JP3938740B2 - Mr画像生成方法およびmri装置 - Google Patents

Mr画像生成方法およびmri装置 Download PDF

Info

Publication number
JP3938740B2
JP3938740B2 JP2002297076A JP2002297076A JP3938740B2 JP 3938740 B2 JP3938740 B2 JP 3938740B2 JP 2002297076 A JP2002297076 A JP 2002297076A JP 2002297076 A JP2002297076 A JP 2002297076A JP 3938740 B2 JP3938740 B2 JP 3938740B2
Authority
JP
Japan
Prior art keywords
function
signal
center position
value
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002297076A
Other languages
English (en)
Other versions
JP2004129833A (ja
Inventor
徹男 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
GE Medical Systems Global Technology Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Medical Systems Global Technology Co LLC filed Critical GE Medical Systems Global Technology Co LLC
Priority to JP2002297076A priority Critical patent/JP3938740B2/ja
Priority to US10/679,918 priority patent/US6774630B2/en
Priority to DE10346792A priority patent/DE10346792A1/de
Priority to KR1020030070102A priority patent/KR101065153B1/ko
Priority to CN 200310100770 priority patent/CN1248650C/zh
Publication of JP2004129833A publication Critical patent/JP2004129833A/ja
Application granted granted Critical
Publication of JP3938740B2 publication Critical patent/JP3938740B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、MR(Magnetic Resonance)画像生成方法およびMRI(Magnetic Resonance Imaging)装置に関し、さらに詳しくは、血管の描出力を向上することが出来るMR画像生成方法およびMRI装置に関する。
【0002】
【従来の技術】
従来のMRI装置は、MR信号を得るMR信号取得手段と、k空間の中心位置からk空間の端近傍位置まで値「1」をとり、それよりも端になるに従って値を小さくする窓関数を用いてMR信号を窓処理する窓処理手段と、窓処理したMR信号をフーリエ変換処理してMR画像を得るフーリエ変換処理手段とを具備していた。
【0003】
上記窓処理を行うのは、MRI装置の信号取得がk空間の限られた長方形状の領域に限られることからくるトランケーションアーチファクト(truncation artifact)や非等方的なノイズテクスチャ(noise texture)を抑止するために、MR信号の高周波部分を同心円状に抑制するためである。
【0004】
関連する従来技術は、特開平4−53531号公報や特開平6−121781号公報に開示されている。
【0005】
【発明が解決しようとする課題】
従来のMRI装置では、生成したい画像が血流画像であるか否かにかかわらず、同じ窓処理を行っている。
つまり、従来の窓処理は、生成したい画像が血流画像である場合に最適化されておらず、血管の描出力を向上できるものではなかった。
そこで、本発明の目的は、生成したい画像が血流画像である場合に対して窓処理を最適化することによって血管の描出力を向上できるようにしたMR画像生成方法およびMRI装置を提供することにある。
【0006】
【課題を解決するための手段】
第1の観点では、本発明は、k空間の中心位置とその近傍域とk空間の端とその近傍域とで1より小さな値をとり、前記1より小さな値をとる領域の間で前記1より小さな値をとる領域での値より大きな値をとる窓関数を用いてMR信号を窓処理し、窓処理したMR信号にフーリエ変換処理を施してMR画像を得ることを特徴とするMR画像生成方法を提供する。
上記構成において、k空間の中心位置の近傍域とは、k空間の中心位置から5〜20データ点くらいの範囲である。k空間の端の近傍域とは、k空間の端から5〜20データ点くらいの範囲である。
上記第1の観点によるMR画像生成方法では、k空間の中心位置とその近傍域で1より小さな値をとる窓関数を用いるため、k空間の中心位置近傍のMR信号が抑制される。ところが、組織部分のMR信号はk空間の中心位置近傍に狭く分布しており、血流部分のMR信号は中心位置近傍だけではなく高周波領域にも広く分布している。このため、組織部分のMR信号は大きく抑制されるが、血流部分のMR信号は比較的小さく抑制されることになる。従って、相対的に血管の描出力を向上できるようになる。
なお、k空間の端とその近傍域で1より小さな値をとるため、従来と同様にMR信号の高周波部分を同心円状に抑制することも出来る。
【0007】
第2の観点では、本発明は、k空間の中心位置で1より小さい値をとり、中心位置を離れるに従って、まず1以上の値Cまで大きくなり、しばらくCのままになり、次いで1になり、k空間の端近傍から端になるに従って1より小さい値まで小さくなる窓関数を用いてMR信号を窓処理し、窓処理したMR信号にフーリエ変換処理を施してMR画像を得ることを特徴とするMR画像生成方法を提供する。
上記構成において、k空間の中心位置から値Cまで大きくなる領域は、k空間の中心位置から3〜15データ点くらいの範囲である。しばらくCのままになる領域は、20〜50データ点くらいの範囲である。Cから1になる領域は、3〜10データ点くらいの領域である、1より小さくなる領域は、k空間の端から5〜20データ点くらいの範囲である。
上記第2の観点によるMR画像生成方法では、窓関数が、k空間の中心位置とその近傍域で1より小さな値をとるため、k空間の中心位置近傍のMR信号が抑制される。ところが、組織部分のMR信号はk空間の中心位置近傍に狭く分布しており、血流部分のMR信号は中心位置近傍だけではなく高周波領域にも広く分布している。このため、組織部分のMR信号は大きく抑制されるが、血流部分のMR信号は比較的小さく抑制される。次に、「しばらくCのままになる」領域では、血流部分のMR信号の0次ピーク部分(中心位置に最大値を持つ山状部分)が保存または増幅される。次に、「1になる」領域では、血流部分のMR信号の1次以上のピーク部分(中心位置以外に最大値を持つ山状部分)が保存される。かくして、相対的に血管の描出力を向上できるようになる。
なお、k空間の端とその近傍域で1より小さな値をとるため、従来と同様にMR信号の高周波部分を同心円状に抑制することも出来る。
【0008】
第3の観点では、本発明は、上記構成のMR画像生成方法において、前記Cまで大きくなる領域では、前記窓関数は、ガウス(Gauss)関数を利用した関数であることを特徴とするMR画像生成方法を提供する。
上記第3の観点によるMR画像生成方法では、ガウス関数exp{−|k|/a}を利用して、1より小さい値から値Cまで滑らかに値を大きくすることが出来る。
【0009】
第4の観点では、本発明は、上記構成のMR画像生成方法において、前記1より小さい値まで小さくなる領域では、前記窓関数は、フェルミ−ディラック(Fermi-Dirac)関数を利用した関数であることを特徴とするMR画像生成方法を提供する。
上記第4の観点によるMR画像生成方法では、フェルミ−ディラック関数1/(1+exp{(|k|−R)/b})を利用して、1から1より小さい値まで滑らかに値を小さくすることが出来る。
【0010】
第5の観点では、本発明は、k空間の中心位置で1より小さい値をとり、中心位置を離れるに従って、まず1まで大きくなり、しばらく1のままになり、k空間の端近傍から端になるに従って1より小さい値まで小さくなる窓関数を用いてMR信号を窓処理し、窓処理したMR信号にフーリエ変換処理を施してMR画像を得ることを特徴とするMR画像生成方法を提供する。
上記第5の観点によるMR画像生成方法では、窓関数が、k空間の中心位置とその近傍域で1より小さな値をとるため、k空間の中心位置近傍のMR信号が抑制される。ところが、組織部分のMR信号はk空間の中心位置近傍に狭く分布しており、血流部分のMR信号は中心位置近傍だけではなく高周波領域にも広く分布している。このため、組織部分のMR信号は大きく抑制されるが、血流部分のMR信号は比較的小さく抑制される。次に、「しばらく1のままになる」領域では、血流部分のMR信号が保存される。かくして、相対的に血管の描出力を向上できるようになる。
なお、k空間の端とその近傍域で1より小さな値をとるため、従来と同様にMR信号の高周波部分を同心円状に抑制することも出来る。
【0011】
第6の観点では、本発明は、上記構成のMR画像生成方法において、前記1まで大きくなる領域では、前記窓関数は、ガウス関数を利用した関数であることを特徴とするMR画像生成方法を提供する。
上記第6の観点によるMR画像生成方法では、ガウス関数exp{−|k|/a}を利用して、1より小さい値から1まで滑らかに値を大きくすることが出来る。
【0012】
第7の観点では、本発明は、上記構成のMR画像生成方法において、前記1より小さい値まで小さくなる領域では、前記窓関数は、フェルミ−ディラック関数を利用した関数であることを特徴とするMR画像生成方法を提供する。
上記第7の観点によるMR画像生成方法では、フェルミ−ディラック関数1/(1+exp{(|k|−R)/b})を利用して、1から1より小さい値まで滑らかに値を小さくすることが出来る。
【0013】
第8の観点では、本発明は、連続的に並ぶ複数のスライスについて上記構成のMR画像生成方法によりMR画像を生成し、それらMR画像から3次元データを作成し、前記3次元データに対してMIP処理を行って投影画像を生成することを特徴とするMR画像生成方法を提供する。
上記第8の観点によるMR画像生成方法では、アンギオ画像の血管の描出力を向上できるようになる。
【0014】
第9の観点では、本発明は、MR信号を得るMR信号取得手段と、k空間の中心位置とその近傍域とk空間の端とその近傍域とで1より小さな値をとり、前記1より小さな値をとる領域の間で前記1より小さな値をとる領域での値より大きな値をとる窓関数を用いてMR信号を窓処理する窓処理手段と、窓処理したMR信号をフーリエ変換処理してMR画像を得るフーリエ変換処理手段とを具備したことを特徴とするMRI装置を提供する。
上記第9の観点によるMRI装置では、前記第1の観点によるMR画像生成方法を好適に実施できる。
【0015】
第10の観点では、本発明は、MR信号を得るMR信号取得手段と、k空間の中心位置で1より小さい値をとり、中心位置を離れるに従って、まず1以上の値Cまで大きくなり、しばらくCのままになり、次いで1になり、k空間の端近傍から端になるに従って1より小さい値まで小さくなる窓関数を用いてMR信号を窓処理する窓処理手段と、窓処理したMR信号をフーリエ変換処理してMR画像を得るフーリエ変換処理手段とを具備したことを特徴とするMRI装置を提供する。
上記第10の観点によるMRI装置では、前記第2の観点によるMR画像生成方法を好適に実施できる。
【0016】
第11の観点では、本発明は、上記構成のMRI装置において、前記Cまで大きくなる領域では、前記窓関数は、ガウス関数を利用した関数であることを特徴とするMRI装置を提供する。
上記第11の観点によるMRI装置では、前記第3の観点によるMR画像生成方法を好適に実施できる。
【0017】
第12の観点では、本発明は、上記構成のMRI装置において、前記1より小さい値まで小さくなる領域では、前記窓関数は、フェルミ−ディラック関数を利用した関数であることを特徴とするMRI装置を提供する。
上記第12の観点によるMRI装置では、前記第4の観点によるMR画像生成方法を好適に実施できる。
【0018】
第13の観点では、本発明は、MR信号を得るMR信号取得手段と、k空間の中心位置で1より小さい値をとり、中心位置を離れるに従って、まず1まで大きくなり、しばらく1のままになり、k空間の端近傍から端になるに従って1より小さい値まで小さくなる窓関数を用いてMR信号を窓処理する窓処理手段と、窓処理したMR信号をフーリエ変換処理してMR画像を得るフーリエ変換処理手段とを具備したことを特徴とするMRI装置を提供する。
上記第13の観点によるMRI装置では、前記第5の観点によるMR画像生成方法を好適に実施できる。
【0019】
第14の観点では、本発明は、上記構成のMRI装置において、前記1まで大きくなる領域では、前記窓関数は、ガウス関数を利用した関数であることを特徴とするMRI装置を提供する。
上記第14の観点によるMRI装置では、前記第6の観点によるMR画像生成方法を好適に実施できる。
【0020】
第15の観点では、本発明は、上記構成のMRI装置において、前記1より小さい値まで小さくなる領域では、前記窓関数は、フェルミ−ディラック関数を利用した関数であることを特徴とするMRI装置を提供する。
上記第15の観点によるMRI装置では、前記第7の観点によるMR画像生成方法を好適に実施できる。
【0021】
第16の観点では、本発明は、上記構成のMRI装置において、連続的に並ぶ複数のスライスについて生成したMR画像から3次元データを作成する3次元データ作成手段と、前記3次元データに対してMIP処理を行って投影画像を生成するMIP処理手段とを具備したことを特徴とするMRI装置を提供する。
上記第16の観点によるMRI装置では、前記第8の観点によるMR画像生成方法を好適に実施できる。
【0022】
【発明の実施の形態】
以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。
【0023】
−第1の実施形態−
図1は、第1の実施形態にかかるMRI装置を示すブロック図である。
このMRI装置100において、マグネットアセンブリ1は、内部に被検体を挿入するためのボア(空間部分)を有し、このボアを取りまくようにして、勾配磁場を形成する勾配コイル(勾配コイルはX軸,Y軸,Z軸の各コイルを備えており、これらの組み合わせによりスライス軸,ワープ軸,リード軸が決まる)1Gと、被検体内の原子核のスピンを励起するためのRFパルスを印加する送信コイル1Tと、被検体からのNMR信号を検出する受信コイル1Rと、静磁場を形成する静磁場電源2および静磁場コイル1Cとを具備して構成されている。
なお、静磁場電源2および静磁場コイル1C(超伝導磁石)の代わりに、永久磁石を用いてもよい。
【0024】
勾配コイル1Gは、勾配コイル駆動回路3に接続されている。さらに、送信コイル1Tは、RF電力増幅器4に接続されている。また、受信コイル1Rは、前置増幅器5に接続されている。
【0025】
シーケンス記憶回路8は、計算機7からの指令に従い、記憶しているパルスシーケンスに基づいて、勾配コイル駆動回路3を操作し、勾配コイル1Gにより勾配磁場を形成させると共に、ゲート変調回路9を操作し、RF発振回路10からの高周波出力信号を所定タイミング・所定包絡線のパルス状信号に変調し、それを励起パルスとしてRF電力増幅器4に加え、RF電力増幅器4でパワー増幅した後、マグネットアセンブリ1の送信コイル1Tに印加し、RFパルスを送信する。
【0026】
前置増幅器5は、マグネットアセンブリ1の受信コイル1Rで検出された被検体からのNMR信号を増幅し、位相検波器12に入力する。位相検波器12は、RF発振回路10の出力を参照信号とし、前置増幅器5からのNMR信号を位相検波して、A/D変換器11に与える。A/D変換器11は、位相検波後のアナログ信号をデジタル信号のMRデータに変換して、計算機7に入力する。
【0027】
計算機7は、A/D変換器11からMRデータを読み込み、画像再構成処理を行ってMR画像を生成する。また、計算機7は、操作卓13から入力された情報を受け取るなどの全体的な制御を受け持つ。
表示装置6は、MR画像を表示する。
【0028】
図2は、MRI装置100によるMR画像生成処理を示すフロー図である。
ステップP1では、一つのスライスから収集したMRデータに対して窓処理を施す。
ここで、スライスとしては、256×256のFOV(Field Of View)の中央に円形の血管が存在し、その周囲をドーナツ形に脳実質が取り巻いているモデルを想定する。さらに、スライス中央軸上におけるMR信号強度が、図3に示すように、脳実質Gと血管Vの最大信号強度が等しいモデルを想定する。図3の横軸は画素点の番号を表している。
なお、スライス全面におけるMR信号強度は、図3の位置0を回転軸として図3の曲線を軸回転させた如き曲面となる。
【0029】
このモデルの場合、k空間中央軸上におけるMR信号の周波数成分分布は、図4に示すようになる。図4の横軸は、k空間のデータ点の番号を表している。周波数的には、横軸の0の位置が直流位置(k空間の中心位置)になり、端へ行くほど高周波になる。
図4に示すように、MRデータが含む脳実質Gの周波数成分gは、中心位置で非常に高いピークを持ち、中心位置の近傍に狭く分布している。一方、MRデータが含む血管Vの周波数成分(血流の周波数成分)vは、中心位置で比較的低いピークを持ち、中心位置近傍だけではなく高周波領域にも広く分布している。
なお、k空間全面に対するMR信号の周波数成分分布は、図4の中心位置を回転軸として図4の曲線を軸回転させた如き曲面となる。
【0030】
図5は、k空間中央軸上のMR信号に対して用いる窓関数f(k)である。
この窓関数f(k)は、k空間の中心位置で値0.5をとり、中心位置を離れるに従って、まず値1.2まで大きくなり、しばらく値1.2のままになり、次いで値1になり、k空間の端近傍から端になるに従って値0.5まで小さくなる。
そして、値が0.5から1.2まで大きくなる領域では、窓関数f(k)は、a,A,Cを定数、kを中心位置からの距離とするとき、
f(k)=C(1−A・exp{−|k|/a})
で表される。図5では、C=1.2、A=0.6、a=5になっている。
また、値が1.2から1まで小さくなる領域では、血管の描出力を向上するように、図5に示すとおりに値を変化させる。
また、値が1から0.5まで小さくなる領域では、窓関数f(k)は、b,Rを定数、kを中心位置からの距離とするとき、
f(k)=1/(1+exp{(|k|−R)/b})
で表される。図5では、R=128、b=3になっている。
なお、k空間全面に対する窓関数f(k)は、図5の中心位置を回転軸として図5の曲線を軸回転させた如き曲面となる。
【0031】
図6は、窓処理後のk空間中央軸上におけるMR信号の周波数成分分布を示している。
脳実質Gの周波数成分gは、元の1/2程度に大きく抑制されている。
一方、血管Vの周波数成分vの0次ピーク部分は、中心位置では抑制されているが、中心位置の近傍では増幅されている。また、1次以上のピーク部分は、元のまま保存されている。
なお、k空間全面に対するMR信号の周波数成分は、図6の中心位置を回転軸として図6の曲線を軸回転させた如き曲面となる。
【0032】
図2に戻り、ステップP2では、窓処理後のMRデータを2次元FFT(Fast Fourier Transform)処理する。
図7は、FFT処理後のスライス中央軸上におけるMR信号強度を示している。
脳実質Gの信号は大きく抑制されているが、血管Vの信号は元に近い状態にある。
なお、スライス全面におけるMR信号強度は、図7の位置0を回転軸として図7の曲線を軸回転させた如き曲面となる。
以上の結果、相対的に血管Vの描出力を向上できるようになる。
【0033】
なお、窓関数f(k)は、k空間の端とその近傍域で1より小さな値をとる。このため、従来と同様にMR信号の高周波部分を同心円状に抑制することも出来る。
【0034】
−第2の実施形態−
第2の実施形態では、図8に示す如き窓関数を用いて窓処理する。
図8の窓関数f(k)は、k空間の中心位置で値0.5をとり、中心位置を離れるに従って値1まで大きくなり、しばらく値1のままになり、k空間の端近傍から端になるに従って値0.5まで小さくなる。
そして、値が0.5から1まで大きくなる領域では、窓関数f(k)は、a,Aを定数、kを中心位置からの距離とするとき、
f(k)=1−A・exp{−|k|/a}
で表される。
また、値が1から0.5まで小さくなる領域では、窓関数f(k)は、b,Rを定数、kを中心位置からの距離とするとき、
f(k)=1/(1+exp{(|k|−R)/b})
で表される。
なお、k空間全面に対する窓関数f(k)は、図8の中心位置を回転軸として図8の曲線を軸回転させた如き曲面となる。
【0035】
ちなみに、図8に破線で示すように、中心位置およびその近傍でも値を1にすると、従来の窓関数となる。
【0036】
−第3実施形態−
第3の実施形態では、血管Vの描出力を向上した3次元MR画像を生成する。
【0037】
図9は、第3の実施形態に係る3次元MR画像生成処理を示すフロー図である。
ステップQ1では、前述の実施形態のようにMR画像を生成することを連続的に厚さ方向に並ぶ複数のスライスについて繰り返す。
ステップQ2では、連続的に厚さ方向に並ぶ複数のスライスのMR画像から3次元データを作成する。
ステップQ3では、3次元データに対してMIP(Maxmum Intensity Projection)処理を行って3次元MR画像を生成する。
【0038】
各スライスのMR画像は血管Vの描出力を向上したMR画像であるから、3次元MR画像もまた血管Vの描出力を向上したMR画像となり、アンギオ(angiography)画像を生成するのに好適となる。
【0039】
−他の実施形態−
上述の関数以外の関数の組み合わせによって窓関数を作成し、窓処理に用いてもよい。
【0040】
【発明の効果】
本発明のMR画像生成方法およびMRI装置によれば、血管の描出力を向上することが出来る。また、高周波領域のノイズを抑制でき、CNR(carrier to noise ratio)を向上できる。
【図面の簡単な説明】
【図1】第1の実施形態に係るMRI装置を示すブロック図である。
【図2】第1の実施形態に係るMR画像生成処理を示すフロー図である。
【図3】想定モデルのスライス中央軸上のMR信号強度を示すグラフである。
【図4】想定モデルのk空間中央軸上のMR信号強度を示すグラフである。
【図5】第1の実施形態に係る窓関数のk空間中央軸上の値を示すグラフである。
【図6】第1の実施形態に係る窓処理後のk空間中央軸上のMR信号強度を示すグラフである。
【図7】第1の実施形態に係るFFT処理後のスライス中央軸上のMR信号強度を示すグラフである。
【図8】第2の実施形態に係る窓関数のk空間中央軸上の値を示すグラフである。
【図9】第3の実施形態に係る3次元MR画像生成処理を示すフロー図である。
【符号の説明】
7 計算機
100 MRI装置

Claims (12)

  1. k空間の中心位置で1より小さい値をとり、中心位置を離れるに従って、まず1以上の値Cまで大きくなり、しばらくCのままになり、次いで1になり、k空間の端近傍から端になるに従って1より小さい値まで小さくなる窓関数を用いてMR信号を窓処理し、窓処理したMR信号にフーリエ変換処理を施してMR画像を得ることを特徴とするMR画像生成方法。
  2. 請求項1に記載のMR画像生成方法において、
    前記Cまで大きくなる領域では、前記窓関数は、ガウス関数を利用した関数であることを特徴とするMR画像生成方法。
  3. 請求項1または請求項2に記載のMR画像生成方法において、
    前記1より小さい値まで小さくなる領域では、前記窓関数は、フェルミ−ディラック関数を利用した関数であることを特徴とするMR画像生成方法。
  4. k空間の中心位置で1より小さい値をとり、中心位置を離れるに従って、まず1まで大きくなり、しばらく1のままになり、k空間の端近傍から端になるに従って1より小さい値まで小さくなる窓関数を用いてMR信号を窓処理し、窓処理したMR信号にフーリエ変換処理を施してMR画像を得るMR画像生成方法であって、
    前記1まで大きくなる領域では、前記窓関数は、ガウス関数を利用した関数であることを特徴とするMR画像生成方法。
  5. k空間の中心位置で1より小さい値をとり、中心位置を離れるに従って、まず1まで大きくなり、しばらく1のままになり、k空間の端近傍から端になるに従って1より小さい値まで小さくなる窓関数を用いてMR信号を窓処理し、窓処理したMR信号にフーリエ変換処理を施してMR画像を得るMR画像生成方法であって、
    前記1より小さい値まで小さくなる領域では、前記窓関数は、フェルミ−ディラック関数を利用した関数であることを特徴とするMR画像生成方法。
  6. 連続的に並ぶ複数のスライスについて請求項1から請求項5のいずれかに記載のMR画像生成方法によりMR画像を生成し、それらMR画像から3次元データを作成し、前記3次元データに対してMIP処理を行って投影画像を生成することを特徴とするMR画像生成方法。
  7. MR信号を得るMR信号取得手段と、
    k空間の中心位置で1より小さい値をとり、中心位置を離れるに従って、まず1以上の値Cまで大きくなり、しばらくCのままになり、次いで1になり、k空間の端近傍から端になるに従って1より小さい値まで小さくなる窓関数を用いてMR信号を窓処理する窓処理手段と、
    窓処理したMR信号をフーリエ変換処理してMR画像を得るフーリエ変換処理手段とを具備したことを特徴とするMRI装置。
  8. 請求項7に記載のMRI装置において、
    前記Cまで大きくなる領域では、前記窓関数は、ガウス関数を利用した関数であることを特徴とするMRI装置。
  9. 請求項7または請求項8に記載のMRI装置において、
    前記1より小さい値まで小さくなる領域では、前記窓関数は、フェルミ−ディラック関数を利用した関数であることを特徴とするMRI装置。
  10. MR信号を得るMR信号取得手段と、k空間の中心位置で1より小さい値をとり、中心位置を離れるに従って、まず1まで大きくなり、しばらく1のままになり、k空間の端近傍から端になるに従って1より小さい値まで小さくなる窓関数を用いてMR信号を窓処理する窓処理手段と、窓処理したMR信号をフーリエ変換処理してMR画像を得るフーリエ変換処理手段とを具備したMRI装置であって、
    前記1まで大きくなる領域では、前記窓関数は、ガウス関数を利用した関数であることを特徴とするMRI装置。
  11. MR信号を得るMR信号取得手段と、k空間の中心位置で1より小さい値をとり、中心位置を離れるに従って、まず1まで大きくなり、しばらく1のままになり、k空間の端近傍から端になるに従って1より小さい値まで小さくなる窓関数を用いてMR信号を窓処理する窓処理手段と、窓処理したMR信号をフーリエ変換処理してMR画像を得るフーリエ変換処理手段とを具備したMRI装置であって、
    前記1より小さい値まで小さくなる領域では、前記窓関数は、フェルミ−ディラック関数を利用した関数であることを特徴とするMRI装置。
  12. 請求項7から請求項11のいずれかに記載のMRI装置において、
    連続的に並ぶ複数のスライスについて生成したMR画像から3次元データを作成する3次元データ作成手段と、
    前記3次元データに対してMIP処理を行って投影画像を生成するMIP処理手段とを具備したことを特徴とするMRI装置。
JP2002297076A 2002-10-10 2002-10-10 Mr画像生成方法およびmri装置 Expired - Fee Related JP3938740B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002297076A JP3938740B2 (ja) 2002-10-10 2002-10-10 Mr画像生成方法およびmri装置
US10/679,918 US6774630B2 (en) 2002-10-10 2003-10-06 MRI apparatus
DE10346792A DE10346792A1 (de) 2002-10-10 2003-10-08 MRI Einrichtung
KR1020030070102A KR101065153B1 (ko) 2002-10-10 2003-10-09 Mri 장치
CN 200310100770 CN1248650C (zh) 2002-10-10 2003-10-09 磁共振成像设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297076A JP3938740B2 (ja) 2002-10-10 2002-10-10 Mr画像生成方法およびmri装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007001895A Division JP4723519B2 (ja) 2007-01-10 2007-01-10 Mr画像生成方法およびmri装置

Publications (2)

Publication Number Publication Date
JP2004129833A JP2004129833A (ja) 2004-04-30
JP3938740B2 true JP3938740B2 (ja) 2007-06-27

Family

ID=32064177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297076A Expired - Fee Related JP3938740B2 (ja) 2002-10-10 2002-10-10 Mr画像生成方法およびmri装置

Country Status (4)

Country Link
US (1) US6774630B2 (ja)
JP (1) JP3938740B2 (ja)
KR (1) KR101065153B1 (ja)
DE (1) DE10346792A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230429B1 (en) * 2004-01-23 2007-06-12 Invivo Corporation Method for applying an in-painting technique to correct images in parallel imaging
JP4717422B2 (ja) * 2004-11-26 2011-07-06 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Mr画像生成方法、mri装置、およびその方法をコンピュータに実行させるプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991092A (en) * 1988-08-12 1991-02-05 The Regents Of The University Of California Image processor for enhancing contrast between subregions of a region of interest
JPH05285116A (ja) * 1992-04-14 1993-11-02 Toshiba Corp 磁気共鳴イメージング方法
US5309099A (en) * 1992-08-07 1994-05-03 The Board Of Trustees Of The Leland Stanford Junior University Method of determining real-time spatially localized velocity distribution using magnetic resonance measurements
US5899858A (en) * 1997-04-10 1999-05-04 Mayo Foundation For Medical Education And Research MR imaging with enhanced sensitivity of specific spin motion
US6381486B1 (en) * 1999-01-08 2002-04-30 Wisconsin Alumni Research Foundation Magnetic resonance angiography with vessel segmentation
JP3342853B2 (ja) * 1999-08-27 2002-11-11 ジーイー横河メディカルシステム株式会社 磁気共鳴撮像装置
US6320383B1 (en) * 2000-01-18 2001-11-20 Ge Yokogawa Medical Systems, Limited RF coil, RF magnetic field generating apparatus and magnetic resonance imaging method and apparatus
DE10012278C2 (de) * 2000-03-14 2002-10-17 Siemens Ag Verfahren zum Betrieb eines Magnetresonanzgeräts zum Erzeugen eines Magnetresonanzspektrums
JP3884227B2 (ja) * 2000-11-21 2007-02-21 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴撮影装置

Also Published As

Publication number Publication date
US20040070395A1 (en) 2004-04-15
JP2004129833A (ja) 2004-04-30
DE10346792A1 (de) 2004-07-22
KR101065153B1 (ko) 2011-09-16
KR20040032778A (ko) 2004-04-17
US6774630B2 (en) 2004-08-10

Similar Documents

Publication Publication Date Title
Noll et al. Deblurring for non‐2D Fourier transform magnetic resonance imaging
JPH1176201A (ja) マクスウェル項誤差を補正する方法
JP2000166892A5 (ja)
US10470685B2 (en) Method and apparatus for capturing magnetic resonance image
JPH10137215A (ja) 画像の分解能を向上させる方法、投影画像の一部を拡大させる方法及び画像の分解能を向上させる装置
NL8901353A (nl) Vermindering van door afsluiting veroorzaakte artefacten.
JP3938740B2 (ja) Mr画像生成方法およびmri装置
JP3865887B2 (ja) 画像補正方法
JP4723519B2 (ja) Mr画像生成方法およびmri装置
JP3033851B2 (ja) 磁気共鳴イメージング装置
JP4717422B2 (ja) Mr画像生成方法、mri装置、およびその方法をコンピュータに実行させるプログラム
RU2576342C2 (ru) Широкополосная магнитно-резонансная спектроскопия в сильном статическом (b0) магнитном поле с использованием переноса поляризации
EP1995604B1 (en) High speed, high resolution, silent, real-time MRI method
US9810757B2 (en) High-speed magnetic resonance imaging method and apparatus
JP3447099B2 (ja) Mri装置
EP3851865B1 (en) Accelerated wave data mr acquisition
JP3310751B2 (ja) 非対称rfパルス作成方法およびmri装置
JP3878394B2 (ja) Mri装置
Loecher et al. k-Space
JP3440134B2 (ja) 磁気共鳴イメージング装置
JPS63109847A (ja) 核磁気共鳴映像装置
JP3615614B2 (ja) Mri装置
JP3490161B2 (ja) Mrアンジオグラフィーによる異方性流れ情報画像の処理方法およびmri装置
JP4558866B2 (ja) 位相分布測定方法および装置、位相補正方法および装置、並びに、磁気共鳴撮像装置
JP3439845B2 (ja) Mri用ランプドrfパルスの生成方法およびmri装置

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees