of the workpiece 10 with excitation light. It is preferable to use light having a wavelength equal to or less than the wavelength corresponding to the band gap of the workpiece as the wavelength of the excitation light. For example, since the band gap of 4H-SiC is 3.26 eV, the wavelength of the irradiated light is 383 nm or less, and since the band gap of GaN is 3.42 eV, the wavelength of the irradiated light is 365 nm or less.

そして、図4(b)に示すように、被加工物10の被加工面に励起光を照射しながら固体触媒11を接近させると、被加工物10の被加工面の活性領域15が、該固体触媒11の表面近傍で生成された活性種16によって加工される(図4(c)参照)。ここで、図中符号17は励起光を示している。そして、図4(d)に示すように、固体触媒11を被加工物10から遠ざけると加工は停止する。図示したように、固体触媒11の表面の平坦度に応じて被加工物10の被加工面の凸部が優先的に加工されて平坦化するのである。   Then, as shown in FIG. 4B, when the solid catalyst 11 is approached while irradiating the processing surface of the workpiece 10 with excitation light, the active region 15 on the processing surface of the workpiece 10 becomes It is processed by the active species 16 generated in the vicinity of the surface of the solid catalyst 11 (see FIG. 4C). Here, reference numeral 17 in the figure indicates excitation light. Then, as shown in FIG. 4D, when the solid catalyst 11 is moved away from the workpiece 10, the processing is stopped. As shown in the figure, the convex portion of the workpiece surface of the workpiece 10 is preferentially processed and flattened according to the flatness of the surface of the solid catalyst 11.

一般に化学反応によるワイドギャップ材料の加工には、価電子帯(Ev)から電子を引き抜き正孔(h+と表記)を生成する必要がある。ヒドロキシルラジカル又は酸素原子がSiC表面に作用した場合、ヒドロキシルラジカル又は酸素原子の酸化力がSiCの価電子帯電位よりも強いため、
・OH→OH-+h+
・O・→・O-+h+
の反応により、SiCの価電子帯から電子が引き抜かれ正孔が生成される(図5の過程A)。この正孔に処理液中の水分子や溶存酸素が作用することでSiCの加工が生じる(図4の過程B)。
In general, in processing a wide gap material by a chemical reaction, it is necessary to extract electrons from the valence band (Ev) to generate holes (denoted as h + ). When the hydroxyl radical or oxygen atom acts on the SiC surface, the oxidizing power of the hydroxyl radical or oxygen atom is stronger than the valence charge position of SiC,
· OH → OH - + h +
· O · → · O - + h +
As a result of the reaction, electrons are extracted from the valence band of SiC and holes are generated (process A in FIG. 5). SiC is processed by the action of water molecules and dissolved oxygen in the treatment liquid on the holes (process B in FIG. 4).

ここで、反応中に被加工物表面に被加工物のバンドギャップに相当する波長(383nm)以下の波長を持つ励起光を照射した場合、価電子帯に存在する電子は伝導体(Ec)へと励起され、正孔が生じる(図6の過程A)。この正孔に処理液中の水分子や溶存酸素が作用することでSiCの加工が生じる(図6の過程B)。また、伝導体へと励起された電子は、処理液中の水素イオンと反応し水素分子となることで消費される(図6の過程C)。この反応過程と上記の活性種による加工を同時に行うことで、加工速度を向上させることができる。   Here, when the surface of the workpiece is irradiated with excitation light having a wavelength equal to or shorter than the wavelength (383 nm) corresponding to the band gap of the workpiece during the reaction, electrons existing in the valence band are transferred to the conductor (Ec). And excited to generate holes (process A in FIG. 6). SiC is processed by the action of water molecules and dissolved oxygen in the treatment liquid on the holes (process B in FIG. 6). Further, the electrons excited to the conductor are consumed by reacting with hydrogen ions in the treatment liquid to form hydrogen molecules (process C in FIG. 6). By simultaneously performing this reaction process and the above-described processing by the active species, the processing speed can be improved.

次に、ヒドロキシルラジカルまたは酸素原子がGaNに作用した場合を考える。ヒドロキシルラジカルや酸素原子がGaN表面に作用した場合、ヒドロキシルラジカルや酸素原子の酸化力がGaNの価電子帯電位より弱いため、価電子帯から電子を奪うことができないため反応は進行しない(図7参照)。   Next, consider the case where hydroxyl radicals or oxygen atoms act on GaN. When hydroxyl radicals or oxygen atoms act on the GaN surface, the oxidizing power of hydroxyl radicals and oxygen atoms is weaker than the valence charge position of GaN, so that the reaction does not proceed because electrons cannot be taken from the valence band (FIG. 7). reference).

ここで、反応中に被加工物表面に被加工物のバンドギャップに相当する波長(365nm)以下の波長を持つ励起光を照射した場合、価電子帯(Ev)に存在する電子は伝導体(Ec)へと励起され、正孔と励起電子が生じる(図8の過程A)。この正孔に処理液中の水分子又は溶存酸素が作用することでGaNが加工される(図8の過程B)。この時、伝導体に励起された電子は、ヒドロキシルラジカルまたは酸素原子と反応することで消費される(図8の過程C)。   Here, when the surface of the workpiece is irradiated with excitation light having a wavelength equal to or shorter than the wavelength (365 nm) corresponding to the band gap of the workpiece during the reaction, electrons existing in the valence band (Ev) are conductors ( Ec) is excited to generate holes and excited electrons (process A in FIG. 8). GaN is processed by the action of water molecules or dissolved oxygen in the treatment liquid on the holes (process B in FIG. 8). At this time, the electrons excited in the conductor are consumed by reacting with hydroxyl radicals or oxygen atoms (process C in FIG. 8).

ここで、ヒドロキシルラジカル又は酸素原子が作用しなかった場合は、酸化剤の酸化力が伝導体電位よりも弱いため、励起電子を消費することができない。この場合、図8の過程Bの反応は進行せずに、励起電子と正孔の再結合が起こり加工は進行しない。以上のことからGaNの加工は励起光により被加工物表面が励起され、さらにヒドロキシルラジカルや酸素原子が被加工物表面に作用し励起電子を消費することで進行する。   Here, when hydroxyl radicals or oxygen atoms do not act, the oxidizing power of the oxidant is weaker than the conductor potential, so that excited electrons cannot be consumed. In this case, the reaction in the process B of FIG. 8 does not proceed, but the recombination of excited electrons and holes occurs and the processing does not proceed. From the above, the processing of GaN proceeds by exciting the surface of the workpiece with excitation light and further consuming excited electrons by hydroxyl radicals and oxygen atoms acting on the surface of the workpiece.

(電圧印加による加工速度の向上)
触媒による分解反応のみでは反応速度を制御することができないため、加工速度の向上が困難である。そこで、図9(a)に示すように、被加工物20と固体触媒21に直流電源22を接続し、被加工物20と固体触媒21との間に電圧を印加することで、触媒表面を活性にし酸化剤の分解反応を促進する(図9(b))。図中符号23は活性種であり、24は活性領域である。図9(c)のように、固体触媒21を被加工物20に接近させると、固体触媒21の表面の平坦度に応じて被加工物20の被加工面の凸部が優先的に加工されて平坦化するのである(図9(d))。
(Improved machining speed by applying voltage)
Since the reaction rate cannot be controlled only by the decomposition reaction with a catalyst, it is difficult to improve the processing rate. Therefore, as shown in FIG. 9A, a DC power source 22 is connected to the workpiece 20 and the solid catalyst 21, and a voltage is applied between the workpiece 20 and the solid catalyst 21, so that the catalyst surface is It activates and promotes the decomposition reaction of the oxidizing agent (FIG. 9B). In the figure, reference numeral 23 is an active species, and 24 is an active region. When the solid catalyst 21 is brought close to the workpiece 20 as shown in FIG. 9C, the convex portion of the workpiece surface of the workpiece 20 is preferentially processed according to the flatness of the surface of the solid catalyst 21. And flattening (FIG. 9D).

特にH22の遷移金属による分解反応は、触媒表面におけるH22分子の1電子還元反応であるため、触媒が負になるように電圧を与えることで下記に示す反応式により分解速度を向上することができる(ハーバー・ワイス反応)。
22+e-→OH-+・OH
In particular, the decomposition reaction of H 2 O 2 with a transition metal is a one-electron reduction reaction of H 2 O 2 molecules on the catalyst surface. Can be improved (Haber-Weiss reaction).
H 2 O 2 + e → OH + · OH

その結果、触媒表面で活性種が多量に生成されるため、被加工物の加工速度を向上させることができる。   As a result, since a large amount of active species is generated on the catalyst surface, the processing speed of the workpiece can be improved.

(温度制御による加工速度の制御)
アレニウスの式で知られるように、化学反応は反応温度が高ければ、それだけ反応速度は大きくなる。本加工法は化学反応に基づいているため、触媒の温度、被加工物温度及び/又は処理液の温度を制御することで、加工速度を変化させることができると考えられる。触媒の温度を制御することで活性種の生成速度を制御することができる。被加工物温度を制御することで、被加工物の表面原子と活性種の反応速度を制御することができる。
(Control of processing speed by temperature control)
As is known from the Arrhenius equation, the higher the reaction temperature, the higher the chemical reaction. Since this processing method is based on a chemical reaction, it is considered that the processing speed can be changed by controlling the temperature of the catalyst, the temperature of the workpiece, and / or the temperature of the processing liquid. The production rate of active species can be controlled by controlling the temperature of the catalyst. By controlling the workpiece temperature, the reaction rate between the surface atoms of the workpiece and the active species can be controlled.

図10に示した加工装置は、酸化剤を分解する固体触媒を表面に有する平坦な回転定盤31及び該定盤31の回転軸32に対して偏心した回転軸34を有するホルダー33とを備え、前記触媒の表面と被加工物30の被加工面の間に前記酸化剤を含む処理液を供給ノズル35から供給し、前記ホルダー33に保持した被加工物30を前記定盤31に所定の押圧力で押圧しながら回転させて、被加工物30の被加工面を平坦化加工するものである。ここで、前記回転定盤31は容器36の内部に設け、処理液を回収するようになっている。そして、前記回転定盤31は、内部に流路37を設けて調温流体を循環させ、該回転定盤31の表面の温度、即ち固体触媒の温度を調節できるようになっている。   The processing apparatus shown in FIG. 10 includes a flat rotating surface plate 31 having a solid catalyst for decomposing an oxidant on the surface, and a holder 33 having a rotating shaft 34 eccentric to the rotating shaft 32 of the surface plate 31. The processing liquid containing the oxidizing agent is supplied from the supply nozzle 35 between the surface of the catalyst and the processing surface of the processing object 30, and the processing object 30 held by the holder 33 is applied to the surface plate 31 with a predetermined amount. The surface to be processed of the workpiece 30 is flattened by being rotated while being pressed with a pressing force. Here, the rotating surface plate 31 is provided inside the container 36 to collect the processing liquid. The rotary platen 31 is provided with a flow path 37 therein to circulate a temperature adjusting fluid so that the surface temperature of the rotary platen 31, that is, the temperature of the solid catalyst can be adjusted.

また、前記ホルダー33の内部には、該ホルダー33で保持した被加工物30の温度を制御する温度制御機構としてのヒータ39が回転軸34に延びて埋設されている。また、前記供給ノズル35には、熱交換器38が設けられており、所定の温度に制御された処理液を容器36の内部に供給できるようになっている。尚、この例では、被加工物30の温度を制御する温度制御機構としてのヒータ39、処理液の温度を制御する温度制御機構としての供給ノズル35、及び回転定盤31の温度を制御する温度制御機構としての流路37を設けた例を示しているが、何れか1つを設けるようにしてもよい。   Further, a heater 39 as a temperature control mechanism for controlling the temperature of the workpiece 30 held by the holder 33 is embedded in the holder 33 so as to extend to the rotating shaft 34. The supply nozzle 35 is provided with a heat exchanger 38 so that the processing liquid controlled to a predetermined temperature can be supplied into the container 36. In this example, a heater 39 as a temperature control mechanism for controlling the temperature of the workpiece 30, a supply nozzle 35 as a temperature control mechanism for controlling the temperature of the processing liquid, and a temperature for controlling the temperature of the rotating surface plate 31. Although an example in which the flow path 37 as a control mechanism is provided is shown, any one may be provided.

尚、光照射手段、電圧印加手段、温度制御手段はこれらを単独でも、また適宜組み合わせて加工を促進させるようにしてもよい。   Incidentally, the light irradiation means, the voltage application means, and the temperature control means may be used alone or in an appropriate combination to promote the processing.

本発明の加工法の概念図であり、(a)は処理液中で固体触媒を被加工物に接近させ活性種が被加工物の被加工面に作用した状態、(b)は活性種によって被加工物の被加工面が加工され、固体触媒を離した状態をそれぞれ示している。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram of the processing method of this invention, (a) is the state which made the solid catalyst approach the workpiece in the processing liquid, and the active species acted on the to-be-processed surface of the workpiece, (b) Each of the workpiece surfaces of the workpiece is machined and the solid catalyst is released. 触媒による過酸化水素の分解反応を示す説明図である。It is explanatory drawing which shows the decomposition reaction of hydrogen peroxide by a catalyst. 触媒によるオゾン水の分解反応を示す説明図である。It is explanatory drawing which shows the decomposition reaction of ozone water by a catalyst. 光照射手段による加工方法の説明用断面図であり、(a)は加工前の状態、(b)は光を照射している状態、(c)は加工中の状態、(d)は加工後の状態をそれぞれ示している。It is sectional drawing for description of the processing method by a light irradiation means, (a) is the state before a process, (b) is the state which is irradiating light, (c) is the state in process, (d) is after a process Each state is shown. SiCにヒドロキシルラジカル又は酸素原子が作用した場合の反応過程を示す説明図である。It is explanatory drawing which shows the reaction process when a hydroxyl radical or an oxygen atom acts on SiC. 励起光照射した場合のSiCの酸化過程を示す説明図である。It is explanatory drawing which shows the oxidation process of SiC at the time of excitation light irradiation. GaNにヒドロキシルラジカル又は酸素原子が作用した場合の反応過程を示す説明図である。It is explanatory drawing which shows the reaction process when a hydroxyl radical or an oxygen atom acts on GaN. 励起光照射した場合のGaNの酸化過程を示す説明図である。It is explanatory drawing which shows the oxidation process of GaN at the time of excitation light irradiation. 被加工物と固体触媒の間に電圧を印加する加工方法の説明用断面図であり、(a)は加工前の状態、(b)は電圧を印加している状態、(c)は加工中の状態、(d)は加工後の状態をそれぞれ示している。It is sectional drawing for description of the processing method which applies a voltage between a to-be-processed object and a solid catalyst, (a) is the state before a process, (b) is the state which is applying the voltage, (c) is in process (D) shows the state after processing. 温度制御機能付の加工装置を示す簡略断面図である。It is a simplified sectional view showing a processing device with a temperature control function.

符号の説明Explanation of symbols

1 触媒、
2 被加工物、
3 活性種、
4 表面原子、
5 化合物、
6 酸化剤分子、
7 残余分子、
10 被加工物、
11 固体触媒、
12 励起光光源、
13 励起光透過窓、
14 貫通穴、
15 活性領域、
16 活性種、
17 励起光、
20 被加工物、
21 固体触媒、
22 直流電源、
23 活性種、
24 活性領域、
30 被加工物、
31 回転定盤、
32 回転軸、
33 ホルダー、
34 回転軸、
35 供給ノズル、
36 容器、
37 流路、
38 熱交換器、
39 ヒータ。
1 catalyst,
2 Workpiece,
3 active species,
4 surface atoms,
5 compounds,
6 oxidant molecules,
7 Residual molecules,
10 Workpiece,
11 solid catalyst,
12 Excitation light source,
13 Excitation light transmission window,
14 through holes,
15 active region,
16 active species,
17 Excitation light,
20 Workpiece,
21 solid catalyst,
22 DC power supply,
23 active species,
24 active region,
30 Workpiece,
31 rotating surface plate,
32 axis of rotation,
33 holder,
34 rotation axis,
35 supply nozzle,
36 containers,
37 channels,
38 heat exchangers,
39 Heater.

Claims (10)

酸化剤を含む処理液中に被加工物を配し、該酸化剤を分解する固体触媒を被加工物の被加工面に接触、若しくは極接近させ、前記触媒上で生成した強力な酸化力を持つ活性種と被加工物の表面原子との化学反応で生成した化合物を除去、あるいは溶出させることによって被加工物を加工する触媒支援型化学加工方法において、前記加工中に、被加工物の被加工面に光を照射する光照射手段、被加工物の被加工面と固体触媒の間に電圧を印加する電圧印加手段、触媒の温度、前記被加工物、及び/又は処理液の温度を制御する温度制御手段のうちの1種又は2種以上を組み合わせて適用し、被加工面を加工することを特徴とする触媒支援型化学加工方法。   A work piece is disposed in a processing solution containing an oxidant, and a solid catalyst that decomposes the oxidant is brought into contact with or in close proximity to the work surface of the work piece, thereby generating strong oxidizing power generated on the catalyst. In a catalyst-assisted chemical processing method for processing a workpiece by removing or eluting a compound generated by a chemical reaction between an active species having and a surface atom of the workpiece, the workpiece is coated during the processing. Light irradiation means for irradiating the processing surface with light, voltage application means for applying a voltage between the processing surface of the workpiece and the solid catalyst, temperature of the catalyst, temperature of the workpiece and / or processing liquid A catalyst-assisted chemical processing method characterized by applying one or more of temperature control means to be combined and processing a surface to be processed. 前記処理液に酸化剤を安定化する安定化剤を添加することで、該酸化剤の分解速度を制御する請求項1記載の触媒支援型化学加工方法。   The catalyst-assisted chemical processing method according to claim 1, wherein a decomposition rate of the oxidizing agent is controlled by adding a stabilizing agent that stabilizes the oxidizing agent to the treatment liquid. 前記酸化剤がH22若しくはO3である請求項1又は2記載の触媒支援型化学加工方法。 The catalyst-assisted chemical processing method according to claim 1 or 2, wherein the oxidizing agent is H 2 O 2 or O 3 . 前記固体触媒が、Fe、Ni、Co、Cu、Cr、Tiからなる遷移金属、白金、金等の貴金属、セラミックス系の金属酸化物、固体塩基性触媒から選択した1種又は2種以上の組み合わせからなる請求項1〜3何れかに記載の触媒支援型化学加工方法。   The solid catalyst is a transition metal composed of Fe, Ni, Co, Cu, Cr, Ti, a noble metal such as platinum or gold, a ceramic metal oxide, or one or a combination of two or more selected from solid basic catalysts The catalyst-assisted chemical processing method according to any one of claims 1 to 3. 前記被加工物が結晶性SiC、焼結SiC、GaN、サファイア、ルビー、ダイヤモンドの内から選ばれた1種である請求項1〜4何れかに記載の触媒支援型化学加工方法   The catalyst-assisted chemical processing method according to any one of claims 1 to 4, wherein the workpiece is one selected from crystalline SiC, sintered SiC, GaN, sapphire, ruby, and diamond. 前記酸化剤がH22、固体触媒がFe、被加工物がSiC、GaN、又はダイヤモンドであり、フェントン反応を利用して加工する請求項1又は2記載の触媒支援型化学加工方法。 The catalyst-assisted chemical processing method according to claim 1 or 2, wherein the oxidizing agent is H 2 O 2 , the solid catalyst is Fe, the workpiece is SiC, GaN, or diamond, and processing is performed using the Fenton reaction. 前記酸化剤がH22、安定化剤が珪酸ソーダである請求項2に記載の触媒支援型化学加工方法。 The catalyst-assisted chemical processing method according to claim 2 , wherein the oxidizing agent is H 2 O 2 and the stabilizer is sodium silicate. 前記固体触媒を微粉末として前記酸化剤の処理液中に分散させ、該固体触媒の微粉末を処理液の流動に伴って被加工物の加工面に供給して加工する請求項1〜7の何れかに記載の触媒支援型化学加工方法。   The solid catalyst is dispersed as a fine powder in the processing solution of the oxidant, and the fine powder of the solid catalyst is supplied to the processing surface of the workpiece along with the flow of the processing solution to be processed. The catalyst-assisted chemical processing method according to any one of the above. 酸化剤を分解する固体触媒を表面に有する平坦な回転定盤及び該定盤の回転軸に対して偏心した回転軸を有するホルダーとを備え、前記触媒の表面と被加工物の被加工面の間に前記酸化剤を含む処理液を供給し、前記ホルダーに保持した被加工物を前記定盤に所定の押圧力で押圧しながら回転させて、被加工物の被加工面を平坦化加工する触媒支援型化学加工装置において、前記加工中に、被加工物の被加工面に光を照射する光照射手段、被加工物の被加工面と固体触媒の間に電圧を印加する電圧印加手段、触媒の温度、前記被加工物、及び/又は処理液の温度を制御する温度制御手段のうちの1種又は2種以上を組み合わせて適用し、被加工面を加工することを特徴とする触媒支援型化学加工装置。   A flat rotating surface plate having a solid catalyst for decomposing an oxidant on the surface, and a holder having a rotating shaft eccentric to the rotating shaft of the surface plate, the surface of the catalyst and the processing surface of the workpiece A processing solution containing the oxidant is supplied between them, and the work piece held by the holder is rotated while being pressed against the surface plate with a predetermined pressing force to flatten the work surface of the work piece. In the catalyst-assisted chemical processing apparatus, during the processing, a light irradiation means for irradiating light on the work surface of the workpiece, a voltage application means for applying a voltage between the work surface of the work piece and the solid catalyst, A catalyst support characterized by processing a surface to be processed by applying one or a combination of two or more of temperature control means for controlling the temperature of the catalyst, the workpiece, and / or the temperature of the processing liquid. Mold chemical processing equipment. 酸化剤を含む処理液中に、該酸化剤を分解する固体触媒を微粉末として分散させ、該固体触媒の微粉末を処理液の流動に伴って被加工物の被加工面に供給する処理液及び触媒供給手段を必須とし、被加工物の被加工面に光を照射する光照射手段、被加工物の被加工面と固体触媒の間に電圧を印加する電圧印加手段、触媒の温度、前記被加工物、及び/又は処理液の温度を制御する温度制御手段のうちの1種又は2種以上を組み合わせて適用し、被加工面を加工することを特徴とする触媒支援型化学加工装置。   A treatment liquid in which a solid catalyst for decomposing the oxidant is dispersed as a fine powder in a treatment liquid containing an oxidant, and the fine powder of the solid catalyst is supplied to the work surface of the work piece as the treatment liquid flows. And a catalyst supply means are essential, a light irradiation means for irradiating light on the work surface of the work piece, a voltage application means for applying a voltage between the work face of the work piece and the solid catalyst, the temperature of the catalyst, A catalyst-assisted chemical processing apparatus characterized by processing one or two or more types of temperature control means for controlling the temperature of a workpiece and / or a processing solution to process a workpiece surface.
JP2006328515A 2006-08-28 2006-12-05 Catalyst-aided chemical processing method and apparatus Pending JP2008136983A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006328515A JP2008136983A (en) 2006-12-05 2006-12-05 Catalyst-aided chemical processing method and apparatus
US11/892,780 US7651625B2 (en) 2006-08-28 2007-08-27 Catalyst-aided chemical processing method and apparatus
EP20070016757 EP1894900A3 (en) 2006-08-28 2007-08-27 Catalyst-aided chemical processing method and apparatus
EP20110006032 EP2381008A2 (en) 2006-08-28 2007-08-27 Catalyst-aided chemical processing method and apparatus
US12/636,069 US20100147463A1 (en) 2006-08-28 2009-12-11 Catalyst-aided chemical processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006328515A JP2008136983A (en) 2006-12-05 2006-12-05 Catalyst-aided chemical processing method and apparatus

Publications (1)

Publication Number Publication Date
JP2008136983A true JP2008136983A (en) 2008-06-19

Family

ID=39598996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006328515A Pending JP2008136983A (en) 2006-08-28 2006-12-05 Catalyst-aided chemical processing method and apparatus

Country Status (1)

Country Link
JP (1) JP2008136983A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099609A (en) * 2007-10-12 2009-05-07 Kumamoto Univ Processing device and processing method
JP2009117782A (en) * 2007-10-15 2009-05-28 Ebara Corp Flattening method and flattening apparatus
JP2010188487A (en) * 2009-02-19 2010-09-02 Kumamoto Univ Catalyst support type chemical machining method, and machining apparatus using the same
JPWO2011099594A1 (en) * 2010-02-15 2013-06-17 小林 光 Semiconductor device manufacturing method, semiconductor device manufacturing apparatus, semiconductor device, and transfer member
WO2014104009A1 (en) * 2012-12-27 2014-07-03 Hoya株式会社 Mask blank substrate processing device, mask blank substrate processing method, mask blank substrate fabrication method, mask blank fabrication method, and transfer mask fabrication method
JP2015173216A (en) * 2014-03-12 2015-10-01 国立大学法人大阪大学 Processing method and apparatus for wide bandgap semiconductor substrate
JP2015231939A (en) * 2011-12-06 2015-12-24 国立大学法人大阪大学 Method for working glass material and device therefor
KR20160143649A (en) 2014-04-18 2016-12-14 가부시키가이샤 에바라 세이사꾸쇼 Substrate processing device, substrate processing system, and substrate processing method
WO2017141918A1 (en) * 2016-02-16 2017-08-24 国立大学法人熊本大学 Processing method and processing apparatus
US10199242B2 (en) 2014-12-31 2019-02-05 Osaka University Planarizing processing method and planarizing processing device
US10297475B2 (en) 2007-10-15 2019-05-21 Ebara Corporation Flattening method and flattening apparatus
US10770301B2 (en) 2016-03-11 2020-09-08 Toho Engineering Co., Ltd. Planarization processing device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267693A (en) * 1998-03-25 1999-10-05 Japan Organo Co Ltd Treatment of waste water of silicon wafer polishing
JPH11297647A (en) * 1998-04-15 1999-10-29 Nec Corp Method and device for supplying chemical/mechanical polishing liquid
JP2000195835A (en) * 1998-12-24 2000-07-14 Toshiba Corp Manufacture of semiconductor device and manufacturing apparatus of the device
JP2002301377A (en) * 2001-04-04 2002-10-15 Ebara Jitsugyo Co Ltd Metal carrying catalyst and method for treating water using the same
JP2002346915A (en) * 2001-05-23 2002-12-04 Japan Science & Technology Corp Chemical mechanical polishing method for diamond thin film
JP2003095622A (en) * 2001-09-21 2003-04-03 Nicca Chemical Co Ltd Hydrogen peroxide stabilizer
JP2006114632A (en) * 2004-10-13 2006-04-27 Kazuto Yamauchi Catalyst-assisted chemical processing method
JP2006121111A (en) * 1999-11-16 2006-05-11 Denso Corp Mechanochemical polishing apparatus
JP2006224252A (en) * 2005-02-18 2006-08-31 Kumamoto Univ Polishing apparatus
JP2007283410A (en) * 2006-04-12 2007-11-01 Kumamoto Univ Catalyst support type chemical machining method
JP2008121099A (en) * 2006-10-18 2008-05-29 Osaka Univ Catalyst-aided chemical processing method and apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267693A (en) * 1998-03-25 1999-10-05 Japan Organo Co Ltd Treatment of waste water of silicon wafer polishing
JPH11297647A (en) * 1998-04-15 1999-10-29 Nec Corp Method and device for supplying chemical/mechanical polishing liquid
JP2000195835A (en) * 1998-12-24 2000-07-14 Toshiba Corp Manufacture of semiconductor device and manufacturing apparatus of the device
JP2006121111A (en) * 1999-11-16 2006-05-11 Denso Corp Mechanochemical polishing apparatus
JP2002301377A (en) * 2001-04-04 2002-10-15 Ebara Jitsugyo Co Ltd Metal carrying catalyst and method for treating water using the same
JP2002346915A (en) * 2001-05-23 2002-12-04 Japan Science & Technology Corp Chemical mechanical polishing method for diamond thin film
JP2003095622A (en) * 2001-09-21 2003-04-03 Nicca Chemical Co Ltd Hydrogen peroxide stabilizer
JP2006114632A (en) * 2004-10-13 2006-04-27 Kazuto Yamauchi Catalyst-assisted chemical processing method
JP2006224252A (en) * 2005-02-18 2006-08-31 Kumamoto Univ Polishing apparatus
JP2007283410A (en) * 2006-04-12 2007-11-01 Kumamoto Univ Catalyst support type chemical machining method
JP2008121099A (en) * 2006-10-18 2008-05-29 Osaka Univ Catalyst-aided chemical processing method and apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099609A (en) * 2007-10-12 2009-05-07 Kumamoto Univ Processing device and processing method
US10297475B2 (en) 2007-10-15 2019-05-21 Ebara Corporation Flattening method and flattening apparatus
JP2009117782A (en) * 2007-10-15 2009-05-28 Ebara Corp Flattening method and flattening apparatus
JP2012064972A (en) * 2007-10-15 2012-03-29 Ebara Corp Flattening method
US10916455B2 (en) 2007-10-15 2021-02-09 Ebara Corporation Flattening method and flattening apparatus
JP2010188487A (en) * 2009-02-19 2010-09-02 Kumamoto Univ Catalyst support type chemical machining method, and machining apparatus using the same
JP5698684B2 (en) * 2010-02-15 2015-04-08 小林 光 Semiconductor device manufacturing method, semiconductor device manufacturing apparatus, semiconductor device, and transfer member
JPWO2011099594A1 (en) * 2010-02-15 2013-06-17 小林 光 Semiconductor device manufacturing method, semiconductor device manufacturing apparatus, semiconductor device, and transfer member
JP2015231939A (en) * 2011-12-06 2015-12-24 国立大学法人大阪大学 Method for working glass material and device therefor
JP5980957B2 (en) * 2012-12-27 2016-08-31 Hoya株式会社 Mask blank substrate processing apparatus, mask blank substrate processing method, mask blank substrate manufacturing method, mask blank manufacturing method, and transfer mask manufacturing method
WO2014104009A1 (en) * 2012-12-27 2014-07-03 Hoya株式会社 Mask blank substrate processing device, mask blank substrate processing method, mask blank substrate fabrication method, mask blank fabrication method, and transfer mask fabrication method
US10481488B2 (en) 2012-12-27 2019-11-19 Hoya Corporation Mask blank substrate processing device, mask blank substrate processing method, mask blank substrate fabrication method, mask blank fabrication method, and transfer mask fabrication method
JP2015173216A (en) * 2014-03-12 2015-10-01 国立大学法人大阪大学 Processing method and apparatus for wide bandgap semiconductor substrate
KR20200067909A (en) 2014-04-18 2020-06-12 가부시키가이샤 에바라 세이사꾸쇼 Substrate processing device, substrate processing system, and substrate processing method
US10665487B2 (en) 2014-04-18 2020-05-26 Ebara Corporation Substrate processing apparatus, substrate processing system, and substrate processing method
KR20200067910A (en) 2014-04-18 2020-06-12 가부시키가이샤 에바라 세이사꾸쇼 Substrate processing device, substrate processing system, and substrate processing method
KR20200142120A (en) 2014-04-18 2020-12-21 가부시키가이샤 에바라 세이사꾸쇼 Substrate processing device and substrate processing method
KR20160143649A (en) 2014-04-18 2016-12-14 가부시키가이샤 에바라 세이사꾸쇼 Substrate processing device, substrate processing system, and substrate processing method
US11450544B2 (en) 2014-04-18 2022-09-20 Ebara Corporation Substrate processing apparatus, substrate processing system, and substrate processing method
US12062563B2 (en) 2014-04-18 2024-08-13 Ebara Corporation Substrate processing apparatus, substrate processing system, and substrate processing method
US10199242B2 (en) 2014-12-31 2019-02-05 Osaka University Planarizing processing method and planarizing processing device
US10665480B2 (en) 2014-12-31 2020-05-26 Osaka University Planarizing processing method and planarizing processing device
JPWO2017141918A1 (en) * 2016-02-16 2018-12-06 国立大学法人 熊本大学 Processing method and processing apparatus
WO2017141918A1 (en) * 2016-02-16 2017-08-24 国立大学法人熊本大学 Processing method and processing apparatus
US10770301B2 (en) 2016-03-11 2020-09-08 Toho Engineering Co., Ltd. Planarization processing device

Similar Documents

Publication Publication Date Title
JP2008136983A (en) Catalyst-aided chemical processing method and apparatus
US7651625B2 (en) Catalyst-aided chemical processing method and apparatus
JP5007384B2 (en) Catalyst-assisted chemical processing method and apparatus
JP2008081389A (en) Catalyst-aided chemical processing method and apparatus
JP4873694B2 (en) Catalyst-assisted chemical processing method
JP5963223B2 (en) Glass material processing method and apparatus
JP6206847B2 (en) Wide band gap semiconductor substrate processing method and apparatus
JP4982742B2 (en) Catalytic chemical processing method and apparatus using magnetic fine particles
JP5103631B2 (en) Processing method
JP2003113370A (en) Slurry for chemical and mechanical polishing (cmp), method of producing semiconductor device, apparatus for producing semiconductor device and method of handling cmp slurry
EP1793021A2 (en) Method for semiconductor processing using silicon carbide article
JP2009238891A (en) Method of manufacturing sic single-crystal substrate
JPWO2007063987A1 (en) Processing and cleaning method and apparatus using ultrapure water plasma bubbles
JP5343250B2 (en) Catalyst-assisted chemical processing method and processing apparatus using the same
JP6188152B2 (en) Method and apparatus for planarizing Si substrate
JP2009113272A (en) Cutting method of hard material
JP2015127078A (en) Processing method and processing device
JP2011120989A (en) Surface processing method
JP5315573B2 (en) Processing apparatus and processing method
JP6928328B2 (en) Processing method and processing equipment
JP4011259B2 (en) Processing method using photocatalyst
CN101955733A (en) Method for preparing grinding fluid, grinding fluid, and chemical mechanical polishing (CMP) method for metal tungsten
JP2010219475A (en) Plasma processing method and processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130122