JP3930163B2 - 酸化物超電導体用金属基板の製造方法 - Google Patents

酸化物超電導体用金属基板の製造方法 Download PDF

Info

Publication number
JP3930163B2
JP3930163B2 JP28638798A JP28638798A JP3930163B2 JP 3930163 B2 JP3930163 B2 JP 3930163B2 JP 28638798 A JP28638798 A JP 28638798A JP 28638798 A JP28638798 A JP 28638798A JP 3930163 B2 JP3930163 B2 JP 3930163B2
Authority
JP
Japan
Prior art keywords
metal
oxide superconductor
substrate
metal substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28638798A
Other languages
English (en)
Other versions
JP2000109320A (ja
Inventor
和寿 東山
広幸 赤田
徹男 藤原
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP28638798A priority Critical patent/JP3930163B2/ja
Publication of JP2000109320A publication Critical patent/JP2000109320A/ja
Application granted granted Critical
Publication of JP3930163B2 publication Critical patent/JP3930163B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液体窒素温度以上で高い臨界電流密度及び臨界電流を有する長尺・均質の酸化物超電導線材や大面積膜状デバイスの形成に好適な、機械強度に優れ、量産性・コストに優れた長尺あるいは大面積の酸化物超電導体用金属基板及びその製造方法に関する。
【0002】
【従来の技術】
現在、液体窒素温度で使用する超電導線材の材料としてはYBa2Cu37(以下、Y−123)や(Hg,Re)Ba2Ca2Cu3Ox(以下、Hg−1223)、(Hg,Re)Ba2Ca1Cu2Ox(以下、Hg−1212)などが有力である。これら材料の多結晶体で構成される超電導線材や膜状デバイスで高い臨界電流密度(以下、Jc)や臨界電流(以下、Ic)を得るためには超電導体の結晶粒界での良好な電気的接合性を実現しなければならない。超電導材料により多少の違いはあるが、結晶粒界での良好な接合性を確保するためには、超電導結晶粒を同一方向に配向することが必要とされる。この超電導体の結晶配向を実現するため、現在、種々の配向制御用基板が開発されている。
【0003】
例えば、Appl. Phys. Lett. 60 (1992) pp769において飯島らはY−123線材の基板としてハステロイ金属テープ上にIBAD (Ion−Beam− Assisted− Deposition)と呼ばれる特殊な成膜法により面内配向したイットリウム安定化ジルコニア(YSZ)の中間層を形成したものを使用している。YSZ中間層の効果でその上に形成されたY−123も面内配向し、液体窒素の沸点77K、自己磁界下で106A/cm2 の高いJc と100A程度の臨界電流値が得られている。
【0004】
Advances in Superconductivity VIII,Supringer−Verlag, Tokyo(1996) pp759において、山崎らは{110}<001>集合組織を有した銀テープを基板にしてY−123線材を作製したことを報告している。銀は、超電導体と反応せず酸化もしないため、中間層を形成することなく直接銀テープ上にY−123が作製できる。
【0005】
同様に、土井らはAdvances in Superconductivity VIII, Supringer−Verlag, Tokyo(1996) pp903において立方体集合組織を有する銀テープ上に直接Tl−1223酸化物超電導体を形成した線材について記している。これら銀の有する集合組織の効果により、Y−123やTl−1223は面内配向が実現している。結晶配向に好適な集合組織を有するこれらの銀テープは、圧延あるいはそれに引き続く熱処理のみによって形成できるため、長尺の超電導線材あを作製する上で有効である。
【0006】
一方、超電導膜状デバイスの基板には、チタン酸ストロンチウム、酸化マグネシウムなどの金属酸化物単結晶基板が広く使用されている。しかし、これら単結晶材料の大型化は現状技術では難しく、数cm角の基板を熱的に接続して大型化する方法が一部で実施されている程度である。
【0007】
【発明が解決しようとする課題】
酸化物超電導線材に用いる基板は、(a)超電導体の配向制御性、(b)耐反応性・耐酸化性、(c)可とう性、(d)表面の平滑性、(e)機械的高強度、(f)長尺化の容易性、(g)低コスト等の条件を満たしていなければならない。また、酸化物超電導デバイスの基板は、(a)超電導体の配向制御性、(b)耐反応性・耐酸化性、(c)表面の平滑性、(d)機械的高強度、(e)大面積化の容易性、(f)低コスト等の条件を満たしていなければならない。
【0008】
ハステロイ金属テープ上にYSZ中間層を形成した線材用基板では、特殊な真空成膜法によりYSZを作製しており、その基板作製速度は数十 cm/hと遅い。そのため、超電導線材の基板に本来求められる数100m〜数Kmの長さを安定に実現する事が難しいという問題がある。また、基板に使用したハステロイ金属テープが0.1mmと厚いため、超電導体のJcは大きいものの基板を含めたオーバーオールJcは、Jcの1/100程度と小さくなるという問題もある。
【0009】
一方、集合組織を有する銀の線材用基板は、YSZなどの中間層を必要とせず、また、比較的簡単な加工により作製できるため長尺化や大面積化は容易である。しかし、その最大の問題は、銀の機械的強度が低いことである。例えば、銀のテープ状基板を用いて長尺の線材が得られたとしても、基板の降伏応力が小さいため、コイル形成時の張力により断線する可能性がある。それ以前に、超電導体形成時に基板は700〜900℃に加熱されるため、融点が低く高温ほど降伏応力が低くなる銀では溶断したり変形するという問題がある。また、再結晶集合組織は、圧延によって金属内に蓄積された歪みが加熱され開放される過程で形成される。
【0010】
そのため、一旦好適な集合組織が形成されても、その後歪みが加わり、更に加熱されると基板として好ましくない別の集合組織に変化するという不安定性を有している。基板の使用時には頻繁に曲げ歪みが加えられる事が多いため、本来の集合組織が崩れることを防ぐ必要があるが、現状の銀テープでは難しい。更に、貴金属である銀はそのコストが高いという問題もある。
【0011】
金属基板の機械的強度を向上させる一つの簡便な方法として、より強度の高い異種金属と複合化することが考えられる。異種金属を合わせて機械加工すると、両者の界面に生じた新生面で元素の拡散が生じ、強固な複合体が得られることは良く知られている。加熱を加えることで、界面での拡散は一層進み接合強度も高くなる。
【0012】
硬さや変形抵抗の異なる金属同士では、加工途中に両者の硬度が大きく異なり、正常な加工ができなくなるため、しばしば焼鈍を加え金属を軟化させることも行われている。しかし、銀基板の再結晶集合組織の多くは、圧延による適正な加工度を加えた後、一気に焼鈍することで得られる。圧延途中に焼鈍を加えたり、焼鈍の後に再度圧延を加えたりすると、本来の集合組織とは全く別の集合組織が形成されてしまう。
【0013】
そのため、銀に複合化する金属の硬さが加工途中で大きく異なり加工が困難になっても、軟化のための焼鈍を加えることができないという問題がある。焼鈍を加えず圧延を繰り返していくと、最終的には軟らかい銀が破断や剥がれを起こし、複合基板としての役割を果たさなくなる。また、再結晶集合組織を有する銀基板は、結晶粒子が発達しており、結晶粒界での凹凸が大きく基板としての平滑性に問題が残る。
【0014】
超電導膜状デバイスの基板においても、現在の線材用基板を作製する技術を適用すれば、大面積基板の作製は可能である。しかし、やはり線材用基板の場合と同様に、作製速度や機械強度の観点から必ずしも充分な性能を有しないことが予想される。
【0015】
上述のように、従来の線材用基板及びその作製法は、いずれも(a)〜(g)の条件を同時に満足しておらず、特に機械的強度や長尺化の容易性、低コスト等の要素が不十分である。また、従来のデバイス用基板も同様である。
【0016】
本発明の目的は、上記欠点をなくし、液体窒素温度以上で高い臨界電流密度及び臨界電流を有する長尺・均質の酸化物超電導線材や大面積膜状デバイスの形成に好適な、機械強度が強く断線しにくく、平滑性に優れ、量産性・コストにも優れた長尺あるいは大面積の金属基板およびその製造方法を提供することにある。
【0017】
【課題を解決するための手段】
上記目的は、超電導膜が接触して成長するための再結晶集合組織を有する金属被覆層と、金属被覆層より降伏応力の大きい金属母材とから構成されることを特徴とする酸化物超電導体用金属基板とすることで達成される。そのなかでも特に、金属被覆層がFCC金属或いはその合金で、金属母材が金属間化合物あるいは析出硬化型金属である場合に顕著な効果が得られる。
【0018】
本発明の酸化物超電導体用金属基板は、金属母材を構成する各金属を集合化する工程、該金属母材集合体を金属被覆層と複合化する工程、該複合体を概略形状に加工する一次成形工程、該一次成形体を途中焼鈍することなく圧延する工程、該圧延成形体を不活性雰囲気乃至は真空中で再結晶化のために焼鈍をする工程、さらに金属母材形成のための焼成工程から成る製造方法を採用することで得られる。
【0019】
また、本発明の酸化物超電導体用金属基板を用いることでY−123線材、Hg−1223線材さらには電力用及びエレクトロニクス用デバイスが得られる。
【0020】
【発明の実施の形態】
本発明は、基板に求められる要素のうち、配向制御性と耐反応性・耐酸化性は再結晶集合組織を有する金属被覆層で受け持たせ、可とう性や機械的強度についてはより機械強度の強い金属母材で受け持たせた金属のみの複合基板を供給するものである。本発明における酸化物超電導体用金属基板の代表的な一例を図1(a),(b)に示す。
【0021】
再結晶集合組織を有する上下の金属被覆層1の間に層状に成長した金属間化合物2から成る金属母材3が埋め込まれている。金属被覆層としては、{100}<001>、{110}<001>さらには{hk0}<001>等の再結晶集合組織を形成する銀や白金などである。これらの金属被覆層1は、基板上で超電導多結晶層が成長する際、個々の結晶粒の結晶軸を一定方向に揃える効果を示す。銀については上記再結晶集合組織が形成されることは既に知られているが、我々は、それ以外の金属について鋭意検討した結果、白金に於いても同様の再結晶集合組織が得られることを見出すと共に、銀以上に優れた配向制御性を示すことを確認した。白金は融点が1770℃と銀の961℃に比べて高いため、再結晶集合組織を形成しても結晶粒子は銀ほど大きく成長せず、基板としての平滑性でも優れている。
【0022】
一方、金属母材は、例えば、Ni3Al、NiAl、Ni2Al3、NiAl3、NiAl3+boron及びその混合体や、更にはNi3(Al,Cr)、Ni3(Al,Ti)、Ni3(Al,Nb)、Ni3(AlMn)、Co3Ti、Pt3In、Pt3Al、Pt3Ga、Pt3Ga+boron など、一般にA3Bと記される金属間化合物およびその混合体である。
【0023】
これらの化合物は室温で200〜600MPaの高い降伏応力を示す。再結晶集合組織は、圧延加工した金属を数百℃で焼鈍して形成させるため、その降伏応力は、例えば白金で60〜80MPa、銀で40〜50MPaと100MPaよりも小さい。しかし、上記金属母材を組み込む事で基板としての降伏応力を室温で100MPa以上にすることが可能になる。また、特に金属間化合物は、温度が高いほど降伏応力が増加するものが多いため、超電導体形成時の高温状態ではむしろ降伏応力が増加し基板の断線や溶断は生じなくなる。
【0024】
基板の使用時に加えられる曲げ歪みに対しても、本発明の基板構成では本来の集合組織を安定に保持することが可能になる。何故なら、基板の機械的強度を金属母材が受け持つため、被覆金属自体の厚さは大幅に薄くでき、そのため同じ曲げが加えられても、被覆金属に生ずる歪みは小さくなるためである。その結果、再結晶集合組織を安定に保つことが可能になる。
【0025】
また、銀や白金、なかでも特に白金は他の金属に比較すると高価であるが、上記金属母材と複合化することで、単位面積当たりの貴金属使用量を削減でき、基板のコストを低減することが可能になる。
【0026】
本発明における酸化物超電導体用金属基板の作製方法の一例を図2に示す。本方法は、金属母材集合化工程、金属母材集合体と被覆金属との複合化工程、一次成形工程、圧延工程、再結晶化焼鈍工程、さらに焼成工程からなる。最初の集合化工程では、例えば図2(a)の様に、金属母材がNi3Al金属間化合物である場合、金属間化合物を構成するニッケルシート4およびアルミシート5を金属棒6にとも巻きし、集合体7を得る。
【0027】
次の図2(b)の複合化工程では、酸化物超電導体の配向制御に好適な再結晶集合組織が得られる被覆金属のパイプ8に先の集合体7を挿入し所定位置に配置する。本発明の作製方法の特徴の一つは、被覆金属に組み込む材料を機械的強度の高い金属母材そのものではなく、それを構成する金属としたところにある。例えば、A3B金属間化合物の室温における降伏応力は約200〜600MPaであるが、これらを構成する金属自体の降伏応力はおおむね100MPa以下で白金や銀に近い値である。
【0028】
このような集合材体を構成することにより、図2(c)の一次成形工程と圧延工程で中間焼鈍を入れることなく容易に加工することが可能となり、製造工程に中間焼鈍を入れた従来技術に比べて、本発明では製造工程を簡素化することが出来き、製品コストを下げことが出来る。一次成形工程では、線材用の長尺テープ状基板を得る場合には押し出し加工、引き抜き加工、スエジャー加工等によりテープ概略形状体9に成形する。
【0029】
一方、大面積のウエハー状基板を得る場合には、鍛造、プレス等でウエハー概略形状に成形する。次の図2(d)の圧延工程では、長尺テープ状基板、ウエハー状基板いずれの場合も圧延により最終形状、厚さに加工し、最終寸法に金属基板10に加工される。
【0030】
金属基板10は、再結晶化焼鈍工程でN2やArなどの不活性雰ガス或いは真空下で加熱され、図2(e)のように再結晶集合組織を有する金属被覆層11が形成される。焼成雰囲気は、酸素あるいは空気でも目的とする再結晶集合組織は得られるが、被覆層表面の平滑性向上とニッケルシート4およびアルミシート5の酸化を抑制するためには、不活性雰ガスあるいは真空下で実施した方が好ましい。
【0031】
この再結晶化焼鈍工程においても、ニッケルシート4およびアルミシート5は一部反応し金属間化合物12を形成するが、さらに焼成工程では金属間化合物12と金属被覆層11とを反応を完結させ高強度の金属母材13を形成する。この際、雰囲気は酸素、空気でも形成される金属母材には影響しない。得られた基板は、超電導体形成時に加熱されるが、その加熱中に金属母材が充分反応することが可能であれば、最後の焼成工程を除くこともできる。
【0032】
(比較例1)
白金と金属母材として充分な機械的強度を持つステンレス鋼の複合化について検討した。複合化には白金パイプ中にステンレス鋼の丸棒あるいはパイプを組込み、引抜きと圧延加工により一体化する方法をとった。使用した各金属材料の寸法及び加工条件を表1に示す。ここで、最終的に超電導膜の配向制御性は銀被覆層の再結晶集合組織が担うことになるため、引き抜き、圧延の各加工は中間焼鈍を行わず、全て冷間で実施した。この基板構造の場合、母材のステンレス鋼は、白金の使用量低減と基板強度の向上が主な役目であるため、特にその集合組織の制約はない。そのため、組込み前に真空中で焼鈍し充分軟化したものを使用した。ステンレス丸棒を組み込んだものは、引き抜きができなかった。
【0033】
一方、ステンレスパイプを組込みんだものは約4.7mmφから引抜き材に大きな曲がりが確認されるようになり、最終的に4.5mmφで引抜き工程を終了せざるを得なかった。
【0034】
【表1】
Figure 0003930163
【0035】
引き抜きで得られた4.5mmφの組込み材に対し、次に冷間での圧延を実施した。白金とステンレス鋼では硬度、展延性に大きな違いがあり、また引き抜き後に焼鈍を実施していないため、白金とステンレス鋼の界面での接合性も弱いことが予想される。正常な圧延を可能にするため、圧延は同種のステンレス鋼シートの間に試料を挟んで行う方法を採用した。しかし、この様な考慮をしても約130mm厚の段階で白金層がステンレス鋼母材から剥離した。
【0036】
圧延試料先端部から白金層が大きく剥離すると伴に、それ以降の部分にも白金層の剥離が皺となって認められた。圧延後、白金層のみを切り取り、空気中700℃1時間の焼鈍を行った後、エックス線極点図を測定したが、圧延率が充分でないため、超電導体の配向制御に好適な再結晶集合組織の形成は認められなかった。
【0037】
(実施例1)
以下、本発明の一実施例を説明する。
【0038】
最初に、金属棒6例えば銀棒にニッケルシート4とアルミニウムシート5とを巻き付け集合体7を形成し、集合体7の内周側と外周側とにニッケルシート4Aを巻き付け、ニッケルシート4Aの外側をパイプ8例えば白金パイプ内に挿入し端部を封入し、図3の断面を有する集合体を作製した。Ni3Alの化学量論組成に合わせるためシートの厚み比はNi:Al=2:1とした。また、銀棒及び白金に接する部分にはニッケルシート4Aを余分に巻き付け、銀及び白金が融点が低くかつ反応しやすいアルミニウムと直接接触することを防ぐ構成にした。
【0039】
各構成材料の寸法を表2に示す。その後、引抜き加工により外径3mmまで縮径した。さらに、冷間圧延によって厚さ50ミクロン、幅10mmのテープ状に加工した。引き抜き及び圧延の途中では一切の焼鈍を行わなくても比較的容易にテープへの加工ができた。この段階で白金層の厚さは約5ミクロンとなり、50ミクロン厚のテープが全て白金である場合に比べて71%の白金を低減したことになる。この圧延テープに対し、空気中700℃1時間の再結晶化焼鈍を施した。
【0040】
【表2】
Figure 0003930163
【0041】
テープ端部のニッケル及びアルミニウムが露出している部分では空気によるアルミニウムの酸化が認められたが、金属母材内部の断面写真の図4から分かるように内部では酸化は生じておらず、また組成分析値図5(a)から層状のニッケルとアルミニウムが一部反応している様子がわかる。また、金属被覆層の白金の(200)エックス線極点図を図6に示す。対称性のある2つのピークは白金層が超電導体の配向に好適な{110}<001>再結晶集合組織を形成していることを示している。また、図7は金属被覆層である白金層表面14の金属顕微鏡写真である。表面に大きな白金結晶の成長は認められず、平滑な表面を呈していることが分かる。この後、超電導体形成条件に相当する850℃1時間の焼鈍を空気中で行い、引っ張り試験を実施した。尚15は凹凸の疵である。
【0042】
その結果、降伏応力は175MPaであった。その時の金属母材13の断面写真を図8に示すように、図5(b)の組成分布が示すように、ほぼ目的とするNi3Alが層状に形成されている。層状はニッケルシート4とニッケルシート4との間のアルミニウムシート5はニッケルシート4より凹んでいる。
【0043】
(実施例2)
本発明の第2の実施例として被覆層に銀をまた金属母材にボロン添加のNi3Alを使用した場合を示す。金属母材の集合化と被覆金属との複合化の工程は実施例1とほぼ同様である。アルミニウムシートにはボロンを0.1mol%添加したものを使用した。複合体の構成寸法を表3に示す。
【0044】
【表3】
Figure 0003930163
【0045】
複合体外径が大きいため、本実施例では一次成形工程では静水圧押し出し法と引き抜き法を採用した。押し出しにより6.7mm外径まで一段で縮径した。その後、引き抜き加工でさらに3mm外径まで縮径し長さ5mの丸棒を得た。この丸棒を、110℃の雰囲気下で繰り返し圧延することで、最終的に幅10mm、厚さ50ミクロン、長さ70mのテープを得た。ここで、圧延を110℃で実施しているのは加工材の軟化の為ではなく、好適な集合組織を得るためである。110℃程度の低温では、圧延材の硬さは全く変化しないことが確認されている。これを700℃に設定した管状電気炉内に滞留時間1時間で連続的に通過させることにより、再結晶化焼鈍を実施した。雰囲気は空気中とした。
【0046】
断面を観察したところほぼNi3Alの組成であることが確認された。本実施例では、最終的なニッケルとアルミニウムの層厚が実施例1より薄くなったため、より低い700℃においても、Ni3Alが形成されたものと思う。テープの引っ張り試験を実施したところ、降伏応力は約150MPaであった。またボロンの添加による特徴として応力−歪み図で延びが改善されていることが分かった。これはNi3AlのAlモル濃度をわずかに減少させることでも同様であった。得られたテープの(220)エックス線極点図を測定したところ{100}<001>再結晶集合組織の形成が確認された。{100}<001>の強度の割合は98%であった。
【0047】
図9にテープに種々の曲げ歪みを加え700℃で30分間加熱した時の{100}<001>強度を曲線16に示す。曲線16は従来の銀基板の曲げ歪の特性図である。50ミクロン厚の銀単独のテープの曲線17も合わせて示した。曲線17は本発明による基板の曲げ歪の特性図である。曲げ歪みによる集合組織の乱れが大きく抑制されていることが分かる。これは、複合化により銀層の厚さが減少した効果と考えられる。
【0048】
(実施例3)
実施例2と全く同様の圧延工程後テープを空気にかえて窒素雰囲気中で同じ温度・時間で再結晶化焼鈍を行った。銀被覆層の表面写真を図10に示す。図10(a)の空気中の場合に比較して図10(b)に示す窒素中焼鈍の方が、表面が平坦であることがわかる。
【0049】
(実施例4)
実施例1と同サイズのアルミニウムシートに平均粒径20ミクロンのニッケル粒子を含むスラリーを塗布した。シートを乾燥後重量を計測し、Ni3Alのモル比に相当する所定ニッケル量になるように再度塗布・乾燥を繰り返した。得られたシートを金属棒に巻き付け、後は実施例1と同様の方法でテープ状基板を作製した。
【0050】
テープ内部を観察したところ、層内部に一部空隙を含むもののNi3Alに相当する組成比の金属母材が確認された。引っ張り試験による降伏応力は約110MPaであった。
【0051】
(実施例5)
本発明の第5の実施例として、白金を金属被覆層としPt3Alを金属母材とするウエハー状基板を作製した。Pt:Alの比がモル比で3:1に成るように5cm×20cm角の白金シートとアルミニウムシートを交互に厚さ約2mmまで積層した。最上部の白金シート上にサイズがやや大きい7cm×22cm角で、厚さが20ミクロンのニッケルシートをアルミニウムの拡散バリアとして重ねた。さらにその上部に5cm×20cm、厚さ1mmの白金板を被覆金属として乗せた。
【0052】
この積層体の四隅を厚着溶接した後、鍛造プレスにより全体の厚さが半分に成るまで冷間で加工した。その後、冷間の圧延機により厚さが均一に0.5mmになるまで、試料の短軸方向に圧延を繰り返した。得られた圧延基板を高純度アルゴン雰囲気のマッフル炉内で700℃1時間の再結晶化焼鈍を実施した。この時、焼成中に基板が変形しないように荷重を軽くかけながら、加熱を行った。得られた基板は、約25cm角の大きさであった。周辺部のバリと余剰のバリア用のニッケルシートを切り落とし、24.5cm角のウエハー状基板を得た。
【0053】
白金被覆層の性状は実施例1とほぼ同様であった。成型時に積層したニッケルシートの効果で、白金層にはアルミニウムの混入は認められなかった。また、白金層下部に接合した金属母材には、室温での降伏応力が600MPaであるPt3Alと同じ組成比の層状構造が確認できた。約0.5mmの薄さにも係わらず硬い大面積ウエハー状基板が得られた。
【0054】
(実施例6)
最初に、銀棒にアルミニウムシートとニッケルシートをニッケルシートが外周部にくるように巻き付けた。その後これを肉厚0.2mmのニッケルパイプ内に挿入し、端部を封止し集合体を作製した。
【0055】
Ni3Alの化学量論組成に合わせるためシートの厚み比はNi:Al=2:1とした。また、銀棒に接する部分にはニッケルシートを余分に巻き付け、アルミニウムと直接接触することを防ぐ構成にした。ニッケルパイプ以外は各構成材料の寸法は表2と同様である。その後、引抜き加工により外径3mmまで縮径した。さらに、冷間圧延によって厚さ50ミクロン、幅10mmのテープ状に加工した。この圧延テープを高純度アルゴン中900℃1時間の再結晶化焼鈍を施した。この時点でニッケル被覆層は{100}<001>再結晶集合組織を示した。その後、1300℃で10分の短時間でNi3Alを形成するための焼成を実施した。
【0056】
最終的に得られたテープ状基板のうち10mを連続搬送装置にセットし、空気中700℃に加熱した領域に、硝酸バリウム、硝酸カルシウム、硝酸銅及び酸化レニウムを金属モル比でRe:Ba:Ca:Cu=0.2:2:2:3に成るように溶解した水溶液から発生させた粒径10ミクロン程度のミストを噴射した。0.8m/hの搬送速度で厚さ約2ミクロンのアモルファス層が基板全長に形成できた。このアモルファス層の金属組成は、使用した水溶液の金属組成に合致していた。
【0057】
アモルファス層を形成した基板をアルゴン3気圧、830℃に加熱した加圧反応器の中に連続的に搬送しながら、400℃の平衡蒸気圧の水銀蒸気を含むアルゴンキャリアガスを接触させた。30分の滞留時間で反応させた後、その表面をエックス線回折計で測定した。アモルファス層は水銀蒸気との接触によりHg−1223が主相で、僅かにHg−1212相が混入した超電導膜になっていることが確認できた。
【0058】
エックス線極点図を計測したところ、Hg−1223のc軸が基板面に垂直で、a軸が基板の長手方向に揃った、いわゆる面内配向膜が形成されていることが確認できた。作製したHg系超電導線材1mのJcを液体窒素中で測定したところ50万A/cm2であった。また、2cm間隔で測定したJcの分布で最も高いJcは100万A/cm2であった。
【0059】
【発明の効果】
以上のように、本発明によれば、被覆金属のパイプに集合体を挿入し、所望の形状に冷間圧延加工し、金属基板を形成する。金属基板には、焼鈍工程で金属被覆層と金属間化合物とを形成する。金属被覆層と金属間化合物とは強硬に密着し金属母材を形成する。
【0060】
この結果、酸化物超電導体の為の可とう性を有する長尺テープ状金属基板あるいは大面積ウエハー状金属基板に対し、高い配向制御性、表面平滑性、機械的高強度、高い量産性および低コストを同時に付与することが可能である。更に、本発明の基板を使用することで、液体窒素温度以上で高い臨界電流密度(Jc,オーバーオールJc)及び臨界電流を有する長尺・均質の酸化物超電導線材や大面積膜状デバイスを形成できる効果もある。
【図面の簡単な説明】
【図1】(a)及び(b)は本発明の酸化物超電導体用金属基板の一例を示す模式斜視図。
【図2】(a)から(f)は本発明の酸化物超電導体用金属基板の製造工程順を示す模式斜視図。
【図3】本発明の一実施例のテープ状金属基板作製過程における複合材断面の写真による断面図。
【図4】テープ状金属基板作製過程における金属母材の積層を写真で示した断面図。
【図5】(a)及び(b)はテープ状金属基板の金属母材の組成分布を示す特性図。
【図6】テープ状金属基板の金属被覆層のエックス線極点図。
【図7】テープ状金属基板の金属被覆層表面の写真による平面図。
【図8】テープ状金属基板の金属母材の断面を示す写真による断面図。
【図9】本発明の別の一実施例のテープ状金属基板における再結晶集合組織の耐曲げ歪み特性を示す図。
【図10】(a)及び(b)は本発明の別の一実施例のテープ状金属基板における金属被覆層表面を示す写真による平面図。
【符号の説明】
1…金属被覆層、2…金属間化合物、3…金属母材、4…ニッケルシート、5…アルミシート、6…金属棒、7…集合体、8…パイプ、9…テープ概略形状体、10…金属基板、11…金属被覆層、12…金属間化合物、13…金属母材。

Claims (7)

  1. 金属母材と、酸化物超電導膜が接触して成長する再結晶集合組織を有する金属被覆層とからなる酸化物超電導体用金属基板の製造方法において、AB金属間化合物よりなる前記金属母材を構成する各金属を集合化する集合化工程、該AB金属間化合物を構成する各金属の集合体を該金属被覆層と複合化する複合化工程、該複合化工程で得られた複合体を概略形状に加工する一次成形工程、該一次成形工程で得られた一次成形体を途中焼鈍することなく圧延する圧延工程、該圧延工程で得られた圧延成形体を不活性雰囲気乃至は真空中で焼鈍して該金属被覆層を再結晶集合組織にする焼鈍工程、及びAB金属間化合物形成のための焼成工程から成ることを特徴とする酸化物超電導体用金属基板の製造方法。
  2. 請求項1記載の酸化物超電導体用金属基板の製造方法において、前記集合化工程がAB金属間化合物を構成する各金属のシートを合せ巻きにすることから成り、かつ前記複合化工程が該合せ巻きしたシート集合体を金属被覆材パイプ内に設置することから成ることを特徴とする酸化物超電導体用金属基板の製造方法。
  3. 請求項1記載の酸化物超電導体用金属基板の製造方法において、前記金属被覆層がFCC金属或いはその合金であることを特徴とする酸化物超電導体用金属基板の製造方法。
  4. 請求項3記載の酸化物超電導体用金属基板の製造方法において、前記FCC金属がPt、Ag或いはその合金であることを特徴とする酸化物超電導体用金属基板の製造方法。
  5. 請求項1記載の酸化物超電導体用金属基板の製造方法において、前記AB金属間化合物がNiAlであることを特徴とする酸化物超電導体用金属基板の製造方法。
  6. 請求項1記載の酸化物超電導体用金属基板の製造方法において、前記金属被覆層がPtで、かつ前記金属母材がホウ素添加型あるいはNi過剰型のNiAlであることを特徴とする酸化物超電導体用金属基板の製造方法。
  7. 請求項1記載の酸化物超電導体用金属基板の製造方法において、前記酸化物超電導膜がYBaCu超電導膜であることを特徴とする酸化物超電導体用金属基板の製造方法。
JP28638798A 1998-10-08 1998-10-08 酸化物超電導体用金属基板の製造方法 Expired - Lifetime JP3930163B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28638798A JP3930163B2 (ja) 1998-10-08 1998-10-08 酸化物超電導体用金属基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28638798A JP3930163B2 (ja) 1998-10-08 1998-10-08 酸化物超電導体用金属基板の製造方法

Publications (2)

Publication Number Publication Date
JP2000109320A JP2000109320A (ja) 2000-04-18
JP3930163B2 true JP3930163B2 (ja) 2007-06-13

Family

ID=17703748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28638798A Expired - Lifetime JP3930163B2 (ja) 1998-10-08 1998-10-08 酸化物超電導体用金属基板の製造方法

Country Status (1)

Country Link
JP (1) JP3930163B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50112012D1 (de) * 2000-12-07 2007-03-22 Leibniz Inst Fuer Festkoerper Metallband für epitaktische beschichtungen und verfahren zu dessen herstellung
KR100736374B1 (ko) 2005-04-28 2007-07-06 한국전기연구원 (113)[121] 텍스쳐화된 은 기판 및 이를 이용한 고온초전도탈륨-1223상 코팅도체
JP5074083B2 (ja) * 2007-04-17 2012-11-14 中部電力株式会社 エピタキシャル薄膜形成用のクラッド配向金属基板及びその製造方法
KR100912273B1 (ko) 2007-05-14 2009-08-17 한국전력공사 초전도 한류기용 저온 저항스위치 결합체 제조방법
CN110392485B (zh) * 2019-06-18 2022-04-12 淮安维嘉益集成科技有限公司 一种lp316l sta高阶摄像头模组fpc基板加工方法

Also Published As

Publication number Publication date
JP2000109320A (ja) 2000-04-18

Similar Documents

Publication Publication Date Title
EP0884787B1 (en) Oxide superconductor wire and method of manufacturing the same
CN102105947B (zh) 用于高温超导体层合导线的双面接合
EP2357656B1 (en) Method for producing a metal laminated substrate for an oxide superconducting wire, and oxide superconducting wire using the substrate
JP5074083B2 (ja) エピタキシャル薄膜形成用のクラッド配向金属基板及びその製造方法
JP2001512282A (ja) 微細かつ一様なフィラメント型超伝導体
JP4316070B2 (ja) 高強度配向多結晶金属基板および酸化物超電導線材
JP2007200831A (ja) 超電導体用基材およびその製造方法
WO2013157286A1 (ja) 超電導成膜用基材及び超電導線並びに超電導線の製造方法
US6310297B1 (en) Strongly-linked oxide superconductor and a method of its manufacture
US6906265B2 (en) Cabled conductors containing anisotropic superconducting compounds
JP4398582B2 (ja) 酸化物超電導線材およびその製造方法
US6349226B1 (en) Oxide super conductive wire and a super conductive device
EP0499411B1 (en) Method of making a metal substrate having a superconducting layer
JP3930163B2 (ja) 酸化物超電導体用金属基板の製造方法
JP5624839B2 (ja) 酸化物超電導導体用基材及びその製造方法と酸化物超電導導体及びその製造方法
JP5415824B2 (ja) 被覆された導体のための、形状を変化させた基板の製造方法及び上記基板を使用する被覆された導体
JP4619475B2 (ja) 酸化物超電導導体
WO2013008851A1 (ja) 超電導薄膜及び超電導薄膜の製造方法
JPH08315655A (ja) 超伝導線及びその製造方法
JP2015011860A (ja) 酸化物超電導線材とその製造方法
JPH0721856A (ja) 超電導ワイヤの製造方法
JP3050572B2 (ja) 酸化物超電導導体の製造方法
JPH06510157A (ja) テクスチャード超伝導体とその製造方法
JP2004214020A (ja) Nb3Sn線材の製造方法
JP2004273246A (ja) 酸化物超電導線材用基板および酸化物超電導線材

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6