JP3915139B2 - 燃料電池発電装置 - Google Patents

燃料電池発電装置 Download PDF

Info

Publication number
JP3915139B2
JP3915139B2 JP16101096A JP16101096A JP3915139B2 JP 3915139 B2 JP3915139 B2 JP 3915139B2 JP 16101096 A JP16101096 A JP 16101096A JP 16101096 A JP16101096 A JP 16101096A JP 3915139 B2 JP3915139 B2 JP 3915139B2
Authority
JP
Japan
Prior art keywords
fuel cell
gas
reaction
heat
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16101096A
Other languages
English (en)
Other versions
JPH09320627A (ja
Inventor
成之 河津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16101096A priority Critical patent/JP3915139B2/ja
Priority to CA002205791A priority patent/CA2205791C/en
Priority to US08/862,257 priority patent/US5885727A/en
Priority to KR1019970020782A priority patent/KR100270469B1/ko
Priority to EP97108616A priority patent/EP0810682B1/en
Publication of JPH09320627A publication Critical patent/JPH09320627A/ja
Application granted granted Critical
Publication of JP3915139B2 publication Critical patent/JP3915139B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0008Phosphoric acid-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
この発明は、水素を含有する反応ガスの生成装置と、その生成装置から反応ガスの供給を受ける燃料電池とを備えた燃料電池発電装置に関する。
【0002】
【従来の技術】
一般に、燃料の有しているエネルギを直接電気的エネルギに変換する装置として燃料電池が知られている。燃料電池は、通常、電解質膜を挟んで一対の電極を配置するとともに、一方の電極の表面に水素の燃料ガスを接触させ、また他方の電極の表面に酸素を含有する酸素含有ガスを接触させ、このとき起こる電気化学反応を利用して、電極間から電気エネルギを取り出すようにしている。
【0003】
燃料電池に供給される燃料ガスの生成装置として、メタノールを水蒸気改質する改質器が知られている(例えば、特開平5−21079号で示すもの)。この改質器におけるメタノールの水蒸気改質は、次のような化学反応により成り立っている。
【0004】
CH3OH→CO+2H2−21.7kcal/mol …(1)
CO+H2O→CO2+H2+9.8kcal/mol …(2)
CH3OH+H2O→CO2+3H2−11.9kcal/mol …(3)
【0005】
【発明が解決しようとする課題】
改質反応自体を示す式(3)からわかるように、水蒸気改質による反応生成物のモル比率は、理論的には水素3に対して二酸化炭素1で、それ以外の反応生成物は生成しないはずである。しかし、現実には反応が100%理想的に行なわれないために、反応の副生成物として一酸化炭素や、反応しなかった未反応メタノールが発生する。
【0006】
この一酸化炭素は、燃料ガスを供給する電極側の電極触媒である白金または白金を含む合金に吸着して、白金の触媒としての機能を停止させる、いわゆる触媒の被毒状態を発生させる。一方、メタノールは、電解質膜を透過して他方側の電極に達し、ここで酸素含有ガス中の酸素と反応して、その酸素電極側の電位を低下させる。また、メタノールは、燃料ガスの流路を構成する金属製の配管を腐食したり、あるいは、燃料ガスの流路を構成するプラスチック製の配管を溶解する。
【0007】
なお、現状の燃料電池のシステムにおいては、前記一酸化炭素やメタノールに起因する問題を最小限に抑えようと、燃料ガスの利用率を60〜80[%]といった低い利用率で運転を行なうことが一般的である。このため、燃料電池発電装置は、エネルギ効率が悪いといった問題も招いていた。
【0008】
この発明の燃料電池発電装置は、これら問題に鑑みてなされたもので、燃料電池の触媒被毒、酸素電極の電位低下等を解消するとともに、エネルギ効率を向上させることを目的としている。
【0009】
【課題を解決するための手段およびその作用・効果】
前述した課題を解決するための手段として、以下に示す構成をとった。
【0010】
即ち、この発明の燃料電池発電装置(以下、基本構成の燃料電池発電装置と呼ぶ)は、
水素を含有する反応ガスを生成するガス生成手段と、
触媒を担持した電極に反応ガスの供給を受けて、その反応ガスの電気化学反応により起電力を得る燃料電池と、
前記ガス生成手段により生成される反応ガスを前記燃料電池に送る反応ガス供給路と
を備える燃料電池発電装置において、
前記ガス生成手段は、
熱を発する発熱手段と、
ハロゲンと水とを反応させて生成されるハロゲン化水素酸をハロゲン化水素酸分解促進触媒とともに収容し、前記発熱手段からの熱を受けて熱分解反応を引き起こす反応槽と
を備えることを特徴としている。
【0011】
この基本構成の燃料電池発電装置によれば、発熱手段により反応槽が加熱されると、ハロゲン化水素酸分解促進触媒を用いた熱分解反応が引き起こされることになり、ハロゲン化水素酸から酸素と水素とが生成される。この水素は反応ガスとして燃料電池に供給される。熱分解反応によれば原理的に水素と酸素のみが発生して、一酸化炭素やメタノールといった電池機能低下の一因となる副生成物を生成しないので、燃料電池の触媒被毒、酸素電極の電位低下等の問題を解消することができる。また、上述したように副生成物を生成しないので、燃料電池での水素ガスの利用率を100[%]とすることができ、エネルギ効率を高めることができる。
【0012】
上記基本構成の燃料電池発電装置において、前記燃料電池にて発生する熱を前記発熱手段に伝達する熱伝達手段を備える構成とすることが好ましい。
【0013】
この構成(以下、第2の構成の燃料電池発電装置と呼ぶ)によれば、燃料電池にて発生する熱を用いて発熱手段を発熱させることで、反応槽は加熱されることから、反応槽を加熱するための電気ヒータ等の特別な加熱手段を必要としない。従って、部品点数を低減して装置の簡略化を図ることができ、また、エネルギ効率の点でも優れている。さらには、燃料電池の発電量に応じて燃料電池の発生熱量が変化することから、燃料電池の発電量に応じてガス生成手段のガス発生量を自律的にフィードバック制御することができる。
【0014】
また、上記構成の燃料電池発電装置において、燃料電池は、前記反応槽における熱分解反応の発生温度よりも高い温度で運転されるように構成され、さらに、前記燃料電池の周囲に配設されて冷却水を流す冷却水流路を備えるとともに、前記熱伝達手段は、前記冷却水流路に接続されて、前記冷却水を前記冷却水流路と前記発熱手段との間で循環させる循環手段を備える構成とすることが好ましい。
【0015】
この構成によれば、燃料電池の運転温度は反応槽における熱分解反応の発生温度よりも高い温度となり、燃料電池の周囲に配設された冷却水流路を流れる冷却水が発熱手段に送られるので、燃料電池の排熱により反応槽を十分に加熱することができる。このため、燃料電池に通常備えられる冷却水流路といった既存の構成をそのまま使用することができ、より一層の装置の簡略化を図ることができる。
【0016】
また、上記第2の構成において、前記燃料電池は、前記反応槽における熱分解反応の発生温度よりも低い温度で運転されるように構成され、前記熱伝達手段は、前記燃料電池からの熱を前記熱分解反応の発生温度より高い温度に昇温させる熱量増大手段を備える構成としてもよい。
【0017】
この構成によれば、燃料電池の運転温度は熱分解反応の発生温度よりも低い温度ではあるが、燃料電池からの熱が熱量増大手段により、熱分解反応の発生温度より高い温度に昇温されて発熱手段に伝達されるから、燃料電池からの熱を利用して反応槽の加熱が可能となる。従って、燃料電池で発生した熱を利用することができ、エネルギ効率の点で優れている。
【0018】
上記の構成において、
前記燃料電池の周囲に配設されて冷却水を流す冷却水流路
を備えるとともに、
前記熱伝達手段は、
該冷却水流路に接続されて、前記冷却水を前記熱量増大手段を介して前記発熱手段に送る第1流路と、
前記熱量増大手段を迂回して、前記冷却水を前記冷却水流路から前記発熱手段に送る第2流路と、
前記燃料電池の運転時と停止時とを判別する判別手段と、
該判別手段により前記燃料電池の運転時が判別されたとき、前記第1流路を開き、前記燃料電池の停止時が判別されたとき、前記第2流路を開く制御手段と
を備える構成としてもよい。
【0019】
上記構成によれば、判別手段により燃料電池の運転時であると判別されると、制御手段により第1流路が開けられて、冷却水は加熱手段により加熱されて第1流路から発熱手段に送られる。一方、判別手段により燃料電池の停止時であると判別されると、制御手段により第2流路が開けられて、冷却水はそのまま第2流路から発熱手段に送られる。このため、燃料電池の停止時には、燃料電池の冷却水が加熱手段を経ることなく発熱手段に直接供給されるが、この冷却水は反応槽での熱分解反応の発生温度よりも低い温度であることから反応槽が冷却され、ガス生成手段での反応ガスの生成が速やかに停止される。従って、燃料電池からの熱を利用した反応槽の加熱を可能とした上で、燃料電池の停止時に反応ガスの発生を速やかに停止することができる。
【0020】
第2の構成の燃料電池発電装置において、
前記燃料電池は、
前記反応槽における熱分解反応の発生温度よりも低い温度で運転されるように構成され、
さらに、
前記燃料電池の周囲に配設されて冷却水を流す冷却水流路と、
前記燃料電池の停止時を判別する判別手段と、
該判別手段により前記燃料電池の停止時が判別されたとき、前記冷却水流路の冷却水を前記発熱手段に送る配送手段と
を備える構成とすることが好ましい。
【0021】
この構成によれば、燃料電池の運転温度は熱分解反応の発生温度よりも低い温度となり、その上で、燃料電池燃料電池の停止時には、燃料電池の冷却水が、配送手段により発熱手段に配送されることから、反応槽が冷却され、ガス生成手段で反応のガスの発生が速やかに停止される。従って、燃料電池の停止時にガス発生を速やかに停止することができる。
【0022】
上記構成の燃料電池発電装置において、前記燃料電池の停止時に、前記冷却水流路の冷却水を、前記反応槽に収容するハロゲン化水素酸を生成する材料を貯える槽の周辺に送る手段を備える構成としてもよい。
【0023】
この構成によれば、燃料電池の運転温度は熱分解反応の発生温度よりも低い温度となり、その上で、燃料電池の停止時に、燃料電池の冷却水が発熱手段に加えて、反応槽に収容するハロゲン化水素酸を生成する材料を貯える槽の周辺に送られる。このため、反応槽に加えて反応槽に収容するハロゲン化水素酸を生成する材料が冷却され、ガス生成手段で反応のガスの発生がより一層速やかに停止される。従って、燃料電池の停止時にガス発生をより一層速やかに停止することができる。
【0024】
また、上記基本構成または第2の構成の燃料電池発電装置において、前記燃料電池の電極に供給された反応ガスを前記燃料電池から排出する反応ガス排出路と、該反応ガス排出路を閉じる閉塞手段とを備える構成とすることが好ましい。
【0025】
基本構成の燃料電池発電装置では、原理的に水素と酸素のみが発生して、副生成物は発生しないことから、燃料電池でのガス利用率を100[%]にして運転することが可能である。このため、上記構成に示すように、燃料電池の反応ガス排出路を閉塞手段により閉塞した状態で運転することができる。負荷が増大し、燃料電池の出力が増大した場合を考えてみると、この場合、燃料電池には発電のためにより多くの反応ガスが必要となる。燃料電池の燃料ガス出口は閉塞手段により閉じられているから、ガス生成手段から燃料電池に至る反応ガス供給路内の水素ガスが消費されて、ガス圧力が低下する。ガス生成手段の圧力が低くなるので、ガス発生手段から発生するガス量も増大する。このように燃料電池の出力増加に対応して、ガス発生量も増大する。
【0026】
一方、負荷が減少し、燃料電池の出力が減少する場合には、燃料電池には発電のために必要な反応ガスが減少する。燃料電池の反応ガス出口は閉塞手段により閉じられているから、ガス生成手段から燃料電池に至る反応ガス供給路内の水素ガスは消費されず、ガス圧力が上昇する。ガス生成手段の圧力が高くなるので、ガス生成手段から発生するガス量も低下する。このように燃料電池の出力減少に対応して、ガス発生量も減少する。従って、ガス生成手段と燃料電池とは連携制御することなしに、相互の熱の収支により、自律的に連携運転を実現することができる。
【0027】
基本構成または第2の構成の燃料電池発電装置において、前記燃料電池から電気化学反応に伴って発生する水蒸気を凝縮して水を回収する水回収手段と、該水回収手段に回収された水を、前記ハロゲン化水素酸を生成する材料として用いる水利用手段とを備える構成としてもよい。
【0028】
燃料電池は、一般に、発電に伴いカソード側電極で水蒸気を発生することから、上記構成の燃料電池発電装置では、水回収手段により、その水蒸気を凝縮して水を回収し、その水を、前記ハロゲン化水素酸を生成する材料として水利用手段により用いる。このため、反応槽側からみれば、材料が燃料電池の運転に伴って順次補給されることから、水を貯える水槽が小型で済み、また、水の貯留量も少なくてすむ。燃料電池からみれば、カソード側残ガスをそのまま排出すると、大気に放出された残ガスが白煙を上げることになるが、そうした現象を防止することができる。
【0029】
基本構成または第2の構成の燃料電池発電装置において、
ハロゲンを貯えるハロゲン槽と、
水を貯える水槽と、
前記ハロゲン槽と水槽からハロゲンと水をそれぞれ前記反応槽に送る送付手段と、
を備え、
前記発熱手段は、
前記反応槽の付近に配設され、
さらに、
前記ガス生成手段は、
前記反応槽から発生するガスから水素を精製する水素精製手段
を備える構成とすることが好ましい。
【0030】
この構成の燃料電池発電装置(以下、第3の構成の燃料電池発電装置と呼ぶ)によれば、送付手段によりハロゲン槽からハロゲンが、水槽から水がそれぞれ反応槽に供給されて、反応槽にはハロゲンと水とを反応させて得られるハロゲン化水素酸が収容される。この反応槽が発熱手段により加熱されると、そのハロゲン化水素酸がハロゲン化水素酸分解促進触媒を用いて熱分解して、水素とハロゲンガスの混合ガスが発生する。この混合ガスは、水素精製手段により精製され、水素だけが生成される。このため、上記燃料電池発電装置では、ハロゲンと水とを原料とする熱分解反応を容易に行なうことができる。
【0031】
上記構成の燃料電池発電装置において、前記燃料電池にて発生する熱を、前記ハロゲン槽および/または水槽に伝達する手段を備える構成とすることもできる。
【0032】
この構成によれば、燃料電池にて発生する熱にてハロゲン槽および/または水槽が加熱されることから、ハロゲン化水素酸を生成する材料であるハロゲンや水を貯えるハロゲン槽および/または水槽を予備加熱するための電気ヒータ等の特別な加熱手段を必要としない。熱分解反応では加熱する必要があるが、反応槽に常温の水をそのまま供給すると、反応槽の温度が低下したり、温度が安定しないために、予め水槽やハロゲン槽を加熱しておき、昇温済みの水やハロゲンを反応槽に供給する手法が適当である。このため、電気ヒータ等の特別な加熱手段を必要とするが、上記構成によれば、加熱手段が不要となり、装置の構成を簡略化することができ、さらには、加熱手段用のエネルギが不要であることから、エネルギー効率を高めることをできる。
【0033】
上記第3の構成の燃料電池発電装置において、
前記ガス生成手段は、
前記反応槽から発生するガスから酸素を精製する酸素精製手段
を備え、
さらに、
前記酸素精製手段で精製された酸素を前記燃料電池に送る酸素ガス供給路
を備える構成としてもよい。
【0034】
この構成の燃料電池発電装置(以下、第4の構成の燃料電池発電装置と呼ぶ)では、反応槽により得られる水素に加えて酸素も燃料電池に供給されることから、装置全体のエネルギ効率の点で優れている。
【0035】
上記構成の燃料電池発電装置において、
前記ガス生成手段から前記反応ガス供給路を介して反応ガスの供給を受ける前記燃料電池に接続され、該燃料電池で消費された反応ガスの残り分を排出する反応ガス排出路と、
前記ガス生成手段から前記酸素ガス供給路を介して酸素ガスの供給を受ける前記燃料電池に接続され、該燃料電池で消費された酸素ガスの残り分を排出する酸素ガス排出路と、
前記反応ガス排出路を通過するガスの流量を調整する第1弁体と、
前記酸素ガス排出路を通過するガスの流量を調整する第2弁体と、
前記反応ガス排出路中のガス圧を検出する第1圧力センサと、
前記酸素ガス排出路中のガス圧を検出する第2圧力センサと、
前記第1圧力センサで検出されたガス圧と前記第2圧力センサで検出されたガス圧との圧力差を求める算出手段と、
前記第1弁体および第2弁体の開度を調整することにより、前記算出手段により求められる圧力差を予め定められた所定値に制御する制御手段と
を備える構成としてもよい。
【0036】
この構成の燃料電池発電装置によれば、制御手段により第1弁体と第2弁体の開度を調整することにより、算出手段により求められる反応ガス排出路中のガス圧と酸素ガス排出路中のガス圧との圧力差が所定値に制御される。
【0037】
燃料電池では発電にともないアノードでは水素を消費し、カソードでは酸素を消費する。その時の消費する水素と酸素の割合はモル比で2:1である。これに対して、反応槽における熱分解反応により発生する水素と酸素の割合はモル比で2:1である。従って、理論通りであれば、ガス生成手段から生成した水素、酸素をそのまま燃料電池へ接続すれば、ガスが過不足なく消費される。しかしながら、現実には、燃料電池、ガス生成手段とも、各々の部位における水素、酸素のガス圧力が違ったり、水素供給路と酸素供給路との配管内部の容積が違ったりして、必ずしも上述のように、単純に、ガス生成手段から生成した水素、酸素をそのまま燃料電池へ供給すれば、ガスが過不足なく消費されるというものではない。
【0038】
この構成の燃料電池発電装置は上記点に鑑みてなされたもので、上述したように反応ガス排出路中のガス圧と酸素ガス排出路中のガス圧との圧力差を所定値に制御することにより、反応ガス、酸素ガスの両方の系統のガス流量を制御することにより、ガス生成手段から生成した水素、酸素の各々を過不足なく燃料電池で消費させることができる。従って、装置全体のエネルギー効率を高めることができる。また、水素と酸素のガス系統間に一定以上の圧力差が生じないので、装置の安全性を向上できる。
【0039】
第3の構成の燃料電池発電装置において、
前記ガス生成手段から前記反応ガス供給路を介して反応ガスの供給を受ける前記燃料電池に接続され、該燃料電池で消費された反応ガスの残り分を排出する反応ガス排出路と、
前記反応ガス排出路を通過するガスの流量を調整する弁体と
を備えるとともに、
前記水素精製手段は、
水素を選択的に透過するろ過膜
を備え、
さらに、
前記ろ過膜の前後の圧力差を検出する圧力差検出手段と、
前記弁体の開度を調整することにより、前記圧力差検出手段により検出される圧力差を予め定められた所定範囲内に収める制御手段と
を備える構成としてもよい。
【0040】
この構成の燃料電池発電装置によれば、制御手段により弁体の開度を調整することにより、圧力差検出手段により検出される圧力差、即ち、水素精製手段のろ過膜の前後の圧力差を、制御手段により、予め定められた所定範囲内に収める。一般に、ろ過膜による水素精製手段の水素精製量は、ろ過膜の両側の圧力差に依存しており、上記構成のようにその圧力差を所定範囲内に収めることにより、水素精製量を一定にすることができる。従って、ガス生成手段において、配管内部の圧力が変動したり、燃料電池側の配管内部の圧力が変動したりしても、常に、所望の量の水素を連続かつ安定して生成することができる。
【0041】
第4の構成の燃料電池発電装置において、
前記ガス生成手段から前記反応ガス供給路を介して反応ガスの供給を受ける前記燃料電池に接続され、該燃料電池で消費された反応ガスの残り分を排出する反応ガス排出路と、
前記ガス生成手段から前記酸素ガス供給路を介して酸素ガスの供給を受ける前記燃料電池に接続され、該燃料電池で消費された酸素ガスの残り分を排出する酸素ガス排出路と、
前記反応ガス排出路を通過するガスの流量を調整する第1弁体と、
前記酸素ガス排出路を通過するガスの流量を調整する第2弁体と、
前記水素ガス精製手段の出口側の流路中のガスの流量を検出する第1センサと、
前記酸素ガス精製手段の出口側の流路中のガスの流量を検出する第2センサと、
前記第1弁体および第2弁体の開度をそれぞれ調整することにより、前記第1センサで検出される流量と前記第2センサで検出される流量との比率を、前記燃料電池で消費する水素と酸素との比率に一致させる制御手段と
を備える構成としてもよい。
【0042】
この構成の燃料電池発電装置によれば、制御手段により第1弁体と第2弁体の開度を調整することにより、水素ガス精製手段の出口側の流路中のガスの流量と酸素ガス精製手段の出口側の流路中のガスの流量との比率が、燃料電池で消費する水素と酸素との比率に一致するように制御される。
【0043】
燃料電池では発電にともないアノードでは水素を消費し、カソードでは酸素を消費する。その時の消費する水素と酸素の割合はモル比で2:1である。これに対して、反応槽での熱分解反応で発生する水素と酸素の割合はモル比で2:1である。従って、理論通りであれば、ガス生成手段から生成した水素、酸素をそのまま燃料電池へ接続すれば、ガスが過不足なく消費される。しかしながら、現実には、燃料電池、ガス生成手段とも、各々の部位における水素、酸素のガス圧力が違ったり、水素供給路と酸素供給路との配管内部の容積が違ったりして、必ずしも上述のように、単純に、ガス生成手段から生成した水素、酸素をそのまま燃料電池へ供給すれば、ガスが過不足なく消費されるというものではない。
【0044】
さらには、水素ガス精製手段、酸素ガス精製手段とも、厳密には、所望のガスが100%完全に分離されるわけではなく、一部は不要なガス成分と一緒に分離されないままにオフガスとして排出されてしまうことがある。この分離される割合は、水素ガス精製手段と酸素ガス精製手段とで、装置の原理的な違いや運転条件の違いが相違することから、水素ガスと酸素ガスとの生成される割合は、上記2:1の割合からズレが生じる。このためにも、ガスが過不足なく消費されるように積極的に制御する必要がある。
【0045】
この構成の燃料電池発電装置は上記点に鑑みてなされたもので、上述したように、水素ガス精製手段の出口側の流路中のガスの流量と酸素ガス精製手段の出口側の流路中のガスの流量との比率が、燃料電池で消費する水素と酸素との比率に一致するように制御することにより、ガス生成手段から生成した水素、酸素の各々を過不足なく燃料電池で消費させることができる。従って、装置全体のエネルギー効率を高めることができる。また、水素と酸素のガス系統間に一定以上の圧力差が生じないので、装置の安全性を向上できる。
【0046】
基本構成の燃料電池発電装置において、
前記ガス生成手段から前記反応ガス供給路を介して反応ガスの供給を受ける前記燃料電池に接続され、該燃料電池で消費された反応ガスの残余分を排出する反応ガス排出路
を備えるとともに、
前記発熱手段は、
前記反応ガス排出路からの反応ガスを燃焼させて熱を発するもの
である構成としてもよい。
【0047】
この構成によれば、燃料電池から排出される反応ガスの残余分を燃焼させて発生する熱にて反応槽が加熱されることから、反応槽を加熱するための燃料を新たに必要としない。従って、エネルギ効率を高めることができる。さらには、燃料電池から排出される反応ガスの残余分は当然水素が含まれることから、装置外への排出は難しく、その処分のために特別な装置が必要であったが、上記構成によりその処分のための装置が不要となり装置の簡略化を図ることもできる。
【0048】
また、基本構成の燃料電池発電装置において、
前記ガス生成手段により生成される反応ガスを貯える貯留手段
を備えるとともに、
前記発熱手段は、
前記貯留手段に貯えられた反応ガスを燃焼させて熱を発するもの
である構成としてもよい。
【0049】
この構成によれば、ガス生成手段により生成される反応ガスを利用して反応槽の加熱が可能であることから、反応槽の加熱用の燃料を特別に必要としない。従って、装置のエネルギ効率を高めることができる。
【0050】
第1または第2の構成(または請求項16または17記載の構成)の燃料電池発電装置において、
前記ガス生成手段により生成される反応ガスを貯える貯留手段と、
前記燃料電池の起動時に、前記貯留手段に貯えられた反応ガスを前記反応ガス供給路から前記燃料電池に送る起動時反応ガス供給手段と
を備える構成としてもよい。
【0051】
一般に、燃料電池発電装置の起動時においては、ガス生成手段が十分に働くまでタイムラグがあるが、この構成によれば、起動後、燃料電池に直ちに燃料を供給することができる。
【0052】
また、通常、燃料電池発電装置の起動時においては、燃料電池が未だ運転されていないことから、その燃料電池の排熱を利用して反応槽を加熱すること(第2の構成のもの)も、あるいは燃料電池からの反応ガスの残余分を燃焼させて反応槽を加熱すること(請求項16記載のもの)も不可能である。このため、起動時専用の電気ヒータを設ける必要があった。これに対して、上記構成の燃料電池発電装置では、起動時においては、貯留手段に貯えた反応ガスが燃料電池に供給されることから、起動時にはガス生成手段の運転が不要となり、前述した起動時専用の電気ヒータを設ける必要がない。この結果、装置構成の簡略化を図ることができる。なお、起動後においては、燃料電池が運転を開始することから、その燃料電池の排熱を利用したり、燃料電池からの反応ガスの残余分を燃焼させて反応槽を加熱するようにすればよい。
【0053】
基本構成または第2の構成の燃料電池発電装置において、
前記燃料電池から排出される残余分の反応ガスと外部から供給される酸素含有ガスとから水を生成する水生成手段と、
該水生成手段により生成された水を、前記ハロゲン化水素酸を生成する材料として用いる水利用手段と
を備える構成としてもよい。
【0054】
この構成によれば、反応槽で収容されるハロゲン化水素酸を生成する材料としての水が、燃料電池の運転に伴って水生成手段により順次生成されることから、水を貯える水槽が小型で済み、また、水の貯留量も少なくて済む。また、燃料電池からみれば、水素ガスを含むアノード側残ガスをそのまま大気中に放出する訳には行かないので、この構成によりその残ガスを有効利用することができ、装置全体としてのエネルギ効率を高めることができる。
【0055】
【発明の実施の形態】
以上説明した本発明の構成・作用を一層明らかにするために、以下本発明の好適な実施例について説明する。
【0056】
図1は、本発明の第1実施例としての燃料電池発電システム1の概略構成を示すブロック図である。図示するように、この燃料電池発電システム1は、電気を発生するりん酸型の燃料電池スタックFCと、熱分解反応により水から水素ガスを製造するガス生成装置Gと、ガス生成装置Gで製造された水素ガスを燃料ガスとして燃料電池スタックFCに送る燃料ガス供給通路3を備える。さらに、この燃料電池発電システム1には、燃料電池スタックFC内の冷却プレート(後述する)に流れる冷却水をガス生成装置Gに循環させる冷却水循環路5を備える。
【0057】
燃料電池スタックFCの構成について次に説明する。
燃料電池スタックFCは、前述したようにりん酸型の燃料電池であり、その単一セル構造として、図2の構造図および図3の分解斜視図に示す構造を備える。即ち、これら図に示すように、そのセルは、電解質11と、この電解質11を両側から挟んでサンドイッチ構造とするガス拡散電極としてのアノード12およびカソード13と、このサンドイッチ構造を両側から挟みつつアノード12およびカソード13とで燃料ガスおよび酸化ガスの流路を形成するセパレータ14,15と、セパレータ14,15の外側に配置されアノード12およびカソード13の集電極となる集電板16,17とにより構成されている。
【0058】
電解質11は、液体状の濃厚りん酸を含浸させた炭化ケイ素のマトリックス(りん酸を含浸保持させる基材)からなる。アノード12およびカソード13は、炭素質の多孔板の基体からなり、この基体の表面には、触媒としての白金または白金と他の金属からなる合金等を担持したカーボン粉が塗布されている。
【0059】
白金を担持したカーボン粉は次のような方法で作成されている。塩化白金酸水溶液とチオ硫酸ナトリウムを混合して、亜硫酸白金錯体の水溶液を得る。この水溶液を攪拌しながら、過酸化水素水を摘下して、水溶液中にコロイド状の白金粒子を析出させる。次に担体となるカーボンブラック(例えば Vulcan XC-72 (米国の CABOT社の商標)やデンカブラック(電気化学工業株式会社の商標))を添加しながら、攪拌し、カーボンブラックの表面にコロイド状の白金粒子を付着させる。次に溶液を吸引ろ過または加圧ろ過して白金粒子が付着したカーボンブラックを分離した後、脱イオン水(純水)で繰り返し洗浄した後、室温で完全に乾燥させる。次に、凝集したカーボンブラックを粉砕器で粉砕した後、水素還元雰囲気中で、250〜350[℃]で2時間程度加熱することにより、カーボンブラック上の白金を還元するとともに、残留していた塩素を完全に除去して、白金を担持したカーボン粉が完成する。
【0060】
セパレータ14,15は、ち密質のカーボンプレートにより形成されている。アノード12側のセパレータ14は、アノード12の表面とで燃料ガスである水素ガスの流路をなすと共にアノード12で生成する水の集水路をなす水素ガス流路14Pを形成する。また、カソード13側のセパレータ15は、カソード13の表面とで材料ガスである酸素ガスの流路をなす酸素ガス流路15Pを形成する。集電板16,17は、銅(Cu)により形成されている。
【0061】
以上説明したのがりん酸型燃料電池の単一セルの構成であり、こうしたセルを複数積層したものが燃料電池スタックFCである。図4は、燃料電池スタックFCの全体構造を示す構造図である。なお、図4中、図2,図3と同じ構成の部品に対しては同一の符号を付した。
【0062】
図4に示すように、燃料電池スタックFCは、図2,図3で示した電解質11、アノード12およびカソード13からなるサンドイッチ構造20をセパレータ21で挟んで複数積層したものである。このセパレータ21は、図1,図2で示した単電池のセパレータ14,15と同じ材料からなり、アノード12と接する側面に水素ガス流路14Pを形成し、カソード13と接する側面に酸素ガス流路15Pを形成する。なお、図中、最も右側に位置するサンドイッチ構造20Rの外側には、水素ガス流路14Pだけを形成するセパレータ14(図2,図3と同じもの)が配置され、最も左側に位置するサンドイッチ構造20Lの外側には、酸素ガス流路15Pだけを形成するセパレータ15が配置されている。
【0063】
さらに、燃料電池スタックFCは、これらセパレータ14,15の外側に配置される冷却プレート22,23と、冷却プレート22,23のさらに外側に配置される集電板16,17と、これら全体を両側から絶縁板24,25を介して挟むエンドプレート26,27とを備え、さらにエンドプレート26,27を外側から締め付ける締め付けボルト28とを備える。
【0064】
冷却プレート22,23は、内部に冷却水流路を備えており、外部から供給される冷却水が循環する構成となっている。なお、冷却プレート22,23に接続される流路の集合部付近のA点,B点と冷却水循環路5とが接続されることで、冷却プレート22,23に流れる冷却水は、冷却水循環路5を介してガス生成装置Gに送られる。
【0065】
なお、図4において、この燃料電池スタックFCは、セルを3つ備える構成としたが、必ずしもこの数に限る必要はなく幾つでもよい。また、この燃料電池スタックFCは、冷却プレートをスタックの両端に2つ備える構成としたが、さらに、単セルと単セルとの間にも冷却プレートを配置する構成としてもよい。
【0066】
ガス生成装置Gの構成について次に説明する。図5は、ガス生成装置Gの概略構成図である。この図に示すように、ガス生成装置Gは、熱分解反応を段階的に行なう2つの反応槽30,50を備える。なお、これ以後、初段の反応槽30を予備反応槽と呼ぶことにより、後段の反応槽50と区別する。
【0067】
図6は、予備反応槽30の内部を示す概略構成図である。この図6と図5に示すように、予備反応槽30は、蓋31を有する容器32を備えており、この蓋31には、その差し込み位置が容器32内の液面より上方に位置する第1ないし第3の管路33,34,35と、差し込み位置が容器32内の液面より下方に位置する第4および第5の管路36,37とがそれぞれ接続されている。
【0068】
第1の管路33には、ガス生成装置Gの外部に設けられてハロゲンであるヨウ素(I2 )を貯えるハロゲン槽41が接続されており、ポンプ42によりI2 がこの第1の管路33を介して予備反応槽30に送られる。また、第2の管路34には、ガス生成装置Gの外部に設けられて水(H2O )を貯える水槽43が接続されており、ポンプ44によりH2O がこの第2の管路34を介して予備反応槽30に送られる。第3の管路35は、外部に接続されており、予備反応槽30で発生したガス(ここでは、O2ガス )をポンプ46により外部に排出する。
【0069】
第4の管路36および第5の管路37は、反応槽50に接続されており、両管36,37にそれぞれ設けられたポンプ48,49により予備反応槽30中の溶液(HIの溶解したH2O )を反応槽50との間で循環させる。
【0070】
また、予備反応槽30の容器32には、羽根車38(図6)が設けられており、この羽根車38により容器32内の溶液を攪拌している。容器32の外周には、発熱手段としての冷却プレート39a,39bが配設されている。冷却プレート39a,39bは、内部に冷却水流路を備えており、外部から供給される冷却水が循環する構成となっている。
【0071】
図7は、反応槽50の内部を示す概略構成図である。この図7と図5に示すように、反応槽50は、予備反応槽30と同様に蓋51を有する容器52を備えたものであり、この蓋51には、予備反応槽30に接続される第4の管路36が容器52内の液面より上方まで差し込まれている。また、蓋51には、その差し込み位置が容器52内の液面より上方に位置する第6の管路54が接続されている。さらに、容器52の下方には予備反応槽30に接続される上記第5の管路37が接続されている。
【0072】
上記第6の管路54は、水素ガス精製器60に接続されており、反応槽50で発生したガス(ここでは、H2とI2の混合ガス)をポンプ62により水素ガス精製器60に送る。
【0073】
また、反応槽50には、活性炭、特に活性炭の表面をアルカリ、例えばKOH(水酸化カリウム)やNaOH(水酸化ナトリウム)などのアルカリ溶液で処理し、活性炭表面に塩基性表面官能基を付与したものを用いることが望ましい。この活性炭は、反応槽50内に供給されたハロゲン化水素酸の熱分解を促進する触媒の働きをするものである。なお、この活性炭に加え、還元剤の役目を果たす、酸化コバルト(CoO)、酸化スズ(SnO)、酸化タングステン(WO2 )、酸化鉛(Pb23)、酸化白金(PtO)、チタン等を加えるのも好適である。
【0074】
また、反応槽50の容器52には、羽根車58(図7)が設けられており、この羽根車58により容器52内の溶液を攪拌している。容器52の外周には、冷却プレート59a,59bが配設されている。冷却プレート59a,59bは、内部に冷却水流路を備えており、外部から供給される冷却水が循環する構成となっている。なお、この冷却プレート59a,59bと前述した予備反応槽30側の冷却プレート39a、39bとは連結されており、その上で、冷却水循環路5を介して燃料電池スタックFC内の冷却プレート22,23に接続されている。燃料電池スタックFCの運転に伴い発生する熱は、りん酸型のものでは170〜220℃近くになるが、上記構成により、この熱は冷却水循環路5を介して予備反応槽30に伝達されることになる。
【0075】
冷却水循環路5を流れる冷却水は、一般的な水ではあるが、りん酸型燃料電池の運転温度は前述したように100℃以上となることから、沸騰しないように循環ポンプ90により加圧されつつ循環される。冷却水としては、燃料電池スタックFCの運転温度よりも沸点の高い液体状の熱媒体、例えばシリコンオイルを用いる構成としてもよい。
【0076】
水素ガス精製器60は、反応槽50から送られてきたH2とI2の混合ガスからH2 ガスを精製するもので、具体的には、水素を選択的に透過するろ過膜を備える水素ろ過器から構成される。ここで上記ろ過膜は、多孔質性のセラミックスまたは金属の表面に、緻密なパラジウムの膜をメッキや蒸着、スパッタリングなどの物理的または化学的な方法で形成したもので、このパラジウム膜の両側の圧力差を一定以上に保つことにより、パラジウム膜の内部を水素のみが選択的に透過するようにしたものである。
【0077】
なお、図6および図7に示すように、第1ないし第6の管路33〜37,54には、各反応槽30,50への接続口付近に設けられるバルブ71〜78を備えており、任意の時期に各管路33〜37,54の開閉が可能である。
【0078】
以上のように構成されたガス生成装置Gの作用について次に説明する。ハロゲン槽41から第1の管路33を介してI2 が、水槽43から第2の管路34を介してH2O がそれぞれ予備反応槽30に供給され、その上で、燃料電池スタックFCからの熱で予備反応槽30が60℃以上好ましくは80℃以上に加熱されると、予備反応槽30では次式(4)で示す反応が発生する。
2O + I2 → 2HI + (1/2)O2 …(4)
【0079】
(4)式の反応で発生したO2 ガスは第3の管路35を介して外部に排出される。一方、(4)式の反応で発生する2HIは過剰のH2Oの存在下でH2Oに溶けた状態で、第4の管路36を介して反応槽50に送られる。そして、燃料電池スタックFCからの熱で反応槽50が加熱されると、次式(5)で示す反応が発生する。
2HI → H2 + I2 …(5)
【0080】
(5)式で示す反応は、活性炭を用いた熱分解反応であり、80℃以上好ましくは140℃以上程度の低温で熱分解が可能となる。(5)式の反応で発生するH2 とI2 の混合ガスは管路54を介して水素ガス精製器60に送られ、ここでH2 ガスに精製される。なお、第4の管路36から供給されたHIの溶液は(5)式の反応で薄くなることから、この薄くなった溶液を第5の管路37から予備反応槽30に送ることにより、HIの溶液を予備反応槽30と反応槽50との間で循環させて反応槽50中のHIの濃度を濃い状態に保っている。
【0081】
燃料ガス供給通路3は、ガス生成装置Gの排出側と燃料電池スタックFCの水素ガス流路14Pとを接続する管路である。詳細には、燃料電池スタックFCに備えられる複数の水素ガス流路14Pの流入側は図示しないマニホールドでまとめられており、このマニホールドとガス生成装置Gの水素ガス精製器60の排出口との間に燃料ガス供給通路3は接続されている。
【0082】
以上詳述したように、この第1実施例の燃料電池発電システム1では、ガス生成装置Gで熱分解反応により水から水素ガスを生成し、この水素ガスを燃料ガスとして燃料電池スタックFCに供給するように構成されている。熱分解反応によれば原理的に水素と酸素のみが発生して、一酸化炭素やメタノールといった電池機能低下の一因となる副生成物を生成しないので、燃料電池の触媒被毒、酸素電極の電位低下等の問題を解消することができる。また、副生成物を生成しないので、燃料電池スタックFCでの水素ガスの利用率を100[%]とすることができ、エネルギ効率を高めることができる。
【0083】
また、この第1実施例によれば、冷却水を冷却水循環路5を介して燃料電池スタックFCとガス生成装置Gとの間で循環させていることから、りん酸型燃料電池の高熱の排熱によりガス生成装置Gの予備反応槽30および反応槽50を加熱することができる。このため、両反応槽30,50を加熱するためのヒータ等の加熱手段を別途設ける必要がないことから、ガス生成装置Gの構成を簡略化することができる。また、燃料電池スタックFCの排熱をガス生成装置Gで利用することができることから、燃料電池発電システム1の全体のエネルギ効率を高めることもできる。さらには、燃料電池の発電量に応じて燃料電池の発生熱量が変化することから、燃料電池の発電量に応じてガス生成装置Gのガス生成量を自律的にフィードバック制御することができ、制御が容易である。
【0084】
なお、第1実施例の燃料電池発電システム1において、冷却水循環路5の途中には、図示はしないがラジエータを設ける構成としてもよい。この構成によれば、冷却水の温度を調整することができることから、燃料電池スタックFC内の温度を容易に制御することが可能となる。
【0085】
また、上記燃料電池発電システム1において、りん酸型の燃料電池に換えて、固体酸化物型燃料電池、溶融炭酸塩型燃料電池、直接メタノール型燃料電池等を用いる構成としてもよい。要は、この燃料電池発電システム1では、運転温度がガス生成装置Gの加熱温度よりも高くなるような上述した燃料電池を使用することができる
【0086】
なお、上記第1実施例では、燃料電池スタックFCの冷却水を、ガス生成装置Gの予備反応槽30および反応槽50の周囲に配送するように構成されていたが、これに加えて、図8に示すように、ハロゲン槽41および水槽43の周囲にも冷却水系統に接続される冷却プレート92を設けて、ハロゲン槽41および水槽43の周囲に冷却水を配送する構成としてもよい。この構成によれば、燃料電池にて発生する熱にてガス生成装置の予備反応槽30および反応槽50に加えてハロゲン槽41および水槽43も加熱されることから、熱分解反応の材料の加熱がなされる。この結果、ハロゲン槽41、水槽43を予備加熱するための電気ヒータ等の特別な加熱手段を設けることなしに、熱分解反応の促進を図ることができる。従って、システム全体の構成を簡略化することができるとともに、加熱手段用のエネルギが不要であることから、エネルギー効率を高めることもできる。
【0087】
また、上記構成では、ガス生成装置G、ハロゲン槽41および水槽43の全てを冷却水の熱にて加熱していたが、ガス生成装置Gに加えて、ハロゲン槽41または水槽43のいずれか一方を加熱する構成としてもよい。あるいは、ガス生成装置Gを除いたハロゲン槽41または水槽43のいずれか一方を加熱する構成としてもよい。
【0088】
なお、上記第1実施例では、燃料電池スタックFCの冷却水をガス生成装置Gに送ることで、燃料電池の高熱の排熱によりガス生成装置Gの予備反応槽30および反応槽50を加熱していたが、これに換えて、ガス生成装置Gをバーナ等の他の加熱手段で加熱するように構成してもよい。この構成によれば、第1実施例に比べて加熱手段が別途必要ではあるが、第1実施例と同様に、熱分解反応にて水から水素を生成していることから、水素と酸素以外の副生成物を生成することがない。このため、燃料電池スタックFCでの水素ガスの利用率を100[%]とすることができ、エネルギ効率を高めることができる。
【0089】
本発明の第2実施例について次に説明する。図9は、本発明の第2実施例としての燃料電池発電システム120の概略構成を示すブロック図である。図示するように、この燃料電池発電システム120は、第1実施例の燃料電池発電システム1と比較して、燃料電池スタックFC2と冷却水循環路125との構成が相違し、その他の構成、即ち、ガス生成装置Gの構成と燃料ガス供給通路3の構成とが同一の構成である。
【0090】
この第2実施例の燃料電池スタックFC2は、固体高分子型の燃料電池スタックである。固体高分子型の燃料電池スタックFC2は、電解質として高分子材料、例えばフッ素系樹脂により形成されたイオン交換膜を使用しており、その他の構成は第1実施例で示したりん酸型のものとほぼ同じである。なお、固体高分子型の燃料電池は、約80℃の運転温度で運転される。
【0091】
冷却水循環路125は、燃料電池スタックFC2の冷却水流路に接続される第1の循環路125aと、ガス生成装置Gの予備反応槽30および反応槽50周辺に配設された冷却プレート39a,39b,59a,59bに接続される第2の循環路125bとから構成され、第1の循環路125aと第2の循環路125bとの間に、ヒートポンプ129が配設されている。ヒートポンプ129は、低温側から高温側への熱の伝達を可能とする周知のものであり、燃料電池スタックFC2の運転に伴い発生する熱を、ガス生成装置Gの運転温度よりも高い温度に昇温している。
【0092】
即ち、この第2実施例の燃料電池発電システム120では、燃料電池スタックFC2が固体高分子型のもので、運転温度が低いことから、冷却水の熱をヒートポンプ129により一旦昇温させてから、ガス生成装置Gの予備反応槽30および反応槽50に送っている。従って、この第2実施例の燃料電池発電システム120では、第1実施例と同様に、燃料電池スタックFC2の排熱をガス生成装置Gの反応槽30,50の加熱に利用することができることから、燃料電池発電システム120の全体のエネルギ効率を高めることができる。なお、この実施例では、ガス生成装置Gの反応槽30、50の加熱のためにヒートポンプ129を設けているが、これは、冷却水を補助的に加熱するものであることから、ヒートポンプ129の加熱能力はそれほど高くする必要がなく、コンパクトなもので十分である。従って、第1実施例と同様に、ガス生成装置の構成の簡略化を図る効果も奏する。
【0093】
こうした構成の燃料電池発電システム120は、運転温度がガス生成装置Gの反応槽30,50の加熱温度よりも低い燃料電池を用いた構成に適用することができる。即ち、固体高分子型の燃料電池に換えて、アルカリ型燃料電池やフッ素系イオン交換膜を用いた再生式燃料電池等を用いる構成としてもよい。
【0094】
本発明の第3実施例について次に説明する。図10は、本発明の第3実施例としての燃料電池発電システム130の概略構成を示すブロック図である。図示するように、この燃料電池発電システム130は、第1実施例の燃料電池発電システム1と比較して、冷却水循環路105の周辺の構成が相違するだけで、その他の構成については同一のものである。
【0095】
冷却水循環路105には、循環する冷却水を分配する分配器132と、分配器132で分配された冷却水を冷却水循環路105に戻す管路134と、該管路134に配設されるラジエータ136とを備える。分配器132による冷却水の分配量は、燃料電池スタックFCの発熱量のうちのどれだけの割合をガス生成装置Gへ供給すれば、ガス生成装置Gの加熱を適正に行なうことができるかを予め調べて、その割合に応じて一定の値に定められている。
【0096】
かかる構成の燃料電池発電システム130では、ガス生成装置Gに与えられる熱量は、分配器132により適正に調整される。このため、燃料電池スタックFCの必要とする水素ガスを、ガス生成装置Gにより適量だけ発生させることができる。
【0097】
本発明の第4実施例について次に説明する。図11は、本発明の第4実施例としての燃料電池発電システム140の概略構成を示すブロック図である。図示するように、この燃料電池発電システム140は、ガス生成装置Gと、燃料電池スタックFCと、両者を結ぶ燃料ガス供給通路3とを備える。ガス生成装置G、燃料電池スタックFCおよび燃料ガス供給通路3は、第1実施例と同一のものであり、第1実施例と同じ番号を付けた。なお、第1実施例にあった冷却水循環路5はこの実施例にはない。図11中、燃料電池スタックFCの冷却水経路については省略してあるが、実際は、燃料電池スタックFCの冷却水流路に接続される循環路を備えており、この循環路途中に設けたラジエータで冷却水を冷やしつつその冷却水を燃料電池スタックFCの周辺に循環させている。
【0098】
なお、燃料電池スタックFCに備えられる複数の水素ガス流路14Pの排出側は図示しないマニホールドでまとめられており、このマニホールドは燃料ガス排出通路142に接続されているが、この第4実施例では、この燃料ガス排出通路の途中(できるだけ上流側)に背圧調整バルブ144が設けられている。
【0099】
背圧調整バルブ144は、通常、閉状態にあり、燃料ガス排出通路142を閉塞している。燃料ガス排出通路142の配管内部の圧力が所定値以上の値になると、開状態となり、燃料ガスが放出されて、配管内部の圧力を前記所定値に戻す。この背圧調整バルブ144を用いることにより、燃料電池スタックFCの出力の停止に伴って燃料ガス排出通路内の圧力が急激に上昇することを防止することができる。
【0100】
通常、負荷が増大し、燃料電池スタックFCの出力が増大すると、この時、燃料電池スタックFCでは発電のためにより多くの水素ガスが必要となる。これに対して、この第4実施例の燃料電池発電システム140では、燃料電池スタックFCの燃料ガス排出通路142は背圧調整バルブ144で閉じられていることから、出力が増大すると、ガス生成装置Gから水素ガス流路14Pの排出口までの間の通路内の水素ガスが消費されて、そのガス圧力が低下し、この結果、ガス生成装置Gの予備反応槽30および反応槽50から発生するガス量は増大する。従って、負荷増大時に、燃料電池スタックFCでの水素ガスの消費量が増大すると、その増大分だけ、ガス生成装置Gでは自律的にガス発生量をフィードバック制御する。
【0101】
一方、負荷が減少し、燃料電池スタックFCの出力が減少すると、この時、燃料電池スタックFCでは必要な水素ガス量が減少する。これに対して、燃料電池スタックFCの燃料ガス排出通路142は背圧調整バルブ144で閉じられていることから、出力が低下すると、ガス生成装置Gから水素ガス流路14Pの排出口までの間の通路内の水素ガスは十分に消費されず、そのガス圧力が上昇し、ガス生成装置Gの予備反応槽30および反応槽50から発生するガス量は減少する。従って、負荷減少時に、燃料電池スタックFCでの水素ガスの消費量が減少すると、その減少分、ガス生成装置Gでは自律的にガス発生量をフィードバック制御する。
【0102】
従って、この燃料電池発電システム140では、燃料電池スタックFCにおけるガスの使用量に応じてガス生成装置Gのガス発生量が自律的に調整される。このため、燃料電池スタックFCの運転状態に応じた適正な量の燃料ガスをガス生成装置Gにおいて生成することができる。しかも、この燃料電池発電システム140は、電子技術を使った強制的なガス発生量の調整装置を備えるものではないことから、簡略化された構成で燃料電池発電システムを実現することができる。
【0103】
なお、この第4実施例において、背圧調整バルブ144に換えて、単なる開閉バルブを用いる構成としてもよい。燃料電池スタックFCの運転時には、この開閉バルブを閉状態とすることで、ガス生成装置Gから水素ガス流路14Pの排出口までの間の配管内の圧力を一定とする。かかる構成によっても、第4実施例と同様の効果を奏することができる。
【0104】
また、第4実施例において、第1実施例と同じ冷却水循環路を設ける構成としてもよい。この構成によれば、燃料電池の排熱によりガス生成装置Gの予備反応槽および反応槽を加熱することができ、第1実施例と同様にエネルギ効率を高めることができる。
【0105】
本発明の第5実施例について次に説明する。図12は、本発明の第5実施例としての燃料電池発電システム150の概略構成を示すブロック図である。図示するように、この燃料電池発電システム150は、第2実施例の燃料電池発電システム120と同様に、ガス生成装置G、燃料電池スタックFC2、燃料ガス供給通路3、冷却水循環路125およびヒートポンプ129を備える。さらに、燃料電池発電システム150は、冷却水循環路125に接続されてヒートポンプ129を迂回する迂回路156を備え、この迂回路156と冷却水循環路125との交点にそれぞれ流路切換バルブ151ないし154を備える。なお、迂回路156の途中には循環ポンプ157が設けられている。
【0106】
流路切換バルブ151ないし154は、冷却水の流路をヒートポンプ129を通過する冷却水循環路125と迂回路156との間で切り換えるもので、電子制御ユニット158からの制御信号を受けて、冷却水を冷却水循環路125側に流す第1ポジションと迂回路156側に流す第2ポジションとに切り換わる。
【0107】
電子制御ユニット158は、マイクロコンピュータを中心とした論理回路として構成され、周知のCPU,ROM,RAM,入出力回路等を備える。この電子制御ユニット158によれば、燃料電池スタックFC2が運転状態にあるか停止状態にあるかの違いにより、各流路切換バルブ151ないし154の切換ポジションを変更することで、冷却水の流路をヒートポンプ129を流れる方向かヒートポンプ129を迂回する方向かを切り換えている。
【0108】
上記電子制御ユニット158のCPUで実行される冷却水流路切換の制御処理について図13のフローチャートを用いて以下詳細に説明する。
【0109】
図13に示すように、電子制御ユニット158のCPUは、処理が開始されると、まず、燃料電池スタックFC2が運転状態にあるか停止状態にあるかの判別を行なう(ステップS151)。この判別は、例えば、図示しない燃料電池起動スイッチからの信号に基づいてなされる。ステップS151で燃料電池スタックFCが運転状態にあると判別されると、各流路切換バルブ151ないし154を第1ポジションにそれぞれ切り換えることで、冷却水をヒートポンプ129側に流す(ステップS152)。一方、ステップS151で燃料電池スタックFCが停止状態にあると判別されると、各流路切換バルブ151ないし154を第2ポジションにそれぞれ切り換えることで、冷却水を迂回路156側に流す(ステップS153)。
【0110】
ステップS152またはS153の実行後、「リターン」に抜けてこの処理を一旦終了する。
【0111】
かかる構成の第5実施例の燃料電池発電システム150によれば、燃料電池スタックFC2の運転時に、燃料電池スタックFC2の冷却水をヒートポンプ129で一旦昇温させてからガス生成装置Gに伝え、一方、燃料電池スタックFC2の停止時には、燃料電池スタックFC2の冷却水をヒートポンプ129で昇温させることなしにそのまま伝える。このため、燃料電池スタックFC2の停止時には、ヒートポンプ129で昇温されていない低温の冷却水がガス生成装置Gに直接供給されることから、ガス生成装置Gの反応槽30,50が冷却され、反応槽30,50での反応ガスの生成が速やかに停止される。従って、燃料電池スタックFC2の停止時にガス発生を速やかに停止することができる。
【0112】
なお、上記第5実施例では、燃料電池スタックFCの停止状態のときの冷却水の流路を、燃料電池スタックFC2から迂回路156を介してガス生成装置Gに循環させる構成としたが、これに換えて、図14に示すように、迂回路156をガス生成装置Gに加えてハロゲン槽41および水槽43内に設けた管路41a,43aに接続して、冷却水をハロゲン槽41および水槽43周辺にも循環させる構成としてもよい。なお、図14においては、第5実施例と同一の部分には同一の番号をつけており、図中、黒丸で示す流路切換バルブ151ないし154は、第5実施例と同様に、冷却水の流路をヒートポンプ129を通過する冷却水循環路125と迂回路156との間で切り換えるものである。
【0113】
この構成によれば、燃料電池スタックFC2の停止時には、ヒートポンプ129で昇温されていない低温の冷却水が、ガス生成装置Gに加えてハロゲン槽41および水槽43にも送られることから、熱分解反応の材料である水およびハロゲンが冷却され、反応槽30,50での発生がより一層速やかに停止される。従って、燃料電池スタックFC2の停止時にガス発生をより一層速やかに停止することができる。
【0114】
なお、上記構成では、ガス生成装置G、ハロゲン槽41および水槽43の全てに冷却水を送る構成としたが、ガス生成装置Gに加えて、ハロゲン槽41および水槽43のいずれか一方に冷却水を送る構成としてもよい。
【0115】
また、上記第5実施例では、燃料電池スタックFC2の運転時に、燃料電池スタックFC2の冷却水をヒートポンプ129で昇温させてからガス生成装置Gに伝える構成としていたが、必ずしも燃料電池スタックFC2の排熱を利用してガス生成装置Gを加熱する構成とする必要はない。即ち、ガス生成装置Gは、燃料電池スタックの排熱ではなく電気ヒータ等の別の加熱手段で加熱される構成とし、燃料電池スタックFC2の停止時に限って、燃料電池スタックFC2の冷却水をガス生成装置Gに送る構成としてもよい。この構成によっても、燃料電池スタックFC2の停止時に加熱手段を速やかに停止することができる。なお、このときも、燃料電池スタックFC2の冷却水はガス生成装置Gだけではなく、ハロゲン槽41や水槽43に送る構成としてもよい。
【0116】
本発明の第6実施例について次に説明する。図15は、本発明の第6実施例としての燃料電池発電システム160の概略構成を示すブロック図である。図示するように、この燃料電池発電システム160は、ガス生成装置G2、燃料電池スタックFC、燃料ガス供給通路3、冷却水循環路5および酸素ガス供給通路164を備える。燃料電池スタックFC、燃料ガス供給通路3および冷却水循環路5については、第1実施例と同一のものであり、第1実施例と同じ番号を付けた。第1実施例と相違する点は、ガス生成装置G2に第1実施例のガス生成装置Gと比べて多少の構成の追加があったことと、ガス生成装置G2で製造された酸素ガスを燃料電池スタックFCに送る酸素ガス供給通路164を備える点にある。
【0117】
図16は、この第6実施例のガス生成装置G2の概略構成図である。この図に示すように、ガス生成装置G2は、第1実施例のガス生成装置Gと同一の構成を備え(同一の部分には第1実施例と同じ番号を付けた)、さらに、第3の管路35の出口付近に酸素ガス精製器169を備える。
【0118】
酸素ガス精製器169は、第3の管路35を介して反応槽50から送られてきたガスからO2 ガスを精製するもので、具体的には、酸素を選択的に透過するろ過膜を備える酸素ろ過器から構成される。なお、第3の管路35を介して予備反応槽30から送られてくるガスは、原理的には、O2 に限られるが、実際は、ハロゲンあるいはハロゲン化水素酸等の混入があり、酸素ガス精製器169は02 だけを厳密に選択する。
【0119】
従って、この構成の燃料電池発電システム160では、ガス生成装置G2で得られる水素に加えて、ガス生成装置Gの予備反応槽30で得られる酸素も燃料電池スタックFCに供給されることから、システム全体のエネルギ効率をより一層高めることができる。
【0120】
本発明の第7実施例について次に説明する。図17は、本発明の第7実施例としての燃料電池発電システム170の概略構成を示すブロック図である。図示するように、この燃料電池発電システム170は、第6実施例と同一の、ガス生成装置G2、燃料電池スタックFC、燃料ガス供給通路3、酸素ガス供給通路164および冷却水循環路(図示せず)を備える。さらに、燃料電池スタックFCのカソード13側のセパレータ15に形成される酸素ガス流路15Pの出口側には、凝縮器172が設けられている。
【0121】
凝縮器172は、水蒸気を凝縮して水を生成するもので、発電に伴い燃料電池のカソードで発生する水蒸気が水として回収される。凝縮器172の出力側は、ガス生成装置G2に水を供給する水槽43(第1実施例と同じもの)と送水通路174を介して接続されており、凝縮器172で生成された水が水槽43に送られる。このため、ガス生成装置G2側からみれば、熱分解反応に使用される材料が燃料電池の運転に伴って順次補給されることから、水を貯える水槽が小型で済み、また、水の貯留量も少なくて済む。また、燃料電池スタックFCからみれば、カソード側残ガスをそのまま排出すると、大気に放出された残ガスが白煙を上げることになるが、そうした現象を防止することができる。
【0122】
本発明の第8実施例について次に説明する。図18は、本発明の第8実施例としての燃料電池発電システム180の概略構成を示すブロック図である。図示するように、この燃料電池発電システム180は、第6実施例と同一の、ガス生成装置G2、燃料電池スタックFC、燃料ガス供給通路3、酸素ガス供給通路164および冷却水循環路(図示せず)を備える。さらに、燃料電池スタックFCのアノードの水素ガス流路の出口側には水素ガス排出路182が設けられ、カソード13の酸素ガス流路15Pの出口側には酸素ガス排出路184が設けられ、両排出路182,184から燃料電池での残余分のガスを排出している。各水素ガス排出路182および酸素ガス排出路184には、第1および第2圧力センサ182a,184aと、第1および第2背圧調整弁182b,184bとがそれぞれ設けられている。
【0123】
第1および第2圧力センサ182a,184aは、アノード12側およびカソード13側のガス出口付近に設けられ、電子制御ユニット186と電気的に接続されている。第1および第2背圧調整弁182b,184bは、管路の開度を調整するもので、同じく電子制御ユニット186と電気的に接続され、電子制御ユニット186からの制御信号を受けてその開度を変える。電子制御ユニット186は、マイクロコンピュータを中心とした論理回路として構成され、周知のCPU,ROM,RAM,入出力回路等を備える。この電子制御ユニット186によれば、背圧調整弁182b,184bの開度を制御することにより、水素ガス排出路182中のガス圧と酸素ガス排出路184中のガス圧との圧力差を、常に一定の範囲に収めている。
【0124】
上記電子制御ユニット186のCPUで実行される背圧調整弁の制御処理について図19のフローチャートを用いて以下詳細に説明する。この背圧調整弁制御処理ルーチンは、電子制御ユニット186のCPUにより所定時間毎に繰り返し実行されるものである。
【0125】
図19に示すように、電子制御ユニット186のCPUは、処理が開始されると、まず、第1圧力センサ182aおよび第2圧力センサ184aから検出値P1,P2を読み込む処理を行なう(ステップS190)。次いで、第1圧力センサ182aの検出値P1から第2圧力センサ184aの検出値P2を減算して、その減算結果を圧力差△Pとして記憶する(ステップS191)。続いて、その圧力差△Pが予め定めた所定値dPに微小値αを加えた値より大きいか否かを判定する(ステップS192)。
【0126】
ステップS192で、肯定判定、即ち、△PがdP+αより大きいと判定されたときには、水素ガス排出路182のガス圧が酸素ガス排出路184のガス圧に比べて大きくなり過ぎていることから、第1背圧調整弁182bの開度V1を所定値v0だけ増大側に調整して(ステップS193)、水素ガス供給系統の圧力を下げるとともに、第2背圧調整弁184bの開度V2を所定値v0だけ縮小側に調整して(ステップS194)、水素ガス供給系統の圧力を上げる。
【0127】
一方、ステップS192で否定判定されたときには、ステップS195に進む。ステップS195では、ステップS191で求めた圧力差△Pが所定値dPから微小値αを減算した値より小さいか否かを判定する。
【0128】
ステップS195で、肯定判定、即ち、△PがdP−αより小さいと判定されたときには、酸素ガス排出路184のガス圧が水素ガス排出路182のガス圧に比べて大きくなり過ぎていることから、第1背圧調整弁182bの開度V1を所定値v0だけ縮小側に調整して(ステップS196)、水素ガス供給系統の圧力を上げるとともに、第2背圧調整弁184bの開度V2を所定値v0だけ増大側に調整して(ステップS197)、水素ガス供給系統の圧力を下げる。
【0129】
ステップS194またはステップS197の実行後、「リターン」に抜けてこの処理を一旦終了する。一方、ステップS195で否定判定されたときには、圧力差△Pが予め定めた所定値dPを中心とした所定の範囲の中に収まることから、第1および第2背圧調整弁182b,184bの開度変更は不要であるあるとして、「リターン」に抜けてこの処理を一旦終了する。
【0130】
こうした構成の電子制御ユニット186により実行される背圧調整弁の制御により、酸素ガス排出路184のガス圧P1と水素ガス排出路182のガス圧P2との圧力差△Pは常に一定の範囲(dP−α)〜(dP+α)に収まるように制御される。なお、この実施例では、この一定の範囲(dP−α)〜(dP+α)は、ガス生成装置G2から燃料電池スタックFCまでの水素ガス系統と酸素ガス系統とにおいてガスの流量の両者の比率が、燃料電池スタックFCで消費する水素と酸素との比率に一致するように定めた値で、予め実験的に求めた値である。
【0131】
従って、この第8実施例の燃料電池発電システム180では、上述したように酸素ガス排出路184のガス圧P1と水素ガス排出路182のガス圧P2との圧力差△Pは常に上記一定の範囲に収められることから、燃料ガス、酸素ガスの両方の系統のガス流量が調整されて、ガス生成装置Gから生成した水素、酸素の各々を過不足なく燃料電池スタックFCで消費させることができる。従って、装置全体のエネルギー効率を高めることができる。また、水素と酸素のガス系統間に一定以上の圧力差が生じないので、燃料電池発電システムの安全性を高めることができる。
【0132】
本発明の第9実施例について次に説明する。図20は、本発明の第9実施例としての燃料電池発電システム200の概略構成を示すブロック図である。図示するように、この燃料電池発電システム200は、第1実施例と同一の、ガス生成装置G、燃料電池スタックFC、燃料ガス供給通路3および冷却水循環路(図示せず)を備える。さらに、燃料電池スタックFCのアノードの水素ガス流路の出口側には水素ガス排出路202が設けられ、この水素ガス排出路202から燃料電池での残余分の水素ガスを排出している。水素ガス排出路202には、背圧調整弁204が設けられている。
【0133】
また、ガス生成装置Gの水素ガス精製器60の上流には第1圧力センサ206aが、水素ガス精製器60の下流には第2圧力センサ206bが設けられている。両圧力センサ206a,206bは、電子制御ユニット208と電気的に接続されている。背圧調整弁204は、管路の開度を調整するもので、同じく電子制御ユニット208と電気的に接続され、電子制御ユニット208からの制御信号を受けてその開度を変える。電子制御ユニット208は、マイクロコンピュータを中心とした論理回路として構成され、周知のCPU,ROM,RAM,入出力回路等を備える。この電子制御ユニット208によれば、背圧調整弁204の開度を制御することにより、水素ガス精製器60のガス入口側の圧力とガス出口側の圧力との圧力差を、常に所定の範囲内に収めている。
【0134】
上記電子制御ユニット208のCPUで実行される背圧調整弁の制御処理について図21のフローチャートを用いて以下詳細に説明する。この背圧調整弁制御処理ルーチンは、電子制御ユニット208のCPUにより所定時間毎に繰り返し実行されるものである。
【0135】
図21に示すように、電子制御ユニット208のCPUは、処理が開始されると、まず、第1圧力センサ206aおよび第2圧力センサ206bから検出値P1,P2を読み込む処理を行なう(ステップS210)。次いで、第1圧力センサ206aの検出値P1から第2圧力センサ206bの検出値P2を減算して、その減算結果を圧力差△Pとして記憶する(ステップS211)。続いて、その圧力差△Pが予め定めた所定値dP2に微小値βを加えた値より大きいか否かを判定する(ステップS212)。
【0136】
ステップS212で、肯定判定、即ち、△PがdP2+βより大きいと判定されたときには、水素ガス精製器60のガス入口側の圧力が水素ガス精製器60のガス出口側の圧力に比べて大きくなり過ぎていることから、背圧調整弁204の開度Vを所定値v1だけ縮小側に調整して(ステップS213)、水素ガス精製器60のガス出口側の圧力を上げる。
【0137】
一方、ステップS212で否定判定されたときには、ステップS214に進む。ステップS214では、ステップS211で求めた圧力差△Pが所定値dP2から微小値βを減算した値より小さいか否かを判定する。
【0138】
ステップS214で、肯定判定、即ち、△PがdP2−βより小さいと判定されたときには、水素ガス精製器60のガス出口側の圧力が水素ガス精製器60のガス入口側の圧力に比べて大きくなり過ぎていることから、背圧調整弁204の開度Vを所定値v1だけ増大側に調整して(ステップS213)、水素ガス精製器60のガス出口側の圧力を下げる。
【0139】
ステップS213またはステップS215の実行後、「リターン」に抜けてこの処理を一旦終了する。一方、ステップS214で否定判定されたときには、圧力差△Pが予め定めた所定値dP2を中心とした所定の範囲の中に収まることから、背圧調整弁204の開度変更は不要であるあるとして、「リターン」に抜けてこの処理を一旦終了する。
【0140】
こうした構成の電子制御ユニット208により実行される背圧調整弁の制御により、水素ガス精製器60のガス入口側の圧力P1とガス出口側の圧力P1との圧力差△Pは常に一定の範囲(dP2−β)〜(dP2+β)に収まるように制御される。なお、この実施例では、この一定の範囲(dP2−β)〜(dP2+β)は、水素ガス精製器60を構成する水素ろ過膜が安定した水素生成量を保つために必要な圧力差で、予め実験的に求めた値である。
【0141】
従って、この第9実施例の燃料電池発電システム200では、上述したように水素ガス精製器60のガス入口側の圧力P1とガス出口側の圧力P1との圧力差△Pが常に上記一定の範囲に収められることから、水素ガス精製器60から常に、所望の量の水素を連続かつ安定して精製することができる。
【0142】
本発明の第10実施例について次に説明する。図22は、本発明の第10実施例としての燃料電池発電システム220の概略構成を示すブロック図である。図示するように、この燃料電池発電システム220は、第9実施例の水素ガス系統に関連する構成を、酸素ガス系統にも設けたものである。図示するように、この燃料電池発電システム220は、第6実施例と同一の、ガス生成装置G2、燃料電池スタックFC、燃料ガス供給通路3、酸素ガス供給通路164および冷却水循環路(図示せず)を備える。さらに、燃料電池スタックFCのアノードの水素ガス流路の出口側には水素ガス排出路222が設けられ、カソード13の酸素ガス流路15Pの出口側には酸素ガス排出路223が設けられ、両排出路182,184から燃料電池での残余分のガスを排出している。各水素ガス排出路222および酸素ガス排出路223には、第1および第2背圧調整弁224,225が設けられている。
【0143】
また、ガス生成装置G2の水素ガス精製器60の上流には第1圧力センサ227aが、水素ガス精製器60の下流には第2圧力センサ227bが設けられている。一方、ガス生成装置G2の酸素ガス精製器169の上流には第3圧力センサ228aが、酸素ガス精製器169の下流には第4圧力センサ228bが設けられている。これら第1ないし第4圧力センサ227a,227b,228a,228bは、電子制御ユニット229と電気的に接続されている。
【0144】
第1および第2背圧調整弁224,225は、管路の開度を調整するもので、同じく電子制御ユニット229と電気的に接続され、電子制御ユニット229からの制御信号を受けてその開度を変える。電子制御ユニット229は、マイクロコンピュータを中心とした論理回路として構成され、周知のCPU,ROM,RAM,入出力回路等を備える。この電子制御ユニット229によれば、第9実施例と同様の制御により、第1背圧調整弁224の開度を制御することにより、水素ガス精製器60のガス入口側の圧力とガス出口側の圧力との圧力差を、常に所定の範囲内に収めている。また、第9実施例で示した同様な制御により、第2背圧調整弁225の開度を制御することにより、酸素ガス精製器169のガス入口側の圧力とガス出口側の圧力との圧力差を、常に所定の範囲内に収めている。
【0145】
即ち、この第10実施例では、水素ガス系統と酸素ガス系統とをそれぞれ独立に、ガス精製器60,169のガス入口側の圧力とガス出口側の圧力との圧力差を、常に所定の範囲内に収めることができる。従って、水素ガス精製器60から常に、所望の量の水素を連続かつ安定して精製することができ、また、酸素ガス精製器169から常に、所望の量の酸素を連続かつ安定して精製することができる。
【0146】
なお、この第10実施例では、電子制御ユニット229で実行される制御処理を次のように変更することもできる。まず、第1圧力センサ227aと第2圧力センサ227bとの検出値から水素ガス精製器60の前後の圧力差△P1を求め、第3圧力センサ228aと第4圧力センサ228bとの検出値から酸素ガス精製器169の前後の圧力差△P2を求める。次いで、圧力差△P1と圧力差△P2との差を△Pとして求める。その後、この△Pの値に基づき、第1および第2背圧調整弁224,225の開度を制御する。この制御の仕方は、第8実施例の図19におけるステップS192以後の制御と同一なものである。
【0147】
かかる構成によれば、第8実施例と同様に、燃料ガス、酸素ガスの両方の系統のガス流量の比率を適切に調整することができ、ガス生成装置Gから生成した水素、酸素の各々を過不足なく燃料電池スタックFCで消費させることができる。
【0148】
本発明の第11実施例について次に説明する。図23は、本発明の第11実施例としての燃料電池発電システム230の概略構成を示すブロック図である。図示するように、この燃料電池発電システム230は、第8実施例(図18参照)と比較して、第1および第2圧力センサ182a,184aを除いて、その代わりに、燃料ガス供給通路3の途中に第1流量センサ232aを、酸素ガス供給通路164の途中に第2流量センサ232bをそれぞれ設けた点が相違し、その他のハードウェア構成については同一である。なお、図23中、第8実施例と同一の部分には同一の番号を付した。
【0149】
第1および第2流量センサ232a,232bは、電子制御ユニット186と電気的に接続されている。この電子制御ユニット186によれば、第1および第2流量センサ232a,232bの検出値に応じて背圧調整弁182b,184bの開度を調節することにより、水素ガス排出路182を通過する水素ガスの流量と酸素ガス排出路184を通過する酸素ガスの流量との流量差を、常に一定の範囲に収めている。
【0150】
電子制御ユニット186のCPUで実行される上記背圧調整弁の制御処理についての詳しい説明はここでは省略するが、要は、第8実施例の図19のフローチャートにおける圧力センサの検出値P1,P2を両流量センサ232a,232bの検出値に置き換えて、両流量センサ232a,232bの検出値の差分を所定値に収める制御を行なう。
【0151】
かかる構成によって、水素ガス精製器60の出口側の流路を通過する水素ガスの流量と酸素ガス精製器169の出口側の流路を通過する酸素ガスの流量との比率を、燃料電池で消費する水素と酸素との比率に一致させることができる。従って、ガス生成装置G2で生成される水素、酸素の各々を過不足なく燃料電池で消費させることができる。従って、燃料電池発電システム全体のエネルギー効率を高めることができる。また、水素と酸素のガス系統間に一定以上の圧力差が生じないので、燃料電池発電システムの安全性を高めることができる。
【0152】
本発明の第12実施例について次に説明する。図24は、本発明の第12実施例としての燃料電池発電システム300の概略構成を示すブロック図である。図示するように、この燃料電池発電システム300は、第1実施例と同一の、ガス生成装置G、燃料電池スタックFCおよび燃料ガス供給通路3を備える。さらに、この燃料電池発電システム300は、ガス生成装置Gを加熱するガスバーナ302を備える。
【0153】
ガスバーナ302は、燃料電池スタックFCのアノードの水素ガス流路の出口側に設けられる水素ガス排出路304と管路306を介して接続されており、水素ガス排出路304から排出される燃料電池での残余分の水素ガスを燃焼する。このガスバーナ302は、詳しくは、ガス生成装置Gの予備反応槽30および反応槽50を加熱する。
【0154】
かかる構成の第12実施例の燃料電池発電システム300では、燃料電池スタックFCからの残余分の水素ガスでガス生成装置Gの反応槽30,50を加熱することができることから、ガスバーナ302の燃料を新たに必要とせず、システム全体のエネルギ効率を高めることができる。さらには、燃料電池スタックFCから排出される残余分の水素ガスは、装置外への排出が難しく、その処分のために特別な装置が必要であったが、この構成によりその処分のための装置が不要となりシステム全体の構成の簡略化を図ることもできる。
【0155】
本発明の第13実施例について次に説明する。図25は、本発明の第13実施例としての燃料電池発電システム310の概略構成を示すブロック図である。図示するように、この燃料電池発電システム310は、第1実施例と同一の、ガス生成装置G、燃料電池スタックFCおよび燃料ガス供給通路3を備える。さらに、燃料ガス供給通路3の途中には切替器312が設けられ、この切替器312には管路314を介して水素貯留タンク315が接続されている。
【0156】
切替器312は、ガスの流路を、ガス生成装置Gから燃料電池スタックFCに向かうA方向、ガス生成装置Gから水素貯留タンク315に向かうB方向、水素貯留タンク315から燃料電池スタックFCに向かうC方向に変えるもので、電子制御ユニット319からの制御信号を受けてその切替えを行なう。なお、図中には、ポンプの記載を省略しているが、上記AないしC方向のガスの流れを可能とするように適宜の位置にポンプが配設されているものとする。
【0157】
電子制御ユニット319のCPUで実行される切替器312の切替処理について、図26に沿って説明する。図26に示す処理は、所定時間毎に繰り返し実行されるものである。図示するように、電子制御ユニット319のCPUは、処理が開始されると、まず、燃料電池スタックFCは、起動、運転あるいは停止のいずれの状態にあるかを外部からのスイッチ等から判別する(ステップS321)。次いで、燃料電池スタックFCが運転状態にあると判別されると、切替器312をA方向のポジションに切り替え(ステップS322)、燃料電池スタックFCが停止状態にあると判別されると、切替器312をB方向のポジションに切り替え(ステップS323)、また、燃料電池スタックFCが起動状態にあると判別されると、切替器312をC方向のポジションに切り替える(ステップS324)。ステップS322、S323またはS324の実行後、「リターン」に抜けてこの処理を一旦終了する。
【0158】
この構成によれば、燃料電池スタックFCが運転状態にあるときには、切替器312がA方向のポジションに切り替えられて、ガス生成装置Gから燃料電池スタックFCに燃料ガスが供給されることになる。そして、燃料電池スタックFCが停止時となると、切替器312がB方向のポジションに切り替えられて、ガス生成装置Gから水素貯留タンク315に燃料ガス、即ち水素ガスが供給される。
【0159】
一般に、システム停止時には、燃料電池スタックFCは直ちに動作を停止できるものの、ガス生成装置Gは直ちに停止できず、しばらくの間、水素ガスを発生し続ける。このため、前述したようにガス生成装置Gから水素貯留タンク315に水素ガスを送るよう切り替えることにより、システム停止後、ガス生成装置Gから発生する水素ガスを有効利用することができる。なお、この実施例の構成に換えて、システム停止時に、燃料電池は直ちに停止させた後も、水素貯留タンク315が満杯になるまでは、ガス生成装置Gを運転し続けるという制御を行なう構成としてもよい。
【0160】
また、この実施例の燃料電池発電システム310では、燃料電池スタックFCが起動時となったときに、切替器312がC方向のポジションに切り替えられて、水素貯留タンク315から燃料電池スタックFCに水素が送られことから、次のような効果を奏する。
【0161】
一般に、燃料電池発電システムの起動時においては、ガス生成装置Gが十分に働くまでタイムラグがあるが、この構成によれば、起動後、燃料電池スタックFCに直ちに燃料を供給することができる。また、通常、燃料電池発電システムの起動時においては、燃料電池が未だ運転されていないことから、その燃料電池の排熱を利用してガス生成装置Gの反応槽30,50を加熱することが不可能である。このため、起動時専用の電気ヒータを設ける必要があるが、これに対して、上記構成の燃料電池発電装置では、起動時においては、水素貯留タンク315から燃料電池スタックFCに水素が送られことから、起動時にはガス生成装置Gの運転が不要となり、前述した起動時専用の電気ヒータを設ける必要がない。この結果、システム全体の構成の簡略化を図ることもできる。
【0162】
なお、通常運転時には、燃料電池スタックFCが運転を開始することから、燃料電池スタックFCの排熱を利用したり(第1実施例の構成)、燃料電池スタックFCからの燃料ガスの残余分を燃焼させて(第12実施例の構成)ガス生成装置Gの反応槽30,50を加熱する構成としてすることもできる。
【0163】
本発明の第14実施例について次に説明する。図27は、本発明の第14実施例としての燃料電池発電システム330の概略構成を示すブロック図である。図示するように、この燃料電池発電システム330は、第13実施例の燃料電池発電システム310と比較して、ガス生成装置Gを加熱するガスバーナ332と、水素貯留タンク315とガスバーナ332を接続する管路334と、管路334を開閉する電磁バルブ336とを備える点が相違し、その他のハードウェア構成は同一である。なお、図中、第13実施例と同一のパーツには同一の番号を付した。
【0164】
ガスバーナ317は、第12実施例と同様に、ガス生成装置Gの予備反応槽30および反応槽50を加熱する。切替器312は、ガスの流路を、ガス生成装置Gから燃料電池スタックFCに向かうA方向と、ガス生成装置Gから水素貯留タンク315に向かうB方向と変えるもので、電子制御ユニット319からの制御信号を受けてその切替えを行なう。さらに、電子制御ユニット319には、電磁バルブ336が電気的に接続されており、電子制御ユニット319からの制御信号を受けて管路334を開閉制御する。
【0165】
電子制御ユニット319のCPUで実行される切替器312の切替処理について、図28に沿って説明する。図28に示す処理は、所定時間毎に繰り返し実行されるものである。図示するように、電子制御ユニット319のCPUは、処理が開始されると、まず、燃料電池スタックFCは、起動、運転あるいは停止のいずれの状態にあるかを外部からのスイッチ等から判別する(ステップS341)。次いで、燃料電池スタックFCが運転状態にあると判別されると、切替器312をA方向のポジションに切り替える(ステップS342)とともに電磁バルブ336を閉状態とする(ステップS343)。一方、ステップS341で燃料電池スタックFCが停止状態にあると判別されると、切替器312をB方向のポジションに切り替える(ステップS344)とともに電磁バルブ336を開状態とする(ステップS345)。他方、ステップS341で燃料電池スタックFCが起動状態にあると判別されると、電磁バルブ336を開状態とする(ステップS346)。ステップS343、S345またはS346の実行後、「リターン」に抜けてこの処理を一旦終了する。
【0166】
即ち、この構成によれば、第13実施例と同様に、燃料電池スタックFCが運転状態にあるときには、切替器312がA方向のポジションに切り替えられて、ガス生成装置Gから燃料電池スタックFCに燃料ガスが供給されることになり、燃料電池スタックFCが停止時となると、切替器312がB方向のポジションに切り替えられて、ガス生成装置Gから水素貯留タンク315に水素ガスが供給される。他方、燃料電池スタックFCの起動時には、電磁バルブ336が開けられて、水素貯留タンク315の水素ガスを利用してガスバーナ317が着火される。
【0167】
一般に、燃料電池発電システムの起動時においては、燃料電池スタックFCの排熱を利用してガス生成装置Gが十分に働くまでタイムラグがあることから、燃料電池スタックFCに直ちに燃料を供給することができないが、この構成によれば、ガスバーナ332で加熱することにより、起動時に直ちにガス生成装置Gの運転を行なうことができる。このため、起動時専用の電気ヒータを設ける必要がなく、システム全体の構成の簡略化を図ることもできる。
【0168】
なお、通常運転時には、燃料電池スタックFCが運転を開始することから、この実施例のように水素貯留タンク315の水素ガスを利用してガスバーナ317を着火させる構成に換えて、燃料電池スタックFCの排熱を利用したり(第1実施例の構成)、燃料電池スタックFCからの燃料ガスの残余分を燃焼させて(第12実施例の構成)ガス生成装置Gの反応槽30,50を加熱する構成としてすることもできる。
【0169】
本発明の第15実施例について次に説明する。図29は、本発明の第15実施例としての燃料電池発電システム350の概略構成を示すブロック図である。図示するように、この燃料電池発電システム350は、第1実施例と同一の、ガス生成装置G、燃料電池スタックFC、燃料ガス供給通路3および冷却水循環路(図示せず)を備える。さらに、燃料電池スタックFCのアノード側のセパレータに形成される水素ガス流路の出口側には水素ガス排出路352が設けられ、その水素ガス排出路352には触媒反応容器354が接続されている。
【0170】
触媒反応容器354は、内部に白金触媒を充填した容器で、水素ガス排出路352からの水素ガスと外気中の空気と取り込んで、その白金触媒の表面上で両者を反応させて水を生成する働きをする。なお、触媒としては白金が望ましいが、低コスト化、長寿命化のために、白金と第2成分元素からなる合金触媒、さらには、白金と第2成分元素、第3成分元素からなる合金触媒を用いる構成としてもよい。具体的には、第2成分元素、第3成分元素としては、ルテニウム、ニッケル、コバルト、パラジウム、ロジウム、イリジウム、鉄、クロム、バナジウムなどがある。また、白金は、それ自身を反応容器内に充填する方法の他にも、セラミックスや、鉄、アルミニウムなどの金属で出来た担体の上に担持する構成としてもよい。さらに、この担体も、ビーズ状、ペレット状、ディスク状、ボール状などのほかにモノリス状のものを用いる構成としてもよい。
【0171】
触媒反応容器354の出力側は、ガス生成装置Gに水を供給する水槽43(第1実施例と同じもの)と送水通路356を介して接続されており、送水通路356に設けられたポンプ358により触媒反応容器354で生成された水が水槽43に送られる。このため、ガス生成装置G側からみれば、熱分解反応に使用される材料が燃料電池の運転に伴って順次補給されることから、水を貯える水槽が小型で済み、また、水の貯留量も少なくて済む。また、燃料電池スタックFCからみれば、水素ガスを含むアノード側残ガスをそのまま大気中に放出する訳には行かないので、この構成によりその残ガスを有効利用することができ、システム全体としてのエネルギ効率を高めることができる。
【0172】
なお、この実施例では、水素ガス排出路352の途中にバルブを設け、燃料電池スタックFCの停止時に限りこのバルブを開状態とする構成とすることもできる。通常、燃料電池スタックFCの停止時には、負荷を切り放し、反応ガスの供給を停止することにより、速やかに燃料電池スタックFCの運転を停止させることができるが、熱分解反応による処理を行なうこのガス生成装置Gは、速やかに運転を停止させることはできない。このため、燃料電池スタックFCの停止後もガス生成装置Gから水素ガスが発生し続け、燃料電池発電システムのエネルギ効率を低下させることになる。これに対して、上記のように、燃料電池スタックFCの停止時に残ガスが触媒反応容器354に送られる構成とすることで、燃料電池スタックFCの停止後も発生するガス生成装置Gからの水素ガスを有効利用することができ、エネルギ効率を高めることができる。
【0173】
以上本発明のいくつかの実施例について説明してきたが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる態様で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】本発明の第1実施例としての燃料電池発電システム1の概略構成を示すブロック図である。
【図2】燃料電池スタックFCのセル構造を示す構造図である。
【図3】燃料電池スタックFCのセル構造を示す分解斜視図である。
【図4】燃料電池スタックFCの全体構造を示す構造図である。
【図5】ガス生成装置Gの概略構成図である。
【図6】予備反応槽30の内部を示す概略構成図である。
【図7】反応槽50の内部を示す概略構成図である。
【図8】第1実施例とは別の実施の形態のガス生成装置の概略構成図である。
【図9】本発明の第2実施例としての燃料電池発電システム120の概略構成を示すブロック図である。
【図10】本発明の第3実施例としての燃料電池発電システム130の概略構成を示すブロック図である。
【図11】本発明の第4実施例としての燃料電池発電システム130の概略構成を示すブロック図である。
【図12】本発明の第5実施例としての燃料電池発電システム150の概略構成を示すブロック図である。
【図13】電子制御ユニット158のCPUにより実行される冷却水流路切換の制御ルーチンを示すフローチャートである。
【図14】第5実施例とは別の実施の形態の燃料電池発電システムの概略構成を示すブロック図である。
【図15】本発明の第6実施例としての燃料電池発電システム160の概略構成を示すブロック図である。
【図16】第6実施例のガス生成装置G2の概略構成図である。
【図17】本発明の第7実施例としての燃料電池発電システム170の概略構成を示すブロック図である。
【図18】本発明の第8実施例としての燃料電池発電システム180の概略構成を示すブロック図である。
【図19】電子制御ユニット186のCPUにより実行される背圧調整弁制御ルーチンを示すフローチャートである。
【図20】本発明の第9実施例としての燃料電池発電システム200の概略構成を示すブロック図である。
【図21】電子制御ユニット208のCPUにより実行される背圧調整弁制御ルーチンを示すフローチャートである。
【図22】本発明の第10実施例としての燃料電池発電システム220の概略構成を示すブロック図である。
【図23】本発明の第11実施例としての燃料電池発電システム230の概略構成を示すブロック図である。
【図24】本発明の第12実施例としての燃料電池発電システム300の概略構成を示すブロック図である。
【図25】本発明の第13実施例としての燃料電池発電システム310の概略構成を示すブロック図である。
【図26】電子制御ユニット319のCPUにより実行される切替ルーチンを示すフローチャートである。
【図27】本発明の第14実施例としての燃料電池発電システム330の概略構成を示すブロック図である。
【図28】電子制御ユニット319のCPUにより実行される切替ルーチンを示すフローチャートである。
【図29】本発明の第15実施例としての燃料電池発電システム350の概略構成を示すブロック図である。
【符号の説明】
1…燃料電池発電システム
3…燃料ガス供給通路
5…冷却水循環路
11…電解質
12…アノード
13…カソード
14…セパレータ
14P…水素ガス流路
15…セパレータ
15P…酸素ガス流路
16,17…集電板
20…サンドイッチ構造
21…セパレータ
22,23…冷却プレート
24,25…絶縁板
26,27…エンドプレート
28…ボルト
30…予備反応槽
31…蓋
32…容器
33…第1の管路
34…第2の管路
35…第3の管路
36…第4の管路
37…第5の管路
38…羽根車
39a,39b,59a,59b…冷却プレート
41…ハロゲン槽
41a,43a…管路
42…ポンプ
43…水槽
44…ポンプ
46…ポンプ
48,49…ポンプ
50…反応槽
51…蓋
52…容器
54…管路
58…羽根車
59a,59b…冷却プレート
60,169…ガス精製器
60…水素ガス精製器
62…ポンプ
71〜78…バルブ
90…循環ポンプ
92…冷却プレート
105…冷却水循環路
120…燃料電池発電システム
125…冷却水循環路
125a…第1の循環路
125b…第2の循環路
129…ヒートポンプ
130…燃料電池発電システム
132…分配器
134…管路
136…ラジエータ
140…燃料電池発電システム
142…燃料ガス排出通路
144…背圧調整バルブ
150…燃料電池発電システム
151…流路切換バルブ
156…迂回路
157…循環ポンプ
158…電子制御ユニット
160…燃料電池発電システム
164…酸素ガス供給通路
169…酸素ガス精製器
170…燃料電池発電システム
172…凝縮器
174…送水通路
180…燃料電池発電システム
182…水素ガス排出路
182a…第1圧力センサ
182b…第1背圧調整弁
184…酸素ガス排出路
184a…第2圧力センサ
184b…第2背圧調整弁
186…電子制御ユニット
200…燃料電池発電システム
202…水素ガス排出路
204…背圧調整弁
206a…第1圧力センサ
206b…第2圧力センサ
208…電子制御ユニット
220…燃料電池発電システム
222…水素ガス排出路
223…酸素ガス排出路
224…第1背圧調整弁
225…第2背圧調整弁
227a…第1圧力センサ
227b…第2圧力センサ
228a…第3圧力センサ
228b…第4圧力センサ
229…電子制御ユニット
230…燃料電池発電システム
232a…第1流量センサ
232b…第2流路センサ
300…燃料電池発電システム
302…ガスバーナ
304…水素ガス排出路
306…管路
310…燃料電池発電システム
312…切替器
314…管路
315…水素貯留タンク
317…ガスバーナ
319…電子制御ユニット
330…燃料電池発電システム
332…ガスバーナ
334…管路
336…電磁バルブ
350…燃料電池発電システム
352…水素ガス排出路
354…触媒反応容器
356…送水通路
358…ポンプ
FC,FC2…燃料電池スタック
G、G2…ガス生成装置

Claims (21)

  1. 水素を含有する反応ガスを生成するガス生成手段と、
    触媒を担持した電極に反応ガスの供給を受けて、その反応ガスの電気化学反応により起電力を得る燃料電池と、
    前記ガス生成手段により生成される反応ガスを前記燃料電池に送る反応ガス供給路と
    を備える燃料電池発電装置において、
    前記ガス生成手段は、
    熱を発する発熱手段と、
    ハロゲンと水とを前記発熱手段からの熱を受けて反応させることにより、酸素とハロゲン化水素酸を生成する予備反応槽と、
    前記予備反応槽で生成されたハロゲン化水素酸をハロゲン化水素酸分解促進触媒とともに収容し、前記発熱手段からの熱を受けて反応させることにより前記反応ガスを生成する反応糟と、
    を備え、
    さらに、
    前記予備反応糟により生成される酸素ガスを前記燃料電池に供給する酸素ガス供給路
    を備えることを特徴とする燃料電池発電装置。
  2. 請求項1記載の燃料電池発電装置であって、
    前記燃料電池にて発生する熱を前記発熱手段に伝達する熱伝達手段
    を備える燃料電池発電装置。
  3. 水素を含有する反応ガスを生成するガス生成手段と、
    触媒を担持した電極に反応ガスの供給を受けて、その反応ガスの電気化学反応により起電力を得る燃料電池と、
    前記ガス生成手段により生成される反応ガスを前記燃料電池に送る反応ガス供給路と、
    前記燃料電池の周囲に配設されて冷却水を流す冷却水流路と
    を備える燃料電池発電装置において、
    前記燃料電池は、
    前記反応槽における熱分解反応の発生温度よりも高い温度で運転されるように構成され、
    前記ガス生成手段は、
    熱を発する発熱手段と、
    ハロゲンと水とを反応させて生成されるハロゲン化水素酸をハロゲン化水素酸分解促進触媒とともに収容し、前記発熱手段からの熱を受けて熱分解反応を引き起こす反応槽と
    を備え
    さらに、
    前記冷却水流路に接続されて、前記冷却水を前記冷却水流路と前記発熱手段との間で循環させることにより、前記燃料電池にて発生する熱を前記発熱手段の熱源とする冷却水循環手段
    を備える燃料電池発電装置。
  4. 水素を含有する反応ガスを生成するガス生成手段と、
    触媒を担持した電極に反応ガスの供給を受けて、その反応ガスの電気化学反応により起電力を得る燃料電池と、
    前記ガス生成手段により生成される反応ガスを前記燃料電池に送る反応ガス供給路と
    を備える燃料電池発電装置において、
    前記燃料電池は、
    前記反応槽における熱分解反応の発生温度よりも低い温度で運転されるように構成され、
    前記ガス生成手段は、
    熱を発する発熱手段と、
    ハロゲンと水とを反応させて生成されるハロゲン化水素酸をハロゲン化水素酸分解促進 触媒とともに収容し、前記発熱手段からの熱を受けて熱分解反応を引き起こす反応槽と
    を備え、
    さらに、
    前記燃料電池にて発生する熱を前記発熱手段に伝達する熱伝達手段と、
    前記熱伝達手段に設けられ、前記燃料電池からの熱を前記熱分解反応の発生温度より高い温度に昇温させる熱量増大手段
    を備える燃料電池発電装置。
  5. 請求項4記載の燃料電池発電装置であって、
    前記燃料電池の周囲に配設されて冷却水を流す冷却水流路
    を備えるとともに、
    前記熱伝達手段は、
    該冷却水流路に接続されて、前記冷却水を前記熱量増大手段を介して前記発熱手段に送る第1流路と、
    前記熱量増大手段を迂回して、前記冷却水を前記冷却水流路から前記発熱手段に送る第2流路と、
    前記燃料電池の運転時と停止時とを判別する判別手段と、
    該判別手段により前記燃料電池の運転時が判別されたとき、前記第1流路を開き、前記燃料電池の停止時が判別されたとき、前記第2流路を開く制御手段と
    を備える燃料電池発電装置。
  6. 水素を含有する反応ガスを生成するガス生成手段と、
    触媒を担持した電極に反応ガスの供給を受けて、その反応ガスの電気化学反応により起電力を得る燃料電池と、
    前記ガス生成手段により生成される反応ガスを前記燃料電池に送る反応ガス供給路と
    を備える燃料電池発電装置において、
    前記燃料電池は、
    前記反応槽における熱分解反応の発生温度よりも低い温度で運転されるように構成され、
    前記ガス生成手段は、
    熱を発する発熱手段と、
    ハロゲンと水とを反応させて生成されるハロゲン化水素酸をハロゲン化水素酸分解促進触媒とともに収容し、前記発熱手段からの熱を受けて熱分解反応を引き起こす反応槽と
    を備え、
    さらに、
    前記燃料電池の周囲に配設されて冷却水を流す冷却水流路と、
    前記燃料電池の停止時を判別する判別手段と、
    該判別手段により前記燃料電池の停止時が判別されたとき、前記冷却水流路の冷却水を前記発熱手段に送る配送手段と
    を備える燃料電池発電装置。
  7. 請求項5または6記載の燃料電池発電装置であって、
    前記燃料電池の停止時に、前記冷却水流路の冷却水を、前記反応槽に収容するハロゲン化水素酸を生成する材料を貯える槽の周辺に送る手段
    を備える燃料電池発電装置。
  8. 水素を含有する反応ガスを生成するガス生成手段と、
    触媒を担持した電極に反応ガスの供給を受けて、その反応ガスの電気化学反応により起電力を得る燃料電池と、
    前記ガス生成手段により生成される反応ガスを前記燃料電池に送る反応ガス供給路と
    を備える燃料電池発電装置において、
    前記ガス生成手段は、
    熱を発する発熱手段と、
    ハロゲンと水とを反応させて生成されるハロゲン化水素酸をハロゲン化水素酸分解促進 触媒とともに収容し、前記発熱手段からの熱を受けて熱分解反応を引き起こす反応槽と
    を備え、
    さらに、
    前記燃料電池の電極に供給された反応ガスを前記燃料電池から排出する反応ガス排出路と、
    前記燃料電池の運転時に、前記反応ガス排出路を閉じる閉塞手段と
    を備える燃料電池発電装置。
  9. 水素を含有する反応ガスを生成するガス生成手段と、
    触媒を担持した電極に反応ガスの供給を受けて、その反応ガスの電気化学反応により起電力を得る燃料電池と、
    前記ガス生成手段により生成される反応ガスを前記燃料電池に送る反応ガス供給路と
    を備える燃料電池発電装置において、
    前記ガス生成手段は、
    熱を発する発熱手段と、
    ハロゲンと水とを反応させて生成されるハロゲン化水素酸をハロゲン化水素酸分解促進触媒とともに収容し、前記発熱手段からの熱を受けて熱分解反応を引き起こす反応槽と
    を備え、
    さらに、
    前記燃料電池から電気化学反応に伴って発生する水蒸気を凝縮して水を回収する水回収手段と、
    該水回収手段に回収された水を、前記ハロゲン化水素酸を生成する材料として用いる水利用手段と
    を備える燃料電池発電装置。
  10. 水素を含有する反応ガスを生成するガス生成手段と、
    触媒を担持した電極に反応ガスの供給を受けて、その反応ガスの電気化学反応により起電力を得る燃料電池と、
    前記ガス生成手段により生成される反応ガスを前記燃料電池に送る反応ガス供給路と
    を備える燃料電池発電装置において、
    前記ガス生成手段は、
    ハロゲンを貯えるハロゲン槽と、
    水を貯える水槽と、
    熱を発する発熱手段と、
    前記ハロゲン槽と水槽とから供給されたハロゲンと水とを前記発熱手段からの熱を受けて反応させることにより、酸素とハロゲン化水素酸を生成する予備反応槽と、
    前記予備反応槽で生成されたハロゲン化水素酸をハロゲン化水素酸分解促進触媒とともに収容し、前記発熱手段からの熱を受けて反応させることにより前記反応ガスを生成する反応槽と
    を備え、
    さらに、
    前記ガス生成手段は、
    前記反応槽から発生するガスから水素を精製する水素精製手段
    を備える燃料電池発電装置。
  11. 請求項10記載の燃料電池発電装置であって、
    前記燃料電池にて発生する熱を、前記ハロゲン槽および/または水槽に伝達する手段
    を備える燃料電池発電装置。
  12. 熱分解反応により水から水素を含有する反応ガスを生成するガス生成手段と、
    触媒を担持した電極に反応ガスの供給を受けて、その反応ガスの電気化学反応により起電力を得る燃料電池と、
    前記ガス生成手段により生成される反応ガスを前記燃料電池に送る反応ガス供給路と
    を備える燃料電池発電装置において、
    前記ガス生成手段は、
    熱を発する発熱手段と、
    ハロゲンと水とを反応させて生成されるハロゲン化水素酸をハロゲン化水素酸分解促進触媒とともに収容し、前記発熱手段からの熱を受けて前記反応ガスを発生する反応を引き起こす反応槽と
    を備え、
    さらに、
    ハロゲンを貯えるハロゲン槽と、
    水を貯える水槽と、
    前記ハロゲン槽と水槽からハロゲンと水をそれぞれ前記ガス生成手段に送る送付手段と、
    を備え、
    前記発熱手段は、
    前記反応槽の付近に配設され、
    前記ガス生成手段は、
    前記反応槽から発生するガスから水素を精製する水素精製手段と、
    前記熱分解反応により発生する酸素を含有するガスから酸素を精製する酸素精製手段と
    を備え、
    さらに、
    前記酸素精製手段で精製された酸素を前記燃料電池に送る酸素ガス供給路
    を備える燃料電池発電装置。
  13. 請求項12記載の燃料電池発電装置であって、
    前記ガス生成手段から前記反応ガス供給路を介して反応ガスの供給を受ける前記燃料電池に接続され、該燃料電池で消費された反応ガスの残り分を排出する反応ガス排出路と、
    前記ガス生成手段から前記酸素ガス供給路を介して酸素ガスの供給を受ける前記燃料電池に接続され、該燃料電池で消費された酸素ガスの残り分を排出する酸素ガス排出路と、
    前記反応ガス排出路を通過するガスの流量を調整する第1弁体と、
    前記酸素ガス排出路を通過するガスの流量を調整する第2弁体と、
    前記反応ガス排出路中のガス圧を検出する第1圧力センサと、
    前記酸素ガス排出路中のガス圧を検出する第2圧力センサと、
    前記第1圧力センサで検出されたガス圧と前記第2圧力センサで検出されたガス圧との圧力差を求める算出手段と、
    前記第1弁体および第2弁体の開度を調整することにより、前記算出手段により求められる圧力差を予め定められた所定値に制御する制御手段と
    を備える燃料電池発電装置。
  14. 水素を含有する反応ガスを生成するガス生成手段と、
    触媒を担持した電極に反応ガスの供給を受けて、その反応ガスの電気化学反応により起電力を得る燃料電池と、
    前記ガス生成手段により生成される反応ガスを前記燃料電池に送る反応ガス供給路と
    を備える燃料電池発電装置において、
    前記ガス生成手段は、
    熱を発する発熱手段と、
    ハロゲンと水とを反応させて生成されるハロゲン化水素酸をハロゲン化水素酸分解促進触媒とともに収容し、前記発熱手段からの熱を受けて熱分解反応を引き起こす反応槽と
    を備え、
    さらに、
    ハロゲンを貯えるハロゲン槽と、
    水を貯える水槽と、
    前記ハロゲン槽と水槽からハロゲンと水をそれぞれ前記ガス生成手段に送る送付手段と
    を備え、
    前記発熱手段は、
    前記反応槽の付近に配設され、
    前記ガス生成手段は、
    前記反応槽から発生するガスから水素を精製する水素精製手段
    を備え、
    さらに、
    記反応ガス供給路を介して反応ガスの供給を受ける前記燃料電池に接続され、該燃料電池で消費された反応ガスの残り分を排出する反応ガス排出路と、
    前記反応ガス排出路を通過するガスの流量を調整する弁体と
    を備えるとともに、
    前記水素精製手段は、
    水素を選択的に透過するろ過膜
    を備え、
    さらに、
    前記ろ過膜の前後の圧力差を検出する圧力差検出手段と、
    前記弁体の開度を調整することにより、前記圧力差検出手段により検出される圧力差を予め定められた所定範囲内に収める制御手段と
    を備える燃料電池発電装置。
  15. 請求項12記載の燃料電池発電装置であって、
    前記ガス生成手段から前記反応ガス供給路を介して反応ガスの供給を受ける前記燃料電池に接続され、該燃料電池で消費された反応ガスの残り分を排出する反応ガス排出路と、
    前記ガス生成手段から前記酸素ガス供給路を介して酸素ガスの供給を受ける前記燃料電池に接続され、該燃料電池で消費された酸素ガスの残り分を排出する酸素ガス排出路と、
    前記反応ガス排出路を通過するガスの流量を調整する第1弁体と、
    前記酸素ガス排出路を通過するガスの流量を調整する第2弁体と、
    前記水素ガス精製手段の出口側の流路中のガスの流量を検出する第1センサと、
    前記酸素ガス精製手段の出口側の流路中のガスの流量を検出する第2センサと、
    前記第1弁体および第2弁体の開度をそれぞれ調整することにより、前記第1センサで検出される流量と前記第2センサで検出される流量との比率を、前記燃料電池で消費する水素と酸素との比率に一致させる制御手段と
    を備える燃料電池発電装置。
  16. 水素を含有する反応ガスを生成するガス生成手段と、
    触媒を担持した電極に反応ガスの供給を受けて、その反応ガスの電気化学反応により起電力を得る燃料電池と、
    前記ガス生成手段により生成される反応ガスを前記燃料電池に送る反応ガス供給路と
    を備える燃料電池発電装置において、
    前記ガス生成手段は、
    熱を発する発熱手段と、
    ハロゲンと水とを反応させて生成されるハロゲン化水素酸をハロゲン化水素酸分解促進触媒とともに収容し、前記発熱手段からの熱を受けて熱分解反応を引き起こす反応槽と
    を備え、
    さらに、
    前記ガス生成手段により生成される反応ガスを貯える貯留手段
    を備えるとともに、
    前記発熱手段は、
    前記貯留手段に貯えられた反応ガスを燃焼させて熱を発するもの
    である燃料電池発電装置。
  17. 水素を含有する反応ガスを生成するガス生成手段と、
    触媒を担持した電極に反応ガスの供給を受けて、その反応ガスの電気化学反応により起電力を得る燃料電池と、
    前記ガス生成手段により生成される反応ガスを前記燃料電池に送る反応ガス供給路と
    を備える燃料電池発電装置において、
    前記ガス生成手段は、
    熱を発する発熱手段と、
    ハロゲンと水とを反応させて生成されるハロゲン化水素酸をハロゲン化水素酸分解促進触媒とともに収容し、前記発熱手段からの熱を受けて熱分解反応を引き起こす反応槽と
    を備え、
    さらに、
    前記ガス生成手段により生成される反応ガスを貯える貯留手段と、
    前記燃料電池の起動時に、前記貯留手段に貯えられた反応ガスを前記反応ガス供給路から前記燃料電池に送る起動時反応ガス供給手段と
    を備える燃料電池発電装置。
  18. 請求項17記載の燃料電池発電装置であって、
    前記起動時反応ガス供給手段は、
    前記反応ガス供給路の途中に接続され、前記ガス生成手段により生成される反応ガスを前記貯溜手段に送る管路と、
    前記反応ガス供給路と前記管路との接続部分に設けられ、ガスの流路を、前記ガス生成手段から前記燃料電池に向かう第1の方向と、前記ガス生成手段から前記貯溜手段に向かう第2の方向と、前記貯溜手段から前記燃料電池に向かう第3の方向とのいずれかに切り替える切替器と、
    前記燃料電池の運転時に前記切替器を前記第1の方向のポジションに、前記燃料電池の停止時に前記切替器を前記第2の方向のポジションに、前記燃料電池の起動時に前記切替器を前記第3の方向のポジションに切り替える制御手段と
    を備える燃料電池発電装置。
  19. 水素を含有する反応ガスを生成するガス生成手段と、
    触媒を担持した電極に反応ガスの供給を受けて、その反応ガスの電気化学反応により起電力を得る燃料電池と、
    前記ガス生成手段により生成される反応ガスを前記燃料電池に送る反応ガス供給路と
    を備える燃料電池発電装置において、
    前記ガス生成手段は、
    熱を発する発熱手段と、
    ハロゲンと水とを反応させて生成されるハロゲン化水素酸をハロゲン化水素酸分解促進触媒とともに収容し、前記発熱手段からの熱を受けて熱分解反応を引き起こす反応槽と
    を備え、
    さらに、
    前記燃料電池から排出される残余分の反応ガスと外部から供給される酸素含有ガスとから水を生成する水生成手段と、
    該水生成手段により生成された水を、前記ハロゲン化水素酸を生成する材料として用いる水利用手段と
    を備える燃料電池発電装置。
  20. 請求項14に記載の燃料電池発電装置において、
    前記ガス生成手段は、熱分解反応により水から水素を含有する反応ガスを生成するものであり、
    さらに、
    前記熱分解反応により発生する酸素を含有するガスから酸素を精製する酸素精製手段と、
    前記酸素精製手段で精製された酸素を前記燃料電池に送る酸素ガス供給路と
    を備えるとともに、
    前記酸素精製手段は、
    酸素を選択的に透過するろ過膜
    を備え、
    さらに、
    前記酸素精製手段のろ過膜の前後の圧力差を検出する酸素側圧力差検出手段と、
    前記弁体の開度を調整することにより、前記酸素側圧力差検出手段により検出される圧力差を予め定められた所定範囲内に収める酸素側制御手段と
    を備える燃料電池発電装置。
  21. 請求項1ないし20のいずれかに記載の燃料電池発電装置において、
    前記ハロゲンは、ヨウ素である
    燃料電池発電装置。
JP16101096A 1996-05-30 1996-05-30 燃料電池発電装置 Expired - Fee Related JP3915139B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16101096A JP3915139B2 (ja) 1996-05-30 1996-05-30 燃料電池発電装置
CA002205791A CA2205791C (en) 1996-05-30 1997-05-22 Fuel cells-based generator system and method of the same
US08/862,257 US5885727A (en) 1996-05-30 1997-05-23 Fuel cell-based generator system and method of the same
KR1019970020782A KR100270469B1 (ko) 1996-05-30 1997-05-27 연료전지발전장치
EP97108616A EP0810682B1 (en) 1996-05-30 1997-05-28 Fuel cells-based generator system and method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16101096A JP3915139B2 (ja) 1996-05-30 1996-05-30 燃料電池発電装置

Publications (2)

Publication Number Publication Date
JPH09320627A JPH09320627A (ja) 1997-12-12
JP3915139B2 true JP3915139B2 (ja) 2007-05-16

Family

ID=15726870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16101096A Expired - Fee Related JP3915139B2 (ja) 1996-05-30 1996-05-30 燃料電池発電装置

Country Status (5)

Country Link
US (1) US5885727A (ja)
EP (1) EP0810682B1 (ja)
JP (1) JP3915139B2 (ja)
KR (1) KR100270469B1 (ja)
CA (1) CA2205791C (ja)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285167B1 (en) * 1996-11-12 2001-09-04 William E. M. Jones Use of catalysts in standby valve-regulated lead acid cells
FR2770339B1 (fr) 1997-10-27 2003-06-13 Commissariat Energie Atomique Structure munie de contacts electriques formes a travers le substrat de cette structure et procede d'obtention d'une telle structure
JP2001068127A (ja) * 1999-08-30 2001-03-16 Toyota Autom Loom Works Ltd 燃料電池冷却装置及び燃料電池システム
CN1205685C (zh) 1999-11-17 2005-06-08 尼电源系统公司 具有硅基片的燃料电池
US6503649B1 (en) 2000-04-03 2003-01-07 Convergence, Llc Variable fuel cell power system for generating electrical power
US6329091B1 (en) 2000-04-14 2001-12-11 Ford Global Technologies, Inc. Fuel reformer system for a fuel cell
JP4815668B2 (ja) * 2000-05-15 2011-11-16 トヨタ自動車株式会社 水素生成装置
US6815106B1 (en) * 2000-05-31 2004-11-09 General Motors Corporation Fuel cell having dynamically regulated backpressure
US7125540B1 (en) * 2000-06-06 2006-10-24 Battelle Memorial Institute Microsystem process networks
US6522955B1 (en) * 2000-07-28 2003-02-18 Metallic Power, Inc. System and method for power management
JP2002093450A (ja) * 2000-09-13 2002-03-29 Corona Corp 燃料電池システムに用いる非水溶性液体燃料の気化方法
JP4649028B2 (ja) * 2000-09-13 2011-03-09 株式会社コロナ 燃料電池システムに用いる非水溶性液体燃料の気化方法
JP4636572B2 (ja) * 2000-09-27 2011-02-23 株式会社ダイヘン アルミニウム溶射装置及び亜鉛アルミニウム溶射装置
US6569549B1 (en) * 2000-11-02 2003-05-27 Utc Fuel Cells, Llc Method for increasing the operational efficiency of a fuel cell power plant
JP3607608B2 (ja) * 2000-12-19 2005-01-05 株式会社日立製作所 ノート型パソコンの液冷システム
KR100625695B1 (ko) * 2000-12-29 2006-09-20 주식회사 엘지이아이 연료전지의 연료 공급 장치
KR100689333B1 (ko) * 2000-12-29 2007-03-08 주식회사 엘지이아이 연료전지의 액체연료공급장치
US7294421B2 (en) * 2001-02-07 2007-11-13 Delphi Technologies, Inc. Solid oxide auxiliary power unit reformate control
US6635370B2 (en) * 2001-06-01 2003-10-21 Utc Fuel Cells, Llc Shut-down procedure for hydrogen-air fuel cell system
US20030035984A1 (en) 2001-08-15 2003-02-20 Colborn Jeffrey A. Metal fuel cell system for providing backup power to one or more loads
US6689711B2 (en) 2001-10-09 2004-02-10 Metallic Power, Inc. Methods of producing oxygen reduction catalyst
US20040251126A1 (en) * 2001-10-19 2004-12-16 Pinto Martin De Tezanos Recirculating anode
US6679280B1 (en) 2001-10-19 2004-01-20 Metallic Power, Inc. Manifold for fuel cell system
US6911274B1 (en) 2001-10-19 2005-06-28 Metallic Power, Inc. Fuel cell system
JP2003197231A (ja) * 2001-12-26 2003-07-11 Toyota Motor Corp 燃料電池発電システムおよびその制御方法
US6811912B2 (en) * 2002-02-28 2004-11-02 Kulite Semiconductor Products, Inc. Solid state fuel cell made from porous and partially porous semiconductor structures
US20050180845A1 (en) * 2002-04-04 2005-08-18 Vreeke Mark S. Miniature/micro-scale power generation system
US6873157B2 (en) 2002-04-04 2005-03-29 Metallic Power, Inc. Method of and system for determining the remaining energy in a metal fuel cell
US6764588B2 (en) * 2002-05-17 2004-07-20 Metallic Power, Inc. Method of and system for flushing one or more cells in a particle-based electrochemical power source in standby mode
DE10230283A1 (de) * 2002-07-05 2004-01-29 Daimlerchrysler Ag Verfahren und Anordnung zum Reinigen der einer Brennstoffzelle für den Betrieb zuzuführenden Gase von Bestandteilen, die für den Brennstoffzellenbetrieb ungünstig sind
US6787260B2 (en) * 2002-09-12 2004-09-07 Metallic Power, Inc. Electrolyte-particulate fuel cell anode
US20040086774A1 (en) * 2002-11-05 2004-05-06 Munoz Beth C. Gas diffusion electrodes
US20040157101A1 (en) * 2003-02-11 2004-08-12 Smedley Stuart I. Fuel cell electrode assembly
US20040180246A1 (en) * 2003-03-10 2004-09-16 Smedley Stuart I. Self-contained fuel cell
US20040229107A1 (en) * 2003-05-14 2004-11-18 Smedley Stuart I. Combined fuel cell and battery
JP3858016B2 (ja) * 2003-10-29 2006-12-13 三洋電機株式会社 燃料電池および燃料電池用セパレータ
US7241521B2 (en) 2003-11-18 2007-07-10 Npl Associates, Inc. Hydrogen/hydrogen peroxide fuel cell
US7410714B1 (en) 2004-07-15 2008-08-12 The United States Of America As Represented By The Administration Of Nasa Unitized regenerative fuel cell system
KR100658743B1 (ko) * 2004-11-16 2006-12-15 삼성에스디아이 주식회사 연료 전지 시스템
DE102008019099A1 (de) * 2007-12-21 2009-06-25 Daimler Ag Unterdrückung von Vereisung eines Bauteils, insbesondere in einem Anodenkreislauf eines Brennstoffzellensystems
US9979038B2 (en) * 2010-05-24 2018-05-22 Trustees Of Boston University System and method for energy storage and recovery
JP5861866B2 (ja) * 2011-10-18 2016-02-16 マツダ株式会社 燃料電池システム
JP2016157597A (ja) * 2015-02-25 2016-09-01 株式会社Ihi 燃料電池発電装置と方法
JP6443404B2 (ja) 2016-07-04 2018-12-26 トヨタ自動車株式会社 熱、水素生成装置
JP7194714B2 (ja) * 2020-09-02 2022-12-22 本田技研工業株式会社 燃料電池システム及び燃料電池システムの制御方法
CN114765268B (zh) * 2021-01-15 2023-08-01 宇通客车股份有限公司 一种燃料电池系统的效率优化控制方法
KR102655968B1 (ko) * 2021-07-01 2024-04-11 국방과학연구소 연료전지 시스템
FR3125648B1 (fr) 2021-07-21 2024-04-12 Marbeuf Conseil Et Rech Installation de production d’électricité comportant une pile à combustible à hydrogène et un réacteur chimique apte à produire du dihydrogène – procédé associé
CN115664097B (zh) * 2022-12-15 2023-03-17 福建德普柯发电设备有限公司 一种卧式组合发电机组

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127644A (en) * 1977-04-29 1978-11-28 General Atomic Company Process for hydrogen production from water
CA1148497A (en) * 1978-07-19 1983-06-21 Thomas G. Hart Electrolysis of halogen acid derived from halogen and water with carbon present
US4258026A (en) * 1979-03-26 1981-03-24 General Atomic Company Hydrogen iodide decomposition
US4657829A (en) * 1982-12-27 1987-04-14 United Technologies Corporation Fuel cell power supply with oxidant and fuel gas switching
US5221586A (en) * 1990-09-19 1993-06-22 Ishikawajima-Harima Heavy Industries Co., Ltd. Power generation system using fuel cells
JP3358820B2 (ja) * 1991-07-11 2002-12-24 三菱重工業株式会社 水素昇圧装置及びこれを用いた燃料電池
JPH06108279A (ja) * 1992-09-28 1994-04-19 Tadahiro Omi 水素酸素発生装置
US5449568A (en) * 1993-10-28 1995-09-12 The United States Of America As Represented By The United States Department Of Energy Indirect-fired gas turbine bottomed with fuel cell
JP3564742B2 (ja) * 1994-07-13 2004-09-15 トヨタ自動車株式会社 燃料電池発電装置
US5518828A (en) * 1994-07-21 1996-05-21 Bechtel Group, Inc. Thermal integration of an air-cooled fuel cell stack
JP3132379B2 (ja) * 1995-03-01 2001-02-05 トヨタ自動車株式会社 酸素及び水素を製造する方法

Also Published As

Publication number Publication date
JPH09320627A (ja) 1997-12-12
CA2205791A1 (en) 1997-11-30
KR100270469B1 (ko) 2000-11-01
CA2205791C (en) 2000-05-16
EP0810682A3 (en) 2004-08-18
EP0810682A2 (en) 1997-12-03
KR970077796A (ko) 1997-12-12
EP0810682B1 (en) 2011-06-29
US5885727A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
JP3915139B2 (ja) 燃料電池発電装置
US7332236B2 (en) Method and apparatus for controlling a combined heat and power fuel cell system
JP4482057B2 (ja) 固体高分子型燃料電池システム
JP2002080202A (ja) 燃料電池用燃料ガスの生成システム
JPH11339831A (ja) 車両搭載用燃料電池システム
CN101901921B (zh) 燃料电池装置
EP2461407B1 (en) Fuel cell device
JP2002530817A (ja) 起動可能出力を改良した燃料電池システム
JPH08273684A (ja) 燃料電池システム
CN102484266A (zh) 燃料电池装置及对其进行操作的方法
JP2007165130A (ja) 燃料電池システム及び燃料電池システムの制御方法
JP2007128786A (ja) 燃料電池システム
JP2002124278A (ja) 燃料電池システム
JP3575650B2 (ja) 溶融炭酸塩型燃料電池
KR100464051B1 (ko) 연료전지 시스템
JP2000277134A (ja) 燃料電池発電システム
JP2003288936A (ja) 燃料電池発電装置とその運転方法
JPH11307112A (ja) 固体高分子電解質型燃料電池発電装置
JPH09147896A (ja) 固体高分子型燃料電池システム
JP5679097B1 (ja) 2次電池型燃料電池システム
JP3561659B2 (ja) 燃料電池システム
JPH11233130A (ja) 燃料電池発電装置
JP4189851B2 (ja) 燃料改質装置及び燃料電池システム
CN117727981A (zh) 一种包括水蒸气换热层的燃烧重整器和可逆固体氧化物电池及应用
JP2005011621A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees