JP6515311B2 - Processing method and processing apparatus - Google Patents

Processing method and processing apparatus Download PDF

Info

Publication number
JP6515311B2
JP6515311B2 JP2018057261A JP2018057261A JP6515311B2 JP 6515311 B2 JP6515311 B2 JP 6515311B2 JP 2018057261 A JP2018057261 A JP 2018057261A JP 2018057261 A JP2018057261 A JP 2018057261A JP 6515311 B2 JP6515311 B2 JP 6515311B2
Authority
JP
Japan
Prior art keywords
workpiece
processing
ozone gas
contact
processing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018057261A
Other languages
Japanese (ja)
Other versions
JP2018125549A (en
Inventor
章亀 久保田
章亀 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Kumamoto University NUC
Original Assignee
Shinryo Corp
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp, Kumamoto University NUC filed Critical Shinryo Corp
Publication of JP2018125549A publication Critical patent/JP2018125549A/en
Application granted granted Critical
Publication of JP6515311B2 publication Critical patent/JP6515311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は加工方法及び加工装置に関する。詳しくは、ダイヤモンド等を加工するドライ研磨にて、簡易な構成でありながら高能率かつ高精度な加工を実現可能な加工方法及び加工装置に係るものである。   The present invention relates to a processing method and a processing apparatus. More specifically, the present invention relates to a processing method and a processing apparatus capable of realizing highly efficient and highly accurate processing with a simple structure by dry polishing for processing a diamond or the like.

ダイヤモンドは、5.4eVという広いバンドギャップを持ち、熱伝導率が大きく、絶縁破壊電界や電荷移動度などに優れていることから、次世代パワー半導体デバイス用材料として有力視されている。   Diamond has a wide band gap of 5.4 eV, has a large thermal conductivity, and is excellent in dielectric breakdown electric field, charge mobility, and the like, and thus is regarded as a promising material for next-generation power semiconductor devices.

ダイヤモンドを用いて半導体デバイスを製作するためには、デバイスの下地となるダイヤモンド基板表面を原子レベルで平滑、かつ無擾乱に仕上げる加工技術が必要不可欠であるといわれている。しかしながら、ダイヤモンドは、高硬度かつ化学的に安定であるために、加工することは極めて難しく、加工技術の開発が技術的課題となっている。   In order to manufacture a semiconductor device using diamond, it is said that a processing technique for finishing the surface of the diamond substrate underlying the device at the atomic level and making a disorderless finish is indispensable. However, diamond is extremely difficult to process due to its high hardness and chemical stability, and the development of processing techniques has become a technical issue.

例えば、従来の加工方法として、化学機械研磨などの砥粒を用いた研磨により化学的除去を行う加工が知られている。しかしながら、研磨剤中での化学反応を利用するため除去速度が遅く、加工能率が不充分である問題があった。   For example, as a conventional processing method, processing in which chemical removal is performed by polishing using abrasive grains such as chemical mechanical polishing is known. However, since the chemical reaction in the polishing agent is used, the removal rate is slow, and the processing efficiency is insufficient.

ここで、上述した溶液環境下での研磨に対して、砥粒を使用せずに加工能率の向上を試みた大気環境下での加工方法が存在する。   Here, there is a processing method in the air environment where an attempt is made to improve the processing efficiency without using abrasive grains for the above-mentioned polishing in the solution environment.

例えば、ダイヤモンドからなる基板の被研磨面に研磨定盤を高圧で接触させると共に、研磨定盤の裏面から基板の研磨面に紫外線を照射しつつ、基板を研磨定盤に対して相対的に擦動させることにより研磨する技術が提案されている(例えば、特許文献1参照)。   For example, the polishing platen is brought into contact with the surface to be polished of a substrate made of diamond under high pressure, and the substrate is rubbed relative to the polishing platen while irradiating ultraviolet light from the back surface of the polishing platen to the polishing surface of the substrate. A technique for polishing by moving is proposed (see, for example, Patent Document 1).

また、本願の発明者によって、金属酸化物で構成された研磨定盤に紫外光やプラズマを照射して、定盤表面上のケミカルコンタミネーション(有機汚染物物)を除去するとともに、定盤表面を親水化させる(最表面部にOH基を表出させる)加工方法が提案されている(例えば、特許文献2参照)。   In addition, the inventors of the present invention apply ultraviolet light or plasma to a polishing platen made of metal oxide to remove chemical contamination (organic contaminants) on the surface of the platen, and There is proposed a processing method of hydrophilizing (exposing an OH group on the outermost surface portion) (see, for example, Patent Document 2).

特許文献2に記載の方法では、定盤表面を親水化させることで、被加工物表面原子との反応サイトを増加させ、被加工物表面の原子と化学的に作用させて加工を行うものである。   In the method described in Patent Document 2, the surface of the surface plate is made hydrophilic to increase reaction sites with atoms on the surface of the object to be processed, and chemically react with atoms on the surface of the object to be processed. is there.

国際公開第2007/007683号International Publication No. 2007/007683 国際公開第2014/034921号International Publication No. 2014/034921

しかしながら、特許文献1及び特許文献2に記載の加工方法では、紫外線の照射にて加工を行うが、紫外光は大気中で不安定であり、瞬間的に保有するエネルギーを消失してしまうため、加工部材に均一に照射することが難しかった。そのため、安定的に高い加工精度を実現することが困難であった。   However, in the processing methods described in Patent Document 1 and Patent Document 2, although processing is performed by irradiation of ultraviolet light, ultraviolet light is unstable in the atmosphere, and energy stored instantaneously is lost. It was difficult to uniformly irradiate the workpiece. Therefore, it has been difficult to stably achieve high processing accuracy.

また、特許文献1及び特許文献2に記載の加工では、定盤と被加工物の保持部分を相対的に変位させる加工装置の構成上、紫外光光源の設置場所に制約があった。即ち、既存の加工装置をそのまま利用することができず、紫外光光源を設けるための特別仕様の加工装置を製作する必要があった。   Moreover, in the process of patent document 1 and patent document 2, there existed restrictions in the installation place of an ultraviolet light source on the structure of the processing apparatus which relatively displaces the surface plate and the holding part of a to-be-processed object. That is, the existing processing apparatus can not be used as it is, and it has been necessary to manufacture a processing apparatus of a special specification for providing an ultraviolet light source.

また、ドライ研磨では、加工部材と被加工物を接触させて相対的に変位させた際に摩擦帯電が生じるものとなる。摩擦帯電により加工部材及び被加工物の表面の帯電状態が不安定となり、加工後の表面粗さや加工能率が高精度に制御できない問題があった。   Moreover, in dry polishing, when the workpiece and the workpiece are brought into contact and relatively displaced, frictional charging occurs. There is a problem that the charged state of the surface of the processing member and the workpiece becomes unstable due to the frictional charging, and the surface roughness after processing and the processing efficiency can not be controlled with high accuracy.

本発明は以上の点に鑑みて創案されたものであって、ダイヤモンド等を加工するドライ研磨にて、簡易な構成でありながら高能率かつ高精度な加工を実現可能な加工方法及び加工装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and a processing method and processing apparatus capable of realizing highly efficient and highly accurate processing with a simple configuration by dry polishing for processing a diamond or the like. It is intended to be provided.

[加工方法について]
上記の目的を達成するために、本発明の加工方法は、金属酸化物で構成された加工部材を被加工物と接触させ、接触部位にオゾンガスを供給すると共に、前記加工部材を前記被加工物に接触させた状態で変位させる工程を備える。
[About processing method]
In order to achieve the above object, according to the processing method of the present invention, a processed member made of a metal oxide is brought into contact with a workpiece, ozone gas is supplied to the contact portion, and the processed member is the workpiece And displacing in a state of being in contact with

ここで、加工部材を被加工物と接触させ、接触部位にオゾンガスを供給することによって、接触部位をオゾンガス環境下におくことができる。即ち、オゾンガスは不安定な分子であるが、接触部位にオゾンガスを供給することで、同領域にオゾンガスを局在させることが可能となる。   Here, the contact portion can be placed in the ozone gas environment by bringing the processing member into contact with the workpiece and supplying the ozone gas to the contact portion. That is, although ozone gas is an unstable molecule, it becomes possible to localize ozone gas in the same field by supplying ozone gas to a contact part.

また、加工部材を被加工物に接触させた状態で変位させる工程によって、接触部位に摩擦熱を生じさせることが可能となる。この摩擦熱は供給されるオゾンガスを熱分解し、オゾンガスから原子状酸素を生成する。生成した原子状酸素は、大気環境下で、被加工物との化学反応(加工)を担う加工部材の最表面の水酸基(OH基)へのカルボキシル基等の結合、即ち、有機物に由来するコンタミネーションを抑止する。原子状酸素が有機物由来の汚れを分解して清浄化し、かつ、加工部材表面に水酸基(OH基)を表出させる親水化を行うことで、被加工物の安定した物理・化学的な加工が可能となる。   Further, it is possible to generate frictional heat at the contact portion by the step of displacing the processing member in a state of being in contact with the workpiece. The frictional heat thermally decomposes the supplied ozone gas to generate atomic oxygen from the ozone gas. The generated atomic oxygen is a bond such as a carboxyl group to a hydroxyl group (OH group) on the outermost surface of the processed member responsible for the chemical reaction (processing) with the workpiece under the atmospheric environment, ie, contamination derived from organic matter Suppress the nation. Stable physical and chemical processing of the processed material is achieved by hydrophilization that atomic oxygen decomposes and cleans the dirt derived from organic matter and exposes hydroxyl groups (OH groups) on the surface of the processing member It becomes possible.

また、上述したように、接触部位がオゾンガス環境下となるため、安定した加工に必要な原子状酸素を確保することが可能となる。   Further, as described above, since the contact site is under the ozone gas environment, it is possible to secure atomic oxygen necessary for stable processing.

本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置で、オゾンガスの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物の物理・化学的に安定した加工を実現するものである。   In the present invention, the atomic oxygen generated by the thermal decomposition of the ozone gas is utilized at the contact site of the workpiece and the workpiece, that is, at the position where the workpiece is to be machined, to clean and hydrophilicize the surface of the workpiece. Treatment to realize physically and chemically stable processing of the workpiece.

また、加工部材が、Alから構成される単結晶状態のサファイア、コランダム、サファイアガラス、サファイアクリスタル、多結晶状態のアルミナ、アルミナセラミックス、SiOを主成分とするガラスのうちいずれか1つからなり、被加工物が、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜のうちいずれか1つからなる場合には、被加工物に対する充分に安定した加工が可能となる。 Further, the processing member, sapphire single crystal state consisting of Al 2 O 3, corundum, sapphire glass, sapphire crystal, polycrystalline state alumina, alumina ceramics, one of the glass as a main component SiO 2 1 In the case where the workpiece is made of one of diamond, polycrystalline diamond, CVD diamond, and DLC film, sufficiently stable processing of the workpiece is possible.

また、加工部材が、SiOを主成分とするガラスからなり、被加工物が、SiCからなる場合には、SiCに対する充分に安定した加工が可能となる。 Further, when the processing member is made of glass containing SiO 2 as the main component and the workpiece is made of SiC, sufficiently stable processing with respect to SiC becomes possible.

また、加工部材、若しくは、被加工物の少なくとも一方を加湿する場合には、より一層安定した加工が可能となり、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。   Further, in the case of humidifying at least one of the processing member or the workpiece, the processing can be further stabilized, the accuracy of the surface roughness can be further enhanced, and the processing efficiency can be improved.

また、オゾンガスがアルカリ性溶液を含有する場合には、加工部材と被加工物の摩擦面で発生するトライボケミカル反応を促進させ、被加工物の加工面における酸化物を生成させ、優先的に除去できるものとなる。この結果、オゾンガスの熱分解により生じる原子状酸素を利用した加工に加え、トライボケミカル反応による加工が促進され、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。なお、ここでいうアルカリ性溶液とは、例えば、アルカリ性電解水、NaOH、KOH等のアルカリ性を示す溶液である。   In addition, when the ozone gas contains an alkaline solution, the tribochemical reaction occurring on the friction surface between the workpiece and the workpiece can be promoted to form an oxide on the workpiece surface of the workpiece to be removed preferentially. It becomes a thing. As a result, in addition to processing using atomic oxygen generated by thermal decomposition of ozone gas, processing by tribochemical reaction is promoted, accuracy of surface roughness can be further enhanced, and processing efficiency can be improved. In addition, an alkaline solution here is a solution which shows alkalinity, such as alkaline electrolyzed water, NaOH, KOH, for example.

また、アルカリ性溶液がアルカリ性電解水である場合には、アルカリ性電解水を含むオゾンガスでトライボケミカル反応を促進させることが可能となる。また、アルカリ性電解水は、取扱い時の安全性が高く、比較的容易に生成可能であるため、加工方法を安全かつより簡易なものにできる。なお、ここでいうアルカリ性電解水とは、pHが9.0以上のアルカリ性の水を意味するものである。   Moreover, when an alkaline solution is alkaline electrolyzed water, it becomes possible to accelerate a tribochemical reaction by ozone gas containing alkaline electrolyzed water. In addition, alkaline electrolyzed water has high safety during handling and can be generated relatively easily, so the processing method can be made safer and simpler. In addition, alkaline electrolyzed water here means alkaline water whose pH is 9.0 or more.

また、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する場合には、加工部材及び被加工物の表面の帯電状態を安定化させる。
そして、表面の帯電状態が安定化した加工部材と被加工物を接触させた状態で相対的に変位させることによって、加工部材及び被加工物の表面の帯電状態を制御した上で被加工物の表面を物理・化学的に加工することができる。
In addition, when at least one of cation and anion is supplied to at least one of the workpiece and the workpiece to control the charge amount, the charged state of the surface of the workpiece and the workpiece is determined. Stabilize.
Then, by relatively displacing the workpiece in a state in which the workpiece is in contact with the processing member whose charged state on the surface is stabilized, the charging status of the surfaces of the workpiece and the workpiece is controlled and then the workpiece is processed. The surface can be physically and chemically processed.

また、加工部材と、被加工物との接触部位にNガスを供給して帯電量を制御する場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。 In addition, when the amount of charge is controlled by supplying N 2 gas to the contact portion between the processing member and the workpiece, it becomes easier to control the charging state of the surface of the processing member and the workpiece, and the surface is roughened. The accuracy of the threading can be further enhanced, and the processing efficiency can be further enhanced.

本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置で、オゾンの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物の物理・化学的に安定した加工を実現するものである。そのため、砥粒フリーの研磨を実現することができる。また、既存の加工装置の加工部材と被加工物の接触部位にオゾンを供給する装置を設置するだけでよいため、加工システムを容易に構築できるものとなっている。   In the present invention, the atomic oxygen generated by the thermal decomposition of ozone is utilized at the contact site of the workpiece and the workpiece, ie, at the position where the workpiece is to be machined, to clean and hydrophilicize the surface of the workpiece. Treatment to realize physically and chemically stable processing of the workpiece. Therefore, abrasive-free polishing can be realized. Further, since it is sufficient to install an apparatus for supplying ozone to the contact portion between the processing member of the existing processing apparatus and the workpiece, the processing system can be easily constructed.

なお、「加工部材」としては、例えば、鉄、ニッケル、Co等の金属、SiO、ZrO、Al、TiO2、Fe、MgO、CaO,NaO、KO、CeO等の金属酸化物、SiC、SiN、Al等のセラミックス、及びそれらからなる構成材料で構成された加工部材が挙げられる。更に、被加工物としては、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜等のダイヤモンド関連材料、SiC、GaN、サファイア、SiCセラミックス、Siセラミックス、AIN、ガラス等の硬脆材料等が挙げられる。 As "processing member", for example, iron, nickel, metal such as Co, SiO 2, ZrO 2, Al 2 O 3, TiO 2, Fe 2 O 3, MgO, CaO, Na 2 O, K 2 O Examples of the processing member include metal oxides such as CeO 2 , ceramics such as SiC, SiN, and Al 2 O 3 , and constituent materials made of them. Furthermore, as a workpiece, diamond related materials such as diamond, polycrystalline diamond, CVD diamond, DLC film, etc., hard and brittle materials such as SiC, GaN, sapphire, SiC ceramics, Si 3 N 4 ceramics, AIN, glass, etc. It can be mentioned.

また、上記の目的を達成するために、本発明の加工方法は、金属酸化物で構成された加工部材を被加工物と接触させ、接触部位にオゾンガスを供給すると共に、前記加工部材を前記被加工物に接触させた状態で変位させる工程を備え、前記加工部材は、アルミナセラミックスまたはSiOを主成分とするガラスのうちいずれか1つからなり、前記被加工物は、GaNからなるもので構成されている。 Further, in order to achieve the above object, according to the processing method of the present invention, a processed member made of a metal oxide is brought into contact with a workpiece, ozone gas is supplied to the contact portion, and the processed member is And a step of displacing the workpiece in a state of being in contact with the workpiece, wherein the workpiece is made of any one of alumina ceramics or glass mainly composed of SiO 2 , and the workpiece is made of GaN. It is configured.

ここで、加工部材を被加工物と接触させ、接触部位にオゾンガスを供給することによって、接触部位をオゾンガス環境下におくことができる。即ち、オゾンガスは不安定な分子であるが、接触部位にオゾンガスを供給することで、同領域にオゾンガスを局在させることが可能となる。   Here, the contact portion can be placed in the ozone gas environment by bringing the processing member into contact with the workpiece and supplying the ozone gas to the contact portion. That is, although ozone gas is an unstable molecule, it becomes possible to localize ozone gas in the same field by supplying ozone gas to a contact part.

また、加工部材を被加工物に接触させた状態で変位させる工程によって、接触部位に摩擦熱を生じさせることが可能となる。この摩擦熱は供給されるオゾンガスを熱分解し、オゾンガスから原子状酸素を生成する。生成した原子状酸素は、大気環境下で、被加工物との化学反応(加工)を担う加工部材の最表面の水酸基(OH基)へのカルボキシル基等の結合、即ち、有機物に由来するコンタミネーションを抑止する。原子状酸素が有機物由来の汚れを分解して清浄化し、かつ、加工部材表面に水酸基(OH基)を表出させる親水化を行うことで、被加工物の安定した物理・化学的な加工が可能となる。   Further, it is possible to generate frictional heat at the contact portion by the step of displacing the processing member in a state of being in contact with the workpiece. The frictional heat thermally decomposes the supplied ozone gas to generate atomic oxygen from the ozone gas. The generated atomic oxygen is a bond such as a carboxyl group to a hydroxyl group (OH group) on the outermost surface of the processed member responsible for the chemical reaction (processing) with the workpiece under the atmospheric environment, ie, contamination derived from organic matter Suppress the nation. Stable physical and chemical processing of the processed material is achieved by hydrophilization that atomic oxygen decomposes and cleans the dirt derived from organic matter and exposes hydroxyl groups (OH groups) on the surface of the processing member It becomes possible.

また、上述したように、接触部位がオゾンガス環境下となるため、安定した加工に必要な原子状酸素を確保することが可能となる。   Further, as described above, since the contact site is under the ozone gas environment, it is possible to secure atomic oxygen necessary for stable processing.

本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置で、オゾンガスの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物の物理・化学的に安定した加工を実現するものである。   In the present invention, the atomic oxygen generated by the thermal decomposition of the ozone gas is utilized at the contact site of the workpiece and the workpiece, that is, at the position where the workpiece is to be machined, to clean and hydrophilicize the surface of the workpiece. Treatment to realize physically and chemically stable processing of the workpiece.

また、加工部材が、アルミナセラミックスまたはSiOを主成分とするガラスのうちいずれか1つからなり、被加工物が、GaNから構成されたことによって、GaNに対する充分に安定した加工が可能となる。 In addition, since the processing member is made of any one of alumina ceramics or glass mainly composed of SiO 2 and the workpiece is made of GaN, it is possible to perform sufficiently stable processing on GaN. .

また、オゾンガスがアルカリ性電解水を含有する場合には、加工部材と被加工物の摩擦面で発生するトライボケミカル反応を促進させ、被加工物の加工面における酸化物を生成させ、優先的に除去できるものとなる。この結果、オゾンガスの熱分解により生じる原子状酸素を利用した加工に加え、トライボケミカル反応による加工が促進され、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。なお、ここでいうアルカリ性溶液とは、例えば、アルカリ性電解水、NaOH、KOH等のアルカリ性を示す溶液である。   In addition, when the ozone gas contains alkaline electrolyzed water, it promotes tribochemical reaction that occurs on the friction surface between the workpiece and the workpiece to form an oxide on the workpiece surface of the workpiece, which is then removed preferentially. It will be possible. As a result, in addition to processing using atomic oxygen generated by thermal decomposition of ozone gas, processing by tribochemical reaction is promoted, accuracy of surface roughness can be further enhanced, and processing efficiency can be improved. In addition, an alkaline solution here is a solution which shows alkalinity, such as alkaline electrolyzed water, NaOH, KOH, for example.

また、アルカリ性電解水を含むオゾンガスでトライボケミカル反応を促進させることが可能となる。トライボケミカル反応により、下記の反応式で示す反応が生じ、GaNに対して高精度かつ、加工能率が高い加工を行うことができる。
2GaN+3HO⇔Ga+2NH
また、アルカリ性電解水は、取扱い時の安全性が高く、比較的容易に生成可能であるため、加工方法を安全かつより簡易なものにできる。なお、ここでいうアルカリ性電解水とは、pHが9.0以上のアルカリ性の水を意味するものである。
Moreover, it becomes possible to accelerate tribochemical reaction by ozone gas containing alkaline electrolyzed water. By the tribochemical reaction, a reaction shown by the following reaction formula occurs, and processing with high accuracy and high processing efficiency can be performed on GaN.
2 GaN + 3 H 2 O ⇔ Ga 2 O 3 + 2 NH 3
In addition, alkaline electrolyzed water has high safety during handling and can be generated relatively easily, so the processing method can be made safer and simpler. In addition, alkaline electrolyzed water here means alkaline water whose pH is 9.0 or more.

[加工装置について]
また、上記の目的を達成するために、本発明に係る加工装置は、金属酸化物で構成された加工部材と、所定の被加工物を加工部材と接触させて保持する保持機構と、加工部材及び被加工物との接触部位にオゾンガスを供給するオゾンガス供給部と、加工部材と被加工物を接触させた状態で、加工部材を変位させる駆動部とを備える。
[About processing equipment]
Further, in order to achieve the above object, a processing apparatus according to the present invention comprises a processing member made of metal oxide, a holding mechanism for holding a predetermined workpiece in contact with the processing member, and a processing member And the ozone gas supply part which supplies ozone gas to a contact part with a to-be-processed object, The drive part which displaces a processing member in the state which made the processing member and the to-be-processed object contact.

ここで、所定の被加工物を加工部材と接触させて保持する保持機構と、加工部材及び被加工物との接触部位にオゾンガスを供給するオゾンガス供給部によって、接触部位をオゾンガス環境下におくことができる。即ち、オゾンガスは不安定な分子であるが、接触部位にオゾンガスを供給することで、同領域にオゾンガスを局在させることが可能となる。   Here, the contact portion is kept in the ozone gas environment by the holding mechanism for holding the predetermined workpiece in contact with the processing member and the ozone gas supply unit for supplying the ozone gas to the contact portion with the processing member and the workpiece. Can. That is, although ozone gas is an unstable molecule, it becomes possible to localize ozone gas in the same field by supplying ozone gas to a contact part.

また、加工部材と被加工物を接触させた状態で、加工部材を変位させる駆動部によって、接触部位に摩擦熱を生じさせることが可能となる。この摩擦熱は供給されるオゾンガスを熱分解し、オゾンガスから原子状酸素を生成する。生成した原子状酸素は、大気環境下で、被加工物との化学反応(加工)を担う加工部材の最表面の水酸基(OH基)へのカルボキシル基等の結合、即ち、有機物に由来するコンタミネーションを抑止する。原子状酸素が有機物由来の汚れを分解して清浄化し、かつ、加工部材表面に水酸基(OH基)を表出させる親水化を行うことで、被加工物の安定した物理・化学的な加工が可能となる。   Moreover, it becomes possible to generate frictional heat in a contact site | part by the drive part which displaces a process member in the state which contacted the process member and the to-be-processed object. The frictional heat thermally decomposes the supplied ozone gas to generate atomic oxygen from the ozone gas. The generated atomic oxygen is a bond such as a carboxyl group to a hydroxyl group (OH group) on the outermost surface of the processed member responsible for the chemical reaction (processing) with the workpiece under the atmospheric environment, ie, contamination derived from organic matter Suppress the nation. Stable physical and chemical processing of the processed material is achieved by hydrophilization that atomic oxygen decomposes and cleans the dirt derived from organic matter and exposes hydroxyl groups (OH groups) on the surface of the processing member It becomes possible.

また、上述したように、接触部位がオゾンガス環境下となるため、安定した加工に必要な原子状酸素を確保することが可能となる。   Further, as described above, since the contact site is under the ozone gas environment, it is possible to secure atomic oxygen necessary for stable processing.

本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置にてオゾンの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物の物理・化学的に安定した加工を実現するものである。   In the present invention, the surface oxygen of the workpiece is used to clean the surface of the workpiece and make it hydrophilic by utilizing atomic oxygen generated by the thermal decomposition of ozone at the contact portion between the workpiece and the workpiece, ie, the position where the workpiece is processed. Treatment to realize physically and chemically stable processing of the workpiece.

また、加工部材が、Alから構成される単結晶状態のサファイア、コランダム、サファイアガラス、サファイアクリスタル、多結晶状態のアルミナ、アルミナセラミックス、SiOを主成分とするガラスのうちいずれか1つからなり、被加工物が、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜のうちいずれか1つからなる場合には、被加工物に対する充分に安定した加工が可能となる。 Further, the processing member, sapphire single crystal state consisting of Al 2 O 3, corundum, sapphire glass, sapphire crystal, polycrystalline state alumina, alumina ceramics, one of the glass as a main component SiO 2 1 In the case where the workpiece is made of one of diamond, polycrystalline diamond, CVD diamond, and DLC film, sufficiently stable processing of the workpiece is possible.

また、加工部材が、SiOを主成分とするガラスからなり、被加工物が、SiCからなる場合には、SiCに対する充分に安定した加工が可能となる。 Further, when the processing member is made of glass containing SiO 2 as the main component and the workpiece is made of SiC, sufficiently stable processing with respect to SiC becomes possible.

また、加工部材、若しくは、被加工物の少なくとも一方を加湿する場合には、より一層安定した加工が可能となり、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。   Further, in the case of humidifying at least one of the processing member or the workpiece, the processing can be further stabilized, the accuracy of the surface roughness can be further enhanced, and the processing efficiency can be improved.

また、オゾンガスがアルカリ性溶液を含有する場合には、加工部材と被加工物の摩擦面で発生するトライボケミカル反応を促進させ、被加工物の加工面における酸化物を生成させ、優先的に除去できるものとなる。この結果、オゾンガスの熱分解により生じる原子状酸素を利用した加工に加え、トライボケミカル反応による加工が促進され、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。なお、ここでいうアルカリ性溶液とは、例えば、アルカリ性電解水、NaOH、KOH等のアルカリ性を示す溶液である。   In addition, when the ozone gas contains an alkaline solution, the tribochemical reaction occurring on the friction surface between the workpiece and the workpiece can be promoted to form an oxide on the workpiece surface of the workpiece to be removed preferentially. It becomes a thing. As a result, in addition to processing using atomic oxygen generated by thermal decomposition of ozone gas, processing by tribochemical reaction is promoted, accuracy of surface roughness can be further enhanced, and processing efficiency can be improved. In addition, an alkaline solution here is a solution which shows alkalinity, such as alkaline electrolyzed water, NaOH, KOH, for example.

また、アルカリ性溶液がアルカリ性電解水である場合には、アルカリ性電解水を含むオゾンガスでトライボケミカル反応を促進させることが可能となる。また、アルカリ性電解水は、取扱い時の安全性が高く、比較的容易に生成可能であるため、加工方法を安全かつより簡易なものにできる。なお、ここでいうアルカリ性電解水とは、pHが9.0以上のアルカリ性の水を意味するものである。   Moreover, when an alkaline solution is alkaline electrolyzed water, it becomes possible to accelerate a tribochemical reaction by ozone gas containing alkaline electrolyzed water. In addition, alkaline electrolyzed water has high safety during handling and can be generated relatively easily, so the processing method can be made safer and simpler. In addition, alkaline electrolyzed water here means alkaline water whose pH is 9.0 or more.

また、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する場合には、加工部材及び被加工物の表面の帯電状態を安定化させる。
そして、表面の帯電状態が安定化した加工部材と被加工物を接触させた状態で相対的に変位させることによって、加工部材及び被加工物の表面の帯電状態を制御した上で被加工物の表面を物理・化学的に加工することができる。
In addition, when at least one of cation and anion is supplied to at least one of the workpiece and the workpiece to control the charge amount, the charged state of the surface of the workpiece and the workpiece is determined. Stabilize.
Then, by relatively displacing the workpiece in a state in which the workpiece is in contact with the processing member whose charged state on the surface is stabilized, the charging status of the surfaces of the workpiece and the workpiece is controlled and then the workpiece is processed. The surface can be physically and chemically processed.

また、加工部材と、被加工物との接触部位にNガスを供給して帯電量を制御する場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。 In addition, when the amount of charge is controlled by supplying N 2 gas to the contact portion between the processing member and the workpiece, it becomes easier to control the charging state of the surface of the processing member and the workpiece, and the surface is roughened. The accuracy of the threading can be further enhanced, and the processing efficiency can be further enhanced.

本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置にてオゾンの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物を物理・化学的に安定した加工を実現するものである。そのため、砥粒フリーの研磨を実現することができる。また、既存の加工装置の加工部材と被加工物の接触部位にオゾンを供給する装置を設置するだけでよいため、加工システムを容易に構築できるものとなっている。   In the present invention, the surface oxygen of the workpiece is used to clean the surface of the workpiece and make it hydrophilic by utilizing atomic oxygen generated by the thermal decomposition of ozone at the contact portion between the workpiece and the workpiece, ie, the position where the workpiece is processed. Treatment to realize physically and chemically stable processing of the workpiece. Therefore, abrasive-free polishing can be realized. Further, since it is sufficient to install an apparatus for supplying ozone to the contact portion between the processing member of the existing processing apparatus and the workpiece, the processing system can be easily constructed.

なお、「加工部材」としては、例えば、鉄、ニッケル、Co等の金属、SiO、ZrO、Al、TiO2、Fe、MgO、CaO,NaO、KO、CeO等の無機酸化物、SiC、SiN、Al等のセラミックス、及びそれらからなる構成材料で構成された加工部材が挙げられる。更に、被加工物としては、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜等のダイヤモンド関連材料、SiC、GaN、サファイア、SiCセラミックス、Siセラミックス、AIN、ガラス等の硬脆材料等が挙げられる。 As "processing member", for example, iron, nickel, metal such as Co, SiO 2, ZrO 2, Al 2 O 3, TiO 2, Fe 2 O 3, MgO, CaO, Na 2 O, K 2 O And inorganic oxides such as CeO 2 , ceramics such as SiC, SiN, Al 2 O 3 and the like, and processed members made of constituent materials made of them. Furthermore, as a workpiece, diamond related materials such as diamond, polycrystalline diamond, CVD diamond, DLC film, etc., hard and brittle materials such as SiC, GaN, sapphire, SiC ceramics, Si 3 N 4 ceramics, AIN, glass, etc. It can be mentioned.

また、上記の目的を達成するために、本発明の加工装置は、金属酸化物で構成された加工部材と、所定の被加工物を加工部材と接触させて保持する保持機構と、加工部材及び被加工物との接触部位にオゾンガスを供給するオゾンガス供給部と、加工部材と被加工物を接触させた状態で、加工部材を変位させる駆動部とを備え、加工部材は、アルミナセラミックスまたはSiOを主成分とするガラスのうちいずれか1つからなり、前記被加工物は、GaNからなるもので構成されている。 Further, in order to achieve the above object, a processing apparatus according to the present invention comprises a processing member made of metal oxide, a holding mechanism for holding a predetermined workpiece in contact with the processing member, a processing member and ozone gas supply unit for supplying ozone gas to the contact portion of the workpiece, while contacting the workpiece and the workpiece, and a drive unit for displacing the workpiece, the workpiece is alumina ceramics or SiO 2 The workpiece is made of GaN, and the workpiece is made of GaN.

ここで、所定の被加工物を加工部材と接触させて保持する保持機構と、加工部材及び被加工物との接触部位にオゾンガスを供給するオゾンガス供給部によって、接触部位をオゾンガス環境下におくことができる。即ち、オゾンガスは不安定な分子であるが、接触部位にオゾンガスを供給することで、同領域にオゾンガスを局在させることが可能となる。   Here, the contact portion is kept in the ozone gas environment by the holding mechanism for holding the predetermined workpiece in contact with the processing member and the ozone gas supply unit for supplying the ozone gas to the contact portion with the processing member and the workpiece. Can. That is, although ozone gas is an unstable molecule, it becomes possible to localize ozone gas in the same field by supplying ozone gas to a contact part.

また、加工部材と被加工物を接触させた状態で、加工部材を変位させる駆動部によって、接触部位に摩擦熱を生じさせることが可能となる。この摩擦熱は供給されるオゾンガスを熱分解し、オゾンガスから原子状酸素を生成する。生成した原子状酸素は、大気環境下で、被加工物との化学反応(加工)を担う加工部材の最表面の水酸基(OH基)へのカルボキシル基等の結合、即ち、有機物に由来するコンタミネーションを抑止する。原子状酸素が有機物由来の汚れを分解して清浄化し、かつ、加工部材表面に水酸基(OH基)を表出させる親水化を行うことで、被加工物の安定した物理・化学的な加工が可能となる。   Moreover, it becomes possible to generate frictional heat in a contact site | part by the drive part which displaces a process member in the state which contacted the process member and the to-be-processed object. The frictional heat thermally decomposes the supplied ozone gas to generate atomic oxygen from the ozone gas. The generated atomic oxygen is a bond such as a carboxyl group to a hydroxyl group (OH group) on the outermost surface of the processed member responsible for the chemical reaction (processing) with the workpiece under the atmospheric environment, ie, contamination derived from organic matter Suppress the nation. Stable physical and chemical processing of the processed material is achieved by hydrophilization that atomic oxygen decomposes and cleans the dirt derived from organic matter and exposes hydroxyl groups (OH groups) on the surface of the processing member It becomes possible.

また、上述したように、接触部位がオゾンガス環境下となるため、安定した加工に必要な原子状酸素を確保することが可能となる。   Further, as described above, since the contact site is under the ozone gas environment, it is possible to secure atomic oxygen necessary for stable processing.

本発明では、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置にてオゾンの熱分解により生じる原子状酸素を利用して、加工部材の表面の清浄化かつ親水化処理を行い、被加工物の物理・化学的に安定した加工を実現するものである。   In the present invention, the surface oxygen of the workpiece is used to clean the surface of the workpiece and make it hydrophilic by utilizing atomic oxygen generated by the thermal decomposition of ozone at the contact portion between the workpiece and the workpiece, ie, the position where the workpiece is processed. Treatment to realize physically and chemically stable processing of the workpiece.

また、加工部材が、アルミナセラミックスまたはSiOを主成分とするガラスのうちいずれか1つからなり、被加工物が、GaNから構成されたことによって、GaNに対する充分に安定した加工が可能となる。 In addition, since the processing member is made of any one of alumina ceramics or glass mainly composed of SiO 2 and the workpiece is made of GaN, it is possible to perform sufficiently stable processing on GaN. .

また、オゾンガスがアルカリ性電解水を含有する場合には、加工部材と被加工物の摩擦面で発生するトライボケミカル反応を促進させ、被加工物の加工面における酸化物を生成させ、優先的に除去できるものとなる。この結果、オゾンガスの熱分解により生じる原子状酸素を利用した加工に加え、トライボケミカル反応による加工が促進され、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。なお、ここでいうアルカリ性溶液とは、例えば、アルカリ性電解水、NaOH、KOH等のアルカリ性を示す溶液である。   In addition, when the ozone gas contains alkaline electrolyzed water, it promotes tribochemical reaction that occurs on the friction surface between the workpiece and the workpiece to form an oxide on the workpiece surface of the workpiece, which is then removed preferentially. It will be possible. As a result, in addition to processing using atomic oxygen generated by thermal decomposition of ozone gas, processing by tribochemical reaction is promoted, accuracy of surface roughness can be further enhanced, and processing efficiency can be improved. In addition, an alkaline solution here is a solution which shows alkalinity, such as alkaline electrolyzed water, NaOH, KOH, for example.

また、アルカリ性電解水を含むオゾンガスでトライボケミカル反応を促進させることが可能となる。トライボケミカル反応により、下記の反応式で示す反応が生じ、GaNに対して高精度かつ、加工能率が高い加工を行うことができる。
2GaN+3HO⇔Ga+2NH
また、アルカリ性電解水は、取扱い時の安全性が高く、比較的容易に生成可能であるため、加工方法を安全かつより簡易なものにできる。なお、ここでいうアルカリ性電解水とは、pHが9.0以上のアルカリ性の水を意味するものである。
Moreover, it becomes possible to accelerate tribochemical reaction by ozone gas containing alkaline electrolyzed water. By the tribochemical reaction, a reaction shown by the following reaction formula occurs, and processing with high accuracy and high processing efficiency can be performed on GaN.
2 GaN + 3 H 2 O ⇔ Ga 2 O 3 + 2 NH 3
In addition, alkaline electrolyzed water has high safety during handling and can be generated relatively easily, so the processing method can be made safer and simpler. In addition, alkaline electrolyzed water here means alkaline water whose pH is 9.0 or more.

[加工方法について]
上記の目的を達成するために、本発明の加工方法は、加工部材、若しくは、同加工部材で加工される被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御すると共に、前記加工部材と前記被加工物を接触させた状態で相対的に変位させる工程を備える。
[About processing method]
In order to achieve the above object, according to the processing method of the present invention, at least one of a cation or an anion is supplied to at least one of a workpiece or a workpiece to be processed by the workpiece. And controlling the amount of charge and relatively displacing the workpiece and the workpiece in contact with each other.

ここで、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御することによって、加工部材及び被加工物の表面の帯電状態を安定化させる。
そして、表面の帯電状態が安定化した加工部材と被加工物を接触させた状態で相対的に変位させることによって、加工部材及び被加工物の表面の帯電状態を制御した上で被加工物の表面を物理・化学的に加工することができる。
Here, the charged state of the surfaces of the workpiece and the workpiece is controlled by supplying at least one of the cation or the anion to at least one of the workpiece and the workpiece to control the charge amount. Stabilize.
Then, by relatively displacing the workpiece in a state in which the workpiece is in contact with the processing member whose charged state on the surface is stabilized, the charging status of the surfaces of the workpiece and the workpiece is controlled and then the workpiece is processed. The surface can be physically and chemically processed.

本発明では、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して、加工部材及び被加工物の表面の帯電状態を制御し、表面粗さの精度が高く、かつ、加工能率が向上した加工を実現するものである。   In the present invention, at least one of a cation and an anion is supplied to at least one of the workpiece and the workpiece to control the charge state of the surface of the workpiece and the workpiece, and the surface roughness is provided. The processing accuracy is high, and the processing efficiency is improved.

また、加工部材、若しくは、被加工物の少なくとも一方に、陰イオンを供給して加工部材及び被加工物の表面の帯電状態を制御し、被加工部材の表面を加工することができる。   In addition, negative ions can be supplied to at least one of the workpiece and the workpiece to control the charged state of the surfaces of the workpiece and the workpiece, and the surface of the workpiece can be processed.

また、加工部材、若しくは、被加工物の少なくとも一方に、陽イオンを供給して加工部材及び被加工物の表面の帯電状態を制御し、被加工部材の表面を加工することができる。   Further, cations can be supplied to at least one of the processing member or the workpiece to control the charged state of the surfaces of the processing member and the workpiece, and the surface of the workpiece can be processed.

また、加工部材、若しくは、被加工物の少なくとも一方に、陰イオン及び陽イオンを供給して加工部材及び被加工物の表面の帯電状態を制御し、被加工部材の表面を加工することができる。   In addition, anions and cations can be supplied to at least one of the workpiece and the workpiece to control the charged state of the surfaces of the workpiece and the workpiece, and the surface of the workpiece can be processed. .

また、加工部材、若しくは、被加工物の少なくとも一方を加湿する場合には、帯電状態をより一層制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。   In addition, in the case of humidifying at least one of the workpiece and the workpiece, it becomes easier to control the charged state, and the accuracy of the surface roughness can be further enhanced and the processing efficiency can be further enhanced. it can.

また、加工部材の表面に紫外光若しくはプラズマを照射して同加工部材の表面を清浄化かつ親水化処理する場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。   In addition, when the surface of the processing member is irradiated with ultraviolet light or plasma to clean and hydrophilize the surface of the processing member, it becomes easier to control the charged state of the surface of the processing member and the workpiece. The accuracy of the surface roughness can be further enhanced and the processing efficiency can be further enhanced.

また、加工部材及び被加工物の接触部位にNガスを供給する場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。 In addition, when N 2 gas is supplied to the contact portion of the workpiece and the workpiece, the charged state of the surface of the workpiece and the workpiece can be further easily controlled, and the accuracy of the surface roughness can be further enhanced. And, processing efficiency can be further improved.

本発明では、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給することによって、加工部材及び被加工物の表面の帯電状態を制御し、加工部材の最表面部と被加工物を接触させた状態で加工部材を変位させることによって、加工部材及び被加工物の表面の帯電状態を制御した上で被加工物の表面を物理・化学的に加工を実現するものである。そのため、一般的な紫外光光源に比べて、陽イオン、若しくは、陰イオンの少なくとも一方を供給するだけで安定した加工が可能となる。   In the present invention, the charged state of the surface of the workpiece and the workpiece is controlled by supplying at least one of the cation or the anion to at least one of the workpiece or the workpiece, thereby controlling the workpiece The surface of the workpiece is physically and chemically processed while controlling the charged state of the surface of the workpiece and the workpiece by displacing the workpiece while the workpiece is in contact with the outermost surface portion of the workpiece. To achieve Therefore, stable processing is possible only by supplying at least one of positive ions or negative ions, as compared to a general ultraviolet light source.

なお、「加工部材」としては、例えば、鉄、ニッケル、Co等の金属、SiO、ZrO、Al、TiO2、Fe、MgO、CaO,NaO、KO、CeO等の無機酸化物、SiC、SiN、Al等のセラミックス、及びそれらからなる構成材料で構成された加工部材が挙げられる。更に、被加工物としては、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜等のダイヤモンド関連材料、SiC、GaN、サファイア、SiCセラミックス、Siセラミックス、AIN、ガラス等の硬脆材料等が挙げられる。 As "processing member", for example, iron, nickel, metal such as Co, SiO 2, ZrO 2, Al 2 O 3, TiO 2, Fe 2 O 3, MgO, CaO, Na 2 O, K 2 O And inorganic oxides such as CeO 2 , ceramics such as SiC, SiN, Al 2 O 3 and the like, and processed members made of constituent materials made of them. Furthermore, as a workpiece, diamond related materials such as diamond, polycrystalline diamond, CVD diamond, DLC film, etc., hard and brittle materials such as SiC, GaN, sapphire, SiC ceramics, Si 3 N 4 ceramics, AIN, glass, etc. It can be mentioned.

[加工装置について]
また、上記の目的を達成するために、本発明に係る加工装置は、加工部材と、該加工部材、若しくは、同加工部材で加工される被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する帯電処理部と、所定の被加工物を保持する保持機構と、前記加工部材と前記被加工物を接触させた状態で、前記加工部材と同被加工物を相対的に変位させる駆動部とを備える。
[About processing equipment]
Further, in order to achieve the above object, a processing apparatus according to the present invention is a processing member and at least one of the processing member and a workpiece to be processed by the processing member, a cation or an anion. The same as the processing member in a state in which at least one of the ions is supplied to control a charge amount, a holding mechanism for holding a predetermined workpiece, and the processing member and the workpiece are in contact with each other. And a drive unit for relatively displacing the workpiece.

ここで、加工部材と、加工部材、若しくは、加工部材で加工される被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する帯電処理部によって、加工部材及び被加工物の表面の帯電状態を安定化させるものとなる。   Here, at least one of the processing member and the processing member or the workpiece to be processed by the processing member is supplied with at least one of a cation or an anion to control the charge amount, It stabilizes the charged state of the surface of the processing member and the workpiece.

また、加工部材と、所定の被加工物を保持する保持機構と、加工部材と被加工物を接触させた状態で、加工部材と被加工物を相対的に変位させる駆動部によって、加工部材及び被加工物の表面の帯電状態を安定化させた上で、被加工物の表面を物理・化学的に加工することができる。   Further, the processing member and the holding mechanism for holding a predetermined workpiece, and the driving member for relatively displacing the processing member and the workpiece in a state where the processing member and the workpiece are in contact with each other The surface of the object to be processed can be physically and chemically processed while the charged state of the surface of the object to be processed is stabilized.

本発明では、帯電処理部で加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給し、加工部材及び被加工物の表面の帯電状態を制御し、表面粗さの精度が高く、かつ、加工能率が向上した加工を実現するものである。   In the present invention, at least one of positive ions or negative ions is supplied to at least one of the workpiece and the workpiece at the charging portion to control the charged state of the surfaces of the workpiece and the workpiece. It is possible to realize processing with high accuracy of surface roughness and improved processing efficiency.

また、加工部材、若しくは、被加工物の少なくとも一方を加湿する加湿処理部を備える場合には、帯電状態をより一層制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。   In addition, in the case of including a humidification processing unit that humidifies at least one of a processing member or a workpiece, it becomes easier to control the charged state further, the accuracy of surface roughness is further enhanced, and processing efficiency is improved. It can be further improved.

また、加工部材の表面を親水化処理する清浄化かつ親水化処理部を備える場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。   In addition, in the case of including a cleaning and hydrophilization treatment portion that hydrophilizes the surface of the processing member, the charged state of the surface of the processing member and the workpiece can be further easily controlled, and the surface roughness accuracy can be further enhanced. It is possible to enhance the processing efficiency further.

また、加工部材及び被加工物の接触部位にNガスを供給するNガス供給部を備える場合には、加工部材及び被加工物の表面の帯電状態を更に制御しやすくなり、表面粗さの精度をより一層高め、かつ、加工能率を更に向上させることができる。 In addition, when the N 2 gas supply unit for supplying N 2 gas to the contact portion of the processing member and the workpiece is provided, the charged state of the surface of the processing member and the workpiece can be further controlled more easily. The accuracy of the above can be further enhanced, and the processing efficiency can be further enhanced.

本発明では、加工部材、若しくは、被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給する帯電処理部によって、加工部材及び被加工物の表面の帯電状態を制御し、加工部材の最表面部と被加工物を接触させた状態で加工部材を変位させる駆動部によって、加工部材及び被加工物の表面の帯電状態を制御した上で被加工物の表面を物理・化学的に加工を実現するものである。また、既存の加工装置の紫外光光源を帯電装置等に置き換えるだけでよいため、加工システムを容易に構築できるものとなっている。   In the present invention, the charged state of the surfaces of the workpiece and the workpiece is controlled by a charge processing unit that supplies at least one of the cation and the anion to at least one of the workpiece and the workpiece. The surface of the workpiece is physically and chemically controlled while the charged state of the surfaces of the workpiece and the workpiece is controlled by a drive unit that displaces the workpiece in a state in which the workpiece is in contact with the outermost surface of the workpiece. Processing is realized. Further, since it is only necessary to replace the ultraviolet light source of the existing processing device with a charging device or the like, the processing system can be easily constructed.

本発明を適用した加工方法及び加工装置では、ダイヤモンド等を加工するドライ研磨にて、簡易な構成でありながら高能率かつ高精度な加工を実現することができる。   In the processing method and the processing apparatus to which the present invention is applied, high efficiency and high accuracy processing can be realized with dry polishing for processing a diamond or the like while having a simple configuration.

本発明を適用した加工装置を説明するための模式図である。It is a schematic diagram for demonstrating the processing apparatus to which this invention is applied. 比較例1の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area of comparative example 1 with a non-contact shape measuring machine. 比較例2の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area of comparative example 2 with a non-contact shape measuring machine. 実施例1の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface coarseness of a part of processing field of Example 1 with a non-contact shape measuring machine. 比較例3の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area of comparative example 3 with a non-contact shape measuring machine. 実施例2の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface coarseness of a part of process area of Example 2 with a non-contact profile measuring machine. 比較例4の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area of comparative example 4 with a non-contact shape measuring machine. 実施例3の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface coarseness of a part of process area of Example 3 with a non-contact shape measuring machine. 実施例4の加工前における加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface coarseness of a part of processing field before processing of Example 4 with a non-contact shape measuring machine. 実施例4の加工後における加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface coarseness of a part of processing field after processing of Example 4 with a non-contact shape measuring machine. 本発明を適用した加工装置を説明するための模式図である。It is a schematic diagram for demonstrating the processing apparatus to which this invention is applied. 本発明を適用した加工装置を説明するための模式図である。It is a schematic diagram for demonstrating the processing apparatus to which this invention is applied. 比較例5の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area of comparative example 5 with a non-contact shape measuring machine. 実施例5の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface coarseness of a part of processing field of Example 5 with a non-contact shape measuring machine. 比較例8の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface coarseness of a part of processing field of comparative example 8 with a non-contact shape measuring machine. 実施例7の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area of Example 7 with a non-contact shape measuring machine. 実施例9の表面電位と加工時間の関係を示すグラフである。15 is a graph showing the relationship between the surface potential and the processing time of Example 9. 実施例10の表面電位と加工時間の関係を示すグラフである。21 is a graph showing the relationship between surface potential and processing time in Example 10. 実施例11の表面電位と加工時間の関係を示すグラフである。15 is a graph showing the relationship between the surface potential and the processing time of Example 11. 比較例11の表面電位と加工時間の関係を示すグラフである。It is a graph which shows the surface potential of comparative example 11, and the relation of processing time. 実施例9の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface coarseness of a part of processing field of Example 9 with a non-contact shape measuring machine. 実施例10の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area of Example 10 with a non-contact profile measuring machine. 実施例11の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface coarseness of a part of processing field of Example 11 with a non-contact shape measuring machine. 比較例11の加工領域の一部の表面粗さを非接触形状測定機で測定したデータである。It is the data which measured the surface roughness of a part of process area of comparative example 11 with a non-contact shape measuring machine.

[発明の第1の実施の形態]
以下、本発明を実施するための形態(以下、「発明の第1の実施の形態」と称する)について説明する。
図1は本発明を適用した加工装置を説明するための模式図であり、ここで示す加工装置1は、サファイア定盤2と、単結晶ダイヤモンド3を保持する試料ホルダー4を有している。また、加工装置1は、サファイア定盤2と単結晶ダイヤモンド3との接触部位にオゾンガスを供給するオゾン供給部5を有している。なお、単結晶ダイヤモンド4は被加工物の一例である。
First Embodiment of the Invention
Hereinafter, modes for carrying out the present invention (hereinafter, referred to as “first embodiment of the invention”) will be described.
FIG. 1 is a schematic view for explaining a processing apparatus to which the present invention is applied. The processing apparatus 1 shown here has a sapphire surface plate 2 and a sample holder 4 for holding a single crystal diamond 3. The processing apparatus 1 further includes an ozone supply unit 5 that supplies ozone gas to the contact portion between the sapphire platen 2 and the single crystal diamond 3. The single crystal diamond 4 is an example of a workpiece.

なお、サファイア定盤2の上面(図1上の上面)に被加工物である単結晶ダイヤモンド3が接して被加工物が研磨されることとなる。また、サファイア定盤2は加工部材の一例である。   In addition, the single-crystal diamond 3 which is a to-be-processed object touches the upper surface (upper surface of FIG. 1) of the sapphire surface plate 2, and a to-be-processed object will be grind | polished. The sapphire base 2 is an example of a processing member.

オゾン供給部5は、サファイア定盤2の上方に配置されている。また、オゾン供給部5の先端、即ち、オゾンガスが排出される部分は、サファイア定盤2と単結晶ダイヤモンド3との接触部位に向けられている。これにより、接触部位がオゾン環境下となる。また、接触部位におけるサファイア定盤2と単結晶ダイヤモンド3との間で生じる摩擦熱によりオゾンガスが原子状酸素に熱分解され、被加工物が安定的に加工されるものとなる。   The ozone supply unit 5 is disposed above the sapphire surface plate 2. Further, the tip of the ozone supply unit 5, that is, the portion from which the ozone gas is discharged is directed to the contact portion between the sapphire platen 2 and the single crystal diamond 3. As a result, the contact site is in the ozone environment. Further, due to the frictional heat generated between the sapphire surface plate 2 and the single crystal diamond 3 at the contact portion, the ozone gas is thermally decomposed into atomic oxygen, and the workpiece is stably processed.

ここで、本実施の形態では、加工部材がサファイア定盤2で形成されている場合を例に挙げて説明を行っているが、被加工物を加工可能な材料であれば充分であって、必ずしもサファイア定盤2で形成される必要はない。例えば、鉄、ニッケル、Co等の金属、SiO、ZrO、Al、TiO2、Fe、MgO、CaO,NaO、KO、CeO等の無機酸化物、SiC、SiN、Al等のセラミックス、及びそれらからなる構成材料で形成されていても構わない。 Here, in the present embodiment, although the case where the processing member is formed of the sapphire surface plate 2 is described as an example, any material capable of processing a workpiece is sufficient. It does not necessarily have to be formed on the sapphire surface plate 2. For example, metals such as iron, nickel and Co, inorganic oxides such as SiO 2 , ZrO 2 , Al 2 O 3 , TiO 2, Fe 2 O 3 , MgO, CaO, Na 2 O, K 2 O, CeO 2 and the like It may be formed of ceramics such as SiC, SiN, Al 2 O 3 and the like, and constituent materials made of them.

また、サファイア定盤2は、回転数が制御可能な加工テーブル6上に固定され、加工テーブル6の回転によってサファイア定盤2が図1中符号Aで示す方向に回転可能に構成されている。   Further, the sapphire base 2 is fixed on a processing table 6 whose rotational speed can be controlled, and the sapphire base 2 is configured to be rotatable in a direction indicated by a symbol A in FIG. 1 by rotation of the processing table 6.

また、試料ホルダー4は、サファイア定盤2の回転軸に対して偏心した回転軸7を中心として図1中符号Bで示す方向に回転可能に構成されており、単結晶ダイヤモンド3を保持した状態で上方から単結晶ダイヤモンド3とサファイア定盤2が接触する位置sまで下降する。なお、図中の符号Yは荷重をかける方向を示している。   In addition, the sample holder 4 is configured to be rotatable in a direction indicated by symbol B in FIG. 1 around the rotation axis 7 eccentric to the rotation axis of the sapphire surface plate 2, and a state in which the single crystal diamond 3 is held. Then, it descends from the upper side to a position s where the single crystal diamond 3 and the sapphire surface plate 2 are in contact with each other. In addition, the code | symbol Y in the figure has shown the direction which applies a load.

ここで、本実施の形態では、試料ホルダー4に保持される被加工物として単結晶ダイヤモンド3を例に挙げて説明を行っているが、被加工物は単結晶ダイヤモンド3に限定されるものではなく、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜等のダイヤモンド関連材料、SiC、GaN、サファイア、SiCセラミックス、Siセラミックス、AIN、ガラス等の硬脆材料等であっても構わない。 Here, in the present embodiment, the single crystal diamond 3 is described as an example of the workpiece to be held by the sample holder 4, but the workpiece is limited to the single crystal diamond 3. Instead, diamond related materials such as diamond, polycrystalline diamond, CVD diamond, DLC film, etc., SiC, GaN, sapphire, SiC ceramics, Si 3 N 4 ceramics, AIN, hard brittle materials such as glass, etc. may be used.

以下、上記の様に構成された加工装置1を用いた加工方法について説明を行う。即ち、本発明を適用した加工方法の一例について説明を行う。   Hereinafter, a processing method using the processing apparatus 1 configured as described above will be described. That is, an example of a processing method to which the present invention is applied will be described.

本発明を適用した加工方法の一例では、サファイア定盤2を回転させながら、サファイア定盤2と単結晶ダイヤモンド3との接触部位にオゾン供給部5からオゾンガスを供給する。   In an example of the processing method to which the present invention is applied, ozone gas is supplied from the ozone supply unit 5 to the contact portion between the sapphire platen 2 and the single crystal diamond 3 while rotating the sapphire platen 2.

即ち、サファイア定盤2と単結晶ダイヤモンド3との接触部位にオゾンガスを供しながら、接触部位で生じる摩擦熱によりオゾンガスを熱分解して原子状酸素を生成する。生成した原子状酸素により、サファイア定盤2の表面を清浄化かつ親水化処理する。即ち、サファイア定盤2の表面を改質する。   That is, while the ozone gas is supplied to the contact portion between the sapphire base 2 and the single crystal diamond 3, the frictional heat generated at the contact portion thermally decomposes the ozone gas to generate atomic oxygen. The generated atomic oxygen cleans and hydrophilizes the surface of the sapphire platen 2. That is, the surface of the sapphire base 2 is modified.

そして、表面が改質した状態のサファイア定盤2の上面と単結晶ダイヤモンド3が接触した状態でサファイア定盤2が回転することによって、単結晶ダイヤモンド3の表面を物理・化学的に除去することとなる。   Then, the surface of the single crystal diamond 3 is physically and chemically removed by rotating the sapphire base 2 while the single crystal diamond 3 is in contact with the upper surface of the sapphire base 2 in a state where the surface is modified. It becomes.

本実施の形態の変形例として、図1に記載の装置構成に、更に、加湿処理部を設けるものを採用しうる。加湿処理部は加工部材の上方に設置される。加湿処理部は、加工部材の表面を加湿する部材である。また、水分を付与したオゾンガスをサファイア定盤2と単結晶ダイヤモンド3の接触部位に供給する方式も採用しうる。加湿を行うことで、被加工物への加工をより一層安定化させることができる。   As a modified example of the present embodiment, a device in which a humidification processing unit is further provided in the device configuration shown in FIG. 1 can be adopted. The humidification processing unit is installed above the processing member. The humidification processing unit is a member that humidifies the surface of the processing member. Also, a method of supplying ozone gas to which water is added to the contact portion of the sapphire surface plate 2 and the single crystal diamond 3 may be employed. By humidifying, the processing to a to-be-processed object can be stabilized further.

本実施の形態の更なる変形例として、オゾン供給部から供給するオゾンガスにアルカリ性電解水(pH9.0以上)を含ませて、加工部材と被加工物との接触部位にオゾンガスを供給する方法も採用しうる。   As a further modification of the present embodiment, also a method of supplying alkaline ozone water to the contact portion between the processing member and the workpiece by including alkaline electrolyzed water (pH 9.0 or higher) in ozone gas supplied from the ozone supply unit It can be adopted.

オゾンガスがアルカリ性電解水を含有する場合には、加工部材と被加工物の摩擦面で発生するトライボケミカル反応を促進させ、被加工物の加工面における酸化物を生成させ、優先的に除去可能となる。この結果、オゾンガスの熱分解により生じる原子状酸素を利用した加工に加え、トライボケミカル反応による加工が促進され、表面粗さの精度をより一層高め、かつ、加工能率を向上させることができる。   When the ozone gas contains alkaline electrolyzed water, it promotes tribochemical reaction generated on the friction surface between the workpiece and the workpiece to form an oxide on the workpiece surface of the workpiece, which can be removed preferentially. Become. As a result, in addition to processing using atomic oxygen generated by thermal decomposition of ozone gas, processing by tribochemical reaction is promoted, accuracy of surface roughness can be further enhanced, and processing efficiency can be improved.

ここで、オゾンガスに含有させる溶液はアルカリ性溶液であればよく、アルカリ性電解水に限定されるものではない。例えば、NaOHやKOH等のアルカリ性溶液をオゾンガスに含有させて加工に利用することも可能である。   Here, the solution to be contained in the ozone gas may be an alkaline solution, and is not limited to alkaline electrolyzed water. For example, it is also possible to make alkaline gas, such as NaOH and KOH, contain in ozone gas, and to utilize for processing.

[効果]
本発明を適用した加工方法及び加工装置は、加工部材と被加工物の接触部位、即ち、被加工物の加工がなされる位置で、オゾンの熱分解により生じる原子状酸素を利用するものであるため、紫外光を照射する装置に比べ、加工部材の表面をより均一に処理可能なものとなっている。この結果、より安定的かつ高い加工精度を実現しうるものとなっている。
[effect]
A processing method and a processing apparatus to which the present invention is applied utilizes atomic oxygen generated by the thermal decomposition of ozone at a contact portion between a processing member and a workpiece, that is, at a position where processing of the workpiece is performed. Therefore, the surface of the processing member can be processed more uniformly, as compared with an apparatus that emits ultraviolet light. As a result, more stable and high processing accuracy can be realized.

また、本発明を適用した加工装置は、オゾン供給部を既存の装置に配置するのみで容易に構築することができるものとなっている。   Moreover, the processing apparatus to which the present invention is applied can be easily constructed only by arranging the ozone supply unit in the existing apparatus.

更に、本発明を適用した加工方法及び加工装置は、砥粒を利用していないために、加工後の砥粒処理を行う必要がないものとなる。   Furthermore, since the processing method and the processing apparatus to which the present invention is applied do not use abrasive grains, it is not necessary to perform abrasive grain processing after processing.

また、砥粒を利用した加工の場合には、砥粒をスラリーの状態で供給する必要があり、加工部材や被加工物がスラリーで湿った状態となってしまい、温度が上がりにくく加工が進み難い。
一方、本発明を適用した加工方法では、砥粒を利用していないためにスラリーが供給されることもなく、加工部材や被加工物が乾いた状態であり、摩擦熱も含めて温度が上がり易く化学反応が進みやすい。即ち、難加工材料の高精度、高能率な加工が実現することができる。
Further, in the case of processing using abrasive grains, it is necessary to supply the abrasive grains in a slurry state, the processed member and the workpiece become wet with the slurry, and the temperature hardly rises and the processing proceeds hard.
On the other hand, in the processing method to which the present invention is applied, the slurry is not supplied because the abrasive grains are not used, and the processed member and the workpiece are in a dry state, and the temperature rises including the frictional heat. It is easy to proceed with chemical reaction. That is, highly accurate and highly efficient processing of difficult-to-process materials can be realized.

以下、本発明の実施例及び比較例について説明する。なお、ここで示す実施例は一例であり本発明を限定するものではない。   Hereinafter, Examples and Comparative Examples of the present invention will be described. The embodiment shown here is an example and does not limit the present invention.

[実施例1及び比較例1〜2]
本発明の実施例1の加工方法として、以下の条件で加工を行った。先ず、本発明の実施例1の加工方法として、サファイア定盤に被加工物として単結晶ダイヤモンド(3mm×3mm)を2kg(22.2kg/cm)の荷重で押圧し、サファイア定盤を回転数250rpm、揺動距離3mm、揺動速度0.1mm/sの条件で回転させると共に、試料ホルダーを1000rpmで回転させた。また、オゾン供給部よりサファイア定盤と単結晶ダイヤモンドとの接触部位にオゾンガス(5L/min)を供給した。この様な状況で1.5時間の加工を行った。
実施例1と同様の方法で、オゾン供給部によるオゾン供給を行わないものを比較例1とした。
また、上述した実施例1の加工方法の装置構成に紫外光光源を更に設置して、サファイア定盤に上方から、紫外光(172nm)を照射強度6mW/cmの条件で照射しながら、オゾン供給部によるオゾン供給を行わないものを比較例2とした。
上記の実施例1及び比較例1〜2について、加工後の単結晶ダイヤモンドの表面粗さを非接触形状測定機で測定し、評価を行った。
Example 1 and Comparative Examples 1 and 2
As a processing method of Example 1 of the present invention, processing was performed under the following conditions. First, as a processing method according to Example 1 of the present invention, a single crystal diamond (3 mm × 3 mm) is pressed against a sapphire platen as a workpiece with a load of 2 kg (22.2 kg / cm 2 ) to rotate the sapphire platen. The sample holder was rotated at 1000 rpm while rotating under conditions of several 250 rpm, a swing distance of 3 mm, and a swing speed of 0.1 mm / s. Further, ozone gas (5 L / min) was supplied from the ozone supply unit to the contact portion between the sapphire surface plate and the single crystal diamond. Processing was performed for 1.5 hours in this situation.
The same method as in Example 1 except that ozone supply was not performed by the ozone supply unit was referred to as Comparative Example 1.
In addition, an ultraviolet light source is further installed in the apparatus configuration of the processing method of Example 1 described above, and ozone is irradiated while irradiating ultraviolet light (172 nm) under the condition of the irradiation intensity of 6 mW / cm 2 from above on the sapphire base plate. The thing which does not perform ozone supply by a supply part was set as the comparative example 2. FIG.
About the said Example 1 and Comparative Examples 1-2, the surface roughness of the single-crystal diamond after processing was measured with a non-contact shape measuring machine, and evaluation was performed.

図2に比較例1の結果、図3に比較例2の結果、及び、図4に実施例1の結果を示す。   The results of Comparative Example 1 are shown in FIG. 2, the results of Comparative Example 2 in FIG. 3, and the results of Example 1 in FIG.

図2及び図4から明らかなように、比較例1の被加工物の加工面に比べ、実施例1の加工により、被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.119nmであり、平滑に加工されていたことが分かった。比較例1の算術平均粗さ(Ra)の値は2.213nmであった。
また、図3及び図4から明らかなように、比較例2の被加工物の加工面に比べ、実施例1の加工により、被加工物の加工面がより精度高く加工されていることが分かった。
なお、比較例2の被加工面の測定範囲における算術平均粗さ(Ra)の値は0.177nmであった。
As apparent from FIGS. 2 and 4, compared to the processing surface of the workpiece of Comparative Example 1, the processing surface of the workpiece is processed with high accuracy by the processing of Example 1, and in the measurement range of the processing surface The value of arithmetic mean roughness (Ra) was 0.119 nm, and it was found that it was processed smoothly. The value of arithmetic mean roughness (Ra) of Comparative Example 1 was 2.213 nm.
Further, as is apparent from FIGS. 3 and 4, it is understood that the machined surface of the workpiece is machined with higher accuracy by the machining of Example 1 as compared with the machined surface of the workpiece of Comparative Example 2 The
In addition, the value of arithmetic mean roughness (Ra) in the measurement range of the to-be-processed surface of the comparative example 2 was 0.177 nm.

(1)加工能率について
上述した実施例1及び比較例1〜2の加工方法による加工能率について以下の内容で確認を行った。
被加工物となる単結晶ダイヤモンドに所定の深さの溝を形成しておき、加工前後での溝の深さの変化量から加工能率を算出した。
(1) About processing efficiency About the processing efficiency by the processing method of Example 1 and comparative examples 1-2 mentioned above, it confirmed by the following contents.
A groove having a predetermined depth was formed in a single crystal diamond to be processed, and the machining efficiency was calculated from the amount of change in groove depth before and after machining.

実施例1における加工能率は2453.5nm/hであり、充分な加工能率を示していた。
一方、比較例1における加工能率は33.3nm/hであった。また、比較例2における加工能率は238.1nm/hであった。
The processing efficiency in Example 1 was 2453.5 nm / h, indicating a sufficient processing efficiency.
On the other hand, the processing efficiency in Comparative Example 1 was 33.3 nm / h. Moreover, the processing efficiency in the comparative example 2 was 238.1 nm / h.

(2)被加工物の加工面の表面粗さ
[実施例2及び比較例3]
本発明の実施例2の加工方法として、以下の条件で加工を行った。先ず、本発明の実施例2の加工方法として、ソーダ石灰ガラス(soda-lime glass)定盤に被加工物としてSiC基板(Single-crystal 4H-SiC 4°off)(2インチ)を3kgの荷重で押圧し、ソーダ石灰ガラス定盤を回転数200rpm、揺動距離6mm、揺動速度0.1mm/sの条件で回転させると共に、試料ホルダーを30rpmで回転させた。また、紫外光光源を設置し、ソーダ石灰ガラス定盤に上方から、紫外光(172nm)を照射強度6mW/cmの条件で照射した。また、オゾン供給部よりソーダ石灰ガラス定盤とSiC基板との接触部位にオゾンガス(5L/min)を供給した。この様な状況で2時間の加工を行った。なお、ソーダ石灰ガラスは、SiOを主成分とするガラスの一例である。
実施例2の加工方法を実施する前の同一サンプルに対して、ダイヤモンド砥粒を用いて機械研磨したものを比較例3とした。
上記の実施例2及び比較例3について、加工後のSiC基板の表面粗さを非接触形状測定機で測定し、評価を行った。
(2) Surface Roughness of Machining Surface of Workpiece [Example 2 and Comparative Example 3]
As a processing method of Example 2 of the present invention, processing was performed under the following conditions. First, as a processing method of Example 2 of the present invention, a soda lime glass (soda-lime glass) surface plate is subjected to a load of 3 kg of a SiC substrate (Single-crystal 4H-SiC 4 ° off) (2 inches) as a workpiece. The sample holder was rotated at 30 rpm while the soda lime glass platen was rotated at a rotational speed of 200 rpm, a swing distance of 6 mm, and a swing speed of 0.1 mm / s. Further, an ultraviolet light source was installed, and ultraviolet light (172 nm) was irradiated from above onto the soda lime glass base plate under the condition of the irradiation intensity of 6 mW / cm 2 . Moreover, ozone gas (5 L / min) was supplied to the contact part of soda-lime-glass surface plate and a SiC board | substrate from the ozone supply part. Processing was performed for 2 hours in this situation. Incidentally, soda lime glass is an example of a glass composed mainly of SiO 2.
The same sample before carrying out the processing method of Example 2 was machine-polished using diamond abrasives to provide Comparative Example 3.
About the said Example 2 and Comparative Example 3, the surface roughness of the processed SiC substrate was measured with a non-contact shape measuring machine, and evaluation was performed.

図5に比較例3の結果、及び、図6に実施例2の結果を示す。   The result of Comparative Example 3 is shown in FIG. 5 and the result of Example 2 is shown in FIG.

図5及び図6から明らかなように、比較例3の被加工物の加工面に比べ、実施例2の加工により、被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.311nmであり、平滑に加工されていたことが分かった。比較例3の算術平均粗さ(Ra)の値は1.601nmであった。   As apparent from FIGS. 5 and 6, the machining surface of the workpiece is processed with high accuracy by the processing of Example 2 as compared with the machining surface of the workpiece of Comparative Example 3, and the measurement range of the workpiece surface is obtained. The value of arithmetic mean roughness (Ra) was 0.311 nm, and it was found that it was processed smoothly. The value of arithmetic mean roughness (Ra) of Comparative Example 3 was 1.601 nm.

(3)加工能率について
上述した実施例2及び比較例3の加工方法による加工能率について、上記(2)と同様の内容で加工能率を算出した。
(3) Processing Efficiency Regarding the processing efficiency according to the processing method of Example 2 and Comparative Example 3 described above, the processing efficiency was calculated with the same contents as the above (2).

実施例2における加工能率は201.3nm/hであり、一方、比較例3における加工能率は72.26nm/hであった。   The processing efficiency in Example 2 was 201.3 nm / h, while the processing efficiency in Comparative Example 3 was 72.26 nm / h.

(4)被加工物の加工面の表面粗さ
[実施例3及び比較例4]
本発明の実施例3の加工方法として、以下の条件で加工を行った。先ず、本発明の実施例3の加工方法として、アルミナセラミックス定盤に被加工物としてGaN基板(10mm×10mm)を250g(250g/cm)の荷重で押圧し、アルミナセラミックス定盤を回転数250rpm、揺動距離10mm、揺動速度0.5mm/sの条件で回転させると共に、試料ホルダーを250rpmで回転させた。また、オゾン供給部よりアルミナセラミックス定盤とGaN基板との接触部位にオゾンガス(5L/min)を供給した。この様な状況で1時間の加工を行った。
実施例3の加工方法を実施する前の同一サンプルに対して、ダイヤモンド砥粒を用いて機械研磨したものを比較例4とした。
上記の実施例3及び比較例4について、加工後のGaN基板の表面粗さを非接触形状測定機で測定し、評価を行った。
(4) Surface Roughness of Machining Surface of Workpiece [Example 3 and Comparative Example 4]
As the processing method of Example 3 of the present invention, processing was performed under the following conditions. First, as a processing method of Example 3 of the present invention, a GaN substrate (10 mm × 10 mm) is pressed with a load of 250 g (250 g / cm 2 ) as a workpiece on an alumina ceramic platen, and the alumina ceramic platen is rotated The sample holder was rotated at 250 rpm while rotating at 250 rpm, a rocking distance of 10 mm, and a rocking speed of 0.5 mm / s. In addition, ozone gas (5 L / min) was supplied from the ozone supply unit to the contact portion between the alumina ceramic surface plate and the GaN substrate. Processing was performed for one hour in this situation.
The same sample before carrying out the processing method of Example 3 was machine-polished using diamond abrasives to provide Comparative Example 4.
The surface roughness of the processed GaN substrate of the above-described Example 3 and Comparative Example 4 was measured by a non-contact shape measuring machine and evaluated.

図7に比較例4の結果、及び、図8に実施例3の結果を示す。   The result of Comparative Example 4 is shown in FIG. 7 and the result of Example 3 is shown in FIG.

図7及び図8から明らかなように、比較例4の被加工物の加工面に比べ、実施例3の加工により、被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.483nmであり、平滑に加工されていたことが分かった。比較例4の算術平均粗さ(Ra)の値は2.837nmであった。   As apparent from FIGS. 7 and 8, the machining surface of the workpiece is processed with high accuracy by the processing of Example 3 as compared with the machining surface of the workpiece of Comparative Example 4, and the measurement range of the processing surface is obtained. The value of arithmetic mean roughness (Ra) was 0.483 nm, and it turned out that it processed smoothly. The value of arithmetic mean roughness (Ra) of Comparative Example 4 was 2.837 nm.

[実施例4]
本発明の実施例4の加工方法として、以下の条件で加工を行った。先ず、本発明の実施例4の加工方法として、ガラス定盤に被加工物としてGaN(窒化ガリウム)(10mm×10mm)を0.5kgの荷重で押圧し、ガラス定盤を回転数200rpm、揺動距離3mm、揺動速度0.1mm/sの条件で回転させると共に、試料ホルダーを31.25rpmで回転させた。また、オゾン供給部よりガラス定盤とGaNとの接触部位に、pH9.4のアルカリ性電解水を含有させたオゾンガス(5L/min)を供給した。この様な状況で1時間の加工を行った。
上記の実施例4について、加工前と加工後のGaNの表面粗さを非接触形状測定機で測定し、評価を行った。
Example 4
As the processing method of Example 4 of the present invention, processing was performed under the following conditions. First, as a processing method according to the fourth embodiment of the present invention, GaN (gallium nitride) (10 mm × 10 mm) is pressed against a glass platen as a workpiece with a load of 0.5 kg, and the glass platen is rotated at 200 rpm. The sample holder was rotated at 31.25 rpm while rotating under conditions of a moving distance of 3 mm and a rocking speed of 0.1 mm / s. Further, ozone gas (5 L / min) containing alkaline electrolyzed water of pH 9.4 was supplied from the ozone supply unit to the contact portion between the glass platen and the GaN. Processing was performed for one hour in this situation.
In Example 4 described above, the surface roughness of GaN before and after processing was measured by a non-contact shape measuring machine and evaluated.

図9に加工前の結果、図10に加工後の結果を示す。   The result before processing is shown in FIG. 9, and the result after processing is shown in FIG.

図9及び図10から明らかなように、実施例4の加工により、加工前の被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.176nmであり、平滑に加工されていたことが分かった。加工前の被加工面の測定範囲における算術平均粗さ(Ra)の値は0.922nmであった。また、実施例4における加工能率は2979nm/hであり、充分な加工能率を示していた。   As is apparent from FIGS. 9 and 10, the machining surface of the workpiece before machining is machined with high accuracy by the machining of Example 4, and the value of the arithmetic average roughness (Ra) in the measurement range of the machining surface is It was found to be 0.176 nm and processed smoothly. The value of arithmetic mean roughness (Ra) in the measurement range of the to-be-processed surface before processing was 0.922 nm. In addition, the processing efficiency in Example 4 was 2979 nm / h, indicating a sufficient processing efficiency.

[発明の第2の実施の形態]
以下、本発明を実施するための形態(以下、「発明の第2の実施の形態」と称する)について説明する。
図11は本発明を適用した加工装置を説明するための模式図であり、ここで示す加工装置11は、絶縁性の合成石英定盤12と、合成石英定盤12の帯電量を変化させる帯電ユニット13と、絶縁性の単結晶ダイヤモンド14を保持する試料ホルダー15を有している。なお、帯電ユニット13は帯電処理部の一例であり、単結晶ダイヤモンド14は被加工物の一例である。
Second Embodiment of the Invention
Hereinafter, modes for carrying out the present invention (hereinafter, referred to as “second embodiment of the invention”) will be described.
FIG. 11 is a schematic view for explaining a processing apparatus to which the present invention is applied, and the processing apparatus 11 shown here is a charge that changes the charge amount of the insulating synthetic quartz platen 12 and the synthetic quartz platen 12. It has a unit 13 and a sample holder 15 for holding an insulating single crystal diamond 14. The charging unit 13 is an example of a charging processing unit, and the single crystal diamond 14 is an example of a workpiece.

なお、合成石英定盤12の上面(図11上の上面)に被加工物である単結晶ダイヤモンド14が接して被加工物が研磨されることとなる。また、合成石英定盤12は加工部材の一例である。   In addition, the single crystal diamond 14 which is a workpiece is in contact with the upper surface (upper surface in FIG. 11) of the synthetic quartz surface plate 12, and the workpiece is polished. The synthetic quartz surface plate 12 is an example of a processing member.

帯電ユニット13は、合成石英定盤12の上方に配置され、合成石英定盤12の上面に陽イオンまたは陰イオンを供給して、合成石英定盤12の帯電量を外部から強制的に制御する。帯電量を制御することで合成石英定盤12の表面が改質され、単結晶ダイヤモンド14が接して電気化学的な作用が働くことで被加工物が研磨されることとなる。   The charging unit 13 is disposed above the synthetic quartz platen 12 and supplies positive ions or negative ions to the upper surface of the synthetic quartz platen 12 to forcibly control the charge amount of the synthetic quartz platen 12 from the outside. . By controlling the charge amount, the surface of the synthetic quartz surface plate 12 is modified, and the work piece is polished by the action of the electrochemical action by contacting the single crystal diamond 14.

ここで、本実施の形態では、加工部材が絶縁性の合成石英定盤12で形成されている場合を例に挙げて説明を行っているが、帯電ユニット13により帯電量を制御することが可能な材料であれば充分であって、必ずしも絶縁性の合成石英定盤12で形成される必要はない。例えば、鉄、ニッケル、Co等の金属、SiO、ZrO、Al、TiO2、Fe、MgO、CaO,NaO、KO、CeO等の無機酸化物、SiC、SiN、Al等のセラミックス、及びそれらからなる構成材料で形成されていても構わない。 Here, in the present embodiment, the case where the processing member is formed of the insulating synthetic quartz surface plate 12 is described as an example, but the charge amount can be controlled by the charging unit 13 The material is sufficient, and it does not have to be formed of the insulating synthetic quartz surface plate 12. For example, metals such as iron, nickel and Co, inorganic oxides such as SiO 2 , ZrO 2 , Al 2 O 3 , TiO 2, Fe 2 O 3 , MgO, CaO, Na 2 O, K 2 O, CeO 2 and the like It may be formed of ceramics such as SiC, SiN, Al 2 O 3 and the like, and constituent materials made of them.

また、合成石英定盤12は、回転数が制御可能な加工テーブル16上に固定され、加工テーブル16の回転によって合成石英定盤12が図11中符号Aで示す方向に回転可能に構成されている。   Further, the synthetic quartz surface plate 12 is fixed on a processing table 16 whose rotational speed can be controlled, and the synthetic quartz surface plate 12 is configured to be rotatable in a direction indicated by a symbol A in FIG. There is.

また、試料ホルダー15は、合成石英定盤12の回転軸に対して偏心した回転軸17を中心として図11中符号Bで示す方向に回転可能に構成されており、単結晶ダイヤモンド14を保持した状態で上方から単結晶ダイヤモンド14と合成石英定盤12が接触する位置まで下降する。なお、図中の符号Yは荷重をかける方向を示している。   Further, the sample holder 15 is configured to be rotatable in a direction indicated by a symbol B in FIG. 11 centering on the rotating shaft 17 eccentric to the rotating shaft of the synthetic quartz surface plate 12, and holds the single crystal diamond 14. In the state, it descends from the upper side to a position where the single crystal diamond 14 and the synthetic quartz surface plate 12 are in contact. In addition, the code | symbol Y in the figure has shown the direction which applies a load.

ここで、本実施の形態では、試料ホルダー15に保持される被加工物として単結晶ダイヤモンド14を例に挙げて説明を行っているが、被加工物は単結晶ダイヤモンド14に限定されるものではなく、ダイヤモンド、多結晶ダイヤモンド、CVDダイヤモンド、DLC膜等のダイヤモンド関連材料、SiC、GaN、サファイア、SiCセラミックス、Siセラミックス、AIN、ガラス等の硬脆材料等であっても構わない。 Here, in the present embodiment, the single crystal diamond 14 is described as an example of the workpiece to be held by the sample holder 15, but the workpiece is limited to the single crystal diamond 14. Instead, diamond related materials such as diamond, polycrystalline diamond, CVD diamond, DLC film, etc., SiC, GaN, sapphire, SiC ceramics, Si 3 N 4 ceramics, AIN, hard brittle materials such as glass, etc. may be used.

以下、上記の様に構成された加工装置11を用いた加工方法について説明を行う。即ち、本発明を適用した加工方法の一例について説明を行う。   Hereinafter, a processing method using the processing apparatus 11 configured as described above will be described. That is, an example of a processing method to which the present invention is applied will be described.

本発明を適用した加工方法の一例では、合成石英定盤12を回転させながら、合成石英定盤12に帯電ユニット13から陽イオンまたは陰イオンを供給する。   In one example of the processing method to which the present invention is applied, cations or anions are supplied from the charging unit 13 to the synthetic quartz platen 12 while the synthetic quartz platen 12 is rotated.

即ち、合成石英定盤12の上面に陽イオンまたは陰イオンを供給することで、合成石英定盤12の表面の帯電量を制御し、表面を改質させる。   That is, by supplying cations or anions to the upper surface of the synthetic quartz platen 12, the charge amount of the surface of the synthetic quartz platen 12 is controlled to modify the surface.

そして、表面が改質した状態の合成石英定盤12の上面と単結晶ダイヤモンド14が接触した状態で合成石英定盤12が回転することによって、単結晶ダイヤモンド14の表面を物理・化学的に除去することとなる。   Then, the surface of the single crystal diamond 14 is physically and chemically removed by the rotation of the synthetic quartz plate 12 in a state where the single crystal diamond 14 is in contact with the upper surface of the synthetic quartz plate 12 with the surface modified. It will be done.

本実施の形態の変形例(1)として、図12に示す加工装置の構成も採用しうる。図12の示す加工装置18では、上述した図11に示す加工装置11の構成に、更に、紫外光光源19が設置されるものである。   The configuration of the processing apparatus shown in FIG. 12 can also be adopted as a modification (1) of the present embodiment. In the processing apparatus 18 shown in FIG. 12, an ultraviolet light source 19 is further installed in the configuration of the processing apparatus 11 shown in FIG. 11 described above.

紫外光光源19は、合成石英定盤12の上方であり、帯電ユニット13とは異なる位置に配置され、合成石英定盤12の上面に紫外光を照射するものとなる。   The ultraviolet light source 19 is disposed above the synthetic quartz platen 12 and at a position different from that of the charging unit 13, and irradiates the upper surface of the synthetic quartz platen 12 with ultraviolet light.

本実施の形態の変形例(1)の加工方法では、合成石英定盤12を回転させながら、合成石英定盤12に帯電ユニット13から陽イオンまたは陰イオンを供給し、更に、紫外光光源19から紫外光を照射する。   In the processing method of the modification (1) of the present embodiment, the positive or negative ion is supplied from the charging unit 13 to the synthetic quartz platen 12 while the synthetic quartz platen 12 is rotated, and the ultraviolet light source 19 is further provided. It emits ultraviolet light from

即ち、合成石英定盤12の上面に紫外光を照射することで、合成石英定盤12の表面の清浄化かつ親水化処理を行う。具体的には、紫外光を照射して合成石英定盤12の最表面部にOH基を表出させることで、単結晶ダイヤモンド14の表面の原子との反応サイトを増加させる。   That is, by irradiating the upper surface of the synthetic quartz platen 12 with ultraviolet light, the surface of the synthetic quartz platen 12 is cleaned and hydrophilized. Specifically, the reaction site with the atoms of the surface of the single crystal diamond 14 is increased by exposing the OH group to the outermost surface portion of the synthetic quartz surface plate 12 by irradiating ultraviolet light.

そして、反応サイトが増加した状態の合成石英定盤12の上面と単結晶ダイヤモンド14が接触し、合成石英定盤12が回転することによって、反応サイトを単結晶ダイヤモンド14の表面の原子と化学的に作用させ、ダイヤモンド基板の表面を物理・化学的に除去することとなる。即ち、帯電量を制御することによる電気化学的な作用と、紫外光照射による効果も加わり、加工能率をより一層向上させることができる。   Then, when the upper surface of the synthetic quartz surface plate 12 in a state where the reaction site is increased contacts the single crystal diamond 14 and the synthetic quartz surface plate 12 rotates, the reaction site and the atoms of the surface of the single crystal diamond 14 are chemically reacted. To physically and chemically remove the surface of the diamond substrate. That is, the electrochemical efficiency by controlling the charge amount and the effect by the ultraviolet light irradiation are also added, and the processing efficiency can be further improved.

また、本発明を適用した加工方法においては、加工部材を加湿する条件を加えて、加工能率を高める方法も採用しうる。   Further, in the processing method to which the present invention is applied, a method of enhancing processing efficiency by adding conditions for humidifying the processing member may be adopted.

[効果]
本発明を適用した加工装置は、帯電ユニットを既存の装置に配置するのみで容易に構築することができるものとなっている。
[effect]
The processing apparatus to which the present invention is applied can be easily constructed only by arranging the charging unit in the existing apparatus.

更に、本発明を適用した加工方法及び加工装置は、砥粒を利用していないために、加工後の砥粒処理を行う必要がないものとなる。   Furthermore, since the processing method and the processing apparatus to which the present invention is applied do not use abrasive grains, it is not necessary to perform abrasive grain processing after processing.

また、砥粒を利用した加工の場合には、砥粒をスラリーの状態で供給する必要があり、加工部材や被加工物がスラリーで湿った状態となってしまい、温度が上がりにくく加工が進み難い。
一方、本発明を適用した加工方法では、砥粒を利用していないためにスラリーが供給されることもなく、加工部材や被加工物が乾いた状態であり、摩擦熱も含めて温度が上がり易く化学反応が進みやすい。即ち、難加工材料の高精度、高能率な加工が実現することができる。
Further, in the case of processing using abrasive grains, it is necessary to supply the abrasive grains in a slurry state, the processed member and the workpiece become wet with the slurry, and the temperature hardly rises and the processing proceeds hard.
On the other hand, in the processing method to which the present invention is applied, the slurry is not supplied because the abrasive grains are not used, and the processed member and the workpiece are in a dry state, and the temperature rises including the frictional heat. It is easy to proceed with chemical reaction. That is, highly accurate and highly efficient processing of difficult-to-process materials can be realized.

以下、本発明の実施例及び比較例について説明する。なお、ここで示す実施例は一例であり本発明を限定するものではない。   Hereinafter, Examples and Comparative Examples of the present invention will be described. The embodiment shown here is an example and does not limit the present invention.

(5)被加工物の加工面の表面粗さ
[実施例5〜7及び比較例5〜7]
本発明の実施例5の加工方法として、以下の条件で加工を行った。先ず、本発明の実施例5の加工方法として、サファイア定盤に被加工物として単結晶ダイヤモンド(3mm×3mm)を2kg(22.2kg/cm)の荷重で押圧し、サファイア定盤を回転数250rpm、揺動距離3mm、揺動速度0.1mm/sの条件で回転させると共に、試料ホルダーを1000rpmで回転させた。また、サファイア定盤の上方から帯電ユニットより陰イオンを供給した。また、加湿ユニットによりサファイア定盤の上方から加湿処理を施した。この様な状況で1.5時間の加工を行った。
実施例5と同様の方法で、帯電ユニットより陽イオンを供給したものを実施例6とした。
未加工の単結晶ダイヤモンドを比較例5とした。
また、実施例5と同様の方法で陰イオンまたは陽イオンの供給を行わず、加湿処理をしないものを比較例6とした。即ち、サファイア定盤の帯電量は制御せず、加工部材と被加工物の相対的な変位による物理的な加工のみを施す方法である。
更に、比較例6と同様の方法で、加湿ユニットによりサファイア定盤の上方から加湿処理を施したものを比較例7とした。
上記の実施例5〜6及び比較例5〜7について、走査型白色干渉計にて被加工面の表面粗さを評価した。なお、測定範囲は696μm×522μmである。
(5) Surface Roughness of Processed Surface of Workpiece [Examples 5 to 7 and Comparative Examples 5 to 7]
As a processing method of Example 5 of the present invention, processing was performed under the following conditions. First, as a processing method of Example 5 of the present invention, a single crystal diamond (3 mm × 3 mm) is pressed with a load of 2 kg (22.2 kg / cm 2 ) as a workpiece on a sapphire platen to rotate the sapphire platen. The sample holder was rotated at 1000 rpm while rotating under conditions of several 250 rpm, a swing distance of 3 mm, and a swing speed of 0.1 mm / s. In addition, anions were supplied from the charging unit from above the sapphire surface plate. Moreover, the humidification process was performed from the upper direction of a sapphire surface plate with a humidification unit. Processing was performed for 1.5 hours in this situation.
In the same manner as in Example 5, Example 6 was obtained in which cations were supplied from the charging unit.
Unprocessed single crystal diamond was taken as Comparative Example 5.
Further, Comparative Example 6 was prepared without supplying the anions or cations in the same manner as in Example 5 and not subjected to the humidification treatment. That is, this method is a method in which only the physical processing is performed by the relative displacement of the processing member and the workpiece without controlling the charge amount of the sapphire surface plate.
Furthermore, Comparative Example 7 was treated in the same manner as in Comparative Example 6 and was subjected to the humidification treatment from the upper side of the sapphire surface plate by the humidification unit.
The surface roughness of the surface to be processed was evaluated for the above-described Examples 5 to 6 and Comparative Examples 5 to 7 using a scanning white light interferometer. The measurement range is 696 μm × 522 μm.

図13に比較例5の走査型白色干渉計像を、図14に実施例5の走査型白色干渉計像を示す。   FIG. 13 shows a scanning white interferometer image of Comparative Example 5, and FIG. 14 shows a scanning white interferometer image of Example 5. In FIG.

図13及び図14から明らかなように、比較例5の未加工の被加工物の面に比べ、実施例5の加工により被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.308nmであり、平滑に加工されていたことが分かった。比較例5の算術平均粗さ(Ra)の値は8.118nmであった。
また、図示しないが、実施例6の加工においても被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.341nmであり、平滑に加工されていたことが分かった。
一方、陰イオンまたは陽イオンの供給を行わない比較例6の加工では、被加工面の測定範囲における算術平均粗さ(Ra)の値は2.595nmであった。
As apparent from FIGS. 13 and 14, the machining surface of the workpiece is processed with high accuracy by the processing of Example 5 as compared with the surface of the unprocessed workpiece of Comparative Example 5, and the measurement range of the workpiece surface The value of arithmetic mean roughness (Ra) at was 0.308 nm, and it was found that it was processed smoothly. The value of arithmetic mean roughness (Ra) of comparative example 5 was 8.118 nm.
Further, although not shown, the processed surface of the workpiece is processed with high accuracy also in the processing of Example 6, and the value of arithmetic average roughness (Ra) in the measurement range of the processed surface is 0.341 nm, It turned out that it was processed.
On the other hand, in the processing of Comparative Example 6 in which the supply of anions or cations was not performed, the value of the arithmetic average roughness (Ra) in the measurement range of the surface to be processed was 2.595 nm.

(6)加工能率について
上述した実施例5〜6及び比較例6〜7の加工方法による加工能率について以下の内容で確認を行った。
被加工物となる単結晶ダイヤモンドに所定の深さの溝を形成しておき、加工前後での溝の深さの変化量から加工能率を算出した。
(6) About processing efficiency About the processing efficiency by the processing method of Example 5-6 mentioned above and Comparative Examples 6-7, it confirmed by the following contents.
A groove having a predetermined depth was formed in a single crystal diamond to be processed, and the machining efficiency was calculated from the amount of change in groove depth before and after machining.

実施例5における加工能率は572.2nm/h、実施例6における加工能率は454.3nm/hであり、充分な加工能率を示していた。
一方、比較例6における加工能率は23.2nm/hであった。また、比較例7における加工能率は99.7nm/hであった。
The processing efficiency in Example 5 was 572.2 nm / h, and the processing efficiency in Example 6 was 454.3 nm / h, which indicated sufficient processing efficiency.
On the other hand, the processing efficiency in Comparative Example 6 was 23.2 nm / h. Moreover, the processing efficiency in the comparative example 7 was 99.7 nm / h.

(7)被加工物の加工面の表面粗さ
[実施例7〜8及び比較例8]
本発明の実施例7の加工方法として、上述した実施例5の加工方法の装置構成に紫外光光源を更に設置して、サファイア定盤に紫外光を照射する条件で加工を行った。また、実施例7では、実施例5と同様に、サファイア定盤の上方から帯電ユニットより陰イオンを供給した。また、加湿ユニットによりサファイア定盤の上方から加湿処理を施した。その他の条件は実施例5と同一である。
実施例7と同様の方法で、帯電ユニットより陽イオンを供給したものを実施例8とした。
未加工の単結晶ダイヤモンドを比較例8とした。
上記の実施例7〜8及び比較例8について、走査型白色干渉計にて被加工面の表面粗さを評価した。なお、測定範囲は696μm×522μmである。
(7) Surface Roughness of Machining Surface of Workpiece [Examples 7 to 8 and Comparative Example 8]
As a processing method of Example 7 of the present invention, an ultraviolet light source was further installed in the apparatus configuration of the processing method of Example 5 described above, and processing was performed under the condition of irradiating the sapphire base plate with ultraviolet light. In Example 7, as in Example 5, anions were supplied from the charging unit from above the sapphire surface plate. Moreover, the humidification process was performed from the upper direction of a sapphire surface plate with a humidification unit. Other conditions are the same as in Example 5.
In the same manner as in Example 7, Example 8 was obtained in which cations were supplied from the charging unit.
Unprocessed single crystal diamond was taken as Comparative Example 8.
The surface roughness of the surface to be processed was evaluated for the above-described Examples 7 to 8 and Comparative Example 8 with a scanning white light interferometer. The measurement range is 696 μm × 522 μm.

図15に比較例8の走査型白色干渉計像を、図16に実施例7の走査型白色干渉計像を示す。   FIG. 15 shows a scanning white interferometer image of Comparative Example 8, and FIG. 16 shows a scanning white interferometer image of Example 7. As shown in FIG.

図15及び図16から明らかなように、比較例8の未加工の被加工物の面に比べ、実施例7の加工により被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.625nmであり、平滑に加工されていたことが分かった。比較例8の算術平均粗さ(Ra)の値は4.320nmであった。
また、図示しないが、実施例8の加工においても被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.924nmであり、平滑に加工されていたことが分かった。
As apparent from FIGS. 15 and 16, the processing surface of the workpiece is processed with high accuracy by the processing of Example 7 as compared with the surface of the unprocessed workpiece of Comparative Example 8, and the measurement range of the processing surface The value of arithmetic mean roughness (Ra) at was 0.625 nm, and it was found that it was processed smoothly. The value of arithmetic mean roughness (Ra) of comparative example 8 was 4.320 nm.
Further, although not shown, the processed surface of the object to be processed is processed with high accuracy also in the processing of Example 8, and the value of arithmetic average roughness (Ra) in the measurement range of the surface to be processed is 0.924 nm. It turned out that it was processed.

(8)加工能率について
上述した実施例7〜8及び比較例9〜10の加工方法による加工能率について以下の内容で確認を行った。
比較例9は、実施例7の加工方法において紫外光の照射及び加湿処理は行うが、帯電ユニットからの陰イオンの供給を行わない方法である。即ち、サファイア定盤の帯電量は制御せず、紫外光の照射のみを行う加工である。なお、その他の加工条件は実施例7の加工方法と同一である。
また、比較例9と同様の方法で、加湿ユニットによりサファイア定盤の上方から加湿処理を行わないものを比較例10とした。
被加工物となる単結晶ダイヤモンドに所定の深さの溝を形成しておき、加工前後での溝の深さの変化量から加工能率を算出した。
(8) About processing efficiency The processing efficiency by the processing method of Example 7-8 mentioned above and comparative examples 9-10 was confirmed by the following contents.
Comparative Example 9 is a method in which irradiation of ultraviolet light and humidification treatment are performed in the processing method of Example 7, but supply of anions from the charging unit is not performed. That is, the processing is performed in which only the irradiation of the ultraviolet light is performed without controlling the charge amount of the sapphire base plate. The other processing conditions are the same as the processing method of the seventh embodiment.
Further, Comparative Example 10 was made in the same manner as Comparative Example 9, except that the humidification unit was not subjected to the humidification treatment from the upper side of the sapphire surface plate.
A groove having a predetermined depth was formed in a single crystal diamond to be processed, and the machining efficiency was calculated from the amount of change in groove depth before and after machining.

実施例7における加工能率は3741.4nm/h以上、実施例8における加工能率は2858.9nm/hであり、充分な加工能率を示していた。実施例7及び実施例8の加工能率は、上述した実施例5及び実施例6の加工能率よりも、より一層高い加工能率を示す方法であることが明らかとなった。
一方、比較例9における加工能率は543.4nm/h以上であった。また、比較例10における加工能率は238.1nm/hであった。
加工能率は、上述したように、あらかじめ被加工物である単結晶ダイヤモンドに溝の加工を行っており、加工前後の溝の深さの変化量により算出しようとしたものであるが、実施例7及び比較例9の加工では単結晶ダイヤモンドの溝が消失したため、実施例7の加工能率の数値は、「3741.4nm/h以上」、比較例9の加工能率は、「543.4nm/h以上」として表記している。
The processing efficiency in Example 7 was 3741.4 nm / h or more, and the processing efficiency in Example 8 was 2858.9 nm / h, indicating a sufficient processing efficiency. It became clear that the processing efficiency of Example 7 and Example 8 is a method which shows still higher processing efficiency than the processing efficiency of Example 5 and Example 6 mentioned above.
On the other hand, the processing efficiency in Comparative Example 9 was 543.4 nm / h or more. Moreover, the processing efficiency in the comparative example 10 was 238.1 nm / h.
As described above, the processing efficiency was obtained by processing grooves in a single crystal diamond, which is a workpiece, in advance, and was intended to calculate the amount of change in the depth of the grooves before and after processing. And since the grooves of the single crystal diamond disappeared in the processing of Comparative Example 9, the numerical value of the processing efficiency of Example 7 is "3741.4 nm / h or more", and the processing efficiency of Comparative Example 9 is "543.4 nm / h or more". It is written as ".

(9)被加工物の表面電位
[実施例9〜11及び比較例11]
本発明の実施例9の加工方法として、上述した実施例5の加工方法の装置構成から帯電ユニットを除き(加湿処理も行わず)、かつ、加工部材をサファイア定盤から合成石英定盤に変更し、定盤と被加工物である単結晶ダイヤモンドとの接触部位である加工点近傍にNガスを供給したものを実施例9とした。この様な状況で1.5時間の加工を行った。
実施例9と同様の方法で、加湿ユニットより加湿処理を施したものを実施例10とした。
実施例10と同様の方法で、帯電ユニットより陰イオンを供給したものを実施例11とした。
また、実施例9の加工方法からNガスの供給を行わなかったものを比較例11とした。
上記の実施例9〜11及び比較例11について、表面電位計により合成石英定盤の表面電位を測定して、帯電量を評価した。
(9) Surface Potential of Workpiece [Examples 9 to 11 and Comparative Example 11]
As a processing method of the ninth embodiment of the present invention, the charging unit is removed from the apparatus configuration of the processing method of the fifth embodiment described above (without humidification treatment), and the processing member is changed from a sapphire platen to a synthetic quartz platen. Then, Example 9 was obtained by supplying N 2 gas to the vicinity of a processing point which is a contact portion between a platen and a single crystal diamond which is a workpiece. Processing was performed for 1.5 hours in this situation.
In a method similar to Example 9, one subjected to the humidification treatment from the humidification unit was taken as Example 10.
In the same manner as in Example 10, one in which anions were supplied from the charging unit was taken as Example 11.
In addition, Comparative Example 11 was obtained by not supplying the N 2 gas from the processing method of Example 9.
In Examples 9 to 11 and Comparative Example 11 described above, the surface potential of the synthetic quartz platen was measured by a surface voltmeter to evaluate the charge amount.

図17〜図20に表面電位と加工時間の関係をグラフにて示す。図17は実施例9、図18は実施例10、図19は実施例11及び図20は比較例11の結果である。なお、グラフの縦軸は表面電位、横軸は加工時間(min)である。   The relationship between the surface potential and the processing time is shown as a graph in FIG. 17 to FIG. 17 shows the results of Example 9, FIG. 18 shows the results of Example 10, FIG. 19 shows the results of Example 11 and FIG. The vertical axis of the graph is the surface potential, and the horizontal axis is the processing time (min).

図17から明らかなように、合成石英定盤にNガスを供給することで、定盤の表面電位が一定の値の範囲に制御されることが分かった。また、図18及び図19から明らかなように、Nガスの供給と加湿処理、または、Nガスの供給と加湿処理及び帯電ユニットからのイオン供給を併用することで、定盤の表面電位をより一層厳密に制御しうることが分かった。 As is clear from FIG. 17, it was found that the surface potential of the platen was controlled to a constant value range by supplying N 2 gas to the synthetic quartz platen. Further, as apparent from FIGS. 18 and 19, supply and humidification of N 2 gas, or by a combination of ion supply from the moistening and the charging unit and the supply of N 2 gas, platen surface potential It has been found that it can be controlled more strictly.

(10)被加工物の加工面の表面粗さ
上述した実施例9〜11及び比較例11について、上述した方法と同様の内容で、走査型白色干渉計にて被加工面の表面粗さを評価した。
(10) Surface Roughness of Processed Surface of Workpiece With respect to Examples 9 to 11 and Comparative Example 11 described above, the surface roughness of the processed surface was measured by a scanning white interferometer with the same contents as the method described above. evaluated.

図21〜図24に走査型白色干渉計像を示す。図21は実施例9、図22は実施例10、図23は実施例11及び図24は比較例11の結果である。   FIGS. 21 to 24 show scanning white light interferometer images. 21 shows the results of Example 9, FIG. 22 shows the results of Example 10, FIG. 23 shows the results of Example 11 and FIG.

図21及び図24から明らかなように、比較例11の未加工の被加工物の面に比べ、実施例9の加工により被加工物の加工面が精度高く加工され、被加工面の測定範囲における算術平均粗さ(Ra)の値は0.565nmであり、平滑に加工されていたことが分かった。比較例11の算術平均粗さ(Ra)の値は1.805nmであった。
また、図22及び図23に示すように、実施例10及び実施例11の加工では、被加工物の加工面がより一層精度高く加工され、実施例6の被加工面の測定範囲における算術平均粗さ(Ra)の値は0.184nmであり、また、実施例11の被加工面の測定範囲における算術平均粗さ(Ra)の値は0.149nmであり、平滑に加工されていたことが分かった。
As apparent from FIGS. 21 and 24, the processing surface of the workpiece is processed with high accuracy by the processing of Example 9 as compared with the surface of the unprocessed workpiece of Comparative Example 11, and the measurement range of the processing surface The value of the arithmetic mean roughness (Ra) at 0.55 nm was found to be smooth. The value of arithmetic mean roughness (Ra) of comparative example 11 was 1.805 nm.
Further, as shown in FIGS. 22 and 23, in the processing of Example 10 and Example 11, the processed surface of the workpiece is processed with higher accuracy, and the arithmetic average in the measurement range of the processed surface of Example 6 The value of roughness (Ra) was 0.184 nm, and the value of arithmetic mean roughness (Ra) in the measurement range of the surface to be processed of Example 11 was 0.149 nm, and they were processed smoothly. I understand.

(11)加工能率について
上述した実施例9〜11及び比較例11について、上述した方法と同様の内容で、加工能率を評価した。
(11) Regarding processing efficiency With respect to the above-described Examples 9 to 11 and Comparative Example 11, the processing efficiency was evaluated by the same contents as the method described above.

実施例9における加工能率は586.2nm/h、実施例10における加工能率は1261.8nm/h、実施例11における加工能率は1560nm/hであり、特に実施例10及び実施例11は、充分な加工能率を示していた。
一方、比較例11における加工能率は38.33nm/hであった。
In Example 9, the processing efficiency is 586.2 nm / h, the processing efficiency in Example 10 is 1261.8 nm / h, and the processing efficiency in Example 11 is 1560 nm / h. In particular, Examples 10 and 11 are sufficiently satisfactory. Processing efficiency was shown.
On the other hand, the processing efficiency in Comparative Example 11 was 38.33 nm / h.

1 加工装置
2 サファイア定盤
3 単結晶ダイヤモンド
4 試料ホルダー
5 オゾン供給部
6 加工テーブル
7 回転軸
11 加工装置
12 合成石英定盤
13 帯電ユニット
14 単結晶ダイヤモンド
15 試料ホルダー
16 加工テーブル
17 回転軸
18 加工装置
19 紫外光光源
DESCRIPTION OF SYMBOLS 1 processing apparatus 2 sapphire surface plate 3 single crystal diamond 4 sample holder 5 ozone supply part 6 processing table 7 rotating shaft 11 processing apparatus 12 synthetic quartz surface plate 13 charging unit 14 single crystal diamond 15 sample holder 16 processing table 17 rotation shaft 18 processing Device 19 UV light source

Claims (8)

金属酸化物で構成された加工部材を被加工物と接触させ、接触部位にアルカリ性溶液を含有するオゾンガスを供給すると共に、前記加工部材を前記被加工物に接触させた状態で変位させる工程を備え、
前記加工部材は、Al またはSiOを主成分とするガラスのうちいずれか1つからなり、
前記被加工物は、GaNからなる
加工方法。
A process member is brought into contact with a work piece made of metal oxide, ozone gas containing an alkaline solution is supplied to the contact portion, and the work member is displaced in a state of being in contact with the work thing ,
The processing member is made of any one of Al 2 O 3 or SiO 2 -based glass,
The processing method is made of GaN.
前記オゾンガスがアルカリ性電解水を含有する
請求項1に記載の加工方法
The ozone gas contains alkaline electrolyzed water
The processing method according to claim 1 .
前記加工部材、若しくは、前記被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する
請求項1または請求項2に記載の加工方法
At least one of a cation or an anion is supplied to at least one of the workpiece and the workpiece to control the charge amount.
The processing method of Claim 1 or Claim 2 .
金属酸化物で構成された加工部材を被加工物と接触させ、接触部位にオゾンガスを供給すると共に、前記加工部材を前記被加工物に接触させた状態で変位させる工程を備え、Contacting a processing member made of a metal oxide with a workpiece, supplying ozone gas to the contact area, and displacing the processing member in contact with the workpiece;
前記加工部材は、AlThe processing member is Al 2 O 3 またはSiOOr SiO 2 を主成分とするガラスのうちいずれか1つからなり、And any one of the glasses whose main component is
前記被加工物は、GaNからなり、The workpiece is made of GaN,
前記加工部材、若しくは、前記被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して、前記加工部材、若しくは、前記被加工物の少なくとも一方を帯電させるAt least one of a cation or an anion is supplied to at least one of the workpiece or the workpiece to charge at least one of the workpiece or the workpiece.
加工方法。Processing method.
金属酸化物で構成された加工部材と、
所定の被加工物を前記加工部材と接触させて保持する保持機構と、
前記加工部材及び前記被加工物との接触部位にアルカリ性溶液を含有するオゾンガスを供給するオゾンガス供給部と、
前記加工部材と前記被加工物を接触させた状態で、前記加工部材を変位させる駆動部とを備え、
前記加工部材は、Al またはSiO を主成分とするガラスのうちいずれか1つからなり、
前記被加工物は、GaNからなる
加工装置
A processing member made of metal oxide,
A holding mechanism for holding a predetermined workpiece in contact with the processing member;
An ozone gas supply unit configured to supply an ozone gas containing an alkaline solution to a contact portion between the processing member and the workpiece;
And a drive unit for displacing the processing member in a state in which the processing member is in contact with the workpiece.
The processing member is made of any one of Al 2 O 3 or SiO 2 -based glass,
The workpiece is made of GaN
Processing equipment .
前記オゾンガスがアルカリ性電解水を含有する
請求項5に記載の加工装置。
The ozone gas contains alkaline electrolyzed water
The processing apparatus according to claim 5 .
前記加工部材、若しくは、前記被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して帯電量を制御する帯電処理部とを備える
請求項5または請求項6に記載の加工装置
And at least one of the workpiece and the workpiece is supplied with at least one of positive ions or negative ions to control a charge amount.
The processing apparatus of Claim 5 or Claim 6 .
金属酸化物で構成された加工部材と、
所定の被加工物を前記加工部材と接触させて保持する保持機構と、
前記加工部材及び前記被加工物との接触部位にオゾンガスを供給するオゾンガス供給部と、
前記加工部材と前記被加工物を接触させた状態で、前記加工部材を変位させる駆動部と、
前記加工部材、若しくは、前記被加工物の少なくとも一方に、陽イオン、若しくは、陰イオンの少なくとも一方を供給して、前記加工部材、若しくは、前記被加工物の少なくとも一方を帯電させる帯電処理部とを備え、
前記加工部材は、Al またはSiO を主成分とするガラスのうちいずれか1つからなり、
前記被加工物は、GaNからなる
加工装置
A processing member made of metal oxide,
A holding mechanism for holding a predetermined workpiece in contact with the processing member;
An ozone gas supply unit for supplying ozone gas to the contact portion between the processing member and the workpiece;
A driving unit that displaces the processing member in a state in which the processing member and the workpiece are in contact with each other;
And at least one of a cation or an anion is supplied to at least one of the workpiece and the workpiece to charge at least one of the workpiece and the workpiece. Equipped with
The processing member is made of any one of Al 2 O 3 or SiO 2 -based glass,
The workpiece is made of GaN
Processing equipment .
JP2018057261A 2016-02-16 2018-03-23 Processing method and processing apparatus Active JP6515311B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016027126 2016-02-16
JP2016027126 2016-02-16
JP2016028408 2016-02-17
JP2016028408 2016-02-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018500128A Division JP6928328B2 (en) 2016-02-16 2017-02-14 Processing method and processing equipment

Publications (2)

Publication Number Publication Date
JP2018125549A JP2018125549A (en) 2018-08-09
JP6515311B2 true JP6515311B2 (en) 2019-05-22

Family

ID=59625109

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018500128A Active JP6928328B2 (en) 2016-02-16 2017-02-14 Processing method and processing equipment
JP2018057261A Active JP6515311B2 (en) 2016-02-16 2018-03-23 Processing method and processing apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018500128A Active JP6928328B2 (en) 2016-02-16 2017-02-14 Processing method and processing equipment

Country Status (2)

Country Link
JP (2) JP6928328B2 (en)
WO (1) WO2017141918A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7204105B2 (en) * 2019-02-13 2023-01-16 国立大学法人 熊本大学 Processing method and processing equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189544A (en) * 1996-12-26 1998-07-21 Matsushita Electric Ind Co Ltd Apparatus and method for removal of electrostatic charge in substrate
JP2008136983A (en) * 2006-12-05 2008-06-19 Osaka Univ Catalyst-aided chemical processing method and apparatus
JP2008060453A (en) * 2006-09-01 2008-03-13 Matsushita Electric Ind Co Ltd Semiconductor manufacturing apparatus, and manufacturing method for semiconductor device
TW201426834A (en) * 2012-09-03 2014-07-01 Univ Kumamoto Nat Univ Corp Machining method and machining device

Also Published As

Publication number Publication date
JP6928328B2 (en) 2021-09-01
JPWO2017141918A1 (en) 2018-12-06
WO2017141918A1 (en) 2017-08-24
JP2018125549A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP5364959B2 (en) Polishing method and polishing apparatus
KR101692574B1 (en) Polishing method and polishing apparatus
CN107641835B (en) A kind of method of semiconductor wafer optical electro-chemistry mechanical polishing
JP4887266B2 (en) Flattening method
TWI496659B (en) Processing methods for synthetic quartz glass substrates for semiconductors
WO2013084934A1 (en) Method for manufacturing solid oxide and device therefor
US10163645B2 (en) Method for processing wide-bandgap semiconductor substrate and apparatus therefor
JP2008081389A (en) Catalyst-aided chemical processing method and apparatus
JP6598150B2 (en) Method for producing single crystal SiC substrate
JP2014027299A (en) Polishing tool and polishing device
JP2011146695A (en) Polishing method and apparatus
WO2011118532A1 (en) Processing method
JP2017098322A (en) POLISHING APPARATUS AND GaN SUBSTRATE POLISHING PROCESSING METHOD USING THE SAME
JP6515311B2 (en) Processing method and processing apparatus
JP6145761B2 (en) Processing method and processing apparatus
JP7204105B2 (en) Processing method and processing equipment
JP2023000483A (en) Processing method and processing device
Zhou et al. A novel fixed abrasive process: chemo-mechanical grinding technology
JP2009113272A (en) Cutting method of hard material
Wang et al. Comparison of Fe catalyst species in chemical mechanical polishing based on Fenton reaction for SiC wafer
JP6188152B2 (en) Method and apparatus for planarizing Si substrate
JP2016127130A (en) Processing method and processing device
JP2015226951A (en) Polishing apparatus
JP7309177B2 (en) Truing method and truing device
JP2010238310A (en) Method for manufacturing substrate for magnetic disk

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190315

R150 Certificate of patent or registration of utility model

Ref document number: 6515311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250