WO2017141918A1 - Processing method and processing apparatus - Google Patents

Processing method and processing apparatus Download PDF

Info

Publication number
WO2017141918A1
WO2017141918A1 PCT/JP2017/005372 JP2017005372W WO2017141918A1 WO 2017141918 A1 WO2017141918 A1 WO 2017141918A1 JP 2017005372 W JP2017005372 W JP 2017005372W WO 2017141918 A1 WO2017141918 A1 WO 2017141918A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
processing
processed
processing method
contact
Prior art date
Application number
PCT/JP2017/005372
Other languages
French (fr)
Japanese (ja)
Inventor
章亀 久保田
Original Assignee
国立大学法人熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人熊本大学 filed Critical 国立大学法人熊本大学
Priority to JP2018500128A priority Critical patent/JP6928328B2/en
Publication of WO2017141918A1 publication Critical patent/WO2017141918A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a processing method and a processing apparatus. Specifically, the present invention relates to a processing method and a processing apparatus capable of realizing high-efficiency and high-precision processing with a simple configuration by dry polishing for processing diamond or the like.
  • Diamond has a wide band gap of 5.4 eV, has high thermal conductivity, and is excellent in dielectric breakdown electric field, charge mobility, and the like, and thus is regarded as a promising material for next-generation power semiconductor devices.
  • a polishing platen is brought into contact with the surface to be polished of a substrate made of diamond at high pressure, and the substrate is rubbed relative to the polishing platen while irradiating the polishing surface of the substrate with ultraviolet rays from the back surface of the polishing platen.
  • a technique of polishing by moving see, for example, Patent Document 1.
  • the surface of the surface plate is hydrophilized, thereby increasing the reaction sites with the workpiece surface atoms and chemically processing the atoms on the workpiece surface to perform processing. is there.
  • Patent Document 1 and Patent Document 2 there is a restriction on the installation place of the ultraviolet light source due to the configuration of the processing apparatus that relatively displaces the surface plate and the workpiece holding portion. That is, the existing processing apparatus cannot be used as it is, and it is necessary to manufacture a special processing apparatus for providing an ultraviolet light source.
  • the present invention was devised in view of the above points, and provides a processing method and a processing apparatus capable of realizing high-efficiency and high-precision processing with a simple configuration by dry polishing for processing diamond or the like. It is intended to provide.
  • the processing method of the present invention brings a processing member made of a metal oxide into contact with a workpiece, supplies ozone gas to a contact site, and also connects the processing member to the workpiece. And a step of displacing in a state of being brought into contact with.
  • the contact part can be placed in an ozone gas environment by bringing the workpiece into contact with the workpiece and supplying ozone gas to the contact part. That is, although ozone gas is an unstable molecule, ozone gas can be localized in the same region by supplying ozone gas to the contact portion.
  • the contact site is in an ozone gas environment, it is possible to secure atomic oxygen necessary for stable processing.
  • the surface of the workpiece is cleaned and made hydrophilic by utilizing atomic oxygen generated by the thermal decomposition of ozone gas at the contact portion between the workpiece and the workpiece, that is, the position where the workpiece is processed.
  • the workpiece is made of any one of diamond, polycrystalline diamond, CVD diamond, and DLC film, sufficiently stable processing can be performed on the workpiece.
  • the processed member is made of glass containing SiO 2 as a main component and the workpiece is made of SiC, sufficiently stable processing for SiC can be performed.
  • the ozone gas contains an alkaline solution
  • the tribochemical reaction generated on the friction surface between the workpiece and the workpiece can be promoted, and the oxide on the workpiece surface can be generated and preferentially removed. It will be a thing.
  • the alkaline solution here is a solution exhibiting alkalinity such as alkaline electrolyzed water, NaOH, KOH, and the like.
  • alkaline electrolyzed water when the alkaline solution is alkaline electrolyzed water, it becomes possible to promote the tribochemical reaction with ozone gas containing alkaline electrolyzed water. Moreover, since alkaline electrolyzed water has high safety at the time of handling and can be generated relatively easily, the processing method can be made safer and simpler.
  • the alkaline electrolyzed water here means alkaline water having a pH of 9.0 or higher.
  • the charged state of the surface of the processed member and the workpiece is changed. Stabilize. Then, the charged state of the surface of the workpiece and the workpiece is controlled by relatively displacing the workpiece and the workpiece in which the charged state of the surface is stabilized.
  • the surface can be physically and chemically processed.
  • the charge amount is controlled by supplying N 2 gas to the contact portion between the processed member and the workpiece, the charged state of the surface of the processed member and the workpiece can be more easily controlled, and the surface roughness is increased.
  • the accuracy of the height can be further increased, and the processing efficiency can be further improved.
  • the surface of the workpiece is cleaned and made hydrophilic by utilizing atomic oxygen generated by the thermal decomposition of ozone at the contact portion between the workpiece and the workpiece, that is, the position where the workpiece is processed.
  • atomic oxygen generated by the thermal decomposition of ozone at the contact portion between the workpiece and the workpiece that is, the position where the workpiece is processed.
  • Examples of the “processed member” include metals such as iron, nickel, and Co, SiO 2 , ZrO 2 , Al 2 O 3 , TiO 2, Fe 2 O 3 , MgO, CaO, Na 2 O, and K 2 O. And metal oxides such as CeO 2 , ceramics such as SiC, SiN, and Al 2 O 3 , and processed members made of the constituent materials thereof. Further, as workpieces, diamond-related materials such as diamond, polycrystalline diamond, CVD diamond, DLC film, hard and brittle materials such as SiC, GaN, sapphire, SiC ceramics, Si 3 N 4 ceramics, AIN, glass, etc. Can be mentioned.
  • the processing method of the present invention brings a processing member made of a metal oxide into contact with a workpiece, supplies ozone gas to a contact site, and applies the processing member to the processing target.
  • the workpiece is made of any one of glass whose main component is alumina ceramics or SiO 2
  • the workpiece is made of a GaN It is configured.
  • the contact part can be placed in an ozone gas environment by bringing the workpiece into contact with the workpiece and supplying ozone gas to the contact part. That is, although ozone gas is an unstable molecule, ozone gas can be localized in the same region by supplying ozone gas to the contact portion.
  • the contact site is in an ozone gas environment, it is possible to secure atomic oxygen necessary for stable processing.
  • the surface of the workpiece is cleaned and made hydrophilic by utilizing atomic oxygen generated by the thermal decomposition of ozone gas at the contact portion between the workpiece and the workpiece, that is, the position where the workpiece is processed.
  • the processed member is made of any one of alumina ceramics or glass mainly composed of SiO 2 and the workpiece is made of GaN, sufficiently stable processing can be performed on GaN. .
  • the ozone gas when the ozone gas contains alkaline electrolyzed water, it promotes the tribochemical reaction that occurs on the friction surface between the workpiece and the workpiece, and generates and preferentially removes oxides on the workpiece surface. It will be possible. As a result, in addition to processing using atomic oxygen generated by thermal decomposition of ozone gas, processing by a tribochemical reaction is promoted, the accuracy of surface roughness can be further improved, and processing efficiency can be improved.
  • the alkaline solution here is a solution exhibiting alkalinity such as alkaline electrolyzed water, NaOH, KOH, and the like.
  • alkaline electrolyzed water here means alkaline water having a pH of 9.0 or higher.
  • a processing apparatus includes a processing member made of a metal oxide, a holding mechanism that holds a predetermined workpiece in contact with the processing member, and a processing member. And an ozone gas supply unit that supplies ozone gas to a contact portion with the workpiece, and a drive unit that displaces the workpiece in a state where the workpiece and the workpiece are in contact with each other.
  • the contact portion is placed in an ozone gas environment by a holding mechanism that holds a predetermined workpiece in contact with the workpiece and an ozone gas supply unit that supplies ozone gas to the contact portion between the workpiece and the workpiece.
  • a holding mechanism that holds a predetermined workpiece in contact with the workpiece
  • an ozone gas supply unit that supplies ozone gas to the contact portion between the workpiece and the workpiece.
  • the contact site is in an ozone gas environment, it is possible to secure atomic oxygen necessary for stable processing.
  • the surface of the workpiece is cleaned and made hydrophilic by utilizing atomic oxygen generated by the thermal decomposition of ozone at the contact portion between the workpiece and the workpiece, that is, the position where the workpiece is processed.
  • the workpiece is made of any one of diamond, polycrystalline diamond, CVD diamond, and DLC film, sufficiently stable processing can be performed on the workpiece.
  • the processed member is made of glass containing SiO 2 as a main component and the workpiece is made of SiC, sufficiently stable processing for SiC can be performed.
  • the ozone gas contains an alkaline solution
  • the tribochemical reaction generated on the friction surface between the workpiece and the workpiece can be promoted, and the oxide on the workpiece surface can be generated and preferentially removed. It will be a thing.
  • the alkaline solution here is a solution exhibiting alkalinity such as alkaline electrolyzed water, NaOH, KOH, and the like.
  • alkaline electrolyzed water when the alkaline solution is alkaline electrolyzed water, it becomes possible to promote the tribochemical reaction with ozone gas containing alkaline electrolyzed water. Moreover, since alkaline electrolyzed water has high safety at the time of handling and can be generated relatively easily, the processing method can be made safer and simpler.
  • the alkaline electrolyzed water here means alkaline water having a pH of 9.0 or higher.
  • the charged state of the surface of the processed member and the workpiece is changed. Stabilize. Then, the charged state of the surface of the workpiece and the workpiece is controlled by relatively displacing the workpiece and the workpiece in which the charged state of the surface is stabilized.
  • the surface can be physically and chemically processed.
  • the charge amount is controlled by supplying N 2 gas to the contact portion between the processed member and the workpiece, the charged state of the surface of the processed member and the workpiece can be more easily controlled, and the surface roughness is increased.
  • the accuracy of the height can be further increased, and the processing efficiency can be further improved.
  • the surface of the workpiece is cleaned and made hydrophilic by utilizing atomic oxygen generated by the thermal decomposition of ozone at the contact portion between the workpiece and the workpiece, that is, the position where the workpiece is processed.
  • atomic oxygen generated by the thermal decomposition of ozone at the contact portion between the workpiece and the workpiece that is, the position where the workpiece is processed.
  • Examples of the “processed member” include metals such as iron, nickel, and Co, SiO 2 , ZrO 2 , Al 2 O 3 , TiO 2, Fe 2 O 3 , MgO, CaO, Na 2 O, and K 2 O. Inorganic oxides such as CeO 2 , ceramics such as SiC, SiN, and Al 2 O 3 , and processed members made of constituent materials composed of these. Further, as workpieces, diamond-related materials such as diamond, polycrystalline diamond, CVD diamond, DLC film, hard and brittle materials such as SiC, GaN, sapphire, SiC ceramics, Si 3 N 4 ceramics, AIN, glass, etc. Can be mentioned.
  • a processing apparatus of the present invention includes a processing member made of a metal oxide, a holding mechanism for holding a predetermined workpiece in contact with the processing member, a processing member, An ozone gas supply unit that supplies ozone gas to a contact portion with the workpiece, and a drive unit that displaces the workpiece in a state where the workpiece and the workpiece are in contact with each other.
  • the workpiece is made of alumina ceramics or SiO 2.
  • the workpiece is made of GaN.
  • the contact portion is placed in an ozone gas environment by a holding mechanism that holds a predetermined workpiece in contact with the workpiece and an ozone gas supply unit that supplies ozone gas to the contact portion between the workpiece and the workpiece.
  • a holding mechanism that holds a predetermined workpiece in contact with the workpiece
  • an ozone gas supply unit that supplies ozone gas to the contact portion between the workpiece and the workpiece.
  • the contact site is in an ozone gas environment, it is possible to secure atomic oxygen necessary for stable processing.
  • the surface of the workpiece is cleaned and made hydrophilic by utilizing atomic oxygen generated by the thermal decomposition of ozone at the contact portion between the workpiece and the workpiece, that is, the position where the workpiece is processed.
  • the processed member is made of any one of alumina ceramics or glass mainly composed of SiO 2 and the workpiece is made of GaN, sufficiently stable processing can be performed on GaN. .
  • the ozone gas when the ozone gas contains alkaline electrolyzed water, it promotes the tribochemical reaction that occurs on the friction surface between the workpiece and the workpiece, and generates and preferentially removes oxides on the workpiece surface. It will be possible. As a result, in addition to processing using atomic oxygen generated by thermal decomposition of ozone gas, processing by a tribochemical reaction is promoted, the accuracy of surface roughness can be further improved, and processing efficiency can be improved.
  • the alkaline solution here is a solution exhibiting alkalinity such as alkaline electrolyzed water, NaOH, KOH, and the like.
  • alkaline electrolyzed water here means alkaline water having a pH of 9.0 or higher.
  • the processing method of the present invention supplies at least one of a cation or an anion to at least one of a processed member or a workpiece processed by the processed member.
  • the method includes a step of controlling the amount of charge and relatively displacing the workpiece and the workpiece in contact with each other.
  • the charged state of the surface of the processed member and the workpiece is changed. Stabilize. Then, the charged state of the surface of the workpiece and the workpiece is controlled by relatively displacing the workpiece and the workpiece in which the charged state of the surface is stabilized.
  • the surface can be physically and chemically processed.
  • At least one of a cation and an anion is supplied to at least one of the processed member or workpiece, and the charged state of the surface of the processed member and workpiece is controlled, and the surface roughness is increased. This achieves machining with high accuracy and improved machining efficiency.
  • the surface of the workpiece can be processed by supplying anions and cations to at least one of the workpiece or the workpiece to control the charged state of the surfaces of the workpiece and the workpiece.
  • the surface of the processed member is irradiated with ultraviolet light or plasma to clean and hydrophilize the surface of the processed member, it becomes easier to control the charged state of the surface of the processed member and the workpiece, The accuracy of the surface roughness can be further increased, and the processing efficiency can be further improved.
  • N 2 gas when N 2 gas is supplied to the contact portion between the workpiece and the workpiece, it becomes easier to control the charged state of the surface of the workpiece and workpiece, and the accuracy of the surface roughness is further improved. And processing efficiency can further be improved.
  • the charged state of the surface of the processed member and the workpiece is controlled, and the processed member
  • the surface of the workpiece is physically and chemically processed by controlling the charged state of the surface of the workpiece and workpiece by displacing the workpiece while the outermost surface of the workpiece is in contact with the workpiece. Is realized. Therefore, as compared with a general ultraviolet light source, stable processing is possible only by supplying at least one of a cation and an anion.
  • Examples of the “processed member” include metals such as iron, nickel, and Co, SiO 2 , ZrO 2 , Al 2 O 3 , TiO 2, Fe 2 O 3 , MgO, CaO, Na 2 O, and K 2 O. Inorganic oxides such as CeO 2 , ceramics such as SiC, SiN, and Al 2 O 3 , and processed members made of constituent materials composed of these. Further, as workpieces, diamond-related materials such as diamond, polycrystalline diamond, CVD diamond, DLC film, hard and brittle materials such as SiC, GaN, sapphire, SiC ceramics, Si 3 N 4 ceramics, AIN, glass, etc. Can be mentioned.
  • a processing apparatus includes a processing member and at least one of the processing member or a workpiece processed by the processing member. The same as the processing member in a state in which the processing member and the workpiece are in contact with each other, a charging processing unit that supplies at least one of the ions to control the charge amount, a holding mechanism that holds a predetermined workpiece, and the processing member. A drive unit that relatively displaces the workpiece.
  • At least one of the processed member, the processed member, or the workpiece processed by the processed member is supplied with at least one of a cation or an anion to control the charge amount. This stabilizes the charged state of the surface of the workpiece and the workpiece.
  • the processing member the holding mechanism that holds the predetermined workpiece, and the driving member that relatively displaces the processing member and the workpiece in a state where the processing member and the workpiece are in contact with each other.
  • the surface of the workpiece can be physically and chemically processed after the charged state of the surface of the workpiece is stabilized.
  • At least one of cations or anions is supplied to at least one of the processed member or workpiece in the charging processing unit, and the charged state of the surface of the processed member and workpiece is controlled, It realizes machining with high surface roughness accuracy and improved machining efficiency.
  • a cleaning and hydrophilic treatment section is provided to hydrophilize the surface of the processed member, it becomes easier to control the charged state of the surface of the processed member and the workpiece, thereby further improving the accuracy of the surface roughness.
  • the processing efficiency can be further improved.
  • N 2 gas supply unit that supplies N 2 gas to the contact portion between the workpiece and the workpiece.
  • the charged state of the surface of the processed member and the workpiece is controlled by a charging processing unit that supplies at least one of a cation or an anion to at least one of the processed member or the workpiece,
  • the surface of the workpiece is physically and chemically controlled by controlling the charged state of the surface of the workpiece and workpiece by a drive unit that displaces the workpiece while the outermost surface of the workpiece is in contact with the workpiece. Machining is realized. Further, since it is only necessary to replace the ultraviolet light source of the existing processing apparatus with a charging device or the like, the processing system can be easily constructed.
  • high-efficiency and high-precision processing can be realized with a simple configuration by dry polishing for processing diamond or the like.
  • Example 10 is a graph showing the relationship between the surface potential of Comparative Example 11 and the processing time. It is the data which measured the surface roughness of a part of process area
  • FIG. 1 is a schematic view for explaining a processing apparatus to which the present invention is applied.
  • the processing apparatus 1 shown here has a sapphire surface plate 2 and a sample holder 4 for holding a single crystal diamond 3. Further, the processing apparatus 1 includes an ozone supply unit 5 that supplies ozone gas to a contact portion between the sapphire surface plate 2 and the single crystal diamond 3.
  • the single crystal diamond 4 is an example of a workpiece.
  • the single crystal diamond 3 which is a workpiece comes into contact with the upper surface of the sapphire surface plate 2 (the upper surface in FIG. 1), and the workpiece is polished.
  • the sapphire surface plate 2 is an example of a processed member.
  • the ozone supply unit 5 is disposed above the sapphire surface plate 2. Further, the tip of the ozone supply unit 5, that is, the part from which ozone gas is discharged is directed to the contact portion between the sapphire surface plate 2 and the single crystal diamond 3. Thereby, a contact site
  • the ozone gas is thermally decomposed into atomic oxygen by the frictional heat generated between the sapphire surface plate 2 and the single crystal diamond 3 at the contact portion, and the workpiece is stably processed.
  • the processing member is formed of the sapphire surface plate 2
  • any material that can process the workpiece is sufficient. It is not always necessary to form the sapphire surface plate 2.
  • metals such as iron, nickel, Co, inorganic oxides such as SiO 2 , ZrO 2 , Al 2 O 3 , TiO 2, Fe 2 O 3 , MgO, CaO, Na 2 O, K 2 O, CeO 2 , SiC, SiN, may ceramics such as Al 2 O 3, and be formed of a constituent material consisting.
  • the sapphire surface plate 2 is fixed on a processing table 6 whose rotation speed can be controlled, and the sapphire surface plate 2 is configured to be rotatable in a direction indicated by a symbol A in FIG.
  • sample holder 4 is configured to be rotatable in a direction indicated by a symbol B in FIG. 1 around a rotation axis 7 that is eccentric with respect to the rotation axis of the sapphire surface plate 2, and holds the single crystal diamond 3. And descends to a position s where the single crystal diamond 3 and the sapphire surface plate 2 come into contact with each other.
  • symbol Y in a figure has shown the direction which applies a load.
  • the single crystal diamond 3 is described as an example of the workpiece held by the sample holder 4, but the workpiece is not limited to the single crystal diamond 3.
  • diamond-related materials such as diamond, polycrystalline diamond, CVD diamond, and DLC film, hard brittle materials such as SiC, GaN, sapphire, SiC ceramics, Si 3 N 4 ceramics, AIN, and glass may be used.
  • ozone gas is supplied from the ozone supply unit 5 to the contact portion between the sapphire surface plate 2 and the single crystal diamond 3 while rotating the sapphire surface plate 2.
  • the ozone gas is thermally decomposed by frictional heat generated at the contact portion to generate atomic oxygen.
  • the surface of the sapphire surface plate 2 is cleaned and hydrophilized with the generated atomic oxygen. That is, the surface of the sapphire surface plate 2 is modified.
  • the surface of the single crystal diamond 3 is physically and chemically removed by rotating the sapphire surface plate 2 in a state where the upper surface of the surface modified sapphire surface 2 and the single crystal diamond 3 are in contact with each other. It becomes.
  • a device provided with a humidification processing unit in addition to the apparatus configuration shown in FIG. 1 can be adopted.
  • the humidification processing unit is installed above the processing member.
  • a humidification process part is a member which humidifies the surface of a processing member.
  • a method of supplying ozone gas to which moisture has been supplied to the contact portion between the sapphire surface plate 2 and the single crystal diamond 3 can also be employed. By performing humidification, the processing of the workpiece can be further stabilized.
  • ozone gas When ozone gas contains alkaline electrolyzed water, it promotes the tribochemical reaction that occurs on the friction surface between the workpiece and the workpiece, generates oxide on the workpiece surface, and can be removed preferentially. Become. As a result, in addition to processing using atomic oxygen generated by thermal decomposition of ozone gas, processing by a tribochemical reaction is promoted, the accuracy of surface roughness can be further improved, and processing efficiency can be improved.
  • the solution contained in the ozone gas may be an alkaline solution, and is not limited to alkaline electrolyzed water.
  • an alkaline solution such as NaOH or KOH can be contained in ozone gas and used for processing.
  • a processing method and a processing apparatus to which the present invention is applied use atomic oxygen generated by thermal decomposition of ozone at a contact portion between a processing member and a workpiece, that is, a position where the workpiece is processed. Therefore, the surface of the processed member can be more uniformly processed as compared with an apparatus that irradiates ultraviolet light. As a result, more stable and high machining accuracy can be realized.
  • the processing apparatus to which the present invention is applied can be easily constructed only by arranging the ozone supply unit in an existing apparatus.
  • Example shown here is an example and does not limit this invention.
  • Example 1 and Comparative Examples 1 and 2 As a processing method of Example 1 of the present invention, processing was performed under the following conditions. First, as a processing method of Example 1 of the present invention, single crystal diamond (3 mm ⁇ 3 mm) as a workpiece is pressed against a sapphire surface plate with a load of 2 kg (22.2 kg / cm 2 ), and the sapphire surface plate is rotated. The sample holder was rotated at 1000 rpm while rotating at several 250 rpm, a rocking distance of 3 mm, and a rocking speed of 0.1 mm / s.
  • ozone gas (5 L / min) was supplied to the contact site
  • a method in which ozone was not supplied by the ozone supply unit in the same manner as in Example 1 was referred to as Comparative Example 1.
  • an ultraviolet light source is further installed in the apparatus configuration of the processing method of Example 1 described above, and while irradiating ultraviolet light (172 nm) on the sapphire surface plate from above with an irradiation intensity of 6 mW / cm 2 , ozone Comparative Example 2 was a sample that did not supply ozone by the supply unit.
  • the surface roughness of the single crystal diamond after processing was measured with a non-contact shape measuring machine and evaluated.
  • FIG. 2 shows the result of Comparative Example 1
  • FIG. 3 shows the result of Comparative Example 2
  • FIG. 4 shows the result of Example 1.
  • the machining surface of the workpiece is machined with high accuracy by the machining of Example 1 compared to the machining surface of the workpiece of Comparative Example 1, and in the measurement range of the workpiece surface.
  • the value of arithmetic average roughness (Ra) was 0.119 nm, and it was found that it was processed smoothly.
  • the value of arithmetic average roughness (Ra) of Comparative Example 1 was 2.213 nm.
  • the processed surface of the workpiece is processed with higher accuracy by the processing of Example 1 than the processed surface of the workpiece of Comparative Example 2. It was.
  • the value of arithmetic mean roughness (Ra) in the measurement range of the to-be-processed surface of the comparative example 2 was 0.177 nm.
  • Example 1 The processing efficiency in Example 1 was 2453.5 nm / h, indicating a sufficient processing efficiency. On the other hand, the processing efficiency in Comparative Example 1 was 33.3 nm / h. In addition, the processing efficiency in Comparative Example 2 was 238.1 nm / h.
  • Example 2 and Comparative Example 3 As a processing method of Example 2 of the present invention, processing was performed under the following conditions. First, as a processing method of Example 2 of the present invention, a load of 3 kg is applied to a SiC substrate (Single-crystal 4H-SiC 4 ° off) (2 inches) as a workpiece on a soda-lime glass surface plate. The soda-lime glass surface plate was rotated at a rotation speed of 200 rpm, a rocking distance of 6 mm, and a rocking speed of 0.1 mm / s, and the sample holder was rotated at 30 rpm.
  • SiC substrate Single-crystal 4H-SiC 4 ° off
  • the soda-lime glass surface plate was rotated at a rotation speed of 200 rpm, a rocking distance of 6 mm, and a rocking speed of 0.1 mm / s, and the sample holder was rotated at 30 rpm.
  • the ultraviolet light source was installed and the soda-lime glass surface plate was irradiated with ultraviolet light (172 nm) from above under the condition of irradiation intensity of 6 mW / cm 2 .
  • ozone gas (5 L / min) was supplied to the contact site
  • Soda lime glass is an example of glass containing SiO 2 as a main component.
  • the same sample before carrying out the processing method of Example 2 was mechanically polished with diamond abrasive grains as Comparative Example 3. About said Example 2 and Comparative Example 3, the surface roughness of the SiC substrate after a process was measured with the non-contact shape measuring machine, and evaluation was performed.
  • FIG. 5 shows the result of Comparative Example 3
  • FIG. 6 shows the result of Example 2.
  • the processing surface of the workpiece is processed with high accuracy by the processing of Example 2 compared to the processing surface of the workpiece of Comparative Example 3, and in the measurement range of the processing surface.
  • the value of arithmetic average roughness (Ra) was 0.311 nm, and it was found that it was processed smoothly.
  • the value of arithmetic average roughness (Ra) of Comparative Example 3 was 1.601 nm.
  • Example 2 The working efficiency in Example 2 was 201.3 nm / h, while the working efficiency in Comparative Example 3 was 72.26 nm / h.
  • Example 3 and Comparative Example 4 As a processing method of Example 3 of the present invention, processing was performed under the following conditions. First, as a processing method of Example 3 of the present invention, a GaN substrate (10 mm ⁇ 10 mm) as a workpiece is pressed against an alumina ceramic surface plate with a load of 250 g (250 g / cm 2 ), and the alumina ceramic surface plate is rotated at a rotational speed. The sample holder was rotated at 250 rpm while rotating at 250 rpm, a rocking distance of 10 mm, and a rocking speed of 0.5 mm / s.
  • Example 3 ozone gas (5 L / min) was supplied from the ozone supply unit to the contact portion between the alumina ceramic surface plate and the GaN substrate. Processing for 1 hour was performed in such a situation.
  • the same sample before carrying out the processing method of Example 3 was mechanically polished with diamond abrasive grains as Comparative Example 4. About said Example 3 and Comparative Example 4, the surface roughness of the GaN board
  • FIG. 8 shows the result of Example 3.
  • the machining surface of the workpiece is machined with high accuracy by the machining of Example 3 compared to the machining surface of the workpiece of Comparative Example 4, and in the measurement range of the machining surface.
  • the value of arithmetic average roughness (Ra) was 0.483 nm, and it was found that it was processed smoothly.
  • the arithmetic average roughness (Ra) of Comparative Example 4 was 2.837 nm.
  • Example 4 As a processing method of Example 4 of the present invention, processing was performed under the following conditions. First, as a processing method of Example 4 of the present invention, GaN (gallium nitride) (10 mm ⁇ 10 mm) as a workpiece is pressed against a glass surface plate with a load of 0.5 kg, and the glass surface plate is rotated at 200 rpm. The sample holder was rotated at 31.25 rpm while rotating at a moving distance of 3 mm and a rocking speed of 0.1 mm / s. Further, ozone gas (5 L / min) containing alkaline electrolyzed water having a pH of 9.4 was supplied from the ozone supply unit to the contact portion between the glass surface plate and GaN. Processing for 1 hour was performed in such a situation. About said Example 4, the surface roughness of the GaN before and after a process was measured with the non-contact shape measuring machine, and evaluation was performed.
  • GaN gallium nitride
  • FIG. 10 shows the result after processing.
  • the processed surface of the workpiece before processing is processed with high accuracy by the processing of Example 4, and the value of the arithmetic average roughness (Ra) in the measurement range of the processed surface is It was found to be 0.176 nm and processed smoothly.
  • the arithmetic average roughness (Ra) in the measurement range of the surface to be processed before processing was 0.922 nm.
  • the processing efficiency in Example 4 was 2979 nm / h, indicating a sufficient processing efficiency.
  • FIG. 11 is a schematic diagram for explaining a processing apparatus to which the present invention is applied.
  • the processing apparatus 11 shown here is an insulating synthetic quartz surface plate 12 and charging that changes the charge amount of the synthetic quartz surface plate 12. It has a unit 13 and a sample holder 15 for holding an insulating single crystal diamond 14.
  • the charging unit 13 is an example of a charging processing unit
  • the single crystal diamond 14 is an example of a workpiece.
  • the work piece is polished by the single crystal diamond 14 as the work piece coming into contact with the upper surface of the synthetic quartz surface plate 12 (the upper surface in FIG. 11).
  • the synthetic quartz surface plate 12 is an example of a processed member.
  • the charging unit 13 is disposed above the synthetic quartz surface plate 12 and supplies positive ions or anions to the upper surface of the synthetic quartz surface plate 12 to forcibly control the charge amount of the synthetic quartz surface plate 12 from the outside. .
  • the surface of the synthetic quartz surface plate 12 is modified, and the workpiece is polished by the electrochemical action that the single crystal diamond 14 comes into contact with.
  • the processing member is formed of the insulating synthetic quartz surface plate 12
  • the charging amount can be controlled by the charging unit 13. Any other material is sufficient, and it is not always necessary to form the insulating synthetic quartz surface plate 12.
  • metals such as iron, nickel, Co, inorganic oxides such as SiO 2 , ZrO 2 , Al 2 O 3 , TiO 2, Fe 2 O 3 , MgO, CaO, Na 2 O, K 2 O, CeO 2 , SiC, SiN, may ceramics such as Al 2 O 3, and be formed of a constituent material consisting.
  • the synthetic quartz surface plate 12 is fixed on a processing table 16 whose rotational speed can be controlled, and the synthetic quartz surface plate 12 is configured to be rotatable in the direction indicated by reference numeral A in FIG. Yes.
  • the sample holder 15 is configured to be rotatable in a direction indicated by a symbol B in FIG. 11 around a rotation shaft 17 that is eccentric with respect to the rotation shaft of the synthetic quartz surface plate 12, and holds the single crystal diamond 14. In this state, the single crystal diamond 14 and the synthetic quartz surface plate 12 are lowered from above to a position where they contact each other.
  • symbol Y in a figure has shown the direction which applies a load.
  • the single crystal diamond 14 is described as an example of the workpiece held by the sample holder 15, but the workpiece is not limited to the single crystal diamond 14.
  • diamond-related materials such as diamond, polycrystalline diamond, CVD diamond, and DLC film, hard brittle materials such as SiC, GaN, sapphire, SiC ceramics, Si 3 N 4 ceramics, AIN, and glass may be used.
  • cations or anions are supplied from the charging unit 13 to the synthetic quartz surface plate 12 while rotating the synthetic quartz surface plate 12.
  • the amount of charge on the surface of the synthetic quartz surface plate 12 is controlled and the surface is modified.
  • the surface of the single crystal diamond 14 is physically and chemically removed by rotating the synthetic quartz surface plate 12 in a state where the upper surface of the surface of the synthetic quartz surface plate 12 and the single crystal diamond 14 are in contact with each other. Will be.
  • the configuration of the processing apparatus shown in FIG. 12 may be employed.
  • an ultraviolet light source 19 is further installed in the configuration of the processing apparatus 11 shown in FIG.
  • the ultraviolet light source 19 is located above the synthetic quartz surface plate 12 and is disposed at a position different from the charging unit 13 and irradiates the upper surface of the synthetic quartz surface plate 12 with ultraviolet light.
  • the surface of the synthetic quartz surface plate 12 is cleaned and hydrophilicized by irradiating the upper surface of the synthetic quartz surface plate 12 with ultraviolet light. Specifically, the reaction sites with the atoms on the surface of the single crystal diamond 14 are increased by irradiating ultraviolet light to expose OH groups on the outermost surface portion of the synthetic quartz surface plate 12.
  • the upper surface of the synthetic quartz surface plate 12 with the increased reaction sites contacts the single crystal diamond 14, and the synthetic quartz surface plate 12 rotates, so that the reaction sites are chemically coupled with atoms on the surface of the single crystal diamond 14.
  • the surface of the diamond substrate is physically and chemically removed. That is, the electrochemical efficiency by controlling the charge amount and the effect of ultraviolet light irradiation are added, and the processing efficiency can be further improved.
  • a method of increasing the processing efficiency by adding conditions for humidifying the processed member may be employed.
  • the processing apparatus to which the present invention is applied can be easily constructed only by arranging the charging unit in an existing apparatus.
  • Example shown here is an example and does not limit this invention.
  • Example 5 of the present invention processing was performed under the following conditions. First, as a processing method of Example 5 of the present invention, a single crystal diamond (3 mm ⁇ 3 mm) as a workpiece is pressed on a sapphire surface plate with a load of 2 kg (22.2 kg / cm 2 ), and the sapphire surface plate is rotated. The sample holder was rotated at 1000 rpm while rotating at several 250 rpm, a rocking distance of 3 mm, and a rocking speed of 0.1 mm / s. Anions were supplied from above the sapphire surface plate from the charging unit.
  • Example 6 was prepared by supplying cations from the charging unit in the same manner as in Example 5. Unprocessed single crystal diamond was used as Comparative Example 5. Further, Comparative Example 6 was used in the same manner as in Example 5 except that no anion or cation was supplied and no humidification treatment was performed. That is, this is a method in which the amount of charge of the sapphire surface plate is not controlled, and only physical processing is performed by relative displacement between the processing member and the workpiece. Further, Comparative Example 7 was subjected to the humidification process from above the sapphire surface plate by the humidification unit in the same manner as Comparative Example 6. For the above Examples 5 to 6 and Comparative Examples 5 to 7, the surface roughness of the processed surface was evaluated with a scanning white interferometer. The measurement range is 696 ⁇ m ⁇ 522 ⁇ m.
  • FIG. 13 shows a scanning white interferometer image of Comparative Example 5
  • FIG. 14 shows a scanning white interferometer image of Example 5.
  • the processing surface of the workpiece is processed with high accuracy by the processing of Example 5 compared to the surface of the unprocessed workpiece of Comparative Example 5, and the measurement range of the processing surface
  • the value of the arithmetic average roughness (Ra) at 0.38 was 0.308 nm, indicating that it was processed smoothly.
  • the arithmetic average roughness (Ra) of Comparative Example 5 was 8.118 nm.
  • the processed surface of the workpiece is also processed with high accuracy in the processing of Example 6, and the value of the arithmetic average roughness (Ra) in the measurement range of the processed surface is 0.341 nm, which is smooth. It turned out that it was processed.
  • the arithmetic average roughness (Ra) in the measurement range of the processed surface was 2.595 nm.
  • Example 5 The processing efficiency in Example 5 was 572.2 nm / h, and the processing efficiency in Example 6 was 454.3 nm / h, indicating sufficient processing efficiency.
  • the processing efficiency in Comparative Example 6 was 23.2 nm / h. Further, the processing efficiency in Comparative Example 7 was 99.7 nm / h.
  • Example 7 of the present invention As a processing method of Example 7 of the present invention, an ultraviolet light source was further installed in the apparatus configuration of the processing method of Example 5 described above, and processing was performed under the condition of irradiating the sapphire surface plate with ultraviolet light. Further, in Example 7, as in Example 5, anions were supplied from the charging unit from above the sapphire surface plate. Moreover, the humidification process was given from the upper direction of the sapphire surface plate with the humidification unit. The other conditions are the same as in Example 5.
  • Example 8 was prepared by supplying cations from the charging unit in the same manner as in Example 7. Unprocessed single crystal diamond was used as Comparative Example 8. For Examples 7 to 8 and Comparative Example 8 described above, the surface roughness of the processed surface was evaluated with a scanning white interferometer. The measurement range is 696 ⁇ m ⁇ 522 ⁇ m.
  • FIG. 15 shows a scanning white interferometer image of Comparative Example 8
  • FIG. 16 shows a scanning white interferometer image of Example 7.
  • the processing surface of the workpiece is processed with high accuracy by the processing of Example 7 as compared with the surface of the unprocessed workpiece of Comparative Example 8, and the measurement range of the processing surface
  • the value of the arithmetic average roughness (Ra) was 0.625 nm, and it was found that the film was processed smoothly.
  • the value of arithmetic average roughness (Ra) of Comparative Example 8 was 4.320 nm.
  • the processed surface of the workpiece is also processed with high accuracy in the processing of Example 8, and the value of the arithmetic average roughness (Ra) in the measurement range of the processed surface is 0.924 nm, which is smooth. It turned out that it was processed.
  • Comparative Example 9 is a method in which ultraviolet light irradiation and humidification treatment are performed in the processing method of Example 7, but no anion is supplied from the charging unit. That is, this is a process in which the amount of charge of the sapphire surface plate is not controlled and only the irradiation with ultraviolet light is performed.
  • the other processing conditions are the same as the processing method of Example 7.
  • a humidifying unit that did not perform humidification treatment from above the sapphire surface plate was designated as Comparative Example 10.
  • a groove having a predetermined depth was formed in the single crystal diamond to be processed, and the machining efficiency was calculated from the amount of change in the groove depth before and after the machining.
  • Example 7 The processing efficiency in Example 7 was 3741.4 nm / h or more, and the processing efficiency in Example 8 was 2858.9 nm / h, indicating a sufficient processing efficiency. It became clear that the processing efficiency of Example 7 and Example 8 is a method which shows much higher processing efficiency than the processing efficiency of Example 5 and Example 6 mentioned above. On the other hand, the processing efficiency in Comparative Example 9 was 543.4 nm / h or more. Further, the processing efficiency in Comparative Example 10 was 238.1 nm / h. As described above, the processing efficiency was calculated by calculating the amount of change in the depth of the groove before and after the processing was performed on the single crystal diamond, which is the workpiece, in advance.
  • Example 9 Surface potential of workpiece
  • the charging unit is removed from the apparatus configuration of the processing method of Example 5 described above (no humidification process is performed), and the processing member is changed from a sapphire surface plate to a synthetic quartz surface plate.
  • N 2 gas was supplied in the vicinity of a processing point which is a contact portion between a surface plate and a single crystal diamond which is a workpiece. Processing was performed for 1.5 hours in such a situation.
  • Example 10 was subjected to humidification treatment by a humidification unit in the same manner as in Example 9.
  • Example 11 was prepared by supplying anions from the charging unit in the same manner as in Example 10. Further, Comparative Example 11 was obtained by supplying no N 2 gas from the processing method of Example 9.
  • the surface potential of the synthetic quartz surface plate was measured with a surface potential meter to evaluate the charge amount.
  • 17 to 20 show the relationship between the surface potential and the processing time in a graph.
  • 17 shows the results of Example 9
  • FIG. 18 shows the results of Example 10
  • FIG. 19 shows the results of Example 11, and
  • the vertical axis of the graph is the surface potential, and the horizontal axis is the processing time (min).
  • the surface potential of the surface plate was controlled within a certain range by supplying N 2 gas to the synthetic quartz surface plate. Further, as apparent from FIGS. 18 and 19, the surface potential of the surface plate can be obtained by using both N 2 gas supply and humidification treatment, or N 2 gas supply and humidification treatment and ion supply from the charging unit in combination. It has been found that can be controlled even more strictly.
  • 21 to 24 show scanning white interferometer images. 21 shows the results of Example 9, FIG. 22 shows the results of Example 10, FIG. 23 shows the results of Example 11, and FIG.
  • the machining surface of the workpiece is machined with high accuracy by the machining of Example 9 as compared to the surface of the unmachined workpiece of Comparative Example 11, and the measurement range of the machining surface
  • the value of arithmetic average roughness (Ra) was 0.565 nm, and it was found that the film was processed smoothly.
  • the value of arithmetic average roughness (Ra) of Comparative Example 11 was 1.805 nm.
  • FIGS. 22 and 23 in the processing of Example 10 and Example 11, the processed surface of the workpiece is processed with higher accuracy, and the arithmetic average in the measurement range of the processed surface of Example 6 is obtained.
  • the value of roughness (Ra) was 0.184 nm, and the value of arithmetic average roughness (Ra) in the measurement range of the work surface of Example 11 was 0.149 nm, and it was processed smoothly. I understood.
  • Example 9 The processing efficiency in Example 9 is 586.2 nm / h, the processing efficiency in Example 10 is 1261.8 nm / h, and the processing efficiency in Example 11 is 1560 nm / h. In particular, Example 10 and Example 11 are sufficient. Showed high processing efficiency. On the other hand, the processing efficiency in Comparative Example 11 was 38.33 nm / h.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

[Problem] To provide a processing method and a processing apparatus capable of realizing high-efficiency, high-precision processing with a simple configuration, using dry polishing for processing diamonds, etc. [Solution] A processing apparatus 1 has a sapphire surface plate 2, and a specimen holder 4 for holding a single-crystal diamond 3. The processing apparatus 1 also has an ozone supply unit 5 for supplying ozone gas to the contact site of the sapphire surface plate 2 and the single-crystal diamond 3.

Description

加工方法及び加工装置Processing method and processing apparatus
 本発明は加工方法及び加工装置に関する。詳しくは、ダイヤモンド等を加工するドライ研磨にて、簡易な構成でありながら高能率かつ高精度な加工を実現可能な加工方法及び加工装置に係るものである。 The present invention relates to a processing method and a processing apparatus. Specifically, the present invention relates to a processing method and a processing apparatus capable of realizing high-efficiency and high-precision processing with a simple configuration by dry polishing for processing diamond or the like.
 ダイヤモンドは、5.4eVという広いバンドギャップを持ち、熱伝導率が大きく、絶縁破壊電界や電荷移動度などに優れていることから、次世代パワー半導体デバイス用材料として有力視されている。 Diamond has a wide band gap of 5.4 eV, has high thermal conductivity, and is excellent in dielectric breakdown electric field, charge mobility, and the like, and thus is regarded as a promising material for next-generation power semiconductor devices.
 ダイヤモンドを用いて半導体デバイスを製作するためには、デバイスの下地となるダイヤモンド基板表面を原子レベルで平滑、かつ無擾乱に仕上げる加工技術が必要不可欠であるといわれている。しかしながら、ダイヤモンドは、高硬度かつ化学的に安定であるために、加工することは極めて難しく、加工技術の開発が技術的課題となっている。 In order to manufacture a semiconductor device using diamond, it is said that a processing technique for smoothing the surface of the diamond substrate, which is the base of the device, at an atomic level and without disturbance is indispensable. However, since diamond is highly hard and chemically stable, it is extremely difficult to process it, and the development of processing technology has become a technical issue.
 例えば、従来の加工方法として、化学機械研磨などの砥粒を用いた研磨により化学的除去を行う加工が知られている。しかしながら、研磨剤中での化学反応を利用するため除去速度が遅く、加工能率が不充分である問題があった。 For example, as a conventional processing method, processing for performing chemical removal by polishing using abrasive grains such as chemical mechanical polishing is known. However, since the chemical reaction in the abrasive is used, the removal rate is slow and the processing efficiency is insufficient.
 ここで、上述した溶液環境下での研磨に対して、砥粒を使用せずに加工能率の向上を試みた大気環境下での加工方法が存在する。 Here, there is a processing method in an atmospheric environment where an attempt is made to improve the processing efficiency without using abrasive grains, in contrast to the above-described polishing in a solution environment.
 例えば、ダイヤモンドからなる基板の被研磨面に研磨定盤を高圧で接触させると共に、研磨定盤の裏面から基板の研磨面に紫外線を照射しつつ、基板を研磨定盤に対して相対的に擦動させることにより研磨する技術が提案されている(例えば、特許文献1参照)。 For example, a polishing platen is brought into contact with the surface to be polished of a substrate made of diamond at high pressure, and the substrate is rubbed relative to the polishing platen while irradiating the polishing surface of the substrate with ultraviolet rays from the back surface of the polishing platen. There has been proposed a technique of polishing by moving (see, for example, Patent Document 1).
 また、本願の発明者によって、金属酸化物で構成された研磨定盤に紫外光やプラズマを照射して、定盤表面上のケミカルコンタミネーション(有機汚染物物)を除去するとともに、定盤表面を親水化させる(最表面部にOH基を表出させる)加工方法が提案されている(例えば、特許文献2参照)。 In addition, the inventors of the present application irradiate a polishing platen made of metal oxide with ultraviolet light or plasma to remove chemical contamination (organic contaminants) on the surface of the platen, and the surface of the platen Has been proposed (for example, see Patent Document 2).
 特許文献2に記載の方法では、定盤表面を親水化させることで、被加工物表面原子との反応サイトを増加させ、被加工物表面の原子と化学的に作用させて加工を行うものである。 In the method described in Patent Document 2, the surface of the surface plate is hydrophilized, thereby increasing the reaction sites with the workpiece surface atoms and chemically processing the atoms on the workpiece surface to perform processing. is there.
国際公開第2007/007683号International Publication No. 2007/007683 国際公開第2014/034921号International Publication No. 2014/034921
 しかしながら、特許文献1及び特許文献2に記載の加工方法では、紫外線の照射にて加工を行うが、紫外光は大気中で不安定であり、瞬間的に保有するエネルギーを消失してしまうため、加工部材に均一に照射することが難しかった。そのため、安定的に高い加工精度を実現することが困難であった。 However, in the processing methods described in Patent Document 1 and Patent Document 2, the processing is performed by irradiation with ultraviolet rays, but ultraviolet light is unstable in the atmosphere, and the energy that it holds instantaneously disappears. It was difficult to uniformly irradiate the workpiece. For this reason, it has been difficult to stably achieve high processing accuracy.
 また、特許文献1及び特許文献2に記載の加工では、定盤と被加工物の保持部分を相対的に変位させる加工装置の構成上、紫外光光源の設置場所に制約があった。即ち、既存の加工装置をそのまま利用することができず、紫外光光源を設けるための特別仕様の加工装置を製作する必要があった。 Further, in the processing described in Patent Document 1 and Patent Document 2, there is a restriction on the installation place of the ultraviolet light source due to the configuration of the processing apparatus that relatively displaces the surface plate and the workpiece holding portion. That is, the existing processing apparatus cannot be used as it is, and it is necessary to manufacture a special processing apparatus for providing an ultraviolet light source.
 また、ドライ研磨では、加工部材と被加工物を接触させて相対的に変位させた際に摩擦帯電が生じるものとなる。摩擦帯電により加工部材及び被加工物の表面の帯電状態が不安定となり、加工後の表面粗さや加工能率が高精度に制御できない問題があった。 Also, in dry polishing, frictional charging occurs when the workpiece and workpiece are brought into contact with each other and displaced relatively. The charged state of the surface of the workpiece and the workpiece becomes unstable due to frictional charging, and there is a problem that the surface roughness after machining and the machining efficiency cannot be controlled with high accuracy.
 本発明は以上の点に鑑みて創案されたものであって、ダイヤモンド等を加工するドライ研磨にて、簡易な構成でありながら高能率かつ高精度な加工を実現可能な加工方法及び加工装置を提供することを目的とするものである。 The present invention was devised in view of the above points, and provides a processing method and a processing apparatus capable of realizing high-efficiency and high-precision processing with a simple configuration by dry polishing for processing diamond or the like. It is intended to provide.
[加工方法について]
 上記の目的を達成するために、本発明の加工方法は、金属酸化物で構成された加工部材を被加工物と接触させ、接触部位にオゾンガスを供給すると共に、前記加工部材を前記被加工物に接触させた状態で変位させる工程を備える。
[About processing methods]
In order to achieve the above-mentioned object, the processing method of the present invention brings a processing member made of a metal oxide into contact with a workpiece, supplies ozone gas to a contact site, and also connects the processing member to the workpiece. And a step of displacing in a state of being brought into contact with.
 ここで、加工部材を被加工物と接触させ、接触部位にオゾンガスを供給することによって、接触部位をオゾンガス環境下におくことができる。即ち、オゾンガスは不安定な分子であるが、接触部位にオゾンガスを供給することで、同領域にオゾンガスを局在させることが可能となる。 Here, the contact part can be placed in an ozone gas environment by bringing the workpiece into contact with the workpiece and supplying ozone gas to the contact part. That is, although ozone gas is an unstable molecule, ozone gas can be localized in the same region by supplying ozone gas to the contact portion.
 また、加工部材を被加工物に接触させた状態で変位させる工程によって、接触部位に摩擦熱を生じさせることが可能となる。この摩擦熱は供給されるオゾンガスを熱分解し、オゾンガスから原子状酸素を生成する。生成した原子状酸素は、大気環境下で、被加工物との化学反応(加工)を担う加工部材の最表面の水酸基(OH基)へのカルボキシル基等の結合、即ち、有機物に由来するコンタミネーションを抑止する。原子状酸素が有機物由来の汚れを分解して清浄化し、かつ、加工部材表面に水酸基(OH基)を表出させる親水化を行うことで、被加工物の安定した物理・化学的な加工が可能となる。 In addition, it is possible to generate frictional heat at the contact portion by the process of displacing the processed member in contact with the workpiece. This frictional heat pyrolyzes the supplied ozone gas and generates atomic oxygen from the ozone gas. The generated atomic oxygen is bound to a hydroxyl group (OH group) on the outermost surface of the processing member responsible for a chemical reaction (processing) with the workpiece in an atmospheric environment, that is, contamination derived from organic matter. Suppress nations. Stable physical and chemical processing of the workpiece can be achieved by degrading and purifying organic oxygen-derived soils and making the workpiece surface hydrophilic by exposing hydroxyl groups (OH groups) to the surface. It becomes possible.
 また、上述したように、接触部位がオゾンガス環境下となるため、安定した加工に必要な原子状酸素を確保することが可能となる。 Further, as described above, since the contact site is in an ozone gas environment, it is possible to secure atomic oxygen necessary for stable processing.
 本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置で、オゾンガスの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物の物理・化学的に安定した加工を実現するものである。 In the present invention, the surface of the workpiece is cleaned and made hydrophilic by utilizing atomic oxygen generated by the thermal decomposition of ozone gas at the contact portion between the workpiece and the workpiece, that is, the position where the workpiece is processed. To achieve physically and chemically stable processing of the workpiece.
 また、加工部材が、Alから構成される単結晶状態のサファイア、コランダム、サファイアガラス、サファイアクリスタル、多結晶状態のアルミナ、アルミナセラミックス、SiOを主成分とするガラスのうちいずれか1つからなり、被加工物が、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜のうちいずれか1つからなる場合には、被加工物に対する充分に安定した加工が可能となる。 Further, any one of single crystal sapphire, corundum, sapphire glass, sapphire crystal, polycrystalline alumina, alumina ceramic, and glass mainly composed of SiO 2 whose processed member is made of Al 2 O 3. When the workpiece is made of any one of diamond, polycrystalline diamond, CVD diamond, and DLC film, sufficiently stable processing can be performed on the workpiece.
 また、加工部材が、SiOを主成分とするガラスからなり、被加工物が、SiCからなる場合には、SiCに対する充分に安定した加工が可能となる。 Further, when the processed member is made of glass containing SiO 2 as a main component and the workpiece is made of SiC, sufficiently stable processing for SiC can be performed.
 また、加工部材、若しくは、被加工物の少なくとも一方を加湿する場合には、より一層安定した加工が可能となり、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。 Further, when humidifying at least one of the processed member or the workpiece, further stable processing is possible, the accuracy of the surface roughness can be further increased, and the processing efficiency can be improved.
 また、オゾンガスがアルカリ性溶液を含有する場合には、加工部材と被加工物の摩擦面で発生するトライボケミカル反応を促進させ、被加工物の加工面における酸化物を生成させ、優先的に除去できるものとなる。この結果、オゾンガスの熱分解により生じる原子状酸素を利用した加工に加え、トライボケミカル反応による加工が促進され、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。なお、ここでいうアルカリ性溶液とは、例えば、アルカリ性電解水、NaOH、KOH等のアルカリ性を示す溶液である。 Further, when the ozone gas contains an alkaline solution, the tribochemical reaction generated on the friction surface between the workpiece and the workpiece can be promoted, and the oxide on the workpiece surface can be generated and preferentially removed. It will be a thing. As a result, in addition to processing using atomic oxygen generated by thermal decomposition of ozone gas, processing by a tribochemical reaction is promoted, the accuracy of surface roughness can be further improved, and processing efficiency can be improved. In addition, the alkaline solution here is a solution exhibiting alkalinity such as alkaline electrolyzed water, NaOH, KOH, and the like.
 また、アルカリ性溶液がアルカリ性電解水である場合には、アルカリ性電解水を含むオゾンガスでトライボケミカル反応を促進させることが可能となる。また、アルカリ性電解水は、取扱い時の安全性が高く、比較的容易に生成可能であるため、加工方法を安全かつより簡易なものにできる。なお、ここでいうアルカリ性電解水とは、pHが9.0以上のアルカリ性の水を意味するものである。 Also, when the alkaline solution is alkaline electrolyzed water, it becomes possible to promote the tribochemical reaction with ozone gas containing alkaline electrolyzed water. Moreover, since alkaline electrolyzed water has high safety at the time of handling and can be generated relatively easily, the processing method can be made safer and simpler. The alkaline electrolyzed water here means alkaline water having a pH of 9.0 or higher.
 また、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する場合には、加工部材及び被加工物の表面の帯電状態を安定化させる。
 そして、表面の帯電状態が安定化した加工部材と被加工物を接触させた状態で相対的に変位させることによって、加工部材及び被加工物の表面の帯電状態を制御した上で被加工物の表面を物理・化学的に加工することができる。
In the case where the charge amount is controlled by supplying at least one of cations or anions to at least one of the processed member and the workpiece, the charged state of the surface of the processed member and the workpiece is changed. Stabilize.
Then, the charged state of the surface of the workpiece and the workpiece is controlled by relatively displacing the workpiece and the workpiece in which the charged state of the surface is stabilized. The surface can be physically and chemically processed.
 また、加工部材と、被加工物との接触部位にNガスを供給して帯電量を制御する場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。 In addition, when the charge amount is controlled by supplying N 2 gas to the contact portion between the processed member and the workpiece, the charged state of the surface of the processed member and the workpiece can be more easily controlled, and the surface roughness is increased. The accuracy of the height can be further increased, and the processing efficiency can be further improved.
 本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置で、オゾンの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物の物理・化学的に安定した加工を実現するものである。そのため、砥粒フリーの研磨を実現することができる。また、既存の加工装置の加工部材と被加工物の接触部位にオゾンを供給する装置を設置するだけでよいため、加工システムを容易に構築できるものとなっている。 In the present invention, the surface of the workpiece is cleaned and made hydrophilic by utilizing atomic oxygen generated by the thermal decomposition of ozone at the contact portion between the workpiece and the workpiece, that is, the position where the workpiece is processed. To achieve physically and chemically stable processing of the workpiece. Therefore, abrasive-free polishing can be realized. Moreover, since it is only necessary to install a device for supplying ozone to the contact portion between the workpiece and the workpiece of the existing machining apparatus, the machining system can be easily constructed.
 なお、「加工部材」としては、例えば、鉄、ニッケル、Co等の金属、SiO、ZrO、Al、TiO2、Fe、MgO、CaO,NaO、KO、CeO等の金属酸化物、SiC、SiN、Al等のセラミックス、及びそれらからなる構成材料で構成された加工部材が挙げられる。更に、被加工物としては、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜等のダイヤモンド関連材料、SiC、GaN、サファイア、SiCセラミックス、Siセラミックス、AIN、ガラス等の硬脆材料等が挙げられる。 Examples of the “processed member” include metals such as iron, nickel, and Co, SiO 2 , ZrO 2 , Al 2 O 3 , TiO 2, Fe 2 O 3 , MgO, CaO, Na 2 O, and K 2 O. And metal oxides such as CeO 2 , ceramics such as SiC, SiN, and Al 2 O 3 , and processed members made of the constituent materials thereof. Further, as workpieces, diamond-related materials such as diamond, polycrystalline diamond, CVD diamond, DLC film, hard and brittle materials such as SiC, GaN, sapphire, SiC ceramics, Si 3 N 4 ceramics, AIN, glass, etc. Can be mentioned.
 また、上記の目的を達成するために、本発明の加工方法は、金属酸化物で構成された加工部材を被加工物と接触させ、接触部位にオゾンガスを供給すると共に、前記加工部材を前記被加工物に接触させた状態で変位させる工程を備え、前記加工部材は、アルミナセラミックスまたはSiOを主成分とするガラスのうちいずれか1つからなり、前記被加工物は、GaNからなるもので構成されている。 In order to achieve the above-described object, the processing method of the present invention brings a processing member made of a metal oxide into contact with a workpiece, supplies ozone gas to a contact site, and applies the processing member to the processing target. comprising the step of displacing in a state in contact with the workpiece, the workpiece is made of any one of glass whose main component is alumina ceramics or SiO 2, the workpiece is made of a GaN It is configured.
 ここで、加工部材を被加工物と接触させ、接触部位にオゾンガスを供給することによって、接触部位をオゾンガス環境下におくことができる。即ち、オゾンガスは不安定な分子であるが、接触部位にオゾンガスを供給することで、同領域にオゾンガスを局在させることが可能となる。 Here, the contact part can be placed in an ozone gas environment by bringing the workpiece into contact with the workpiece and supplying ozone gas to the contact part. That is, although ozone gas is an unstable molecule, ozone gas can be localized in the same region by supplying ozone gas to the contact portion.
 また、加工部材を被加工物に接触させた状態で変位させる工程によって、接触部位に摩擦熱を生じさせることが可能となる。この摩擦熱は供給されるオゾンガスを熱分解し、オゾンガスから原子状酸素を生成する。生成した原子状酸素は、大気環境下で、被加工物との化学反応(加工)を担う加工部材の最表面の水酸基(OH基)へのカルボキシル基等の結合、即ち、有機物に由来するコンタミネーションを抑止する。原子状酸素が有機物由来の汚れを分解して清浄化し、かつ、加工部材表面に水酸基(OH基)を表出させる親水化を行うことで、被加工物の安定した物理・化学的な加工が可能となる。 In addition, it is possible to generate frictional heat at the contact portion by the process of displacing the processed member in contact with the workpiece. This frictional heat pyrolyzes the supplied ozone gas and generates atomic oxygen from the ozone gas. The generated atomic oxygen is bound to a hydroxyl group (OH group) on the outermost surface of the processing member responsible for a chemical reaction (processing) with the workpiece in an atmospheric environment, that is, contamination derived from organic matter. Suppress nations. Stable physical and chemical processing of the workpiece can be achieved by degrading and purifying organic oxygen-derived soils and making the workpiece surface hydrophilic by exposing hydroxyl groups (OH groups) to the surface. It becomes possible.
 また、上述したように、接触部位がオゾンガス環境下となるため、安定した加工に必要な原子状酸素を確保することが可能となる。 Further, as described above, since the contact site is in an ozone gas environment, it is possible to secure atomic oxygen necessary for stable processing.
 本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置で、オゾンガスの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物の物理・化学的に安定した加工を実現するものである。 In the present invention, the surface of the workpiece is cleaned and made hydrophilic by utilizing atomic oxygen generated by the thermal decomposition of ozone gas at the contact portion between the workpiece and the workpiece, that is, the position where the workpiece is processed. To achieve physically and chemically stable processing of the workpiece.
 また、加工部材が、アルミナセラミックスまたはSiOを主成分とするガラスのうちいずれか1つからなり、被加工物が、GaNから構成されたことによって、GaNに対する充分に安定した加工が可能となる。 Further, since the processed member is made of any one of alumina ceramics or glass mainly composed of SiO 2 and the workpiece is made of GaN, sufficiently stable processing can be performed on GaN. .
 また、オゾンガスがアルカリ性電解水を含有する場合には、加工部材と被加工物の摩擦面で発生するトライボケミカル反応を促進させ、被加工物の加工面における酸化物を生成させ、優先的に除去できるものとなる。この結果、オゾンガスの熱分解により生じる原子状酸素を利用した加工に加え、トライボケミカル反応による加工が促進され、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。なお、ここでいうアルカリ性溶液とは、例えば、アルカリ性電解水、NaOH、KOH等のアルカリ性を示す溶液である。 In addition, when the ozone gas contains alkaline electrolyzed water, it promotes the tribochemical reaction that occurs on the friction surface between the workpiece and the workpiece, and generates and preferentially removes oxides on the workpiece surface. It will be possible. As a result, in addition to processing using atomic oxygen generated by thermal decomposition of ozone gas, processing by a tribochemical reaction is promoted, the accuracy of surface roughness can be further improved, and processing efficiency can be improved. In addition, the alkaline solution here is a solution exhibiting alkalinity such as alkaline electrolyzed water, NaOH, KOH, and the like.
 また、アルカリ性電解水を含むオゾンガスでトライボケミカル反応を促進させることが可能となる。トライボケミカル反応により、下記の反応式で示す反応が生じ、GaNに対して高精度かつ、加工能率が高い加工を行うことができる。
 2GaN+3HO⇔Ga+2NH
 また、アルカリ性電解水は、取扱い時の安全性が高く、比較的容易に生成可能であるため、加工方法を安全かつより簡易なものにできる。なお、ここでいうアルカリ性電解水とは、pHが9.0以上のアルカリ性の水を意味するものである。
Moreover, it becomes possible to promote a tribochemical reaction with ozone gas containing alkaline electrolyzed water. By the tribochemical reaction, a reaction represented by the following reaction formula occurs, and processing with high accuracy and high processing efficiency can be performed on GaN.
2GaN + 3H 2 O⇔Ga 2 O 3 + 2NH 3
Moreover, since alkaline electrolyzed water has high safety at the time of handling and can be generated relatively easily, the processing method can be made safer and simpler. The alkaline electrolyzed water here means alkaline water having a pH of 9.0 or higher.
[加工装置について]
 また、上記の目的を達成するために、本発明に係る加工装置は、金属酸化物で構成された加工部材と、所定の被加工物を加工部材と接触させて保持する保持機構と、加工部材及び被加工物との接触部位にオゾンガスを供給するオゾンガス供給部と、加工部材と被加工物を接触させた状態で、加工部材を変位させる駆動部とを備える。
[About processing equipment]
In order to achieve the above object, a processing apparatus according to the present invention includes a processing member made of a metal oxide, a holding mechanism that holds a predetermined workpiece in contact with the processing member, and a processing member. And an ozone gas supply unit that supplies ozone gas to a contact portion with the workpiece, and a drive unit that displaces the workpiece in a state where the workpiece and the workpiece are in contact with each other.
 ここで、所定の被加工物を加工部材と接触させて保持する保持機構と、加工部材及び被加工物との接触部位にオゾンガスを供給するオゾンガス供給部によって、接触部位をオゾンガス環境下におくことができる。即ち、オゾンガスは不安定な分子であるが、接触部位にオゾンガスを供給することで、同領域にオゾンガスを局在させることが可能となる。 Here, the contact portion is placed in an ozone gas environment by a holding mechanism that holds a predetermined workpiece in contact with the workpiece and an ozone gas supply unit that supplies ozone gas to the contact portion between the workpiece and the workpiece. Can do. That is, although ozone gas is an unstable molecule, ozone gas can be localized in the same region by supplying ozone gas to the contact portion.
 また、加工部材と被加工物を接触させた状態で、加工部材を変位させる駆動部によって、接触部位に摩擦熱を生じさせることが可能となる。この摩擦熱は供給されるオゾンガスを熱分解し、オゾンガスから原子状酸素を生成する。生成した原子状酸素は、大気環境下で、被加工物との化学反応(加工)を担う加工部材の最表面の水酸基(OH基)へのカルボキシル基等の結合、即ち、有機物に由来するコンタミネーションを抑止する。原子状酸素が有機物由来の汚れを分解して清浄化し、かつ、加工部材表面に水酸基(OH基)を表出させる親水化を行うことで、被加工物の安定した物理・化学的な加工が可能となる。 Also, it is possible to generate frictional heat at the contact portion by the drive unit that displaces the processing member in a state where the processing member and the workpiece are in contact with each other. This frictional heat pyrolyzes the supplied ozone gas and generates atomic oxygen from the ozone gas. The generated atomic oxygen is bound to a hydroxyl group (OH group) on the outermost surface of the processing member responsible for a chemical reaction (processing) with the workpiece in an atmospheric environment, that is, contamination derived from organic matter. Suppress nations. Stable physical and chemical processing of the workpiece can be achieved by degrading and purifying organic oxygen-derived soils and making the workpiece surface hydrophilic by exposing hydroxyl groups (OH groups) to the surface. It becomes possible.
 また、上述したように、接触部位がオゾンガス環境下となるため、安定した加工に必要な原子状酸素を確保することが可能となる。 Further, as described above, since the contact site is in an ozone gas environment, it is possible to secure atomic oxygen necessary for stable processing.
 本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置にてオゾンの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物の物理・化学的に安定した加工を実現するものである。 In the present invention, the surface of the workpiece is cleaned and made hydrophilic by utilizing atomic oxygen generated by the thermal decomposition of ozone at the contact portion between the workpiece and the workpiece, that is, the position where the workpiece is processed. To achieve physically and chemically stable processing of the workpiece.
 また、加工部材が、Alから構成される単結晶状態のサファイア、コランダム、サファイアガラス、サファイアクリスタル、多結晶状態のアルミナ、アルミナセラミックス、SiOを主成分とするガラスのうちいずれか1つからなり、被加工物が、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜のうちいずれか1つからなる場合には、被加工物に対する充分に安定した加工が可能となる。 Further, any one of single crystal sapphire, corundum, sapphire glass, sapphire crystal, polycrystalline alumina, alumina ceramic, and glass mainly composed of SiO 2 whose processed member is made of Al 2 O 3. When the workpiece is made of any one of diamond, polycrystalline diamond, CVD diamond, and DLC film, sufficiently stable processing can be performed on the workpiece.
 また、加工部材が、SiOを主成分とするガラスからなり、被加工物が、SiCからなる場合には、SiCに対する充分に安定した加工が可能となる。 Further, when the processed member is made of glass containing SiO 2 as a main component and the workpiece is made of SiC, sufficiently stable processing for SiC can be performed.
 また、加工部材、若しくは、被加工物の少なくとも一方を加湿する場合には、より一層安定した加工が可能となり、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。 Further, when humidifying at least one of the processed member or the workpiece, further stable processing is possible, the accuracy of the surface roughness can be further increased, and the processing efficiency can be improved.
 また、オゾンガスがアルカリ性溶液を含有する場合には、加工部材と被加工物の摩擦面で発生するトライボケミカル反応を促進させ、被加工物の加工面における酸化物を生成させ、優先的に除去できるものとなる。この結果、オゾンガスの熱分解により生じる原子状酸素を利用した加工に加え、トライボケミカル反応による加工が促進され、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。なお、ここでいうアルカリ性溶液とは、例えば、アルカリ性電解水、NaOH、KOH等のアルカリ性を示す溶液である。 Further, when the ozone gas contains an alkaline solution, the tribochemical reaction generated on the friction surface between the workpiece and the workpiece can be promoted, and the oxide on the workpiece surface can be generated and preferentially removed. It will be a thing. As a result, in addition to processing using atomic oxygen generated by thermal decomposition of ozone gas, processing by a tribochemical reaction is promoted, the accuracy of surface roughness can be further improved, and processing efficiency can be improved. In addition, the alkaline solution here is a solution exhibiting alkalinity such as alkaline electrolyzed water, NaOH, KOH, and the like.
 また、アルカリ性溶液がアルカリ性電解水である場合には、アルカリ性電解水を含むオゾンガスでトライボケミカル反応を促進させることが可能となる。また、アルカリ性電解水は、取扱い時の安全性が高く、比較的容易に生成可能であるため、加工方法を安全かつより簡易なものにできる。なお、ここでいうアルカリ性電解水とは、pHが9.0以上のアルカリ性の水を意味するものである。 Also, when the alkaline solution is alkaline electrolyzed water, it becomes possible to promote the tribochemical reaction with ozone gas containing alkaline electrolyzed water. Moreover, since alkaline electrolyzed water has high safety at the time of handling and can be generated relatively easily, the processing method can be made safer and simpler. The alkaline electrolyzed water here means alkaline water having a pH of 9.0 or higher.
 また、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する場合には、加工部材及び被加工物の表面の帯電状態を安定化させる。
 そして、表面の帯電状態が安定化した加工部材と被加工物を接触させた状態で相対的に変位させることによって、加工部材及び被加工物の表面の帯電状態を制御した上で被加工物の表面を物理・化学的に加工することができる。
In the case where the charge amount is controlled by supplying at least one of cations or anions to at least one of the processed member and the workpiece, the charged state of the surface of the processed member and the workpiece is changed. Stabilize.
Then, the charged state of the surface of the workpiece and the workpiece is controlled by relatively displacing the workpiece and the workpiece in which the charged state of the surface is stabilized. The surface can be physically and chemically processed.
 また、加工部材と、被加工物との接触部位にNガスを供給して帯電量を制御する場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。 In addition, when the charge amount is controlled by supplying N 2 gas to the contact portion between the processed member and the workpiece, the charged state of the surface of the processed member and the workpiece can be more easily controlled, and the surface roughness is increased. The accuracy of the height can be further increased, and the processing efficiency can be further improved.
 本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置にてオゾンの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物を物理・化学的に安定した加工を実現するものである。そのため、砥粒フリーの研磨を実現することができる。また、既存の加工装置の加工部材と被加工物の接触部位にオゾンを供給する装置を設置するだけでよいため、加工システムを容易に構築できるものとなっている。 In the present invention, the surface of the workpiece is cleaned and made hydrophilic by utilizing atomic oxygen generated by the thermal decomposition of ozone at the contact portion between the workpiece and the workpiece, that is, the position where the workpiece is processed. To achieve stable physical and chemical processing of the workpiece. Therefore, abrasive-free polishing can be realized. Moreover, since it is only necessary to install a device for supplying ozone to the contact portion between the workpiece and the workpiece of the existing machining apparatus, the machining system can be easily constructed.
 なお、「加工部材」としては、例えば、鉄、ニッケル、Co等の金属、SiO、ZrO、Al、TiO2、Fe、MgO、CaO,NaO、KO、CeO等の無機酸化物、SiC、SiN、Al等のセラミックス、及びそれらからなる構成材料で構成された加工部材が挙げられる。更に、被加工物としては、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜等のダイヤモンド関連材料、SiC、GaN、サファイア、SiCセラミックス、Siセラミックス、AIN、ガラス等の硬脆材料等が挙げられる。 Examples of the “processed member” include metals such as iron, nickel, and Co, SiO 2 , ZrO 2 , Al 2 O 3 , TiO 2, Fe 2 O 3 , MgO, CaO, Na 2 O, and K 2 O. Inorganic oxides such as CeO 2 , ceramics such as SiC, SiN, and Al 2 O 3 , and processed members made of constituent materials composed of these. Further, as workpieces, diamond-related materials such as diamond, polycrystalline diamond, CVD diamond, DLC film, hard and brittle materials such as SiC, GaN, sapphire, SiC ceramics, Si 3 N 4 ceramics, AIN, glass, etc. Can be mentioned.
 また、上記の目的を達成するために、本発明の加工装置は、金属酸化物で構成された加工部材と、所定の被加工物を加工部材と接触させて保持する保持機構と、加工部材及び被加工物との接触部位にオゾンガスを供給するオゾンガス供給部と、加工部材と被加工物を接触させた状態で、加工部材を変位させる駆動部とを備え、加工部材は、アルミナセラミックスまたはSiOを主成分とするガラスのうちいずれか1つからなり、前記被加工物は、GaNからなるもので構成されている。 In order to achieve the above object, a processing apparatus of the present invention includes a processing member made of a metal oxide, a holding mechanism for holding a predetermined workpiece in contact with the processing member, a processing member, An ozone gas supply unit that supplies ozone gas to a contact portion with the workpiece, and a drive unit that displaces the workpiece in a state where the workpiece and the workpiece are in contact with each other. The workpiece is made of alumina ceramics or SiO 2. And the workpiece is made of GaN.
 ここで、所定の被加工物を加工部材と接触させて保持する保持機構と、加工部材及び被加工物との接触部位にオゾンガスを供給するオゾンガス供給部によって、接触部位をオゾンガス環境下におくことができる。即ち、オゾンガスは不安定な分子であるが、接触部位にオゾンガスを供給することで、同領域にオゾンガスを局在させることが可能となる。 Here, the contact portion is placed in an ozone gas environment by a holding mechanism that holds a predetermined workpiece in contact with the workpiece and an ozone gas supply unit that supplies ozone gas to the contact portion between the workpiece and the workpiece. Can do. That is, although ozone gas is an unstable molecule, ozone gas can be localized in the same region by supplying ozone gas to the contact portion.
 また、加工部材と被加工物を接触させた状態で、加工部材を変位させる駆動部によって、接触部位に摩擦熱を生じさせることが可能となる。この摩擦熱は供給されるオゾンガスを熱分解し、オゾンガスから原子状酸素を生成する。生成した原子状酸素は、大気環境下で、被加工物との化学反応(加工)を担う加工部材の最表面の水酸基(OH基)へのカルボキシル基等の結合、即ち、有機物に由来するコンタミネーションを抑止する。原子状酸素が有機物由来の汚れを分解して清浄化し、かつ、加工部材表面に水酸基(OH基)を表出させる親水化を行うことで、被加工物の安定した物理・化学的な加工が可能となる。 Also, it is possible to generate frictional heat at the contact portion by the drive unit that displaces the processing member in a state where the processing member and the workpiece are in contact with each other. This frictional heat pyrolyzes the supplied ozone gas and generates atomic oxygen from the ozone gas. The generated atomic oxygen is bound to a hydroxyl group (OH group) on the outermost surface of the processing member responsible for a chemical reaction (processing) with the workpiece in an atmospheric environment, that is, contamination derived from organic matter. Suppress nations. Stable physical and chemical processing of the workpiece can be achieved by degrading and purifying organic oxygen-derived soils and making the workpiece surface hydrophilic by exposing hydroxyl groups (OH groups) to the surface. It becomes possible.
 また、上述したように、接触部位がオゾンガス環境下となるため、安定した加工に必要な原子状酸素を確保することが可能となる。 Further, as described above, since the contact site is in an ozone gas environment, it is possible to secure atomic oxygen necessary for stable processing.
 本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置にてオゾンの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物の物理・化学的に安定した加工を実現するものである。 In the present invention, the surface of the workpiece is cleaned and made hydrophilic by utilizing atomic oxygen generated by the thermal decomposition of ozone at the contact portion between the workpiece and the workpiece, that is, the position where the workpiece is processed. To achieve physically and chemically stable processing of the workpiece.
 また、加工部材が、アルミナセラミックスまたはSiOを主成分とするガラスのうちいずれか1つからなり、被加工物が、GaNから構成されたことによって、GaNに対する充分に安定した加工が可能となる。 Further, since the processed member is made of any one of alumina ceramics or glass mainly composed of SiO 2 and the workpiece is made of GaN, sufficiently stable processing can be performed on GaN. .
 また、オゾンガスがアルカリ性電解水を含有する場合には、加工部材と被加工物の摩擦面で発生するトライボケミカル反応を促進させ、被加工物の加工面における酸化物を生成させ、優先的に除去できるものとなる。この結果、オゾンガスの熱分解により生じる原子状酸素を利用した加工に加え、トライボケミカル反応による加工が促進され、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。なお、ここでいうアルカリ性溶液とは、例えば、アルカリ性電解水、NaOH、KOH等のアルカリ性を示す溶液である。 In addition, when the ozone gas contains alkaline electrolyzed water, it promotes the tribochemical reaction that occurs on the friction surface between the workpiece and the workpiece, and generates and preferentially removes oxides on the workpiece surface. It will be possible. As a result, in addition to processing using atomic oxygen generated by thermal decomposition of ozone gas, processing by a tribochemical reaction is promoted, the accuracy of surface roughness can be further improved, and processing efficiency can be improved. In addition, the alkaline solution here is a solution exhibiting alkalinity such as alkaline electrolyzed water, NaOH, KOH, and the like.
 また、アルカリ性電解水を含むオゾンガスでトライボケミカル反応を促進させることが可能となる。トライボケミカル反応により、下記の反応式で示す反応が生じ、GaNに対して高精度かつ、加工能率が高い加工を行うことができる。
 2GaN+3HO⇔Ga+2NH
 また、アルカリ性電解水は、取扱い時の安全性が高く、比較的容易に生成可能であるため、加工方法を安全かつより簡易なものにできる。なお、ここでいうアルカリ性電解水とは、pHが9.0以上のアルカリ性の水を意味するものである。
Moreover, it becomes possible to promote a tribochemical reaction with ozone gas containing alkaline electrolyzed water. By the tribochemical reaction, a reaction represented by the following reaction formula occurs, and processing with high accuracy and high processing efficiency can be performed on GaN.
2GaN + 3H 2 O⇔Ga 2 O 3 + 2NH 3
Moreover, since alkaline electrolyzed water has high safety at the time of handling and can be generated relatively easily, the processing method can be made safer and simpler. The alkaline electrolyzed water here means alkaline water having a pH of 9.0 or higher.
[加工方法について]
 上記の目的を達成するために、本発明の加工方法は、加工部材、若しくは、同加工部材で加工される被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御すると共に、前記加工部材と前記被加工物を接触させた状態で相対的に変位させる工程を備える。
[About processing methods]
In order to achieve the above object, the processing method of the present invention supplies at least one of a cation or an anion to at least one of a processed member or a workpiece processed by the processed member. The method includes a step of controlling the amount of charge and relatively displacing the workpiece and the workpiece in contact with each other.
 ここで、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御することによって、加工部材及び被加工物の表面の帯電状態を安定化させる。
 そして、表面の帯電状態が安定化した加工部材と被加工物を接触させた状態で相対的に変位させることによって、加工部材及び被加工物の表面の帯電状態を制御した上で被加工物の表面を物理・化学的に加工することができる。
Here, by supplying at least one of a cation or an anion to at least one of the processed member or the workpiece and controlling the charge amount, the charged state of the surface of the processed member and the workpiece is changed. Stabilize.
Then, the charged state of the surface of the workpiece and the workpiece is controlled by relatively displacing the workpiece and the workpiece in which the charged state of the surface is stabilized. The surface can be physically and chemically processed.
 本発明では、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して、加工部材及び被加工物の表面の帯電状態を制御し、表面粗さの精度が高く、かつ、加工能率が向上した加工を実現するものである。 In the present invention, at least one of a cation and an anion is supplied to at least one of the processed member or workpiece, and the charged state of the surface of the processed member and workpiece is controlled, and the surface roughness is increased. This achieves machining with high accuracy and improved machining efficiency.
 また、加工部材、若しくは、被加工物の少なくとも一方に、陰イオンを供給して加工部材及び被加工物の表面の帯電状態を制御し、被加工部材の表面を加工することができる。 Also, it is possible to process the surface of the workpiece by supplying anions to at least one of the workpiece or the workpiece to control the charged state of the surfaces of the workpiece and the workpiece.
 また、加工部材、若しくは、被加工物の少なくとも一方に、陽イオンを供給して加工部材及び被加工物の表面の帯電状態を制御し、被加工部材の表面を加工することができる。 Also, it is possible to process the surface of the workpiece by supplying a cation to at least one of the workpiece or the workpiece to control the charged state of the surface of the workpiece and the workpiece.
 また、加工部材、若しくは、被加工物の少なくとも一方に、陰イオン及び陽イオンを供給して加工部材及び被加工物の表面の帯電状態を制御し、被加工部材の表面を加工することができる。 Further, the surface of the workpiece can be processed by supplying anions and cations to at least one of the workpiece or the workpiece to control the charged state of the surfaces of the workpiece and the workpiece. .
 また、加工部材、若しくは、被加工物の少なくとも一方を加湿する場合には、帯電状態をより一層制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。 In addition, when humidifying at least one of the processed member or the workpiece, it becomes easier to control the charged state, the accuracy of the surface roughness can be further improved, and the processing efficiency can be further improved. it can.
 また、加工部材の表面に紫外光若しくはプラズマを照射して同加工部材の表面を清浄化かつ親水化処理する場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。 In addition, when the surface of the processed member is irradiated with ultraviolet light or plasma to clean and hydrophilize the surface of the processed member, it becomes easier to control the charged state of the surface of the processed member and the workpiece, The accuracy of the surface roughness can be further increased, and the processing efficiency can be further improved.
 また、加工部材及び被加工物の接触部位にNガスを供給する場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。 In addition, when N 2 gas is supplied to the contact portion between the workpiece and the workpiece, it becomes easier to control the charged state of the surface of the workpiece and workpiece, and the accuracy of the surface roughness is further improved. And processing efficiency can further be improved.
 本発明では、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給することによって、加工部材及び被加工物の表面の帯電状態を制御し、加工部材の最表面部と被加工物を接触させた状態で加工部材を変位させることによって、加工部材及び被加工物の表面の帯電状態を制御した上で被加工物の表面を物理・化学的に加工を実現するものである。そのため、一般的な紫外光光源に比べて、陽イオン、若しくは、陰イオンの少なくとも一方を供給するだけで安定した加工が可能となる。 In the present invention, by supplying at least one of cations or anions to at least one of the processed member or the workpiece, the charged state of the surface of the processed member and the workpiece is controlled, and the processed member The surface of the workpiece is physically and chemically processed by controlling the charged state of the surface of the workpiece and workpiece by displacing the workpiece while the outermost surface of the workpiece is in contact with the workpiece. Is realized. Therefore, as compared with a general ultraviolet light source, stable processing is possible only by supplying at least one of a cation and an anion.
 なお、「加工部材」としては、例えば、鉄、ニッケル、Co等の金属、SiO、ZrO、Al、TiO2、Fe、MgO、CaO,NaO、KO、CeO等の無機酸化物、SiC、SiN、Al等のセラミックス、及びそれらからなる構成材料で構成された加工部材が挙げられる。更に、被加工物としては、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜等のダイヤモンド関連材料、SiC、GaN、サファイア、SiCセラミックス、Siセラミックス、AIN、ガラス等の硬脆材料等が挙げられる。 Examples of the “processed member” include metals such as iron, nickel, and Co, SiO 2 , ZrO 2 , Al 2 O 3 , TiO 2, Fe 2 O 3 , MgO, CaO, Na 2 O, and K 2 O. Inorganic oxides such as CeO 2 , ceramics such as SiC, SiN, and Al 2 O 3 , and processed members made of constituent materials composed of these. Further, as workpieces, diamond-related materials such as diamond, polycrystalline diamond, CVD diamond, DLC film, hard and brittle materials such as SiC, GaN, sapphire, SiC ceramics, Si 3 N 4 ceramics, AIN, glass, etc. Can be mentioned.
[加工装置について]
 また、上記の目的を達成するために、本発明に係る加工装置は、加工部材と、該加工部材、若しくは、同加工部材で加工される被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する帯電処理部と、所定の被加工物を保持する保持機構と、前記加工部材と前記被加工物を接触させた状態で、前記加工部材と同被加工物を相対的に変位させる駆動部とを備える。
[About processing equipment]
In order to achieve the above object, a processing apparatus according to the present invention includes a processing member and at least one of the processing member or a workpiece processed by the processing member. The same as the processing member in a state in which the processing member and the workpiece are in contact with each other, a charging processing unit that supplies at least one of the ions to control the charge amount, a holding mechanism that holds a predetermined workpiece, and the processing member. A drive unit that relatively displaces the workpiece.
 ここで、加工部材と、加工部材、若しくは、加工部材で加工される被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する帯電処理部によって、加工部材及び被加工物の表面の帯電状態を安定化させるものとなる。 Here, at least one of the processed member, the processed member, or the workpiece processed by the processed member is supplied with at least one of a cation or an anion to control the charge amount. This stabilizes the charged state of the surface of the workpiece and the workpiece.
 また、加工部材と、所定の被加工物を保持する保持機構と、加工部材と被加工物を接触させた状態で、加工部材と被加工物を相対的に変位させる駆動部によって、加工部材及び被加工物の表面の帯電状態を安定化させた上で、被加工物の表面を物理・化学的に加工することができる。 In addition, the processing member, the holding mechanism that holds the predetermined workpiece, and the driving member that relatively displaces the processing member and the workpiece in a state where the processing member and the workpiece are in contact with each other. The surface of the workpiece can be physically and chemically processed after the charged state of the surface of the workpiece is stabilized.
 本発明では、帯電処理部で加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給し、加工部材及び被加工物の表面の帯電状態を制御し、表面粗さの精度が高く、かつ、加工能率が向上した加工を実現するものである。 In the present invention, at least one of cations or anions is supplied to at least one of the processed member or workpiece in the charging processing unit, and the charged state of the surface of the processed member and workpiece is controlled, It realizes machining with high surface roughness accuracy and improved machining efficiency.
 また、加工部材、若しくは、被加工物の少なくとも一方を加湿する加湿処理部を備える場合には、帯電状態をより一層制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。 In addition, when a humidifying section that humidifies at least one of the workpiece or workpiece is provided, it becomes easier to control the charged state, the accuracy of the surface roughness is further improved, and the processing efficiency is improved. Further improvement can be achieved.
 また、加工部材の表面を親水化処理する清浄化かつ親水化処理部を備える場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。 In addition, when a cleaning and hydrophilic treatment section is provided to hydrophilize the surface of the processed member, it becomes easier to control the charged state of the surface of the processed member and the workpiece, thereby further improving the accuracy of the surface roughness. The processing efficiency can be further improved.
 また、加工部材及び被加工物の接触部位にNガスを供給するNガス供給部を備える場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。 In addition, when an N 2 gas supply unit that supplies N 2 gas to the contact portion between the workpiece and the workpiece is provided, it becomes easier to control the charged state of the surfaces of the workpiece and workpiece, and the surface roughness The accuracy of the process can be further improved, and the processing efficiency can be further improved.
 本発明では、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給する帯電処理部によって、加工部材及び被加工物の表面の帯電状態を制御し、加工部材の最表面部と被加工物を接触させた状態で加工部材を変位させる駆動部によって、加工部材及び被加工物の表面の帯電状態を制御した上で被加工物の表面を物理・化学的に加工を実現するものである。また、既存の加工装置の紫外光光源を帯電装置等に置き換えるだけでよいため、加工システムを容易に構築できるものとなっている。 In the present invention, the charged state of the surface of the processed member and the workpiece is controlled by a charging processing unit that supplies at least one of a cation or an anion to at least one of the processed member or the workpiece, The surface of the workpiece is physically and chemically controlled by controlling the charged state of the surface of the workpiece and workpiece by a drive unit that displaces the workpiece while the outermost surface of the workpiece is in contact with the workpiece. Machining is realized. Further, since it is only necessary to replace the ultraviolet light source of the existing processing apparatus with a charging device or the like, the processing system can be easily constructed.
 本発明を適用した加工方法及び加工装置では、ダイヤモンド等を加工するドライ研磨にて、簡易な構成でありながら高能率かつ高精度な加工を実現することができる。 In the processing method and processing apparatus to which the present invention is applied, high-efficiency and high-precision processing can be realized with a simple configuration by dry polishing for processing diamond or the like.
本発明を適用した加工装置を説明するための模式図である。It is a schematic diagram for demonstrating the processing apparatus to which this invention is applied. 比較例1の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region of the comparative example 1 with the non-contact shape measuring machine. 比較例2の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region of the comparative example 2 with the non-contact shape measuring machine. 実施例1の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region of Example 1 with the non-contact shape measuring machine. 比較例3の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region of the comparative example 3 with the non-contact shape measuring machine. 実施例2の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region of Example 2 with the non-contact shape measuring machine. 比較例4の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region of the comparative example 4 with the non-contact shape measuring machine. 実施例3の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region of Example 3 with the non-contact shape measuring machine. 実施例4の加工前における加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area before the process of Example 4 with the non-contact shape measuring machine. 実施例4の加工後における加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region after the process of Example 4 with the non-contact shape measuring machine. 本発明を適用した加工装置を説明するための模式図である。It is a schematic diagram for demonstrating the processing apparatus to which this invention is applied. 本発明を適用した加工装置を説明するための模式図である。It is a schematic diagram for demonstrating the processing apparatus to which this invention is applied. 比較例5の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region of the comparative example 5 with the non-contact shape measuring machine. 実施例5の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region of Example 5 with the non-contact shape measuring machine. 比較例8の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region of the comparative example 8 with the non-contact shape measuring machine. 実施例7の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region of Example 7 with the non-contact shape measuring machine. 実施例9の表面電位と加工時間の関係を示すグラフである。It is a graph which shows the relationship between the surface potential of Example 9, and processing time. 実施例10の表面電位と加工時間の関係を示すグラフである。It is a graph which shows the relationship between the surface potential of Example 10, and processing time. 実施例11の表面電位と加工時間の関係を示すグラフである。It is a graph which shows the relationship between the surface potential of Example 11, and processing time. 比較例11の表面電位と加工時間の関係を示すグラフである。10 is a graph showing the relationship between the surface potential of Comparative Example 11 and the processing time. 実施例9の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region of Example 9 with the non-contact shape measuring machine. 実施例10の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region of Example 10 with the non-contact shape measuring machine. 実施例11の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region of Example 11 with the non-contact shape measuring machine. 比較例11の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area | region of the comparative example 11 with the non-contact shape measuring machine.
[発明の第1の実施の形態]
 以下、本発明を実施するための形態(以下、「発明の第1の実施の形態」と称する)について説明する。
 図1は本発明を適用した加工装置を説明するための模式図であり、ここで示す加工装置1は、サファイア定盤2と、単結晶ダイヤモンド3を保持する試料ホルダー4を有している。また、加工装置1は、サファイア定盤2と単結晶ダイヤモンド3との接触部位にオゾンガスを供給するオゾン供給部5を有している。なお、単結晶ダイヤモンド4は被加工物の一例である。
[First Embodiment of the Invention]
Hereinafter, a mode for carrying out the present invention (hereinafter, referred to as “first embodiment of the invention”) will be described.
FIG. 1 is a schematic view for explaining a processing apparatus to which the present invention is applied. The processing apparatus 1 shown here has a sapphire surface plate 2 and a sample holder 4 for holding a single crystal diamond 3. Further, the processing apparatus 1 includes an ozone supply unit 5 that supplies ozone gas to a contact portion between the sapphire surface plate 2 and the single crystal diamond 3. The single crystal diamond 4 is an example of a workpiece.
 なお、サファイア定盤2の上面(図1上の上面)に被加工物である単結晶ダイヤモンド3が接して被加工物が研磨されることとなる。また、サファイア定盤2は加工部材の一例である。 The single crystal diamond 3 which is a workpiece comes into contact with the upper surface of the sapphire surface plate 2 (the upper surface in FIG. 1), and the workpiece is polished. The sapphire surface plate 2 is an example of a processed member.
 オゾン供給部5は、サファイア定盤2の上方に配置されている。また、オゾン供給部5の先端、即ち、オゾンガスが排出される部分は、サファイア定盤2と単結晶ダイヤモンド3との接触部位に向けられている。これにより、接触部位がオゾン環境下となる。また、接触部位におけるサファイア定盤2と単結晶ダイヤモンド3との間で生じる摩擦熱によりオゾンガスが原子状酸素に熱分解され、被加工物が安定的に加工されるものとなる。 The ozone supply unit 5 is disposed above the sapphire surface plate 2. Further, the tip of the ozone supply unit 5, that is, the part from which ozone gas is discharged is directed to the contact portion between the sapphire surface plate 2 and the single crystal diamond 3. Thereby, a contact site | part will be in ozone environment. In addition, the ozone gas is thermally decomposed into atomic oxygen by the frictional heat generated between the sapphire surface plate 2 and the single crystal diamond 3 at the contact portion, and the workpiece is stably processed.
 ここで、本実施の形態では、加工部材がサファイア定盤2で形成されている場合を例に挙げて説明を行っているが、被加工物を加工可能な材料であれば充分であって、必ずしもサファイア定盤2で形成される必要はない。例えば、鉄、ニッケル、Co等の金属、SiO、ZrO、Al、TiO2、Fe、MgO、CaO,NaO、KO、CeO等の無機酸化物、SiC、SiN、Al等のセラミックス、及びそれらからなる構成材料で形成されていても構わない。 Here, in the present embodiment, the case where the processing member is formed of the sapphire surface plate 2 is described as an example, but any material that can process the workpiece is sufficient. It is not always necessary to form the sapphire surface plate 2. For example, metals such as iron, nickel, Co, inorganic oxides such as SiO 2 , ZrO 2 , Al 2 O 3 , TiO 2, Fe 2 O 3 , MgO, CaO, Na 2 O, K 2 O, CeO 2 , SiC, SiN, may ceramics such as Al 2 O 3, and be formed of a constituent material consisting.
 また、サファイア定盤2は、回転数が制御可能な加工テーブル6上に固定され、加工テーブル6の回転によってサファイア定盤2が図1中符号Aで示す方向に回転可能に構成されている。 Further, the sapphire surface plate 2 is fixed on a processing table 6 whose rotation speed can be controlled, and the sapphire surface plate 2 is configured to be rotatable in a direction indicated by a symbol A in FIG.
 また、試料ホルダー4は、サファイア定盤2の回転軸に対して偏心した回転軸7を中心として図1中符号Bで示す方向に回転可能に構成されており、単結晶ダイヤモンド3を保持した状態で上方から単結晶ダイヤモンド3とサファイア定盤2が接触する位置sまで下降する。なお、図中の符号Yは荷重をかける方向を示している。 Further, the sample holder 4 is configured to be rotatable in a direction indicated by a symbol B in FIG. 1 around a rotation axis 7 that is eccentric with respect to the rotation axis of the sapphire surface plate 2, and holds the single crystal diamond 3. And descends to a position s where the single crystal diamond 3 and the sapphire surface plate 2 come into contact with each other. In addition, the code | symbol Y in a figure has shown the direction which applies a load.
 ここで、本実施の形態では、試料ホルダー4に保持される被加工物として単結晶ダイヤモンド3を例に挙げて説明を行っているが、被加工物は単結晶ダイヤモンド3に限定されるものではなく、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜等のダイヤモンド関連材料、SiC、GaN、サファイア、SiCセラミックス、Siセラミックス、AIN、ガラス等の硬脆材料等であっても構わない。 Here, in the present embodiment, the single crystal diamond 3 is described as an example of the workpiece held by the sample holder 4, but the workpiece is not limited to the single crystal diamond 3. Alternatively, diamond-related materials such as diamond, polycrystalline diamond, CVD diamond, and DLC film, hard brittle materials such as SiC, GaN, sapphire, SiC ceramics, Si 3 N 4 ceramics, AIN, and glass may be used.
 以下、上記の様に構成された加工装置1を用いた加工方法について説明を行う。即ち、本発明を適用した加工方法の一例について説明を行う。 Hereinafter, a processing method using the processing apparatus 1 configured as described above will be described. That is, an example of a processing method to which the present invention is applied will be described.
 本発明を適用した加工方法の一例では、サファイア定盤2を回転させながら、サファイア定盤2と単結晶ダイヤモンド3との接触部位にオゾン供給部5からオゾンガスを供給する。 In an example of a processing method to which the present invention is applied, ozone gas is supplied from the ozone supply unit 5 to the contact portion between the sapphire surface plate 2 and the single crystal diamond 3 while rotating the sapphire surface plate 2.
 即ち、サファイア定盤2と単結晶ダイヤモンド3との接触部位にオゾンガスを供しながら、接触部位で生じる摩擦熱によりオゾンガスを熱分解して原子状酸素を生成する。生成した原子状酸素により、サファイア定盤2の表面を清浄化かつ親水化処理する。即ち、サファイア定盤2の表面を改質する。 That is, while supplying ozone gas to the contact portion between the sapphire surface plate 2 and the single crystal diamond 3, the ozone gas is thermally decomposed by frictional heat generated at the contact portion to generate atomic oxygen. The surface of the sapphire surface plate 2 is cleaned and hydrophilized with the generated atomic oxygen. That is, the surface of the sapphire surface plate 2 is modified.
 そして、表面が改質した状態のサファイア定盤2の上面と単結晶ダイヤモンド3が接触した状態でサファイア定盤2が回転することによって、単結晶ダイヤモンド3の表面を物理・化学的に除去することとなる。 Then, the surface of the single crystal diamond 3 is physically and chemically removed by rotating the sapphire surface plate 2 in a state where the upper surface of the surface modified sapphire surface 2 and the single crystal diamond 3 are in contact with each other. It becomes.
 本実施の形態の変形例として、図1に記載の装置構成に、更に、加湿処理部を設けるものを採用しうる。加湿処理部は加工部材の上方に設置される。加湿処理部は、加工部材の表面を加湿する部材である。また、水分を付与したオゾンガスをサファイア定盤2と単結晶ダイヤモンド3の接触部位に供給する方式も採用しうる。加湿を行うことで、被加工物への加工をより一層安定化させることができる。 As a modification of the present embodiment, a device provided with a humidification processing unit in addition to the apparatus configuration shown in FIG. 1 can be adopted. The humidification processing unit is installed above the processing member. A humidification process part is a member which humidifies the surface of a processing member. A method of supplying ozone gas to which moisture has been supplied to the contact portion between the sapphire surface plate 2 and the single crystal diamond 3 can also be employed. By performing humidification, the processing of the workpiece can be further stabilized.
 本実施の形態の更なる変形例として、オゾン供給部から供給するオゾンガスにアルカリ性電解水(pH9.0以上)を含ませて、加工部材と被加工物との接触部位にオゾンガスを供給する方法も採用しうる。 As a further modification of the present embodiment, there is also a method in which alkaline electrolyzed water (pH 9.0 or higher) is included in the ozone gas supplied from the ozone supply unit, and the ozone gas is supplied to the contact portion between the workpiece and the workpiece. Can be adopted.
 オゾンガスがアルカリ性電解水を含有する場合には、加工部材と被加工物の摩擦面で発生するトライボケミカル反応を促進させ、被加工物の加工面における酸化物を生成させ、優先的に除去可能となる。この結果、オゾンガスの熱分解により生じる原子状酸素を利用した加工に加え、トライボケミカル反応による加工が促進され、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。 When ozone gas contains alkaline electrolyzed water, it promotes the tribochemical reaction that occurs on the friction surface between the workpiece and the workpiece, generates oxide on the workpiece surface, and can be removed preferentially. Become. As a result, in addition to processing using atomic oxygen generated by thermal decomposition of ozone gas, processing by a tribochemical reaction is promoted, the accuracy of surface roughness can be further improved, and processing efficiency can be improved.
 ここで、オゾンガスに含有させる溶液はアルカリ性溶液であればよく、アルカリ性電解水に限定されるものではない。例えば、NaOHやKOH等のアルカリ性溶液をオゾンガスに含有させて加工に利用することも可能である。 Here, the solution contained in the ozone gas may be an alkaline solution, and is not limited to alkaline electrolyzed water. For example, an alkaline solution such as NaOH or KOH can be contained in ozone gas and used for processing.
 [効果]
 本発明を適用した加工方法及び加工装置は、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置で、オゾンの熱分解により生じる原子状酸素を利用するものであるため、紫外光を照射する装置に比べ、加工部材の表面をより均一に処理可能なものとなっている。この結果、より安定的かつ高い加工精度を実現しうるものとなっている。
[effect]
A processing method and a processing apparatus to which the present invention is applied use atomic oxygen generated by thermal decomposition of ozone at a contact portion between a processing member and a workpiece, that is, a position where the workpiece is processed. Therefore, the surface of the processed member can be more uniformly processed as compared with an apparatus that irradiates ultraviolet light. As a result, more stable and high machining accuracy can be realized.
 また、本発明を適用した加工装置は、オゾン供給部を既存の装置に配置するのみで容易に構築することができるものとなっている。 Further, the processing apparatus to which the present invention is applied can be easily constructed only by arranging the ozone supply unit in an existing apparatus.
 更に、本発明を適用した加工方法及び加工装置は、砥粒を利用していないために、加工後の砥粒処理を行う必要がないものとなる。 Furthermore, since the processing method and processing apparatus to which the present invention is applied do not use abrasive grains, it is not necessary to perform abrasive processing after processing.
 また、砥粒を利用した加工の場合には、砥粒をスラリーの状態で供給する必要があり、加工部材や被加工物がスラリーで湿った状態となってしまい、温度が上がりにくく加工が進み難い。
 一方、本発明を適用した加工方法では、砥粒を利用していないためにスラリーが供給されることもなく、加工部材や被加工物が乾いた状態であり、摩擦熱も含めて温度が上がり易く化学反応が進みやすい。即ち、難加工材料の高精度、高能率な加工が実現することができる。
Further, in the case of processing using abrasive grains, it is necessary to supply the abrasive grains in a slurry state, so that the processing member and the workpiece become wet with the slurry, and the temperature does not easily rise and the processing proceeds. hard.
On the other hand, in the processing method to which the present invention is applied, the slurry is not supplied because the abrasive grains are not used, the processed member and the workpiece are in a dry state, and the temperature rises including frictional heat. Easy to proceed chemical reaction. That is, highly accurate and highly efficient processing of difficult-to-process materials can be realized.
 以下、本発明の実施例及び比較例について説明する。なお、ここで示す実施例は一例であり本発明を限定するものではない。 Hereinafter, examples and comparative examples of the present invention will be described. In addition, the Example shown here is an example and does not limit this invention.
 [実施例1及び比較例1~2]
 本発明の実施例1の加工方法として、以下の条件で加工を行った。先ず、本発明の実施例1の加工方法として、サファイア定盤に被加工物として単結晶ダイヤモンド(3mm×3mm)を2kg(22.2kg/cm)の荷重で押圧し、サファイア定盤を回転数250rpm、揺動距離3mm、揺動速度0.1mm/sの条件で回転させると共に、試料ホルダーを1000rpmで回転させた。また、オゾン供給部よりサファイア定盤と単結晶ダイヤモンドとの接触部位にオゾンガス(5L/min)を供給した。この様な状況で1.5時間の加工を行った。
 実施例1と同様の方法で、オゾン供給部によるオゾン供給を行わないものを比較例1とした。
 また、上述した実施例1の加工方法の装置構成に紫外光光源を更に設置して、サファイア定盤に上方から、紫外光(172nm)を照射強度6mW/cmの条件で照射しながら、オゾン供給部によるオゾン供給を行わないものを比較例2とした。
 上記の実施例1及び比較例1~2について、加工後の単結晶ダイヤモンドの表面粗さを非接触形状測定機で測定し、評価を行った。
[Example 1 and Comparative Examples 1 and 2]
As a processing method of Example 1 of the present invention, processing was performed under the following conditions. First, as a processing method of Example 1 of the present invention, single crystal diamond (3 mm × 3 mm) as a workpiece is pressed against a sapphire surface plate with a load of 2 kg (22.2 kg / cm 2 ), and the sapphire surface plate is rotated. The sample holder was rotated at 1000 rpm while rotating at several 250 rpm, a rocking distance of 3 mm, and a rocking speed of 0.1 mm / s. Moreover, ozone gas (5 L / min) was supplied to the contact site | part of a sapphire surface plate and a single crystal diamond from the ozone supply part. Processing was performed for 1.5 hours in such a situation.
A method in which ozone was not supplied by the ozone supply unit in the same manner as in Example 1 was referred to as Comparative Example 1.
In addition, an ultraviolet light source is further installed in the apparatus configuration of the processing method of Example 1 described above, and while irradiating ultraviolet light (172 nm) on the sapphire surface plate from above with an irradiation intensity of 6 mW / cm 2 , ozone Comparative Example 2 was a sample that did not supply ozone by the supply unit.
For the above-mentioned Example 1 and Comparative Examples 1 and 2, the surface roughness of the single crystal diamond after processing was measured with a non-contact shape measuring machine and evaluated.
 図2に比較例1の結果、図3に比較例2の結果、及び、図4に実施例1の結果を示す。 2 shows the result of Comparative Example 1, FIG. 3 shows the result of Comparative Example 2, and FIG. 4 shows the result of Example 1.
 図2及び図4から明らかなように、比較例1の被加工物の加工面に比べ、実施例1の加工により、被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.119nmであり、平滑に加工されていたことが分かった。比較例1の算術平均粗さ(Ra)の値は2.213nmであった。
 また、図3及び図4から明らかなように、比較例2の被加工物の加工面に比べ、実施例1の加工により、被加工物の加工面がより精度高く加工されていることが分かった。
 なお、比較例2の被加工面の測定範囲における算術平均粗さ(Ra)の値は0.177nmであった。
As apparent from FIGS. 2 and 4, the machining surface of the workpiece is machined with high accuracy by the machining of Example 1 compared to the machining surface of the workpiece of Comparative Example 1, and in the measurement range of the workpiece surface. The value of arithmetic average roughness (Ra) was 0.119 nm, and it was found that it was processed smoothly. The value of arithmetic average roughness (Ra) of Comparative Example 1 was 2.213 nm.
Further, as apparent from FIGS. 3 and 4, it is understood that the processed surface of the workpiece is processed with higher accuracy by the processing of Example 1 than the processed surface of the workpiece of Comparative Example 2. It was.
In addition, the value of arithmetic mean roughness (Ra) in the measurement range of the to-be-processed surface of the comparative example 2 was 0.177 nm.
 (1)加工能率について
 上述した実施例1及び比較例1~2の加工方法による加工能率について以下の内容で確認を行った。
 被加工物となる単結晶ダイヤモンドに所定の深さの溝を形成しておき、加工前後での溝の深さの変化量から加工能率を算出した。
(1) About processing efficiency The processing efficiency by the processing method of Example 1 mentioned above and Comparative Examples 1-2 was confirmed with the following content.
A groove having a predetermined depth was formed in the single crystal diamond to be processed, and the machining efficiency was calculated from the amount of change in the groove depth before and after the machining.
 実施例1における加工能率は2453.5nm/hであり、充分な加工能率を示していた。
 一方、比較例1における加工能率は33.3nm/hであった。また、比較例2における加工能率は238.1nm/hであった。
The processing efficiency in Example 1 was 2453.5 nm / h, indicating a sufficient processing efficiency.
On the other hand, the processing efficiency in Comparative Example 1 was 33.3 nm / h. In addition, the processing efficiency in Comparative Example 2 was 238.1 nm / h.
 (2)被加工物の加工面の表面粗さ
 [実施例2及び比較例3]
 本発明の実施例2の加工方法として、以下の条件で加工を行った。先ず、本発明の実施例2の加工方法として、ソーダ石灰ガラス(soda-lime glass)定盤に被加工物としてSiC基板(Single-crystal 4H-SiC 4°off)(2インチ)を3kgの荷重で押圧し、ソーダ石灰ガラス定盤を回転数200rpm、揺動距離6mm、揺動速度0.1mm/sの条件で回転させると共に、試料ホルダーを30rpmで回転させた。また、紫外光光源を設置し、ソーダ石灰ガラス定盤に上方から、紫外光(172nm)を照射強度6mW/cmの条件で照射した。また、オゾン供給部よりソーダ石灰ガラス定盤とSiC基板との接触部位にオゾンガス(5L/min)を供給した。この様な状況で2時間の加工を行った。なお、ソーダ石灰ガラスは、SiOを主成分とするガラスの一例である。
 実施例2の加工方法を実施する前の同一サンプルに対して、ダイヤモンド砥粒を用いて機械研磨したものを比較例3とした。
 上記の実施例2及び比較例3について、加工後のSiC基板の表面粗さを非接触形状測定機で測定し、評価を行った。
(2) Surface roughness of processed surface of workpiece [Example 2 and Comparative Example 3]
As a processing method of Example 2 of the present invention, processing was performed under the following conditions. First, as a processing method of Example 2 of the present invention, a load of 3 kg is applied to a SiC substrate (Single-crystal 4H-SiC 4 ° off) (2 inches) as a workpiece on a soda-lime glass surface plate. The soda-lime glass surface plate was rotated at a rotation speed of 200 rpm, a rocking distance of 6 mm, and a rocking speed of 0.1 mm / s, and the sample holder was rotated at 30 rpm. Moreover, the ultraviolet light source was installed and the soda-lime glass surface plate was irradiated with ultraviolet light (172 nm) from above under the condition of irradiation intensity of 6 mW / cm 2 . Moreover, ozone gas (5 L / min) was supplied to the contact site | part of a soda-lime glass surface plate and a SiC substrate from an ozone supply part. Processing for 2 hours was performed in such a situation. Soda lime glass is an example of glass containing SiO 2 as a main component.
The same sample before carrying out the processing method of Example 2 was mechanically polished with diamond abrasive grains as Comparative Example 3.
About said Example 2 and Comparative Example 3, the surface roughness of the SiC substrate after a process was measured with the non-contact shape measuring machine, and evaluation was performed.
 図5に比較例3の結果、及び、図6に実施例2の結果を示す。 FIG. 5 shows the result of Comparative Example 3, and FIG. 6 shows the result of Example 2.
 図5及び図6から明らかなように、比較例3の被加工物の加工面に比べ、実施例2の加工により、被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.311nmであり、平滑に加工されていたことが分かった。比較例3の算術平均粗さ(Ra)の値は1.601nmであった。 As apparent from FIGS. 5 and 6, the processing surface of the workpiece is processed with high accuracy by the processing of Example 2 compared to the processing surface of the workpiece of Comparative Example 3, and in the measurement range of the processing surface. The value of arithmetic average roughness (Ra) was 0.311 nm, and it was found that it was processed smoothly. The value of arithmetic average roughness (Ra) of Comparative Example 3 was 1.601 nm.
 (3)加工能率について
 上述した実施例2及び比較例3の加工方法による加工能率について、上記(2)と同様の内容で加工能率を算出した。
(3) About processing efficiency About the processing efficiency by the processing method of Example 2 and Comparative Example 3 mentioned above, the processing efficiency was computed by the content similar to said (2).
 実施例2における加工能率は201.3nm/hであり、一方、比較例3における加工能率は72.26nm/hであった。 The working efficiency in Example 2 was 201.3 nm / h, while the working efficiency in Comparative Example 3 was 72.26 nm / h.
 (4)被加工物の加工面の表面粗さ
 [実施例3及び比較例4]
 本発明の実施例3の加工方法として、以下の条件で加工を行った。先ず、本発明の実施例3の加工方法として、アルミナセラミックス定盤に被加工物としてGaN基板(10mm×10mm)を250g(250g/cm)の荷重で押圧し、アルミナセラミックス定盤を回転数250rpm、揺動距離10mm、揺動速度0.5mm/sの条件で回転させると共に、試料ホルダーを250rpmで回転させた。また、オゾン供給部よりアルミナセラミックス定盤とGaN基板との接触部位にオゾンガス(5L/min)を供給した。この様な状況で1時間の加工を行った。
 実施例3の加工方法を実施する前の同一サンプルに対して、ダイヤモンド砥粒を用いて機械研磨したものを比較例4とした。
 上記の実施例3及び比較例4について、加工後のGaN基板の表面粗さを非接触形状測定機で測定し、評価を行った。
(4) Surface roughness of processed surface of workpiece [Example 3 and Comparative Example 4]
As a processing method of Example 3 of the present invention, processing was performed under the following conditions. First, as a processing method of Example 3 of the present invention, a GaN substrate (10 mm × 10 mm) as a workpiece is pressed against an alumina ceramic surface plate with a load of 250 g (250 g / cm 2 ), and the alumina ceramic surface plate is rotated at a rotational speed. The sample holder was rotated at 250 rpm while rotating at 250 rpm, a rocking distance of 10 mm, and a rocking speed of 0.5 mm / s. Further, ozone gas (5 L / min) was supplied from the ozone supply unit to the contact portion between the alumina ceramic surface plate and the GaN substrate. Processing for 1 hour was performed in such a situation.
The same sample before carrying out the processing method of Example 3 was mechanically polished with diamond abrasive grains as Comparative Example 4.
About said Example 3 and Comparative Example 4, the surface roughness of the GaN board | substrate after a process was measured with the non-contact shape measuring machine, and evaluation was performed.
 図7に比較例4の結果、及び、図8に実施例3の結果を示す。 7 shows the result of Comparative Example 4 and FIG. 8 shows the result of Example 3.
 図7及び図8から明らかなように、比較例4の被加工物の加工面に比べ、実施例3の加工により、被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.483nmであり、平滑に加工されていたことが分かった。比較例4の算術平均粗さ(Ra)の値は2.837nmであった。 As apparent from FIGS. 7 and 8, the machining surface of the workpiece is machined with high accuracy by the machining of Example 3 compared to the machining surface of the workpiece of Comparative Example 4, and in the measurement range of the machining surface. The value of arithmetic average roughness (Ra) was 0.483 nm, and it was found that it was processed smoothly. The arithmetic average roughness (Ra) of Comparative Example 4 was 2.837 nm.
 [実施例4]
 本発明の実施例4の加工方法として、以下の条件で加工を行った。先ず、本発明の実施例4の加工方法として、ガラス定盤に被加工物としてGaN(窒化ガリウム)(10mm×10mm)を0.5kgの荷重で押圧し、ガラス定盤を回転数200rpm、揺動距離3mm、揺動速度0.1mm/sの条件で回転させると共に、試料ホルダーを31.25rpmで回転させた。また、オゾン供給部よりガラス定盤とGaNとの接触部位に、pH9.4のアルカリ性電解水を含有させたオゾンガス(5L/min)を供給した。この様な状況で1時間の加工を行った。
 上記の実施例4について、加工前と加工後のGaNの表面粗さを非接触形状測定機で測定し、評価を行った。
[Example 4]
As a processing method of Example 4 of the present invention, processing was performed under the following conditions. First, as a processing method of Example 4 of the present invention, GaN (gallium nitride) (10 mm × 10 mm) as a workpiece is pressed against a glass surface plate with a load of 0.5 kg, and the glass surface plate is rotated at 200 rpm. The sample holder was rotated at 31.25 rpm while rotating at a moving distance of 3 mm and a rocking speed of 0.1 mm / s. Further, ozone gas (5 L / min) containing alkaline electrolyzed water having a pH of 9.4 was supplied from the ozone supply unit to the contact portion between the glass surface plate and GaN. Processing for 1 hour was performed in such a situation.
About said Example 4, the surface roughness of the GaN before and after a process was measured with the non-contact shape measuring machine, and evaluation was performed.
 図9に加工前の結果、図10に加工後の結果を示す。 9 shows the result before processing, and FIG. 10 shows the result after processing.
 図9及び図10から明らかなように、実施例4の加工により、加工前の被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.176nmであり、平滑に加工されていたことが分かった。加工前の被加工面の測定範囲における算術平均粗さ(Ra)の値は0.922nmであった。また、実施例4における加工能率は2979nm/hであり、充分な加工能率を示していた。 As apparent from FIGS. 9 and 10, the processed surface of the workpiece before processing is processed with high accuracy by the processing of Example 4, and the value of the arithmetic average roughness (Ra) in the measurement range of the processed surface is It was found to be 0.176 nm and processed smoothly. The arithmetic average roughness (Ra) in the measurement range of the surface to be processed before processing was 0.922 nm. In addition, the processing efficiency in Example 4 was 2979 nm / h, indicating a sufficient processing efficiency.
[発明の第2の実施の形態]
 以下、本発明を実施するための形態(以下、「発明の第2の実施の形態」と称する)について説明する。
 図11は本発明を適用した加工装置を説明するための模式図であり、ここで示す加工装置11は、絶縁性の合成石英定盤12と、合成石英定盤12の帯電量を変化させる帯電ユニット13と、絶縁性の単結晶ダイヤモンド14を保持する試料ホルダー15を有している。なお、帯電ユニット13は帯電処理部の一例であり、単結晶ダイヤモンド14は被加工物の一例である。
[Second Embodiment of the Invention]
Hereinafter, a mode for carrying out the present invention (hereinafter, referred to as “second embodiment of the invention”) will be described.
FIG. 11 is a schematic diagram for explaining a processing apparatus to which the present invention is applied. The processing apparatus 11 shown here is an insulating synthetic quartz surface plate 12 and charging that changes the charge amount of the synthetic quartz surface plate 12. It has a unit 13 and a sample holder 15 for holding an insulating single crystal diamond 14. The charging unit 13 is an example of a charging processing unit, and the single crystal diamond 14 is an example of a workpiece.
 なお、合成石英定盤12の上面(図11上の上面)に被加工物である単結晶ダイヤモンド14が接して被加工物が研磨されることとなる。また、合成石英定盤12は加工部材の一例である。 It should be noted that the work piece is polished by the single crystal diamond 14 as the work piece coming into contact with the upper surface of the synthetic quartz surface plate 12 (the upper surface in FIG. 11). The synthetic quartz surface plate 12 is an example of a processed member.
 帯電ユニット13は、合成石英定盤12の上方に配置され、合成石英定盤12の上面に陽イオンまたは陰イオンを供給して、合成石英定盤12の帯電量を外部から強制的に制御する。帯電量を制御することで合成石英定盤12の表面が改質され、単結晶ダイヤモンド14が接して電気化学的な作用が働くことで被加工物が研磨されることとなる。 The charging unit 13 is disposed above the synthetic quartz surface plate 12 and supplies positive ions or anions to the upper surface of the synthetic quartz surface plate 12 to forcibly control the charge amount of the synthetic quartz surface plate 12 from the outside. . By controlling the amount of charge, the surface of the synthetic quartz surface plate 12 is modified, and the workpiece is polished by the electrochemical action that the single crystal diamond 14 comes into contact with.
 ここで、本実施の形態では、加工部材が絶縁性の合成石英定盤12で形成されている場合を例に挙げて説明を行っているが、帯電ユニット13により帯電量を制御することが可能な材料であれば充分であって、必ずしも絶縁性の合成石英定盤12で形成される必要はない。例えば、鉄、ニッケル、Co等の金属、SiO、ZrO、Al、TiO2、Fe、MgO、CaO,NaO、KO、CeO等の無機酸化物、SiC、SiN、Al等のセラミックス、及びそれらからなる構成材料で形成されていても構わない。 Here, in the present embodiment, the case where the processing member is formed of the insulating synthetic quartz surface plate 12 is described as an example, but the charging amount can be controlled by the charging unit 13. Any other material is sufficient, and it is not always necessary to form the insulating synthetic quartz surface plate 12. For example, metals such as iron, nickel, Co, inorganic oxides such as SiO 2 , ZrO 2 , Al 2 O 3 , TiO 2, Fe 2 O 3 , MgO, CaO, Na 2 O, K 2 O, CeO 2 , SiC, SiN, may ceramics such as Al 2 O 3, and be formed of a constituent material consisting.
 また、合成石英定盤12は、回転数が制御可能な加工テーブル16上に固定され、加工テーブル16の回転によって合成石英定盤12が図11中符号Aで示す方向に回転可能に構成されている。 Further, the synthetic quartz surface plate 12 is fixed on a processing table 16 whose rotational speed can be controlled, and the synthetic quartz surface plate 12 is configured to be rotatable in the direction indicated by reference numeral A in FIG. Yes.
 また、試料ホルダー15は、合成石英定盤12の回転軸に対して偏心した回転軸17を中心として図11中符号Bで示す方向に回転可能に構成されており、単結晶ダイヤモンド14を保持した状態で上方から単結晶ダイヤモンド14と合成石英定盤12が接触する位置まで下降する。なお、図中の符号Yは荷重をかける方向を示している。 The sample holder 15 is configured to be rotatable in a direction indicated by a symbol B in FIG. 11 around a rotation shaft 17 that is eccentric with respect to the rotation shaft of the synthetic quartz surface plate 12, and holds the single crystal diamond 14. In this state, the single crystal diamond 14 and the synthetic quartz surface plate 12 are lowered from above to a position where they contact each other. In addition, the code | symbol Y in a figure has shown the direction which applies a load.
 ここで、本実施の形態では、試料ホルダー15に保持される被加工物として単結晶ダイヤモンド14を例に挙げて説明を行っているが、被加工物は単結晶ダイヤモンド14に限定されるものではなく、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜等のダイヤモンド関連材料、SiC、GaN、サファイア、SiCセラミックス、Siセラミックス、AIN、ガラス等の硬脆材料等であっても構わない。 Here, in the present embodiment, the single crystal diamond 14 is described as an example of the workpiece held by the sample holder 15, but the workpiece is not limited to the single crystal diamond 14. Alternatively, diamond-related materials such as diamond, polycrystalline diamond, CVD diamond, and DLC film, hard brittle materials such as SiC, GaN, sapphire, SiC ceramics, Si 3 N 4 ceramics, AIN, and glass may be used.
 以下、上記の様に構成された加工装置11を用いた加工方法について説明を行う。即ち、本発明を適用した加工方法の一例について説明を行う。 Hereinafter, a processing method using the processing apparatus 11 configured as described above will be described. That is, an example of a processing method to which the present invention is applied will be described.
 本発明を適用した加工方法の一例では、合成石英定盤12を回転させながら、合成石英定盤12に帯電ユニット13から陽イオンまたは陰イオンを供給する。 In an example of a processing method to which the present invention is applied, cations or anions are supplied from the charging unit 13 to the synthetic quartz surface plate 12 while rotating the synthetic quartz surface plate 12.
 即ち、合成石英定盤12の上面に陽イオンまたは陰イオンを供給することで、合成石英定盤12の表面の帯電量を制御し、表面を改質させる。 That is, by supplying cations or anions to the upper surface of the synthetic quartz surface plate 12, the amount of charge on the surface of the synthetic quartz surface plate 12 is controlled and the surface is modified.
 そして、表面が改質した状態の合成石英定盤12の上面と単結晶ダイヤモンド14が接触した状態で合成石英定盤12が回転することによって、単結晶ダイヤモンド14の表面を物理・化学的に除去することとなる。 Then, the surface of the single crystal diamond 14 is physically and chemically removed by rotating the synthetic quartz surface plate 12 in a state where the upper surface of the surface of the synthetic quartz surface plate 12 and the single crystal diamond 14 are in contact with each other. Will be.
 本実施の形態の変形例(1)として、図12に示す加工装置の構成も採用しうる。図12の示す加工装置18では、上述した図11に示す加工装置11の構成に、更に、紫外光光源19が設置されるものである。 As a modification (1) of the present embodiment, the configuration of the processing apparatus shown in FIG. 12 may be employed. In the processing apparatus 18 shown in FIG. 12, an ultraviolet light source 19 is further installed in the configuration of the processing apparatus 11 shown in FIG.
 紫外光光源19は、合成石英定盤12の上方であり、帯電ユニット13とは異なる位置に配置され、合成石英定盤12の上面に紫外光を照射するものとなる。 The ultraviolet light source 19 is located above the synthetic quartz surface plate 12 and is disposed at a position different from the charging unit 13 and irradiates the upper surface of the synthetic quartz surface plate 12 with ultraviolet light.
 本実施の形態の変形例(1)の加工方法では、合成石英定盤12を回転させながら、合成石英定盤12に帯電ユニット13から陽イオンまたは陰イオンを供給し、更に、紫外光光源19から紫外光を照射する。 In the processing method of the modified example (1) of the present embodiment, while the synthetic quartz surface plate 12 is rotated, positive ions or anions are supplied from the charging unit 13 to the synthetic quartz surface plate 12, and the ultraviolet light source 19 is further supplied. Irradiate with UV light.
 即ち、合成石英定盤12の上面に紫外光を照射することで、合成石英定盤12の表面の清浄化かつ親水化処理を行う。具体的には、紫外光を照射して合成石英定盤12の最表面部にOH基を表出させることで、単結晶ダイヤモンド14の表面の原子との反応サイトを増加させる。 That is, the surface of the synthetic quartz surface plate 12 is cleaned and hydrophilicized by irradiating the upper surface of the synthetic quartz surface plate 12 with ultraviolet light. Specifically, the reaction sites with the atoms on the surface of the single crystal diamond 14 are increased by irradiating ultraviolet light to expose OH groups on the outermost surface portion of the synthetic quartz surface plate 12.
 そして、反応サイトが増加した状態の合成石英定盤12の上面と単結晶ダイヤモンド14が接触し、合成石英定盤12が回転することによって、反応サイトを単結晶ダイヤモンド14の表面の原子と化学的に作用させ、ダイヤモンド基板の表面を物理・化学的に除去することとなる。即ち、帯電量を制御することによる電気化学的な作用と、紫外光照射による効果も加わり、加工能率をより一層向上させることができる。 Then, the upper surface of the synthetic quartz surface plate 12 with the increased reaction sites contacts the single crystal diamond 14, and the synthetic quartz surface plate 12 rotates, so that the reaction sites are chemically coupled with atoms on the surface of the single crystal diamond 14. The surface of the diamond substrate is physically and chemically removed. That is, the electrochemical efficiency by controlling the charge amount and the effect of ultraviolet light irradiation are added, and the processing efficiency can be further improved.
 また、本発明を適用した加工方法においては、加工部材を加湿する条件を加えて、加工能率を高める方法も採用しうる。 Also, in the processing method to which the present invention is applied, a method of increasing the processing efficiency by adding conditions for humidifying the processed member may be employed.
[効果]
 本発明を適用した加工装置は、帯電ユニットを既存の装置に配置するのみで容易に構築することができるものとなっている。
[effect]
The processing apparatus to which the present invention is applied can be easily constructed only by arranging the charging unit in an existing apparatus.
 更に、本発明を適用した加工方法及び加工装置は、砥粒を利用していないために、加工後の砥粒処理を行う必要がないものとなる。 Furthermore, since the processing method and processing apparatus to which the present invention is applied do not use abrasive grains, it is not necessary to perform abrasive processing after processing.
 また、砥粒を利用した加工の場合には、砥粒をスラリーの状態で供給する必要があり、加工部材や被加工物がスラリーで湿った状態となってしまい、温度が上がりにくく加工が進み難い。
 一方、本発明を適用した加工方法では、砥粒を利用していないためにスラリーが供給されることもなく、加工部材や被加工物が乾いた状態であり、摩擦熱も含めて温度が上がり易く化学反応が進みやすい。即ち、難加工材料の高精度、高能率な加工が実現することができる。
Further, in the case of processing using abrasive grains, it is necessary to supply the abrasive grains in a slurry state, so that the processing member and the workpiece become wet with the slurry, and the temperature does not easily rise and the processing proceeds. hard.
On the other hand, in the processing method to which the present invention is applied, the slurry is not supplied because the abrasive grains are not used, the processed member and the workpiece are in a dry state, and the temperature rises including frictional heat. Easy to proceed chemical reaction. That is, highly accurate and highly efficient processing of difficult-to-process materials can be realized.
 以下、本発明の実施例及び比較例について説明する。なお、ここで示す実施例は一例であり本発明を限定するものではない。 Hereinafter, examples and comparative examples of the present invention will be described. In addition, the Example shown here is an example and does not limit this invention.
 (5)被加工物の加工面の表面粗さ
 [実施例5~7及び比較例5~7]
 本発明の実施例5の加工方法として、以下の条件で加工を行った。先ず、本発明の実施例5の加工方法として、サファイア定盤に被加工物として単結晶ダイヤモンド(3mm×3mm)を2kg(22.2kg/cm)の荷重で押圧し、サファイア定盤を回転数250rpm、揺動距離3mm、揺動速度0.1mm/sの条件で回転させると共に、試料ホルダーを1000rpmで回転させた。また、サファイア定盤の上方から帯電ユニットより陰イオンを供給した。また、加湿ユニットによりサファイア定盤の上方から加湿処理を施した。この様な状況で1.5時間の加工を行った。
 実施例5と同様の方法で、帯電ユニットより陽イオンを供給したものを実施例6とした。
 未加工の単結晶ダイヤモンドを比較例5とした。
 また、実施例5と同様の方法で陰イオンまたは陽イオンの供給を行わず、加湿処理をしないものを比較例6とした。即ち、サファイア定盤の帯電量は制御せず、加工部材と被加工物の相対的な変位による物理的な加工のみを施す方法である。
 更に、比較例6と同様の方法で、加湿ユニットによりサファイア定盤の上方から加湿処理を施したものを比較例7とした。
 上記の実施例5~6及び比較例5~7について、走査型白色干渉計にて被加工面の表面粗さを評価した。なお、測定範囲は696μm×522μmである。
(5) Surface roughness of the processed surface of the workpiece [Examples 5 to 7 and Comparative Examples 5 to 7]
As a processing method of Example 5 of the present invention, processing was performed under the following conditions. First, as a processing method of Example 5 of the present invention, a single crystal diamond (3 mm × 3 mm) as a workpiece is pressed on a sapphire surface plate with a load of 2 kg (22.2 kg / cm 2 ), and the sapphire surface plate is rotated. The sample holder was rotated at 1000 rpm while rotating at several 250 rpm, a rocking distance of 3 mm, and a rocking speed of 0.1 mm / s. Anions were supplied from above the sapphire surface plate from the charging unit. Moreover, the humidification process was given from the upper direction of the sapphire surface plate with the humidification unit. Processing was performed for 1.5 hours in such a situation.
Example 6 was prepared by supplying cations from the charging unit in the same manner as in Example 5.
Unprocessed single crystal diamond was used as Comparative Example 5.
Further, Comparative Example 6 was used in the same manner as in Example 5 except that no anion or cation was supplied and no humidification treatment was performed. That is, this is a method in which the amount of charge of the sapphire surface plate is not controlled, and only physical processing is performed by relative displacement between the processing member and the workpiece.
Further, Comparative Example 7 was subjected to the humidification process from above the sapphire surface plate by the humidification unit in the same manner as Comparative Example 6.
For the above Examples 5 to 6 and Comparative Examples 5 to 7, the surface roughness of the processed surface was evaluated with a scanning white interferometer. The measurement range is 696 μm × 522 μm.
 図13に比較例5の走査型白色干渉計像を、図14に実施例5の走査型白色干渉計像を示す。 13 shows a scanning white interferometer image of Comparative Example 5, and FIG. 14 shows a scanning white interferometer image of Example 5.
 図13及び図14から明らかなように、比較例5の未加工の被加工物の面に比べ、実施例5の加工により被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.308nmであり、平滑に加工されていたことが分かった。比較例5の算術平均粗さ(Ra)の値は8.118nmであった。
 また、図示しないが、実施例6の加工においても被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.341nmであり、平滑に加工されていたことが分かった。
 一方、陰イオンまたは陽イオンの供給を行わない比較例6の加工では、被加工面の測定範囲における算術平均粗さ(Ra)の値は2.595nmであった。
As apparent from FIGS. 13 and 14, the processing surface of the workpiece is processed with high accuracy by the processing of Example 5 compared to the surface of the unprocessed workpiece of Comparative Example 5, and the measurement range of the processing surface The value of the arithmetic average roughness (Ra) at 0.38 was 0.308 nm, indicating that it was processed smoothly. The arithmetic average roughness (Ra) of Comparative Example 5 was 8.118 nm.
Although not shown, the processed surface of the workpiece is also processed with high accuracy in the processing of Example 6, and the value of the arithmetic average roughness (Ra) in the measurement range of the processed surface is 0.341 nm, which is smooth. It turned out that it was processed.
On the other hand, in the processing of Comparative Example 6 in which no anion or cation was supplied, the arithmetic average roughness (Ra) in the measurement range of the processed surface was 2.595 nm.
 (6)加工能率について
 上述した実施例5~6及び比較例6~7の加工方法による加工能率について以下の内容で確認を行った。
 被加工物となる単結晶ダイヤモンドに所定の深さの溝を形成しておき、加工前後での溝の深さの変化量から加工能率を算出した。
(6) About processing efficiency The processing efficiency by the processing methods of Examples 5 to 6 and Comparative Examples 6 to 7 described above was confirmed as follows.
A groove having a predetermined depth was formed in the single crystal diamond to be processed, and the machining efficiency was calculated from the amount of change in the groove depth before and after the machining.
 実施例5における加工能率は572.2nm/h、実施例6における加工能率は454.3nm/hであり、充分な加工能率を示していた。
 一方、比較例6における加工能率は23.2nm/hであった。また、比較例7における加工能率は99.7nm/hであった。
The processing efficiency in Example 5 was 572.2 nm / h, and the processing efficiency in Example 6 was 454.3 nm / h, indicating sufficient processing efficiency.
On the other hand, the processing efficiency in Comparative Example 6 was 23.2 nm / h. Further, the processing efficiency in Comparative Example 7 was 99.7 nm / h.
 (7)被加工物の加工面の表面粗さ
 [実施例7~8及び比較例8]
 本発明の実施例7の加工方法として、上述した実施例5の加工方法の装置構成に紫外光光源を更に設置して、サファイア定盤に紫外光を照射する条件で加工を行った。また、実施例7では、実施例5と同様に、サファイア定盤の上方から帯電ユニットより陰イオンを供給した。また、加湿ユニットによりサファイア定盤の上方から加湿処理を施した。その他の条件は実施例5と同一である。
 実施例7と同様の方法で、帯電ユニットより陽イオンを供給したものを実施例8とした。
 未加工の単結晶ダイヤモンドを比較例8とした。
 上記の実施例7~8及び比較例8について、走査型白色干渉計にて被加工面の表面粗さを評価した。なお、測定範囲は696μm×522μmである。
(7) Surface roughness of the processed surface of the workpiece [Examples 7 to 8 and Comparative Example 8]
As a processing method of Example 7 of the present invention, an ultraviolet light source was further installed in the apparatus configuration of the processing method of Example 5 described above, and processing was performed under the condition of irradiating the sapphire surface plate with ultraviolet light. Further, in Example 7, as in Example 5, anions were supplied from the charging unit from above the sapphire surface plate. Moreover, the humidification process was given from the upper direction of the sapphire surface plate with the humidification unit. The other conditions are the same as in Example 5.
Example 8 was prepared by supplying cations from the charging unit in the same manner as in Example 7.
Unprocessed single crystal diamond was used as Comparative Example 8.
For Examples 7 to 8 and Comparative Example 8 described above, the surface roughness of the processed surface was evaluated with a scanning white interferometer. The measurement range is 696 μm × 522 μm.
 図15に比較例8の走査型白色干渉計像を、図16に実施例7の走査型白色干渉計像を示す。 15 shows a scanning white interferometer image of Comparative Example 8, and FIG. 16 shows a scanning white interferometer image of Example 7.
 図15及び図16から明らかなように、比較例8の未加工の被加工物の面に比べ、実施例7の加工により被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.625nmであり、平滑に加工されていたことが分かった。比較例8の算術平均粗さ(Ra)の値は4.320nmであった。
 また、図示しないが、実施例8の加工においても被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.924nmであり、平滑に加工されていたことが分かった。
As apparent from FIGS. 15 and 16, the processing surface of the workpiece is processed with high accuracy by the processing of Example 7 as compared with the surface of the unprocessed workpiece of Comparative Example 8, and the measurement range of the processing surface The value of the arithmetic average roughness (Ra) was 0.625 nm, and it was found that the film was processed smoothly. The value of arithmetic average roughness (Ra) of Comparative Example 8 was 4.320 nm.
Further, although not shown, the processed surface of the workpiece is also processed with high accuracy in the processing of Example 8, and the value of the arithmetic average roughness (Ra) in the measurement range of the processed surface is 0.924 nm, which is smooth. It turned out that it was processed.
 (8)加工能率について
 上述した実施例7~8及び比較例9~10の加工方法による加工能率について以下の内容で確認を行った。
 比較例9は、実施例7の加工方法において紫外光の照射及び加湿処理は行うが、帯電ユニットからの陰イオンの供給を行わない方法である。即ち、サファイア定盤の帯電量は制御せず、紫外光の照射のみを行う加工である。なお、その他の加工条件は実施例7の加工方法と同一である。
 また、比較例9と同様の方法で、加湿ユニットによりサファイア定盤の上方から加湿処理を行わないものを比較例10とした。
 被加工物となる単結晶ダイヤモンドに所定の深さの溝を形成しておき、加工前後での溝の深さの変化量から加工能率を算出した。
(8) About processing efficiency The processing efficiency by the processing methods of Examples 7 to 8 and Comparative Examples 9 to 10 described above was confirmed as follows.
Comparative Example 9 is a method in which ultraviolet light irradiation and humidification treatment are performed in the processing method of Example 7, but no anion is supplied from the charging unit. That is, this is a process in which the amount of charge of the sapphire surface plate is not controlled and only the irradiation with ultraviolet light is performed. The other processing conditions are the same as the processing method of Example 7.
Further, in a method similar to that of Comparative Example 9, a humidifying unit that did not perform humidification treatment from above the sapphire surface plate was designated as Comparative Example 10.
A groove having a predetermined depth was formed in the single crystal diamond to be processed, and the machining efficiency was calculated from the amount of change in the groove depth before and after the machining.
 実施例7における加工能率は3741.4nm/h以上、実施例8における加工能率は2858.9nm/hであり、充分な加工能率を示していた。実施例7及び実施例8の加工能率は、上述した実施例5及び実施例6の加工能率よりも、より一層高い加工能率を示す方法であることが明らかとなった。
 一方、比較例9における加工能率は543.4nm/h以上であった。また、比較例10における加工能率は238.1nm/hであった。
 加工能率は、上述したように、あらかじめ被加工物である単結晶ダイヤモンドに溝の加工を行っており、加工前後の溝の深さの変化量により算出しようとしたものであるが、実施例7及び比較例9の加工では単結晶ダイヤモンドの溝が消失したため、実施例7の加工能率の数値は、「3741.4nm/h以上」、比較例9の加工能率は、「543.4nm/h以上」として表記している。
The processing efficiency in Example 7 was 3741.4 nm / h or more, and the processing efficiency in Example 8 was 2858.9 nm / h, indicating a sufficient processing efficiency. It became clear that the processing efficiency of Example 7 and Example 8 is a method which shows much higher processing efficiency than the processing efficiency of Example 5 and Example 6 mentioned above.
On the other hand, the processing efficiency in Comparative Example 9 was 543.4 nm / h or more. Further, the processing efficiency in Comparative Example 10 was 238.1 nm / h.
As described above, the processing efficiency was calculated by calculating the amount of change in the depth of the groove before and after the processing was performed on the single crystal diamond, which is the workpiece, in advance. In addition, since the single crystal diamond groove disappeared in the processing of Comparative Example 9, the numerical value of the processing efficiency of Example 7 was “3741.4 nm / h or more”, and the processing efficiency of Comparative Example 9 was “543.4 nm / h or more. ".
 (9)被加工物の表面電位
 [実施例9~11及び比較例11]
 本発明の実施例9の加工方法として、上述した実施例5の加工方法の装置構成から帯電ユニットを除き(加湿処理も行わず)、かつ、加工部材をサファイア定盤から合成石英定盤に変更し、定盤と被加工物である単結晶ダイヤモンドとの接触部位である加工点近傍にNガスを供給したものを実施例9とした。この様な状況で1.5時間の加工を行った。
 実施例9と同様の方法で、加湿ユニットより加湿処理を施したものを実施例10とした。
 実施例10と同様の方法で、帯電ユニットより陰イオンを供給したものを実施例11とした。
 また、実施例9の加工方法からNガスの供給を行わなかったものを比較例11とした。
 上記の実施例9~11及び比較例11について、表面電位計により合成石英定盤の表面電位を測定して、帯電量を評価した。
(9) Surface potential of workpiece [Examples 9 to 11 and Comparative Example 11]
As a processing method of Example 9 of the present invention, the charging unit is removed from the apparatus configuration of the processing method of Example 5 described above (no humidification process is performed), and the processing member is changed from a sapphire surface plate to a synthetic quartz surface plate. In Example 9, N 2 gas was supplied in the vicinity of a processing point which is a contact portion between a surface plate and a single crystal diamond which is a workpiece. Processing was performed for 1.5 hours in such a situation.
Example 10 was subjected to humidification treatment by a humidification unit in the same manner as in Example 9.
Example 11 was prepared by supplying anions from the charging unit in the same manner as in Example 10.
Further, Comparative Example 11 was obtained by supplying no N 2 gas from the processing method of Example 9.
For Examples 9 to 11 and Comparative Example 11 above, the surface potential of the synthetic quartz surface plate was measured with a surface potential meter to evaluate the charge amount.
 図17~図20に表面電位と加工時間の関係をグラフにて示す。図17は実施例9、図18は実施例10、図19は実施例11及び図20は比較例11の結果である。なお、グラフの縦軸は表面電位、横軸は加工時間(min)である。 17 to 20 show the relationship between the surface potential and the processing time in a graph. 17 shows the results of Example 9, FIG. 18 shows the results of Example 10, FIG. 19 shows the results of Example 11, and FIG. The vertical axis of the graph is the surface potential, and the horizontal axis is the processing time (min).
 図17から明らかなように、合成石英定盤にNガスを供給することで、定盤の表面電位が一定の値の範囲に制御されることが分かった。また、図18及び図19から明らかなように、Nガスの供給と加湿処理、または、Nガスの供給と加湿処理及び帯電ユニットからのイオン供給を併用することで、定盤の表面電位をより一層厳密に制御しうることが分かった。 As apparent from FIG. 17, it was found that the surface potential of the surface plate was controlled within a certain range by supplying N 2 gas to the synthetic quartz surface plate. Further, as apparent from FIGS. 18 and 19, the surface potential of the surface plate can be obtained by using both N 2 gas supply and humidification treatment, or N 2 gas supply and humidification treatment and ion supply from the charging unit in combination. It has been found that can be controlled even more strictly.
 (10)被加工物の加工面の表面粗さ
 上述した実施例9~11及び比較例11について、上述した方法と同様の内容で、走査型白色干渉計にて被加工面の表面粗さを評価した。
(10) Surface roughness of the processed surface of the workpiece For Examples 9 to 11 and Comparative Example 11 described above, the surface roughness of the processed surface was measured with a scanning white light interferometer in the same manner as the method described above. evaluated.
 図21~図24に走査型白色干渉計像を示す。図21は実施例9、図22は実施例10、図23は実施例11及び図24は比較例11の結果である。 21 to 24 show scanning white interferometer images. 21 shows the results of Example 9, FIG. 22 shows the results of Example 10, FIG. 23 shows the results of Example 11, and FIG.
 図21及び図24から明らかなように、比較例11の未加工の被加工物の面に比べ、実施例9の加工により被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.565nmであり、平滑に加工されていたことが分かった。比較例11の算術平均粗さ(Ra)の値は1.805nmであった。
 また、図22及び図23に示すように、実施例10及び実施例11の加工では、被加工物の加工面がより一層精度高く加工され、実施例6の被加工面の測定範囲における算術平均粗さ(Ra)の値は0.184nmであり、また、実施例11の被加工面の測定範囲における算術平均粗さ(Ra)の値は0.149nmであり、平滑に加工されていたことが分かった。
As apparent from FIGS. 21 and 24, the machining surface of the workpiece is machined with high accuracy by the machining of Example 9 as compared to the surface of the unmachined workpiece of Comparative Example 11, and the measurement range of the machining surface The value of arithmetic average roughness (Ra) was 0.565 nm, and it was found that the film was processed smoothly. The value of arithmetic average roughness (Ra) of Comparative Example 11 was 1.805 nm.
Further, as shown in FIGS. 22 and 23, in the processing of Example 10 and Example 11, the processed surface of the workpiece is processed with higher accuracy, and the arithmetic average in the measurement range of the processed surface of Example 6 is obtained. The value of roughness (Ra) was 0.184 nm, and the value of arithmetic average roughness (Ra) in the measurement range of the work surface of Example 11 was 0.149 nm, and it was processed smoothly. I understood.
 (11)加工能率について
 上述した実施例9~11及び比較例11について、上述した方法と同様の内容で、加工能率を評価した。
(11) Regarding processing efficiency With respect to Examples 9 to 11 and Comparative Example 11 described above, the processing efficiency was evaluated in the same manner as the above-described method.
 実施例9における加工能率は586.2nm/h、実施例10における加工能率は1261.8nm/h、実施例11における加工能率は1560nm/hであり、特に実施例10及び実施例11は、充分な加工能率を示していた。
 一方、比較例11における加工能率は38.33nm/hであった。
The processing efficiency in Example 9 is 586.2 nm / h, the processing efficiency in Example 10 is 1261.8 nm / h, and the processing efficiency in Example 11 is 1560 nm / h. In particular, Example 10 and Example 11 are sufficient. Showed high processing efficiency.
On the other hand, the processing efficiency in Comparative Example 11 was 38.33 nm / h.
   1  加工装置
   2  サファイア定盤
   3  単結晶ダイヤモンド
   4  試料ホルダー
   5  オゾン供給部
   6  加工テーブル
   7  回転軸
  11  加工装置
  12  合成石英定盤
  13  帯電ユニット
  14  単結晶ダイヤモンド
  15  試料ホルダー
  16  加工テーブル
  17  回転軸
  18  加工装置
  19  紫外光光源
DESCRIPTION OF SYMBOLS 1 Processing apparatus 2 Sapphire surface plate 3 Single crystal diamond 4 Sample holder 5 Ozone supply part 6 Processing table 7 Rotating shaft 11 Processing apparatus 12 Synthetic quartz surface plate 13 Charging unit 14 Single crystal diamond 15 Sample holder 16 Processing table 17 Rotating shaft 18 Processing Equipment 19 Ultraviolet light source

Claims (39)

  1.  金属酸化物で構成された加工部材を被加工物と接触させ、接触部位にオゾンガスを供給すると共に、前記加工部材を前記被加工物に接触させた状態で変位させる工程を備える
     加工方法。
    A processing method comprising the steps of bringing a workpiece made of a metal oxide into contact with a workpiece, supplying ozone gas to a contact portion, and displacing the workpiece in contact with the workpiece.
  2.  前記接触部位で生じる摩擦熱でオゾンガスを分解する
     請求項1に記載の加工方法。
    The processing method according to claim 1, wherein ozone gas is decomposed by frictional heat generated at the contact site.
  3.  前記加工部材は、Alから構成される単結晶状態のサファイア、コランダム、サファイアガラス、サファイアクリスタル、多結晶状態のアルミナ、アルミナセラミックス、SiOを主成分とするガラスのうちいずれか1つからなり、
     前記被加工物は、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜のうちいずれか1つからなる
     請求項1または請求項2に記載の加工方法。
    The processed member is any one of single crystal sapphire composed of Al 2 O 3 , corundum, sapphire glass, sapphire crystal, polycrystalline alumina, alumina ceramic, and glass mainly composed of SiO 2. Consists of
    The processing method according to claim 1, wherein the workpiece is made of any one of diamond, polycrystalline diamond, CVD diamond, and a DLC film.
  4.  前記加工部材は、SiOを主成分とするガラスからなり、
     前記被加工物は、SiCからなる
     請求項1または請求項2に記載の加工方法。
    The workpiece is made of glass whose main component is SiO 2,
    The processing method according to claim 1, wherein the workpiece is made of SiC.
  5.  前記加工部材、若しくは、前記被加工物の少なくとも一方を加湿する
     請求項1乃至請求項4に記載の加工方法。
    The processing method according to claim 1, wherein at least one of the processed member or the workpiece is humidified.
  6.  前記オゾンガスがアルカリ性溶液を含有する
     請求項1乃至請求項5に記載の加工方法。
    The processing method according to claim 1, wherein the ozone gas contains an alkaline solution.
  7.  前記アルカリ性溶液がアルカリ性電解水である
     請求項6に記載の加工方法。
    The processing method according to claim 6, wherein the alkaline solution is alkaline electrolyzed water.
  8.  前記加工部材、若しくは、前記被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する
     請求項1乃至請求項7に記載の加工方法。
    The processing method according to any one of claims 1 to 7, wherein at least one of a cation and an anion is supplied to at least one of the processing member or the workpiece to control a charge amount.
  9.  前記加工部材と、前記被加工物との接触部位にNガスを供給して帯電量を制御する
     請求項1乃至請求項8に記載の加工方法。
    The processing method according to claim 1, wherein a charge amount is controlled by supplying N 2 gas to a contact portion between the processing member and the workpiece.
  10.  金属酸化物で構成された加工部材を被加工物と接触させ、接触部位にオゾンガスを供給すると共に、前記加工部材を前記被加工物に接触させた状態で変位させる工程を備え、
     前記加工部材は、アルミナセラミックスまたはSiOを主成分とするガラスのうちいずれか1つからなり、
     前記被加工物は、GaNからなる
     加工方法。
    A step of bringing a workpiece made of a metal oxide into contact with a workpiece, supplying ozone gas to a contact site, and displacing the workpiece in a state of being in contact with the workpiece;
    The processed member is made of any one of alumina ceramic or glass mainly composed of SiO 2 ,
    The workpiece is made of GaN.
  11.  前記オゾンガスがアルカリ性電解水を含有する
     請求項10に記載の加工方法。
    The processing method according to claim 10, wherein the ozone gas contains alkaline electrolyzed water.
  12.  金属酸化物で構成された加工部材と、
     所定の被加工物を前記加工部材と接触させて保持する保持機構と、
     前記加工部材及び前記被加工物との接触部位にオゾンガスを供給するオゾンガス供給部と、
     前記加工部材と前記被加工物を接触させた状態で、前記加工部材を変位させる駆動部とを備える
     加工装置。
    A workpiece made of a metal oxide;
    A holding mechanism for holding a predetermined workpiece in contact with the processing member;
    An ozone gas supply unit for supplying ozone gas to a contact portion between the processed member and the workpiece;
    A processing apparatus comprising: a drive unit that displaces the processing member in a state where the processing member and the workpiece are in contact with each other.
  13.  前記加工部材及び前記被加工物との間の前記接触部位で摩擦熱が生じる
     請求項12に記載の加工装置。
    The processing apparatus according to claim 12, wherein frictional heat is generated at the contact portion between the processing member and the workpiece.
  14.  前記加工部材は、Alから構成される単結晶状態のサファイア、コランダム、サファイアガラス、サファイアクリスタル、多結晶状態のアルミナ、アルミナセラミックスSiOを主成分とするガラスのうちいずれか1つからなり、
     前記被加工物は、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜のうちいずれか1つからなる
     請求項12または請求項13に記載の加工装置。
    The processed member is made of any one of single-crystal sapphire composed of Al 2 O 3 , corundum, sapphire glass, sapphire crystal, polycrystalline alumina, and glass mainly composed of alumina ceramics SiO 2. Become
    The processing apparatus according to claim 12 or 13, wherein the workpiece includes any one of diamond, polycrystalline diamond, CVD diamond, and a DLC film.
  15.  前記加工部材は、SiOを主成分とするガラスからなり、
     前記被加工物は、SiCからなる
     請求項12または請求項13に記載の加工装置。
    The workpiece is made of glass whose main component is SiO 2,
    The processing apparatus according to claim 12, wherein the workpiece is made of SiC.
  16.  前記加工部材、若しくは、前記被加工物を加湿する加湿処理部を備える
     請求項12乃至請求項15に記載の加工装置。
    The processing apparatus of Claim 12 thru | or 15 provided with the humidification process part which humidifies the said process member or the said to-be-processed object.
  17.  前記オゾンガスがアルカリ性溶液を含有する
     請求項12乃至請求項16に記載の加工装置。
    The processing apparatus according to claim 12, wherein the ozone gas contains an alkaline solution.
  18.  前記アルカリ性溶液がアルカリ性電解水である
     請求項17に記載の加工装置。
    The processing apparatus according to claim 17, wherein the alkaline solution is alkaline electrolyzed water.
  19.  前記加工部材、若しくは、前記被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する帯電処理部を備える
     請求項12乃至請求項18に記載の加工装置。
    The processing according to any one of claims 12 to 18, further comprising: a charging processing unit that controls at least one of a cation and an anion to control at least one of the processing member or the workpiece. apparatus.
  20.  前記加工部材と、前記被加工物との接触部位にNガスを供給して帯電量を制御するNガス供給部を備える
     請求項12乃至請求項19に記載の加工方法。
    It said processing member and the processing method according to claim 12 or claim 19 comprising a N 2 gas supply unit for supplying N 2 gas to control the charge quantity to the contact portion between the workpiece.
  21.  金属酸化物で構成された加工部材と、
     所定の被加工物を前記加工部材と接触させて保持する保持機構と、
     前記加工部材及び前記被加工物との接触部位にオゾンガスを供給するオゾンガス供給部と、
     前記加工部材と前記被加工物を接触させた状態で、前記加工部材を変位させる駆動部とを備え、
     前記加工部材は、アルミナセラミックスまたはSiOを主成分とするガラスのうちいずれか1つからなり、
     前記被加工物は、GaNからなる
     加工装置。
    A workpiece made of a metal oxide;
    A holding mechanism for holding a predetermined workpiece in contact with the processing member;
    An ozone gas supply unit for supplying ozone gas to a contact portion between the processed member and the workpiece;
    A drive unit that displaces the processing member in a state where the processing member and the workpiece are in contact with each other;
    The processed member is made of any one of alumina ceramic or glass mainly composed of SiO 2 ,
    The workpiece is made of GaN.
  22.  前記オゾンガスがアルカリ性電解水を含有する
     請求項21に記載の加工装置。
    The processing apparatus according to claim 21, wherein the ozone gas contains alkaline electrolyzed water.
  23.  加工部材、若しくは、同加工部材で加工される被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御すると共に、前記加工部材と前記被加工物を接触させた状態で相対的に変位させる工程を備える
     加工方法。
    At least one of a cation or an anion is supplied to at least one of a workpiece or a workpiece processed by the workpiece to control the amount of charge, and the workpiece and the workpiece are A processing method comprising a step of relatively displacing in a contacted state.
  24.  前記加工部材、若しくは、前記被加工物の少なくとも一方に、陰イオンを供給する
     請求項23に記載の加工方法。
    The processing method according to claim 23, wherein an anion is supplied to at least one of the processed member or the workpiece.
  25.  前記加工部材、若しくは、前記被加工物の少なくとも一方に、陽イオンを供給する
     請求項23に記載の加工方法。
    The processing method according to claim 23, wherein a cation is supplied to at least one of the processing member or the workpiece.
  26.  前記加工部材、若しくは、前記被加工物の少なくとも一方に、陽イオン及び陰イオンを供給する
     請求項23に記載の加工方法。
    The processing method according to claim 23, wherein a cation and an anion are supplied to at least one of the processing member or the workpiece.
  27.  前記加工部材、若しくは、前記被加工物の少なくとも一方を加湿する
     請求項23乃至請求項26に記載の加工方法。
    27. The processing method according to claim 23, wherein at least one of the processing member or the workpiece is humidified.
  28.  前記加工部材、若しくは、前記被加工部材の少なくとも一方が絶縁体である
     請求項23乃至請求項27に記載の加工方法。
    The processing method according to claim 23, wherein at least one of the processed member or the processed member is an insulator.
  29.  前記加工物の表面に紫外光若しくはプラズマを照射して同加工部材の表面を清浄化かつ親水化処理する
     請求項23乃至請求項28に記載の加工方法。
    29. The processing method according to claim 23, wherein the surface of the processed member is irradiated with ultraviolet light or plasma to clean and hydrophilize the surface of the processed member.
  30.  前記加工部材及び前記被加工物の接触部位にNガスを供給する
     請求項23乃至請求項29に記載の加工方法。
    The processing method according to any one of claims 23 to 29, wherein N 2 gas is supplied to a contact portion between the processing member and the workpiece.
  31.  前記加工部材は金属、無機酸化物、セラミックスのうちいずれか1つからなり、
     前記被加工物は単結晶ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜のうちいずれか1つからなる
     請求項23乃至請求項30に記載の加工方法。
    The processed member is made of any one of metal, inorganic oxide, and ceramics,
    The processing method according to any one of claims 23 to 30, wherein the workpiece includes any one of single crystal diamond, polycrystalline diamond, CVD diamond, and a DLC film.
  32.  加工部材と、
     該加工部材、若しくは、同加工部材で加工される被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する帯電処理部と、
     所定の被加工物を保持する保持機構と、
     前記加工部材と前記被加工物を接触させた状態で、前記加工部材と前記被加工物を相対的に変位させる駆動部とを備える
     加工装置。
    Processing members;
    A charge processing unit for controlling the charge amount by supplying at least one of a cation or an anion to at least one of the processed member or a workpiece processed by the processed member;
    A holding mechanism for holding a predetermined workpiece;
    A processing apparatus comprising: a drive unit that relatively displaces the processing member and the workpiece while the processing member and the workpiece are in contact with each other.
  33.  前記加工部材、若しくは、前記被加工物を加湿する加湿処理部を備える
     請求項32に記載の加工装置。
    The processing apparatus of Claim 32 provided with the humidification process part which humidifies the said process member or the said to-be-processed object.
  34.  前記加工部材の表面を親水化処理する清浄化かつ親水化処理部を備える
     請求項32または請求項33に記載の加工装置。
    The processing apparatus according to claim 32 or 33, further comprising a cleaning and hydrophilization processing unit that hydrophilizes the surface of the processing member.
  35.  前記加工部材及び前記被加工物の接触部位にNガスを供給するNガス供給部を備える
     請求項32乃至請求項34に記載の加工装置。
    It said processing member and the processing device according the to claim 32 or claim 34 comprising a N 2 gas supply unit for supplying a N 2 gas to the contact portion of the workpiece.
  36.  加工部材と、該加工部材で加工される被加工物との接触部位にNガスを供給して帯電量を制御すると共に、前記加工部材と前記被加工物を接触させた状態で相対的に変位させる工程を備える
     加工方法。
    The N 2 gas is supplied to the contact portion between the processing member and the workpiece processed by the processing member to control the charge amount, and the processing member and the workpiece are relatively in contact with each other. A processing method comprising a step of displacing.
  37.  前記加工部材、若しくは、前記被加工物の少なくとも一方を加湿する
     請求項36に記載の加工方法。
    The processing method according to claim 36, wherein at least one of the processed member or the workpiece is humidified.
  38.  加工部材と、
     該加工部材と、同加工部材で加工される被加工物との接触部位にNガスを供給して帯電量を制御するNガス供給部と、
     所定の被加工物を保持する保持機構と、
     前記加工部材と前記被加工物を接触させた状態で、前記加工部材と前記被加工物を相対的に変位させる駆動部とを備える
     加工装置。
    Processing members;
    An N 2 gas supply unit for controlling the charge amount by supplying N 2 gas to a contact portion between the processed member and a workpiece processed by the processed member;
    A holding mechanism for holding a predetermined workpiece;
    A processing apparatus comprising: a drive unit that relatively displaces the processing member and the workpiece while the processing member and the workpiece are in contact with each other.
  39.  前記加工部材、若しくは、前記被加工物を加湿する加湿処理部を備える
     請求項38に記載の加工装置。
    The processing apparatus of Claim 38 provided with the humidification process part which humidifies the said process member or the said to-be-processed object.
PCT/JP2017/005372 2016-02-16 2017-02-14 Processing method and processing apparatus WO2017141918A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018500128A JP6928328B2 (en) 2016-02-16 2017-02-14 Processing method and processing equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016027126 2016-02-16
JP2016-027126 2016-02-16
JP2016-028408 2016-02-17
JP2016028408 2016-02-17

Publications (1)

Publication Number Publication Date
WO2017141918A1 true WO2017141918A1 (en) 2017-08-24

Family

ID=59625109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005372 WO2017141918A1 (en) 2016-02-16 2017-02-14 Processing method and processing apparatus

Country Status (2)

Country Link
JP (2) JP6928328B2 (en)
WO (1) WO2017141918A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7204105B2 (en) * 2019-02-13 2023-01-16 国立大学法人 熊本大学 Processing method and processing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189544A (en) * 1996-12-26 1998-07-21 Matsushita Electric Ind Co Ltd Apparatus and method for removal of electrostatic charge in substrate
JP2008060453A (en) * 2006-09-01 2008-03-13 Matsushita Electric Ind Co Ltd Semiconductor manufacturing apparatus, and manufacturing method for semiconductor device
JP2008136983A (en) * 2006-12-05 2008-06-19 Osaka Univ Catalyst-aided chemical processing method and apparatus
WO2014034921A1 (en) * 2012-09-03 2014-03-06 国立大学法人 熊本大学 Machining method and machining device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189544A (en) * 1996-12-26 1998-07-21 Matsushita Electric Ind Co Ltd Apparatus and method for removal of electrostatic charge in substrate
JP2008060453A (en) * 2006-09-01 2008-03-13 Matsushita Electric Ind Co Ltd Semiconductor manufacturing apparatus, and manufacturing method for semiconductor device
JP2008136983A (en) * 2006-12-05 2008-06-19 Osaka Univ Catalyst-aided chemical processing method and apparatus
WO2014034921A1 (en) * 2012-09-03 2014-03-06 国立大学法人 熊本大学 Machining method and machining device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKIHISA KUBOTA ET AL.: "Smoothing of the diamond substrate by ultraviolet assisted polishing -Advantage of supplying ozone gas", 2015 JSPE AUTUMN CONFERENCE GAKUJUTSU KOENKAI KOEN RONBUNSHU, vol. 2015, no. L39, 20 August 2015 (2015-08-20), pages 715 - 716 *
TAKESHI SAKAMOTO ET AL.: "Ultraviolet-assisted polishing of 4 inch SiC substrate", JOURNAL OF THE JAPAN SOCIETY OF GRIDING ENGINEERS, vol. 58, no. 4, April 2014 (2014-04-01), pages 235 - 240, XP055410508, ISSN: 0914-2703 *

Also Published As

Publication number Publication date
JP6515311B2 (en) 2019-05-22
JP6928328B2 (en) 2021-09-01
JPWO2017141918A1 (en) 2018-12-06
JP2018125549A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
KR101692574B1 (en) Polishing method and polishing apparatus
JP5364959B2 (en) Polishing method and polishing apparatus
US10163645B2 (en) Method for processing wide-bandgap semiconductor substrate and apparatus therefor
JP5103631B2 (en) Processing method
JP2015231939A (en) Method for working glass material and device therefor
JP5552648B2 (en) Polishing method and polishing apparatus
JP2008081389A (en) Catalyst-aided chemical processing method and apparatus
JP6598150B2 (en) Method for producing single crystal SiC substrate
WO2017141918A1 (en) Processing method and processing apparatus
JP6145761B2 (en) Processing method and processing apparatus
JP5331342B2 (en) Ion milling equipment
JP7204105B2 (en) Processing method and processing equipment
Wang et al. Comparison of Fe catalyst species in chemical mechanical polishing based on Fenton reaction for SiC wafer
JP2009113272A (en) Cutting method of hard material
JP2016127130A (en) Processing method and processing device
JP2015226951A (en) Polishing apparatus
JP2022145477A (en) Work-piece processing device
JP2015162600A (en) FLATTENING METHOD AND FLATTENING DEVICE OF Si SUBSTRATE
JP2022132888A (en) Processing method and processing apparatus
Kurita et al. Development of new complex machining technology for single crystal silicon carbide polishing
JP2015127078A (en) Processing method and processing device
JP2020178085A (en) Surface removal processing device
JP7309177B2 (en) Truing method and truing device
JP4011259B2 (en) Processing method using photocatalyst
JP2023541596A (en) Method and apparatus for machining wafer holding devices for wafer lithography processes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018500128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753175

Country of ref document: EP

Kind code of ref document: A1