JP3933651B2 - 撮像装置及びその信号処理方法 - Google Patents

撮像装置及びその信号処理方法 Download PDF

Info

Publication number
JP3933651B2
JP3933651B2 JP2004183172A JP2004183172A JP3933651B2 JP 3933651 B2 JP3933651 B2 JP 3933651B2 JP 2004183172 A JP2004183172 A JP 2004183172A JP 2004183172 A JP2004183172 A JP 2004183172A JP 3933651 B2 JP3933651 B2 JP 3933651B2
Authority
JP
Japan
Prior art keywords
color
filter
spectral sensitivity
exceptional
spectral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004183172A
Other languages
English (en)
Other versions
JP2006013567A (ja
Inventor
徹也 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004183172A priority Critical patent/JP3933651B2/ja
Publication of JP2006013567A publication Critical patent/JP2006013567A/ja
Application granted granted Critical
Publication of JP3933651B2 publication Critical patent/JP3933651B2/ja
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Landscapes

  • Color Television Image Signal Generators (AREA)

Description

この発明は、撮像装置における比視感度補正のために必要とする赤外除去フィルタを用いずに比視感度補正を行い、色再現性の良好な画像が得られる信号処理を具備した撮像装置及び信号処理方法に関するものである。
従来の撮像装置は、入射光を結像するレンズと、レンズにより結像した光学像を電気信号に変換する撮像素子と、撮像素子から得られた電気信号に対し信号処理を施すことにより所定の映像信号を得る映像信号処理手段とを有している。
通常撮像素子として用いるCCD(Charge Coupled Device)センサー又はCMOS(Complimentary Metal Oxte Semiconductor)センサーを一枚だけで撮像装置を構成する場合、即ち、単板式のセンサーにおいては、色分解を行う色フィルタとして、画素ごとに異なる色のものがセンサー上に設けられている。
赤(R)、緑(G)、青(B)の色信号を得るには、R、G、Bに対応する光の帯域を透過させる、R、G、Bの原色フィルタを用いる場合と、マゼンタ(Mg)、シアン(Cy)、イエロー(Ye)、Gの補色フィルタを用いる場合がある。上記のいずれの色フィルタも染料もしくは顔料を用いて目的の色を透過させるようにその分光透過特性が設計されているが、近赤外領域でも一定の透過率を有する。また、撮像素子の光電変換部は主にシリコン(Si)などの半導体で構成されているため、光電変換部の分光感度特性は波長の長い近赤外光まで感度を有している。よって、色フィルタを具備した撮像素子から得られた信号は近赤外領域の光線にも反応している。
これに対し、人間の色に対する感度特性である色覚特性及び明るさに対する感度特性である比視感度特性はその感度が可視域といわれる380nmから780nmまでの感度特性であり、700nmより長波長域ではほとんど感度を有さない。そこで、撮像装置の色再現性を人間の色覚特性に合わせるためには、撮像素子の前に近赤外領域の光線を通過させない視感度補正用の赤外線除去フィルタ(以後、IRCF:Infrared Cut Filter)を設ける必要があった。
一方、例えば監視カメラ等のように色再現性よりも感度を重視する場合には、近赤外領域の光を利用するため、IRCFを設けず撮像素子に近赤外光を受光させるほうが良い。
そこで、色再現性を重視したカラー画像の撮像と、高感度撮像のいずれにも対応できるようにするため、色再現性を重視するときはIRCFを撮像素子の前に設置し、感度を重視するときは近赤外の光線を受光するために、IRCFを移動させる機構手段を設けたり、入射光量を調整する絞りの一部にIRCFを設け、光量に応じてIRCFを撮像素子の前に設置したり除去したりする技術が種々提案されている(例えば、特許文献1参照)。
また、IRCFを設置せずにホワイトバランスを取り、IRCFを設置したときに輝度信号を生成するR、G、B信号の混色比とは異なる混色比で輝度信号を生成することで感度向上を図る技術も提案されている(特許文献2、3参照)。
特開2001−36807公報(第3−4頁、第1、第2図) 特開2003−134522公報(第4−5頁、第1図) 特開2003−264843公報(第4頁、第1図)
しかしながら、特許文献1に挙げた従来の撮像装置はIRCFを移動させる機構手段が必要であり、撮像素子を含むユニットの小型化に不利であり、IRCFを用いない構成とすることが望まれている。
また、撮像素子の電子シャッタを用いて光量調整を行う簡易な撮像装置(例えば、ピーシー(PC)カメラ、携帯電話用カメラ、トイ(TOY)カメラ、民生用監視カメラ)は絞り機構を有していないことが多いため、新たにIRCFを着脱する機構を設けなければならない。
さらに、特許文献2、3に挙げた撮像装置は白黒の映像信号を得るときは問題ないが、カラーの映像信号を得るときは、色信号はホワイトバランスを合わせるのみであり、さらに輝度信号も人間の比視感度特性が考慮されていない色信号比であるため、そのカラーの映像信号は人間の色覚特性またはその線形変換から得られる分光感度特性から得られるにより決まるR、G、B値と異なった、すなわち色差ΔE*ab(JIS Z8730)の大きな映像信号となり、正確な色再現性が得られない。
さらにまた、絵の具の緑などに対しては適切に分光感度補正を行うことができても、絵の具の緑と、人間の目には同じ色(等色)に見える、自生している木の葉の緑の色などに対して適切に分光感度補正を行うことができないという問題があった。
本発明は、上述のような課題を解消するためになされたもので、IRCFなしで、絵の具の緑などや、自生している木の葉の緑などのいずれに対して適切に分光感度補正を行うことができ、良好な色再現性を得ることができる撮像装置及び信号処理方法を提供することを目的とする。
この発明は、
赤、緑、青の光を抽出する第1、第2、第3のカラーフィルタと、前記第1乃至第3のカラーフィルタの一つと可視領域において相関性を有し、かつ分光透過率が最大となる波長が前記一つのカラーフィルタの分光透過率が最大となる波長よりも短く、かつ近赤外領域では前記一つのカラーフィルタと略同一の分光透過率を有する第4のカラーフィルタとを有し、それぞれのカラーフィルタの分光透過率に対応した第1乃至第4の色信号を出力する色信号生成手段と、
前記第1乃至第4の色信号のうち、少なくとも3つの色信号に対してマトリクス係数を掛けるマトリクス演算を行うことにより、補正された色信号を生成する分光感度補正手段と、
前記色信号生成手段から出力された前記第1乃至第4の色信号を受けて、これらの組み合わせが予め定めた特定の例外色を表すものであるかどうかを判定し、判定結果に応じて前記マトリクス係数を切り換える係数設定手段と
を有する撮像装置を提供するものである。
本発明によれば、IRCFなしで、近赤外線領域の感度を補正し、しかも、人間の目で同じ色(等色)に見える、絵の具の緑と、自生している木の葉の緑の色などのいずれに対しても、良好な色再現を実現することができる。
実施の形態1.
図1はこの発明の実施の形態1による撮像装置の概略構成を示す図である。図示のように、この撮像装置は、色信号生成手段2と、分光感度補正手段4と、係数設定手段6、映像信号処理手段8とを有する。
色信号生成手段2は、入射光を受けて、入射光に対応する第1の映像信号、例えば第1ないし第4の色信号Rb、G1b、G2b、Bbを出力する。
分光感度補正手段4は、色信号生成手段2から出力される第1の映像信号から、近赤外成分、すなわち、色信号生成手段2が近赤外領域において分光感度を有することによって第1の映像信号に含まれる信号成分を除去して、第2の映像信号、例えば赤、緑、青の色信号Rc、Gc、Bcを生成する。
係数設定手段6は、色信号生成手段2から出力される第1乃至第4の色信号Rb、G1b、G2b、Bbを受けて、これらの組み合わせが予め定めた特定の例外色を表すものであるかどうかを判定し、判定結果に応じて係数マトリクスを切り換える。
映像信号処理手段8は、分光感度補正手段4から出力される第2の映像信号を、外部に出力するのに適した信号(第3の映像信号)に変換するものである。
色信号生成手段2は、例えば図1に示すように、撮像手段11と、増幅手段12と、A/D変換器(ADC)13と、直流成分再生手段(DC再生手段)14と、前ホワイトバランス(WB)手段15とを有する。
撮像手段11は、例えば図2及び図3に示すように、レンズを含む光学系21と、2次元的に配列され、それぞれ画素を構成する複数の光電変換素子を有する撮像素子22とを有する。撮像素子22の複数の光電変換素子は、例えば図2に示すように、色分離手段としての色フィルタ群23で覆われている。
複数の光電変換素子は第1乃至第4の群に分けられている。
色フィルタ群23は、第1の群の光電変換素子の各々に対して設けられた複数の赤フィルタ(Rフィルタ)26と、第2の群の光電変換素子の各々に対して設けられた複数の緑フィルタ(G1フィルタ)27と、第3の群の光電変換素子の各々に対して設けられた複数の青フィルタ(Bフィルタ)28と、第4の群の光電変換素子の各々に対して設けられた複数の緑フィルタ(G2フィルタ)29とを含み、これらが図示のように配列されている。
図2に示すように、一つおきの行(図2で上から1番目、3番目及び5番目の行)では、Bフィルタ28とG1フィルタ27又はG2フィルタ29が交互に、即ち「B−G1−B−G2」を繰り返すように設けられ、上記の一つおきの行の間に位置する行(図2で上から2番目及び4番目の列)では、G2フィルタ29又はG1フィルタ27とRフィルタ26が交互に、即ち、「G2−R−G1−R」を繰り返すように設けられている。
また一つおきの列(図2で左から1番目、3番目及び5番目の列)では、Bフィルタ28とG2フィルタ29又はG1フィルタ27が交互に、即ち「B−G2−B−G1」を繰り返すように設けられ、上記の一つおきの列の間に位置する列(図2で左から2番目及び4番目の列)では、G1フィルタ27又はG2フィルタ29とRフィルタ26が交互に、即ち、「G1−R−G2−R」を繰り返すように設けられている。
Rフィルタ26は、主として赤に対応する第1の波長帯域の光のみを通過させるものであり、G1フィルタ27は、主として緑に対応する第2の波長帯域の光のみを通過させるものであり、Bフィルタ28は、主として青に対応する第3の波長帯域の光のみを通過させるものであり、G2フィルタ29は、主として緑に対応する第4の波長帯域の光のみを通過させるものである。
図4には、Rフィルタが設けられた光電変換素子の分光感度特性(即ち、Rフィルタと画素の組合せの分光感度特性)r(λ)、G1フィルタが設けられた光電変換素子の分光感度特性g1(λ)、Bフィルタが設けられた光電変換素子の分光感度特性b(λ)、G2フィルタが設けられた光電変換素子の分光感度特性g2(λ)が示されている。
図4に示した分光感度特性は、カラーフィルタの透過率と撮像手段11の各画素を構成する光電変換素子、例えばフォトダイオードの分光感度特性との組合せの特性である。撮像手段11の各画素を構成する光電変換素子は1000nm近辺まで感度を有するので、r(λ)、g1(λ)、g2(λ)、b(λ)は、略カラーフィルタの分光透過率に対応したものである。
G1フィルタ27とG2フィルタ29は上記のようにともに緑に対応する波長領域の光を透過させるものであり、人間の目に見える可視領域(略400nmから略700nm)の波長範囲ではg1(λ)とg2(λ)が強い相関を有している(エンベロープの形状が似ている)が、g2(λ)はg1(λ)にくらべそのピーク位置(分光透過率が最大となる波長)が短波長側に略50nmシフトしている。そのため、G2フィルタ29は、G1フィルタ27にくらべ、ややシアンよりの領域に透過率を有することとなる。一方、略700nm以上ではG1フィルタ27とG2フィルタ29とは略同一の透過率特性を有する。
レンズを含む光学系21から入射した光は、撮像素子22の受光面上に結像する。撮像素子22は、上記のように、色フィルタ群23で覆われており、各光電変換素子からは、色フィルタ群23の分光透過率に対応した色成分、即ちR、G1、G2、Bのアナログ映像信号が出力される。
このようにして、撮像手段11から出力されるR、G1、G2、Bのアナログ信号(以下、それぞれ「R信号」、「G1信号」、「G2信号」、「B信号」と言うことがある)は、増幅手段12によって増幅される。増幅手段12から出力された映像信号はADC13によってディジタル信号に変換される。
ディジタル信号に変換された映像信号はDC再生手段14により、DCレベルが再生される。DC再生は通常映像信号の黒レベルが「0」になるように、ADC13によるA/D変換前に有していたオフセットレベルをDCシフトするか、クランプ処理を行う。DC再生手段14の出力Ra、G1a、G2a、Baが前ホワイトバランス手段15に供給される。
前ホワイトバランス手段15は、図5に示されるように、それぞれ信号Ra、G1a、G2a、Baを増幅して増幅された信号Rb、G1b、G2b、Bbを出力する4つの増幅手段31r、31g1、31g2、31bと、増幅された信号Rb、G1b、Bbをそれぞれ一画面内のすべての画素について積算して積算値ΣRb、ΣG1b、ΣBbを出力する積算手段32r、32g1、32bと、積算手段32r、32g1、32bから出力される積算値ΣRb、ΣG1b、ΣBbに基づいて、例えば、積算値ΣRb、ΣG1b、ΣBbをそれぞれ積算の対象となった画素の数で割った値が互いに等しくなるように、増幅手段31r、31g1、31bの増幅率を制御するとともに、増幅手段31g2の増幅率を増幅手段31g1の増幅率と同じ値に制御する利得制御手段33とを有する。
ホワイトバランス手段は、通常、被写体の無彩色の部分に対応する、R、G、B信号が互いに等しくなるようにするものであり、通常、ホワイトバランスは一般被写体の場合、一画面中の色は平均すれば無彩色に近くなる(エバンスの原理)という統計的結果を利用して、画面内のすべての画素について積算値が互いに等しくなるように、それぞれの色の信号に対する増幅率を制御して行う。
但しこれは、R、G、B信号がそれぞれ人の色覚特性に対応することを前提としており、ホワイトバランス処理の対象となるR、G1、B信号が図4に示すように、近赤外領域において分光感度特性を有する場合、R、G1、B信号の積算値が互いに等しくなるようにしても、人間の目で見える可視域内でホワイトバランスをとっているわけではなく、色再現性は必ずしも良好ではない。前ホワイトバランス手段15によるホワイトバランスは色再現性を良好にすることではなく、様々な色温度の照明に対して、R、G1、G2、Bの比率を揃えることにある。
即ち、R、G1、G2、Bの値は、撮像素子の分光感度と被写体の反射率、そして照明の分光特性の積の総和に対応するので、同じ無彩色の被写体を撮像していてもR、G1、G2、B信号の比は、照明の色温度の変化に伴って変化するが、前ホワイトバランス手段15によるホワイトバランス処理によって、照明の色温度による影響を除去することができる。
分光感度補正手段4は前ホワイトバランス手段15から出力されたホワイトバランス後のR、G1、G2、B信号Rb、G1b、G2b、Bbを入力とし、この入力信号に対し後に詳述するマトリクス演算をすることにより撮像素子の近赤外の感度特性による色再現性への影響を補正したカラー信号R、G、B信号Rc、Gc、Bcを得る。
映像信号処理手段8は、上記のように、分光感度補正手段4から出力される信号Rc、Gc、Bcを、外部に出力するのに適した信号に変換するものであり、例えば、図1に示すように、後ホワイトバランス手段16と、ガンマ(γ)補正手段17と、輝度色差信号生成手段18とを有する。
後ホワイトバランス手段16は、分光感度補正手段4によって補正されたR、G、B信号Rc、Gc、Bcに対しホワイトバランス処理を行うものであり、図6に示すように、それぞれRc、Gc、Bc信号を増幅して信号Rd、Gd、Bdを出力する3つの増幅手段51r、51g、51bと、信号Rd、Gd、Bdをそれぞれ位置画面内のすべての画素について積算して積算値ΣRd、ΣGd、ΣBdを出力する積算手段52r、52g、52bと、積算手段52r、52g、52bから出力された積算値ΣRd、ΣGd、ΣBdに基づいて、例えば積算値ΣRd、ΣGd、ΣBdをそれぞれ積算対象となった画素の数で割ることにより得られる値が互いに等しくなるように、増幅手段51r、51g、51bの増幅率を制御する利得制御手段53とを有する。
ここで、増幅手段51r、51g、51bに入力されるR、G、B信号Rc、Gc、Bcは、分光感度補正手段4によって近赤外の感度特性が補正された信号であり、殆ど可視領域の成分のみからなる。従って、後ホワイトバランス手段16によるホワイトバランス処理によって得られるRd、Gd、Bd信号は良好な色再現性を有する。
ガンマ補正手段17は後ホワイトバランス手段16から出力された映像信号Rd、Gd、Bdに対し非線形な階調変換を行う。
輝度色差信号生成手段18はガンマ補正手段17から出力されたR、G、B信号Re、Ge、Beを輝度信号(Y信号)、及び2つの色差信号(Cr信号、Cb信号)に変換する。
輝度色差信号生成手段18は、この変換(YCrCb変換)においては、通常3行3列の係数マトリクスを掛ける、下記の式(1)の線形マトリクス演算を行ってY、Cr、Cb信号を生成する。
Figure 0003933651
式(1)において3行3列のマトリクス係数は例えば、IEC(International Electrotechnical Commission)61966−2−1に規定されているように、y1=0.2990、y2=0.5870、y3=0.1140、cr1=−0.1687、cr2=−0.3313、cr3=0.5000、cb1=0.5000、cb2=−0.4187、cb3=−0.0813と定められる。
以下、分光感度補正手段4についてその構成と原理を以下に説明する。
分光感度補正手段4は、例えば下記の式(2)に示す3行4列のマトリクス係数を掛けるマトリクス演算を行い、R、G1、G2、B信号Rb、G1b、G2b、BbからR、G、B信号Rc、Gc、Bcを生成する。式(2)において、e11乃至e34は予め定めた定数である。
Figure 0003933651
尚、R、G、B信号Rc、Gc、Bcを生成するために、R、G1、G2、Bの4つ信号を用いることは必須ではなく、R、G1、Bあるいは、R、G2、Bの3つの信号からR、G、B信号を生成することも可能である。R、G1、Bの3つの信号だけを用いる場合は、式(2)において、e13=e23=e33=0とすればよい。また、R、G2、Bの3つの信号だけを用いる場合は、式(2)において、e12=e22=e32=0とすればよく、いずれの場合でも、式(2)で一般的に表現することができる。
次に、本発明の分光感度補正手段4による補正について詳しく説明する。
図7に人間の色覚特性を表した分光感度特性を示す。図7に示した特性は正常色覚者の等色関数の平均値であり、CIE(Commission Internationale de l‘E’clairage)1931にて規定されている。人間が感じる色は、色順応などの機能を無視し、簡単に表せば図7に示したR、G、Bの分光感度特性(等色関数)と被写体の反射分光特性と照明の分光特性とを乗算し、乗算結果を可視域にて積算することにより得られる値として表すことができる。図7に示したように人間の感度特性はいわゆる可視域と呼ばれるように略380nmから780nmまでしか感度が無く、特に、400nmから700nmの範囲内の感度が高く、700nmより長波長側では殆ど感度がない。
それに対して、撮像手段11に色分解を行う色フィルタ群23を設けた場合、色フィルタの分光透過率と撮像素子の分光感度の積に応じた信号が撮像手段11から出力されるが、撮像手段は光電変換を行う撮像素子例えばフォトダイオードがSi(シリコン)などの半導体で形成されているため、可視域から近赤外領域(1000nm近辺)まで分光感度を有する。また、Rの色フィルタは近赤外領域の透過率も比較的高いため、近赤外線を撮像素子22に入射させる。さらに、Bの光を入射するためのBの色フィルタや、Gの光を入射するためのGの色フィルタも同様に近赤外領域に一定の透過率を有する。これは、RGBの色フィルタは通常それぞれの色を含んだ染料や顔料を用いてフィルタを構成するが、その分光透過率は構成する材質に依存し、長波長側の可視域から近赤外領域に掛けて再び透過率が上がる特性を有しているためである。
従って、これらの積によって与えられる撮像手段の分光感度特性は、図8に実線r(λ)、g(λ)、b(λ)で示すごとくとなる。また、本実施の形態のように緑のフィルタが2種類設けられている場合には、撮像手段11の分光感度特性は、図4に実線でr(λ)、g1(λ)、g2(λ)、b(λ)で示すごとくとなる。
図8に実線で示した撮像手段の分光感度特性r(λ)、g(λ)、b(λ)や、図4に実線で示した撮像手段11の分光感度特性r(λ)、g1(λ)、g2(λ)、b(λ)は、図7に示した等色関数とは異なり、特に近赤外領域では著しく異なるため、通常の撮像装置では近赤外領域の光を通過させず除去する赤外カットフィルタ(IRCF)を撮像素子の前に設けて分光感度の補正を行っていた。IRCFの分光透過特性IRCF(λ)も図8に実線で示されている。IRCF(λ)とRGBの分光感度特性(r(λ)、g(λ)、b(λ))とを掛け合わせた特性が、従来のIRCFを具備した場合の撮像手段のRGB信号に対応するそれぞれの色の分光感度特性r’(λ)、g’(λ)、b’(λ)となり、図8に破線でその特性を示す。
また、従来の撮像装置では図8の破線で表した分光感度特性とした場合でも、図7で示した負の特性(r(λ)の略450nmから540nmまでの負の値)は実現できないため、撮像手段から得られたRGB信号に対し、式(3)で示すように3行3列の係数マトリクスを掛けるマトリクス演算を行い、これにより色補正を行うこともあった。
Figure 0003933651
しかしながら、IRCFを用いない場合には、近赤外線による感度特性によって出力される信号が色再現性に与える影響が大きく、上記のような3行3列の係数マトリクスを掛ける線形マトリクス演算を行っても良好な色再現性が得られない場合があった。
撮像手段から得られた信号に対する処理により、近赤外領域から得られる余分な信号成分を元の信号から除去することができれば、IRCFを用いずに良好な色再現性を実現することができる。
本実施の形態において、色信号生成手段2で緑の色信号としてG1信号とG2信号の2つを生成し、分光感度補正手段4で上記の式(2)で表されるマトリクス演算による補正を行なうのはそのためである。上記の式(2)のマトリクス演算で用いられるマトリクス係数は、以下のようにして定められる。
図8や図4に実線で示した撮像手段の分光感度特性と、カラーターゲットとする図8に破線で示した分光感度特性とは特に近赤外の領域においてその分光特性が大きく異なるが、式(2)で示したマトリクス係数を適切に定めることで条件等色を満たし良好な色再現性を得ることができる。ここで、条件等色とは分光特性の異なる2つの色刺激が、特定の観測条件で等しい色に見えることである。そこで、マトリクス係数は、特定の照明を用いて特定の被写体を撮像したときの色再現性が最も良くなるように、すなわち、IRCFを用いなくてもIRCFを用いたときと略等しい信号が分光感度補正手段4の出力側に得られるように、定められる。
具体的なマトリクス係数の求め方は例えば、以下の通りである。
照明としては、特定の色温度、例えば5000Kの照明を用いる。図9に5000Kの色温度の照明の分光特性を示す。
被写体としては、標準的なカラーチャート、例えばマクベスカラーチェッカーが用いられる。以下マクベスのカラーチェッカー(Macbeth Color Checker)の24色のカラーパッチ(色票)を用いる。
マクベスカラーチェッカーは、被写体として現存する色を代表し、かつ人間の記憶色(肌色、植物の緑、空の青等)を重視して選択された24色のカラーパッチを含むものであり、24色のカラーパッチの300nmから1200nmの分光反射率が図10に示されている。図10でカラーパッチの番号1乃至24はそれぞれ以下の色に対応する。
1:暗い肌色(Dark skin)、
2:明るい肌色(Light Skin)、
3:青空の色(Blue sky)、
4:草の色(Foliage)、
5:青色の花(Blue flower)、
6:青みの緑色(Bluish green)、
7:オレンジ色(Orange)、
8:紫みの青色(Purplish blue)、
9:中程の赤色(Moderate red)、
10:紫色(Purple)、
11:黄緑色(Yellow green)、
12:オレンジみの黄色(Orange yellow)、
13:青色(Blue)、
14:緑色(Green)、
15:赤色(Red)、
16:黄色(Yellow)、
17:マゼンタ(Magenta)、
18:シアン(Cyan)、
19:白色(White)、
20:グレイ8(Neutral 8)、
21:グレイ6.5(Neutral 6.5)、
22:グレイ5(Neutral 5)、
23:グレイ3.5(Neutral 3.5)、
24:黒色(Black)
である
(なお、上記した各カラーパッチの和訳は、新編色彩化学ハンドブック第2版、日本色彩学会編による。)
図9に示した特定の照明の分光特性と、図10に示した被写体の分光反射率と、図8に破線に示した分光感度特性との積算値を求める。
図1の撮像装置でマクベスカラーチェッカーの各カラーパッチを撮像したときに分光感度補正手段4の出力側に得られる信号は、照明の分光特性(例えば図9に示されるもの)と、マクベスカラーチェッカーの各カラーパッチの分光反射率(図10に示される)と、映像信号生成手段2の分光感度特性(図4に実線で示した分光感度特性に略等しい)と、分光感度補正手段4の応答特性との積を、全波長に亘って積算することにより求められる。
一方、図1の撮像装置でマクベスカラーチェッカーの各カラーパッチを撮像したときに分光感度補正手段4の出力側に得られるべき信号(ターゲット信号)Rt、Gt、Btは、照明の分光特性(例えば図9に示されるもの)と、マクベスカラーチェッカーの24色のカラーパッチの分光反射率(図10に示される)と、図8の破線で示される分光感度特性との積を、全波長に亘って積算することにより求められる。
そこで、上記したターゲット信号Rt、Gt、Btの値に、分光感度補正手段4の出力側に得られる信号Rc、Gc、Bcの値が最も近くなるように、係数e11乃至e34の値を定める。最も近いかどうかの判定は、最小二乗誤差法により、即ち両者のそれぞれ対応する値の差の二乗の総和を求めて、この総和が最小かどうかを判定することにより行われる。
このように、通常の色に対するマトリクス係数は、例えばマクベスのカラーチェッカー24色に対して、図4の分光感度特性及び式(2)に示したマトリクス係数を用いたマトリクス演算を介した得られたRGB値が、同じマクベスのカラーチェッカー24色に対してターゲットとする分光感度特性(例えば、図8の破線)を介して得られたRGB値に最も近くなるように最小二乗誤差法でマトリクス係数を算出する。
なお、式(2)には3行4列のマトリクス係数が示されているが、G1だけを入力項として用いる3行3列のマトリクス係数でも実現することができる。マトリクス係数を3行3列のマトリクス係数とする場合には、上記ターゲットとする分光特性(例えば、図8の破線)を介して得られたRGB値に近似するようにR、G1(又はG2)、Bを入力光として同様に最小二乗誤差法で算出することができる。
従来の撮像装置がRGB値の3種類の色フィルタを具備しているように、G1だけを用いた3行3列のマトリクス係数であってもターゲットカラーとすべきRGB値に近似することは可能であるが、G1とG2の両方を入力項として3行4列のマトリクス係数とする場合は、G2がシアン側に分光感度特性のピークがシフトしているため、G2のマトリクス係数を負にすると、図7に示した等色関数のRの値が負となる部分の特性を実現しやすく、色再現性において、色差ΔEを小さくできると言う利点がある。
しかし、上記のように定めたマトリクス係数は被写体として標準的なカラーチャート、例えばマクベスカラーチェッカーを用いて算出したものであり、実際のすべての被写体の色について必ずしも妥当ではない。特にマクベスのカラーチェッカーは自然界に存在する特徴的な色をできるだけ網羅して作成されたものであるが、その特性は可視域だけを考慮して作成されているといえる。それに対して、近赤外の領域まで考慮した場合、マクベスカラーチェッカーの色とは異なる色もあり得る。マクベスカラーチェッカーはチャートであるため、そのカラーパッチは絵の具などの顔料が用いられている。それに対して、例えば、可視域では同じ緑色に見える木の葉などは絵の具の緑とは異なった分光反射率を有する。
図11及び図12に、マクベスカラーチェッカーで緑色の例として挙げられている「草の色(Foliage)」、「黄緑色(Yellow green)」、「緑色(Green)」と自然界に自生している2種類の木の葉の分光反射特性を示す。例えば「草の色(Foliage)」は木の葉の色を再現するために作成されたカラーパッチであるが、その分光特性は実際の木の葉とは異なり、特に近赤外領域である700nmから異なり、木の葉は700nmから急激にその反射率が高くなる特徴を持つ。先に述べたように人間の目は700nmからほとんど感度を有さないため、カラーパッチの色と木の葉の色はほぼ同じ色として見えるが、近赤外領域の光線に感応する図8や図4に示した撮像手段の分光感度特性では得られる色再現が大きく異なり、具体的にはR信号が必要以上の大きくなるため緑が茶色の色再現となる。
このように絵の具やペンキなどの顔料で表される被写体の色は、上記のマトリクス係数で良好な色再現性を実現することができるが、24色のカラーパッチについて色差が小さくなるように式(2)のマトリクス係数を定めても、木の葉の色などは700nm以上の範囲で分光反射率が著しく異なるため、ターゲットカラーとは著しく異なり、色再現性が悪いということになる。すなわち、木の葉の色を表すものとして作成された図11に示す緑のカラーパッチと等色になるように、式(2)のマトリクス係数を定めても、自生している葉を撮像して、上記の定められたマトリクス係数を用いて補正を行った場合、色再現性が悪い。
そこで、木の葉の色など、700nmから大きな反射率を有する色を例外色とし、例外色のために、通常色のマトリクス係数とは別のマトリクス係数を定めてこれを適用することで、木の葉に対しても良好な色再現性を実現する。
例外色に適したマトリクス係数は、例外色に対して、図4の分光感度特性及び式(2)に示したマトリクス係数を用いたマトリクス演算を介して得られたRGB値が、同じ例外色に対してカラーターゲットとする分光感度特性(例えば、図8の破線)を介して得られたRGB値に、最も近くなるように、最小二乗誤差法で算出することができる。
区別のため、通常色のために上記のようにして求めたマトリクス係数を第1のマトリクス係数と呼び、例外色のために求めたマトリクス係数を第2のマトリクス係数と呼ぶ。
なお、第2のマトリクス係数も第1のマトリクス係数と同様3行4列のマトリクス係数でも実現する代わりに、R、G1(又はG2)、Bを用いて3行3列のマトリクス係数で実現することもできる。
係数設定手段6は、色信号生成手段2から出力される第1乃至第4の色信号Rb、G1b、G2b、Bbを受けて、これらの組み合わせが予め定めた例外色を表すものであるかどうかを判定し、例外色であると判定したときは、第2のマトリクス係数を選択し、そうでないときは第1のマトリクス係数を選択し、選択されたマトリクス係数を分光感度補正手段4に供給する。
係数設定手段6は、例えば図1に示すように、色識別手段42と、係数決定手段43とを有する。
色識別手段42は色信号生成手段2から出力される第1乃至第4の色信号Rb、G1b、G2b、Bbを受けて、これらが、予め定められた条件を満たすかどうかの判定を行い、判定結果を示す判別信号DSを出力する。即ち、予め定められた条件を満たすときは、例外色であると判定して、判別信号DSを第1の値、例えば「1」とする。それ以外のときは、判別信号を第2の値、例えば「0」とする。
係数決定手段43は色識別手段42から供給される判別信号の値に応じて適切なマトリクス係数を分光感度補正手段4へ出力する。
色識別手段42は、例えば、以下の不等式(4)及び(5)の双方が満たされるときに例外色であると判定する。
Rb/G1b>k1 …(4)
G1b/G2b>k2 …(5)
式(4)、式(5)においてk1、k2は予め定められた定数である。
以下、このような判定で、例外色を適切に検出できる理由を説明する。
木の葉は700nmからその反射率が急激に高くなるため、図4に示した撮像手段11の分光感度のg1(λ)による値G1bとr(λ)による値Rbとの比で、顔料による緑色か、自生している葉の緑色かを区別することが可能である。すなわち、Rb/G1bが予め定めておいた値より大きいときは例外色と判別することができる。
一方、図4に示すr(λ)の分光感度の帯域は略570nmから1000nmと非常に広いため、前記Rb/G1b>k1の判別式だけを用いると他の色も葉の緑色と判別されてしまう可能性がある。例えば、肌色(「明るい肌色」)や茶色(「暗い肌色」)などの色の分光反射率を図13に示す。700nmまでの分光反射率だけを見た場合、明るい肌色と木の葉の色は明らかに異なるが、近赤外までを含んだ場合、いずれの色も良く似た色となり、R/G1の値もほぼ同様の値を持つ。一方、g1(λ)の領域(540nm付近)とg2(λ)の領域(シアン寄りの領域、即ち500nm付近)で比較すると、木の葉の場合には、g1(λ)の領域における値が、g2(λ)の領域における値よりも大きいが、「明るい肌色」や「暗い肌色」の場合にはそのような傾向がない。即ち、「明るい肌色」の場合には、g1(λ)の領域における値よりもg2(λ)の領域における値の方が大きい。また、「暗い肌色」の場合には、g1(λ)の領域における値とg2(λ)の領域における値とがほぼ同じである。そこで、G1bがG2bよりも大きいかどうかで木の葉と「明るい肌色」や「暗い肌色」との区別をすることができる。
色識別手段42は上記の式(4)及び式(5)によって色の判別を行い、例外色(木の葉)と判断したときは識別信号を係数決定手段43へ出力する。係数決定手段43は、例外色のときは第2のマトリクス係数を分光感度補正手段4に供給し、例外色でないときは、第1のマトリクス係数を分光感度補正手段4に供給する。
分光感度補正手段4は係数決定手段43から供給されたマトリクス係数を用いてマトリクス演算を行い、これにより、分光感度補正を行う。即ち、通常は第1のマトリクス係数を用いてマトリクス演算を行い、例外色のときは、第2のマトリクス係数を用いてマトリクス演算を行う。
このように木の葉のように顔料とは異なる色を例外色として扱い、係数決定手段43によって例外色のマトリクス係数を適切なマトリクス係数に切り替えることで、すべての色に対して適切な色再現性を実現することができ、近赤外線が入射した不要な信号を補正することが可能となる。
なお、上記の例では、係数決定手段43が色識別手段42の検出信号に応じて第1のマトリクス係数又は第2のマトリクス係数を出力し、分光感度補正手段4は、供給されたマトリクス係数を用いてマトリクス演算を行っているが、このように構成する代わりに、第1のマトリクス係数及び第2のマトリクス係数を分光感度補正手段4内に記憶しておき、色識別手段42の検出信号に応じて、第1のマトリクス係数及び第2のマトリクス係数のうちのいずれかを選択してマトリクス演算に用いることとしても良い。この場合には、係数設定手段6には、係数決定手段43を設けなくても良い。しかし、この場合、係数決定手段が分光感度補正手段4に内蔵されていると見ることもできる。
上記の例では、前ホワイトバランス手段15及び後ホワイトバランス手段16が色信号を一画面分積算しているが、一画面以上にわたって積算することとしても良い。
また、上記の例では、第4のカラーフィルタとして、緑の光を抽出する第2のカラーフィルタと可視領域における相関性が強く、かつ分光透過率のピークが第2のカラーフィルタカラーフィルタの分光透過率よりも短い波長側にあり、かつ近赤外領域では第2のカラーフィルタと略同一の分光透過率を有するものを用いたが、第1のカラーフィルタ或いは第3のカラーフィルタに対して上記のような関係を有するフィルタを第4のカラーフィルタとして用いても良い。
さらにまた、上記の例では、撮像手段11が図8に破線で示す分光感度特性を有する場合に得られる信号をターゲット信号としたが、撮像手段11が図7の等色関数に等しい分光感度特性を有する場合に選られる信号をターゲット信号としても良い。すなわち、色信号生成手段2から分光感度補正手段4までの総合的な特性がCIE1931等色関数又はそれを線形変換することによって得られる等色関数に近似した分光感度特性、或いは人間の色覚特性又はそれを線形変換することによって得られる分光感度特性を有するときに得られる色信号をターゲット信号としても良い。
実施の形態2.
上記の実施の形態1において、処理の対象が例えば静止画の場合には、特に前ホワイトバランス手段15以降の処理は、ソフトウェアによって、即ち、プログラムされたコンピュータによって実現することができる。
実施の形態3.
以上の実施の形態の撮像装置は、動画や静止画を撮像するビデオカメラ、カメラ一体型VTR、デジタルスチルカメラ、PCカメラ、並びに携帯電話や携帯端末機に内蔵されるデジタルスチルカメラに適用可能であり、これらからIRCFを不要とし、かつ暗視に利用することが多い、監視カメラや車載カメラなどにも適用できる。
以下デジタルスチルカメラに適用した場合の構成を、図14を参照して説明する。図14に示すように、このデジタルカメラは、図1に示した撮像装置を構成する各要素のうち、色信号生成手段2の代わりに色信号生成手段61を備え、さらにシャッタボタン62、シャッタ駆動手段63、表示駆動手段64、モニタ65、画像圧縮手段66、及び書込み手段67を付加したものである。
シャッタ駆動手段63は、シャッタボタン62の操作に応じて色信号生成手段61内のシャッタを駆動する。表示駆動手段64は、映像信号処理手段8の出力を受けてビューファインダーとしてのモニタ65に画像を表示させる。モニタ65は、例えば液晶表示装置で構成され、表示駆動手段64に駆動されて、色信号生成手段61内の撮像手段で撮像されている画像を表示する。画像圧縮手段66は、映像信号処理手段8の出力を受けて例えばJPEGに準拠した画像圧縮を行なう。書込み手段67は、画像圧縮手段66で圧縮されたデータを記録媒体68に書き込む。
なお、撮像装置を動画撮影に用いて、画像データを図示しない機器に伝送する場合、映像信号処理手段8の出力をエンコードしてNTSC信号を生成して出力する。
この発明の実施の形態1の撮像装置を示すブロック図である。 図1の撮像装置の撮像手段11内の撮像素子22上のカラーフィルタの配列を示した図である。 撮像素子22とカラーフィルタ、光学系の配置を示す図である。 図2のカラーフィルタ26、27、28、29を用いた撮像手段11の分光感度特性を示す図である。 図1の前ホワイトバランス手段15の構成を示すブロック図である。 図1の後ホワイトバランス手段16の構成を示すブロック図である。 CIE1931に示す等色関数を示す図である。 従来の撮像素子、IRCF、およびその乗じた分光感度特性を示す図である。 黒体輻射における5000Kの場合の照明の分光特性を示す図である。 マクベスチャートの各カラーパッチの分光反射率特性を示す図である。 マクベスカラーチェッカーで緑色の例として挙げられている「草の色(Foliage)」、「黄緑色(Yellow green)」、「緑色(Green)」の分光反射特性を示す図である。 自然界に自生している木の葉の分光反射特性を示す図である。 肌色(「明るい肌色」や茶色(「暗い肌色」)分光反射率を示す図である。 実施の形態3のカメラの構成を示すブロック図である。
符号の説明
2 色信号生成手段、 4 分光感度補正手段、 6 係数設定手段、 8 映像信号処理手段、 11 撮像手段、 12 増幅手段、 13 ADC、 14 DC再生手段、 15 前ホワイトバランス手段、 16 後ホワイトバランス手段、 17 ガンマ補正手段、 18 輝度色差信号生成手段、 22 撮像素子、 23 フィルタ群、 26 赤のカラーフィルタ、 27 緑(G1)のカラーフィルタ、 28 青のカラーフィルタ、 29 緑(G2)のカラーフィルタ、 31r、31g1、31g2、31b 増幅手段、 32r、32g1、32g2、32b 積算手段、 33 利得制御手段、 42 色識別手段、 43 係数決定手段、 51r、51g、51b 増幅手段、 52r、52g、52b 積算手段、 53 利得制御手段。

Claims (14)

  1. 赤、緑、青の光を抽出する第1、第2、第3のカラーフィルタと、前記第1乃至第3のカラーフィルタの一つと可視領域において相関性を有し、かつ分光透過率が最大となる波長が前記一つのカラーフィルタの分光透過率が最大となる波長よりも短く、かつ近赤外領域では前記一つのカラーフィルタと略同一の分光透過率を有する第4のカラーフィルタとを有し、それぞれのカラーフィルタの分光透過率に対応した第1乃至第4の色信号を出力する色信号生成手段と、
    前記第1乃至第4の色信号のうち、少なくとも3つの色信号に対してマトリクス係数を掛けるマトリクス演算を行うことにより、補正された色信号を生成する分光感度補正手段と、
    前記色信号生成手段から出力された前記第1乃至第4の色信号を受けて、これらの組み合わせが予め定めた特定の例外色を表すものであるかどうかを判定し、判定結果に応じて前記マトリクス係数を切り換える係数設定手段と
    を有する撮像装置。
  2. 前記分光感度補正手段は、前記色信号生成手段から前記分光感度補正手段までの総合的な分光感度特性が、人間の色覚特性若しくはそれを線形変換することによって得られる分光感度特性、又はCIE1931等色関数若しくはそれを線形変換することによって得られる分光感度特性に近似したものとなるような補正を行って前記補正された色信号を生成することを特徴とする請求項1に記載の撮像装置。
  3. 前記第1のカラーフィルタは赤の光を通過させるカラーフィルタであり、
    前記第2のカラーフィルタは緑の光を通過させるカラーフィルタであり、
    前記第3のカラーフィルタは青の光を通過させるカラーフィルタであり、
    前記第4のカラーフィルタは、その分光透過率が略700nmまでは前記第2のカラーフィルタと相関性を有しており、かつその分光透過率が最大となる波長が、前記第2のカラーフィルタより略50nm分短波長側にシフトしており、略700nmの波長を越えると前記第2のカラーフィルタと略同一の分光透過率を有することを特徴とする請求項1に記載の撮像装置。
  4. 前記分光感度補正手段は、前記色信号生成手段から出力される第1乃至第4の色信号Rb、G1b、Bb、G2bに対して以下の式
    Figure 0003933651

    による演算を行って、前記補正された色信号Rc、Gc、Bcを生成することを特徴とする請求項1に記載の撮像装置。
  5. 前記係数設定手段は、
    前記色信号生成手段から出力される前記第1乃至第4の色信号が所定の条件を満たすかどうかの判定により、前記色信号生成手段から出力される前記第1乃至第4の色信号で表される色が前記例外色であるかどうかの判定を行う色識別手段と、
    前記色識別手段における判定結果に基づいてマトリクス係数を定める係数決定手段とを備えることを特徴とする請求項1に記載の撮像装置。
  6. 前記色識別手段は、
    前記第3の色信号Rbの前記第2の色信号G1b対する比Rb/G1bが第1の所定値(k1)よりも大きく、前記2の色信号G1bの前記第4の色信号G2bに対する比G1b/G2bが第2の所定値(k2)よりも大きいときに、前記色信号生成手段から出力される前記第1乃至第4の色信号で表される色が前記例外色であると判定することを特徴とする請求項5に記載の撮像装置。
  7. 前記色信号生成手段から前記第1乃至第4の色信号が前記例外色を表すものであるときは、例外色のためのマトリクス係数が用いられ、
    前記色信号生成手段から前記第1乃至第4の色信号が前記例外色を表すものでないときは、通常色のためのマトリクス係数が用いられ、
    前記通常色のために定められたマトリクス係数は、標準的なカラーチャートを用いて定められ、
    前記例外色のためのマトリクス係数は、例外色を用いて予め定められている
    ことを特徴とする請求項1に記載の撮像装置。
  8. 赤、緑、青の光を抽出する第1、第2、第3のカラーフィルタと、前記第1乃至第3のカラーフィルタの一つと可視領域において相関性を有し、かつ分光透過率が最大となる波長が前記一つのカラーフィルタの分光透過率が最大となる波長よりも短く、かつ近赤外領域では前記一つのカラーフィルタと略同一の分光透過率を有する第4のカラーフィルタとを有し、それぞれのカラーフィルタの分光透過率に対応した第1乃至第4の色信号を出力する色信号生成手段を備える撮像装置の信号処理方法において、
    前記第1乃至第4の色信号のうち、少なくとも3つの色信号に対してマトリクス係数を掛けるマトリクス演算を行うことにより、補正された色信号を生成する分光感度補正工程と、
    前記色信号生成手段から出力された前記第1乃至第4の色信号を受けて、これらの組み合わせが予め定めた特定の例外色を表すものであるかどうかを判定し、判定結果に応じて前記マトリクス係数を切り換える係数設定工程と
    を有する信号処理方法。
  9. 前記分光感度補正工程は、前記色信号生成手段における色信号生成から前記分光感度補正工程における分光感度補正までの総合的な分光感度特性が、人間の色覚特性若しくはそれを線形変換することによって得られる分光感度特性、又はCIE1931等色関数若しくはそれを線形変換することによって得られる分光感度特性に近似したものとなるような補正を行って前記補正された色信号を生成することを特徴とする請求項8に記載の信号処理方法。
  10. 前記第1のカラーフィルタは赤の光を通過させるカラーフィルタであり、
    前記第2のカラーフィルタは緑の光を通過させるカラーフィルタであり、
    前記第3のカラーフィルタは青の光を通過させるカラーフィルタであり、
    前記第4のカラーフィルタは、その分光透過率が略700nmまでは前記第2のカラーフィルタと相関性を有しており、かつその分光透過率が最大となる波長が、前記第2のカラーフィルタより略50nm分短波長側にシフトしており、略700nmの波長を越えると前記第2のカラーフィルタと略同一の分光透過率を有することを特徴とする請求項8に記載の信号処理方法。
  11. 前記分光感度補正工程は、前記色信号生成手段から出力される第1乃至第4の色信号Rb、G1b、Bb、G2bに対して以下の式
    Figure 0003933651

    による演算を行って、前記補正された色信号Rc、Gc、Bcを生成することを特徴とする請求項8に記載の信号処理方法。
  12. 前記係数設定工程は、
    前記色信号生成手段から出力される前記第1乃至第4の色信号が所定の条件を満たすかどうかの判定により、前記色信号生成手段から出力される前記第1乃至第4の色信号で表される色が前記例外色であるかどうかの判定を行う色識別工程と、
    前記色識別工程における判定結果に基づいてマトリクス係数を定める係数決定工程とを備えることを特徴とする請求項8に記載の信号処理方法。
  13. 前記色識別工程は、
    前記第3の色信号Rbの前記第2の色信号G1b対する比Rb/G1bが第1の所定値(k1)よりも大きく、前記2の色信号G1bの前記第4の色信号G2bに対する比G1b/G2bが第2の所定値(k2)よりも大きいときに、前記色信号生成手段から出力される前記第1乃至第4の色信号で表される色が前記例外色であると判定することを特徴とする請求項12に記載の信号処理方法。
  14. 前記色信号生成手段から前記第1乃至第4の色信号が前記例外色を表すものであるときは、例外色のためのマトリクス係数が用いられ、
    前記色信号生成手段から前記第1乃至第4の色信号が前記例外色を表すものでないときは、通常色のためのマトリクス係数が用いられ、
    前記通常色のために定められたマトリクス係数は、標準的なカラーチャートを用いて定められ、
    前記例外色のためのマトリクス係数は、例外色を用いて予め定められている
    ことを特徴とする請求項8に記載の信号処理方法。
JP2004183172A 2004-06-22 2004-06-22 撮像装置及びその信号処理方法 Active JP3933651B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004183172A JP3933651B2 (ja) 2004-06-22 2004-06-22 撮像装置及びその信号処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004183172A JP3933651B2 (ja) 2004-06-22 2004-06-22 撮像装置及びその信号処理方法

Publications (2)

Publication Number Publication Date
JP2006013567A JP2006013567A (ja) 2006-01-12
JP3933651B2 true JP3933651B2 (ja) 2007-06-20

Family

ID=35780322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004183172A Active JP3933651B2 (ja) 2004-06-22 2004-06-22 撮像装置及びその信号処理方法

Country Status (1)

Country Link
JP (1) JP3933651B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5954661B2 (ja) * 2011-08-26 2016-07-20 パナソニックIpマネジメント株式会社 撮像素子、及び撮像装置
JP6094333B2 (ja) * 2013-03-29 2017-03-15 富士通株式会社 補正データ生成装置、補正データ生成プログラム及び色補正装置
JP2017034444A (ja) * 2015-07-31 2017-02-09 オリンパス株式会社 撮像装置および撮像方法
CN112585960B (zh) * 2018-09-19 2022-02-25 奥林巴斯株式会社 摄像元件、摄像装置、摄像方法以及存储介质
CN111918005B (zh) * 2020-09-16 2023-05-16 Oppo广东移动通信有限公司 图像传感器、终端、数据处理方法、装置及存储介质

Also Published As

Publication number Publication date
JP2006013567A (ja) 2006-01-12

Similar Documents

Publication Publication Date Title
KR100825172B1 (ko) 촬상 장치
JP4407448B2 (ja) 撮像装置
US9160935B2 (en) Sensor arrangement for transforming color space representation in a digital color image
CN108650497B (zh) 具有透明滤波器像素的成像系统
US20060146064A1 (en) Hexagonal color pixel structure with white pixels
US7812870B2 (en) Color space conversion in the analog domain
US20070223059A1 (en) Image pickup apparatus and a method for producing an image of quality matching with a scene to be captured
JP4874752B2 (ja) デジタルカメラ
JP4011039B2 (ja) 撮像装置及び信号処理方法
CN104756488A (zh) 信号处理设备、信号处理方法和信号处理程序
CN209345244U (zh) 成像系统和相机模块
JP3933651B2 (ja) 撮像装置及びその信号処理方法
JP3966868B2 (ja) 撮像装置、カメラ、及び信号処理方法
JP3966866B2 (ja) 撮像装置、カメラ、及び信号処理方法
JP4298595B2 (ja) 撮像装置及びその信号処理方法
JP3933649B2 (ja) 撮像装置及び信号処理方法
JP4397724B2 (ja) 撮像装置、カメラ、及び信号処理方法
JP4024230B2 (ja) 撮像装置
JP4859502B2 (ja) 撮像装置
JP4781825B2 (ja) 撮像装置
CN112335233B (zh) 图像生成装置以及摄像装置
JP3871681B2 (ja) 撮像装置及びカメラ
JP2005303702A (ja) 撮像装置、カメラ、及び信号処理方法
JP2003087817A (ja) ホワイトバランス調整装置、ホワイトバランス調整プログラム、ホワイトバランス調整方法およびディジタルカメラ
JP2014068186A (ja) 撮像装置および撮像方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070313

R150 Certificate of patent or registration of utility model

Ref document number: 3933651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250