JP3907145B2 - Chip electronic components - Google Patents

Chip electronic components Download PDF

Info

Publication number
JP3907145B2
JP3907145B2 JP36882698A JP36882698A JP3907145B2 JP 3907145 B2 JP3907145 B2 JP 3907145B2 JP 36882698 A JP36882698 A JP 36882698A JP 36882698 A JP36882698 A JP 36882698A JP 3907145 B2 JP3907145 B2 JP 3907145B2
Authority
JP
Japan
Prior art keywords
insulating substrate
chip
hole
electrode
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36882698A
Other languages
Japanese (ja)
Other versions
JP2000196000A (en
Inventor
健博 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP36882698A priority Critical patent/JP3907145B2/en
Publication of JP2000196000A publication Critical patent/JP2000196000A/en
Application granted granted Critical
Publication of JP3907145B2 publication Critical patent/JP3907145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁基板に設けた電極上に素子チップを組み立てて成るチップ電子部品及びその基板電極構造に関し、より詳細には、絶縁基板に電極パターンを形成し、素子チップを組み立てた後にダイシングにより各部品を切り出すことにより得られる側面型チップ電子部品及びその基板電極構造に関する。
【0002】
【従来の技術】
従来より側面発光型チップLEDは、側面型チップ電子部品の一つとして知られている。図4及び図6は、その1例を斜視図にて示す。図4は、チップLED15を示し、図6は、マザーボード21に組み付け、側面発光する状態のチップLED15を示す。
従来のチップLED15は、図4に示すように、ほぼ直方体状をなす絶縁基板11上にLED素子13を載置し、絶縁基板11の対向する一対の側面にはこの側面を覆うように断面コの字状に一対の電極12が設けられ、別の一対の側面は絶縁基板面が露出している。この電極構造は、絶縁基板11の周囲に電極12を形成し、その後にダイシングにより各部品を切り出すことにより形成したものであって、前記別の一対の側面(図示の上下面)は切り出しにより基板が露出した面である。従って、この面には当然電極は存在しない。
【0003】
上記した電極構造は、チップLEDの作成法と深く関連するので、次に同方法について説明する。
図5は、このチップLEDの作成法を説明する図であって、一つの絶縁基板上に複数のLED素子を載置した作成途上の絶縁基板の電極構造を示している。同図を参照し、チップLEDの作成法とともに上記した電極構造をより詳細に説明する。
ここでは、絶縁基板への電極の形成法の一般的な方法、すなわち、基板に設けたスルーホールを通し、基板表裏面及びスルーホ−ルの内面を含め基板の周囲に電極金属を付与する方法が採られている。
図5に示す例では、絶縁基板11にはLED素子13を載置する表面から裏面に抜けるスルーホール18が縦方向(チップ配列の縦方向)に細長く形成されている。なお、図中にはスルーホール18は3チップ分しか示されていないが、実際には10チップ分以上の長さにわたって延び、また、スルーホールを挟んで横方向に同じ構造を繰り返すように電極パターンが形成される。
このような形状のスルーホール18に対し、上記電極形成法を採用し電極金属を付与した結果、電極12は、絶縁基板11の素子13の載置面からスルーホール18の内面を介して裏面にわたり形成される。
チップLEDの作成プロセスとしては、上記のようにして形成された電極12のマウント部にLED素子13をボンディングし、ワイヤ16によるワイヤリングを行い、さらに、LED素子13を保護し、かつ光を所定の方向に導くレンズ機能を付与するためにLED素子を封止するように基板表面に封止樹脂14のトランスファーモールドを施す。その後、図5に一点鎖線で示すカットラインに沿いダイシングを行い、個々のチップLED15を切り出すことにより図4に示す各チップLED15を構成する。
【0004】
上記した作成法により得られるチップLED15は、側面発光型として用いるための特別の構造を備えたものではない。従って、作成されたチップLED15を側面発光型として利用する場合には、図6に示すように、側面配置をとるために、切り出され絶縁基板断面が露出する面、つまり電極が形成されていない面(図4の上下面)でマザーボード21の配線パターン22にボンディングすることになる。
この場合、電極12はチップLED15側の切り出し面端でマザーボード21の配線パターン22と線接触するにすぎず、実際には接続がなされない。このため、両者の接続は、配線パターン22面とこれに対し垂直をなす4側面、主として素子載置面とその裏面にわたる一対の両側面、に設けた電極とを半田付けすることにより行う。
しかしながら、この接続方法は、十分な取り付け強度が得られない。そのために、特に、マザーボードの端部に取り付ける側面発光型チップLEDの場合(図6参照)には、マザーボードを取り扱っている時に外部との接触により脱落等が起きる。
さらに、マザーボードの配線パターン面で接触するチップLED側の面には電極が付いていないため、半田付け時にセルフ・アライメントが働かず、取り付け後の位置精度が出ないという問題、或いは、接続不良、特に、小型のチップ部品の場合に半田が付かなかったり、マンハッタン現象でチップの起立が発生するという問題が生じる。
【0005】
【発明が解決しようとする課題】
本発明は、上述した従来の側面発光型チップ電子部品における問題点に鑑みてなされたものであって、ダイシングにより切り出され基板が露出する面(電極が形成されていない面)でマザーボードの配線パターンにボンディングにより取り付けを行う場合に、取り付け強度や電気的接続が確保され、半田付け時にセルフ・アライメントが働くようにする側面型として用い得るチップ電子部品及びその基板電極構造を提供することをその解決すべき課題とする。
【0006】
【課題を解決するための手段】
請求項1の発明は、絶縁基板に複数のチップ部にわたる長孔状スルーホールを形成し、該長孔状スルーホールの内面を各チップ部の境界に沿い切り欠いて切欠部を形成し、前記絶縁基板を前記切欠部の箇所にてダイシングして各チップ部に分割して形成したチップ電子部品であって、分割された絶縁基板と、該分割された絶縁基板上に設けられた電極と、前記分割された絶縁基板の上面に載置されて前記電極と電気的に接続された半導体素子と、該半導体素子を覆う樹脂封止部とを備え前記分割された絶縁基板は角が厚さ方向に切り欠かれた略矩形状とされ、素子載置面とその裏面、その両面にわたる前記長孔状スルーホールで形成された一対の両側面及び切り欠かれた面に前記電極を延在させると共に、前記分割された絶縁基板のダイシングによる切断面の一方をマザーボードの配線パターン上に載置して前記電極と配線パターンをボンディングすることを特徴とするチップ電子部品を構成する。
【0007】
請求項2の発明は、請求項1記載の側面型チップ電子部品において、前記半導体素子が発光素子であることを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明によるチップ電子部品及びその基板電極構造の実施の形態を添付する図面に基づいて説明する。
本実施形態においては、電子部品をLEDとした側面発光型チップLEDについて、その実施形態を説明する。
図1は、本発明による側面発光型チップLEDの1実施形態の斜視図であって、マザーボード上の配線パターンに組み付けた状態のチップLEDを示す。また、図2は、側面発光型チップLEDのLED素子載置面を示す上面図である。
図1に示す側面発光型チップLEDは、上記で従来例(図4)として示した側面発光型チップLEDを基礎に置いており、電極部分の構造以外の点については格別の相違はない。相違のない要素については上記従来例の説明を参照する。
【0010】
先ず、図1に示すチップLED5の電極部分の構造を説明する。
図示の側面発光状態にある側面型発光チップLED5は、上記従来例と同様に、ほぼ直方体状をなす絶縁基板1のLED素子3を載置している上面から側面更に下面に連なる一対の電極2が対向配置されている。
また、この電極構造は、絶縁基板断面が露出する側面のエッジ(角部)を厚み方向に沿い、すなわち基板上面から下面に向け切り欠く切り欠き部9を形成する点で上記従来のものと相違している。この切り欠き部9は、図示のように、前記絶縁基板の露出面のエッジをLED素子を載置する基板上面から下面へ向けて円筒状(正しくは、円筒の一部の形状)に切り欠く。また、この円筒状の切り欠き面にも電極の一部を構成すべく導電膜が付与される。つまり、LED素子載置面を上面視する図2に示すように、絶縁基板1は、その4角が厚み方向に扇状に切り欠かれた略矩形状とされ、その切り欠かれた部分の曲面9には電極2が基板上面から延在し、該電極2はさらに基板1下面へつながっている。
【0011】
チップLED5が前記切り欠き部9に電極を備えることにより、チップLED5をその上面が側方へ向けられるようにマザーボード上の配線パターン22上にボンディングする場合(図1参照)、切り欠き部9の内面が切り欠いた円筒状の空間を隔てて配線パターン22面に対向し、その空間をボンディング面として利用することができる。つまり、接続時に、切り欠き部9の内面に付与した電極金属膜と配線パターン面との間に半田が入り込み、半田を介し両面が強固に接着・接続することができる。このように、切り欠き部9は、側面発光型チップLEDにおける取り付け・接続手段として有効に働く。
なお、この実施形態においては、切り欠き部9の内面形状を円筒状としているが、ボンディング性を向上させる機能という点からすれば、ボンディングの際、配線パターン22面に空間を隔てて対向する面をなす形状であれば円筒状である必要はない。ただ、円筒状とすれば、高精度の切り欠き部を形成するための加工方法(後記する)が採用できるという利点が得られる。
また、図1及び図2に示す実施形態では、4カ所のエッジ(角部)に切り欠き部9を設けているが、上記した機能からすれば、マザーボード上の配線パターン面に対向する側だけに切り欠き面を形成するという設計で良い。ただ、極性を選択する必要がある場合には、この実施形態のように、4カ所のエッジに切り欠き部9を設ける意味がある。
【0012】
上記した4カ所の切り欠き部9に設けられた電極構造は、チップLEDの作成法と深く関連する。一つの基板上に複数の半導体発光素子チップ用の電極を配列させた基板で素子を組み立て、組み立て後にチップ分割を行い、一つの基板から複数のチップLEDを作成する方法を採る場合に、このような4カ所の切り欠きの形態になる。この点について以下に説明する。
図3は、チップLEDの作成法を説明する図であって、一つの基板上に複数のLED素子を配列、載置するようにした基板の電極構造を示す。
一般に基板へ電極を形成する方法として、基板に設けたスルーホールを通し、基板上下面及びスルーホ−ルの内面を含め基板の周囲に電極金属膜を付与する、という方法を採る。図3に示す例では、絶縁基板1にはLED素子3を載置する面から下面に抜けるスルーホール8を縦方向(チップ配列の縦方向)に細長く空けている。なお、スルーホール8は、図中では、3チップ分しか示されていないが、実際には10チップ分以上の長さにわたって延び、また、横方向にスルーホールを挟んで同じ構造を繰り返し対称性をもつ。
このスルーホール8には、ホールの内面を、上記従来例のように平面(直線)状とする(図5、参照)だけではなく、この平面状の内面にさらに切り欠きスルーホール9dを形成する。切り欠きスルーホール9dは、各チップの境界線(ぞの後、ダイシングでチップ分割がなされるカットライン)上に沿い形成し、その切り欠き形状を、この例では円筒形の一部とする。なお、切り欠きスルーホール9dは、最終的に作成されるチップLEDにおいて切り欠き部9となるものであるが、図3に示す作成の中間過程にある絶縁基板においては、切り欠きスルーホール9dという。
このように絶縁基板1に形成したスルーホール8及び切り欠きスルーホール9dを通し絶縁基板1の4つの面、つまり、素子載置面とその下面及び両側面(スルーホール8内面)並びに切り欠きスルーホール9d内面に電極金属を付与する。
【0013】
ところで、図3に示すスルーホールは、絶縁基板1のスルーホール8の内面にさらに切り欠きスルーホール9dとして、一点鎖線で示すダイシングのカットライン、即ち各チップの境界線上に沿いスルーホール8の内面に円筒を半分にした形状の孔を形成したものである。切り欠きスルーホール9dを形成するためには絶縁基板1に対し微細な加工が必要となるが、図示のように、切り欠きスルーホールの形状を円筒の一部とすることにより容易に高精度な切り欠きスルーホールが形成できる。この形状は他の形状と比べ、加工がし易くかつ絶縁基板1への微細加工精度を確保することができる形状である。
次に、円筒状の切り欠きスルーホール9dの加工法について、スルーホール8の加工法との関係で実施可能な3通りの例を以下に示す。
(1) 縦方向(図3のチップ配列方向)に細長く延びる長孔状のスルーホール8をNC加工し、その後、レーザ加工で円筒状の切り欠きスルーホール9dを加工する。
(2) 縦方向に細長く延びる長孔状のスルーホール8を型抜きし、その後、レーザ加工で円筒状の切り欠きスルーホール9dを加工する。
(3) 縦方向に細長く延びる長孔状のスルーホール8を型抜きし、その後、NCのドリル加工で円筒状の切り欠きスルーホール9dを加工する。
【0014】
上記した方法で絶縁基板へ電極を形成した後、チップLEDを得るためには、絶縁基板1に形成された電極2のマウント部にLED素子3をボンディングし、ワイヤ6によるワイヤリングを行い、封止樹脂4のトランスファーモールドを施す(この状態が図3に示される)。この作成段階では、一つの基板上に複数チップ分のチップLEDが一体に存在する状態であるので、その後、図3に一点鎖線で示すカットラインに沿いダイシングを行い、個々のチップLED15を切り出し、チップLEDを得る。
【0015】
【発明の効果】
本発明による切り欠き部を備えた側面型チップ電子部品によると、マザーボードへ半田付等する場合、半田の付着面積を増大でき強固な固着を図ることができる、特にダイシングにより切り出され絶縁基板断面が露出する面(電極が存在しない面)でマザーボードの配線パターンにボンディングされるチップ電子部品として用いる場合でも、露出面のエッジ(角部)に沿い形成され電極金属膜が付与された切り欠き部の内面が切り欠いた円筒状の空間を隔てて配線パターン面に対向し、その空間をボンディングに利用することができるから、両面が半田を介し強固に接着・接続され、取り付け強度や電気的接続が確保される。
さらに、かかる切り欠き部を設けたことにより、半田付け時にセルフ・アライメントが働くようになることから、従来のチップ電子部品において問題であった取り付け後の位置精度、接続不良、或いはマンハッタン現象によるチップの起立が発生するという問題が生じることがない。
また、マザーボードの端部への実装が必要である側面発光型チップLEDへ本発明を適用することにより、従来の側面発光型チップLEDを実装した場合に起きていた不完全な接続によるチップの脱落を少なくすることが可能となる。
また、前記電極を採用することにより同パターンを形成した1枚の絶縁基板から個々のチップを切り出すことにより上記したチップ電子部品を効率的に量産化することが出来る。
【図面の簡単な説明】
【図1】本発明による側面発光型チップLEDの1実施形態を示す斜視図である。
【図2】図1に示す側面発光型チップLEDのLED素子載置面を示す図である。
【図3】図1に示す側面発光型チップLEDの作成プロセスを説明する図である。
【図4】従来の側面発光型チップLEDの1例を示す斜視図である。
【図5】図4に示す従来の側面発光型チップLEDの作成プロセスを説明する図である。
【図6】図4に示す従来のチップLEDがマザーボード上で側面発光する状態に載置された様子を示す図である。
【符号の説明】
1、11…絶縁基板、
2、12…電極、
3、13…半導体素子、
4、14…封止樹脂、
5、15…側面型チップLED、
6、16…ワイヤ、
8、18…スルーホール、
9、…切り欠き部、
9d…切り欠きスルーホール、
21…マザーボード、
22…配線パターン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chip electronic component formed by assembling an element chip on an electrode provided on an insulating substrate and a substrate electrode structure thereof. More specifically, an electrode pattern is formed on an insulating substrate, and after dicing after assembling the element chip. The present invention relates to a side-chip electronic component obtained by cutting out each component and a substrate electrode structure thereof.
[0002]
[Prior art]
Conventionally, a side-emitting chip LED is known as one of side-chip electronic components. 4 and 6 show an example thereof in perspective view. FIG. 4 shows the chip LED 15, and FIG. 6 shows the chip LED 15 in a state where it is assembled to the mother board 21 and emits side light.
As shown in FIG. 4, a conventional chip LED 15 has an LED element 13 mounted on an insulating substrate 11 having a substantially rectangular parallelepiped shape, and a pair of opposing side surfaces of the insulating substrate 11 is covered with a cross-section. A pair of electrodes 12 is provided in the shape of a letter, and the insulating substrate surface is exposed on another pair of side surfaces. This electrode structure is formed by forming an electrode 12 around an insulating substrate 11, and then cutting out each component by dicing, and the other pair of side surfaces (upper and lower surfaces in the figure) are cut out to form a substrate. Is the exposed surface. Therefore, of course, there are no electrodes on this surface.
[0003]
Since the above-described electrode structure is deeply related to a method for producing a chip LED, the method will be described next.
FIG. 5 is a diagram for explaining a method for producing the chip LED, and shows an electrode structure of an insulating substrate in the process of production in which a plurality of LED elements are mounted on one insulating substrate. With reference to the figure, the above-described electrode structure will be described in detail together with a method for producing a chip LED.
Here, there is a general method for forming an electrode on an insulating substrate, that is, a method in which an electrode metal is applied to the periphery of the substrate including through the through-hole provided in the substrate, including the front and back surfaces of the substrate and the inner surface of the through hole. It is taken.
In the example shown in FIG. 5, a through hole 18 extending from the front surface to the rear surface on which the LED element 13 is placed is formed in the insulating substrate 11 so as to be elongated in the vertical direction (the vertical direction of the chip arrangement). In the drawing, the through hole 18 is shown for only three chips, but in actuality, the electrode extends so as to extend over a length of 10 chips or more and repeats the same structure in the lateral direction across the through hole. A pattern is formed.
As a result of employing the above electrode formation method and applying an electrode metal to the through hole 18 having such a shape, the electrode 12 extends from the mounting surface of the element 13 of the insulating substrate 11 to the back surface through the inner surface of the through hole 18. It is formed.
As a manufacturing process of the chip LED, the LED element 13 is bonded to the mount portion of the electrode 12 formed as described above, wiring is performed by the wire 16, the LED element 13 is protected, and light is transmitted in a predetermined manner. In order to provide a lens function leading in the direction, a transfer mold of sealing resin 14 is applied to the substrate surface so as to seal the LED element. Thereafter, dicing is performed along a cut line indicated by a one-dot chain line in FIG. 5, and each chip LED 15 shown in FIG.
[0004]
The chip LED 15 obtained by the above-described production method does not have a special structure for use as a side-emitting type. Therefore, when the produced chip LED 15 is used as a side-emitting type, as shown in FIG. 6, a surface that is cut out and exposes a cross section of the insulating substrate, that is, a surface on which no electrode is formed, in order to arrange the side surface. Bonding to the wiring pattern 22 of the mother board 21 is performed at (upper and lower surfaces in FIG. 4).
In this case, the electrode 12 is merely in line contact with the wiring pattern 22 of the mother board 21 at the cut-out surface end on the chip LED 15 side, and is not actually connected. For this reason, the two are connected by soldering the electrodes provided on the wiring pattern 22 surface and four side surfaces perpendicular to the wiring pattern surface, mainly the element mounting surface and a pair of both side surfaces extending over the back surface thereof.
However, this connection method does not provide sufficient attachment strength. Therefore, in particular, in the case of a side-emitting chip LED attached to the end of the motherboard (see FIG. 6), dropping or the like occurs due to contact with the outside when the motherboard is handled.
In addition, since there is no electrode on the chip LED side surface that contacts the wiring pattern surface of the motherboard, self-alignment does not work during soldering, and the positional accuracy after mounting does not come out, or poor connection, In particular, in the case of a small chip component, there is a problem that solder is not attached or that the chip rises due to the Manhattan phenomenon.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the problems in the conventional side-emitting chip electronic component described above, and is a wiring pattern of a mother board on a surface (surface on which no electrode is formed) cut out by dicing and exposing a substrate. The solution is to provide a chip electronic component and its substrate electrode structure that can be used as a side mold that ensures self-alignment during soldering, ensuring mounting strength and electrical connection when mounting by bonding It should be a challenge.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, an elongated through hole extending over a plurality of chip portions is formed in an insulating substrate, and an inner surface of the elongated hole through hole is notched along the boundary of each chip portion to form a notched portion, A chip electronic component formed by dicing the insulating substrate into the chip portions by dicing at the location of the notch, the divided insulating substrate, and electrodes provided on the divided insulating substrate, a semiconductor element electrically connected to the electrode is placed on the upper surface of the divided insulating substrate, and a resin sealing portion for covering the semiconductor element, the divided insulating substrate thick square is a is cut in a direction all the substantially rectangular element mounting surface and the back surface, extending the electrode to all surfaces that are essential pair of opposite side surfaces and cut formed in the long hole shape through hole over both sides It causes Zaisa, da of the divided insulating substrate By placing one of the cut surfaces by sequencing on the motherboard of the wiring pattern constituting the chip electronic component, characterized in that bonding the electrode and the wiring pattern.
[0007]
According to a second aspect of the present invention, in the side surface type chip electronic component according to the first aspect, the semiconductor element is a light emitting element.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a chip electronic component and its substrate electrode structure according to the present invention will be described below with reference to the accompanying drawings.
In the present embodiment, an embodiment of a side-emitting chip LED in which an electronic component is an LED will be described.
FIG. 1 is a perspective view of one embodiment of a side-emitting chip LED according to the present invention, showing a chip LED in a state assembled to a wiring pattern on a motherboard. FIG. 2 is a top view showing the LED element mounting surface of the side-emitting chip LED.
The side-emitting chip LED shown in FIG. 1 is based on the side-emitting chip LED shown as the conventional example (FIG. 4) above, and there is no particular difference with respect to points other than the structure of the electrode portion. For the elements which are not different, the description of the conventional example is referred to.
[0010]
First, the structure of the electrode portion of the chip LED 5 shown in FIG. 1 will be described.
The side surface light emitting chip LED 5 in the side light emission state shown in the figure has a pair of electrodes 2 connected from the upper surface on which the LED element 3 of the insulating substrate 1 having a substantially rectangular parallelepiped shape is mounted to the side surface and further to the lower surface, as in the conventional example. Are arranged opposite to each other.
Further, this electrode structure is different from the above-mentioned conventional one in that a cut-out portion 9 is formed along the thickness direction at the side edge (corner portion) where the cross section of the insulating substrate is exposed, that is, cut from the upper surface to the lower surface of the substrate. is doing. As shown in the drawing, the notch 9 is cut out in a cylindrical shape (correctly, a shape of a part of the cylinder) from the upper surface to the lower surface of the substrate on which the LED element is placed, on the edge of the exposed surface of the insulating substrate. . In addition, a conductive film is applied to the cylindrical cutout surface to form a part of the electrode. That is, as shown in FIG. 2 in which the LED element mounting surface is viewed from above, the insulating substrate 1 has a substantially rectangular shape in which the four corners are cut out in a fan shape in the thickness direction, and the curved surface of the cutout portion. 9, the electrode 2 extends from the upper surface of the substrate, and the electrode 2 is further connected to the lower surface of the substrate 1.
[0011]
When the chip LED 5 is provided with an electrode in the notch 9, the chip LED 5 is bonded onto the wiring pattern 22 on the motherboard so that the upper surface thereof is directed to the side (see FIG. 1). The inner surface is opposed to the surface of the wiring pattern 22 with a cylindrical space cut out, and the space can be used as a bonding surface. That is, at the time of connection, solder enters between the electrode metal film applied to the inner surface of the notch 9 and the wiring pattern surface, and both surfaces can be firmly bonded and connected via the solder. Thus, the notch portion 9 effectively functions as an attachment / connection means in the side light emitting chip LED.
In this embodiment, the inner shape of the notch 9 is a cylindrical shape. However, in terms of the function of improving the bondability, the surface facing the wiring pattern 22 surface with a space in the bonding. If it is the shape which makes | forms, it does not need to be cylindrical. However, if it is cylindrical, there is an advantage that a processing method (described later) for forming a highly accurate cutout can be employed.
Further, in the embodiment shown in FIGS. 1 and 2, the notches 9 are provided at the four edges (corners), but according to the above function, only the side facing the wiring pattern surface on the motherboard is provided. It may be designed to form a notch surface. However, when it is necessary to select the polarity, it is meaningful to provide the notches 9 at the four edges as in this embodiment.
[0012]
The electrode structure provided in the four notches 9 described above is deeply related to the method for producing the chip LED. This is the case when an element is assembled with a substrate in which electrodes for a plurality of semiconductor light emitting element chips are arranged on one substrate, and a chip is divided after assembly to create a plurality of chip LEDs from one substrate. It becomes the form of four notches. This will be described below.
FIG. 3 is a diagram for explaining a method for producing a chip LED, and shows an electrode structure of a substrate on which a plurality of LED elements are arranged and placed on one substrate.
In general, as a method of forming an electrode on a substrate, a method of applying an electrode metal film to the periphery of the substrate including the upper and lower surfaces of the substrate and the inner surface of the through hole through a through hole provided in the substrate is employed. In the example shown in FIG. 3, a through hole 8 extending from the surface on which the LED element 3 is placed to the lower surface is formed in the insulating substrate 1 so as to be elongated in the vertical direction (vertical direction of the chip arrangement). Although the through hole 8 is shown only for three chips in the figure, it actually extends over a length of 10 chips or more, and the same structure is repeatedly symmetrical with the through hole in the lateral direction. It has.
In the through hole 8, the inner surface of the hole is not only flat (straight) as in the above-described conventional example (see FIG. 5), but also a through hole 9 d is formed in the flat inner surface. . The notch through hole 9d is formed along the boundary line of each chip (after that, a cut line where the chip is divided by dicing), and the notch shape is a part of a cylindrical shape in this example. The notch through hole 9d becomes the notch 9 in the finally produced chip LED. However, in the insulating substrate in the intermediate process shown in FIG. 3, it is referred to as the notch through hole 9d. .
The four surfaces of the insulating substrate 1, that is, the element mounting surface, its lower surface and both side surfaces (the inner surface of the through hole 8), and the notched through are passed through the through hole 8 and the notched through hole 9d formed in the insulating substrate 1 in this way. An electrode metal is applied to the inner surface of the hole 9d.
[0013]
By the way, the through hole shown in FIG. 3 is further formed as a notch through hole 9d on the inner surface of the through hole 8 of the insulating substrate 1, and the inner surface of the through hole 8 along the cutting line of the dicing indicated by the one-dot chain line, that is, along the boundary line of each chip. A hole having a shape in which a cylinder is halved is formed. In order to form the notched through-hole 9d, fine processing is required for the insulating substrate 1. However, as shown in the drawing, the shape of the notched through-hole is made part of a cylinder so that it can be easily and highly accurate. A cut-through hole can be formed. This shape is easier to process than other shapes and can ensure the accuracy of fine processing on the insulating substrate 1.
Next, three examples of the processing method for the cylindrical notch through hole 9d that can be implemented in relation to the processing method for the through hole 8 are shown below.
(1) The long through hole 8 elongated in the vertical direction (chip arrangement direction in FIG. 3) is NC processed, and then the cylindrical through hole 9d is processed by laser processing.
(2) A long hole-like through hole 8 that is elongated in the vertical direction is die-cut, and then a cylindrical notch through hole 9d is processed by laser processing.
(3) The long hole-like through hole 8 elongated in the vertical direction is punched out, and then the cylindrical notch through hole 9d is processed by NC drilling.
[0014]
In order to obtain a chip LED after forming the electrode on the insulating substrate by the above-described method, the LED element 3 is bonded to the mount portion of the electrode 2 formed on the insulating substrate 1, and the wire 6 is wired and sealed. Transfer molding of resin 4 is performed (this state is shown in FIG. 3). In this creation stage, since the chip LEDs for a plurality of chips are integrally present on one substrate, dicing is performed along a cut line indicated by a one-dot chain line in FIG. 3, and each chip LED 15 is cut out. A chip LED is obtained.
[0015]
【The invention's effect】
According to the side chip electronic component having a notch portion according to the present invention, when soldering to a mother board or the like, the adhesion area of the solder can be increased and strong fixation can be achieved. Even when it is used as a chip electronic component bonded to the wiring pattern of the motherboard on the exposed surface (surface where no electrode is present), the notch portion formed along the edge (corner portion) of the exposed surface and provided with the electrode metal film Since the inner surface is separated from the cylindrical space with the notch facing the wiring pattern surface and can be used for bonding, both sides are firmly bonded and connected via solder, and mounting strength and electrical connection are improved. Secured.
Furthermore, by providing such a notch, self-alignment works when soldering, so that the chip due to positional accuracy after mounting, poor connection, or Manhattan phenomenon, which was a problem in conventional chip electronic components There is no problem of the occurrence of standing up.
In addition, by applying the present invention to a side-emitting chip LED that needs to be mounted on the end of the motherboard, the chip is dropped due to incomplete connection that occurs when a conventional side-emitting chip LED is mounted. Can be reduced.
Further, by adopting the electrodes, it is possible to efficiently mass-produce the above chip electronic components by cutting out individual chips from one insulating substrate on which the same pattern is formed.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a side-emitting chip LED according to the present invention.
FIG. 2 is a view showing a LED element mounting surface of the side light emitting chip LED shown in FIG. 1;
FIG. 3 is a diagram for explaining a process for producing the side-emitting chip LED shown in FIG. 1;
FIG. 4 is a perspective view showing an example of a conventional side-emitting chip LED.
FIG. 5 is a diagram for explaining a process for producing the conventional side-emitting chip LED shown in FIG. 4;
6 is a diagram showing a state in which the conventional chip LED shown in FIG. 4 is mounted on the motherboard in a state where side light emission occurs.
[Explanation of symbols]
1, 11 ... Insulating substrate,
2, 12 ... electrodes,
3, 13 ... Semiconductor element,
4, 14 ... sealing resin,
5, 15 ... Side chip LED,
6, 16 ... wire,
8, 18 ... through hole,
9, ... Notch,
9d ... Notch through hole,
21 ... Motherboard,
22: Wiring pattern.

Claims (2)

絶縁基板に複数のチップ部にわたる長孔状スルーホールを形成し、該長孔状スルーホールの内面を各チップ部の境界に沿い切り欠いて切欠部を形成し、前記絶縁基板を前記切欠部の箇所にてダイシングして各チップ部に分割して形成したチップ電子部品であって、
分割された絶縁基板と、該分割された絶縁基板上に設けられた電極と、前記分割された絶縁基板の上面に載置されて前記電極と電気的に接続された半導体素子と、該半導体素子を覆う樹脂封止部とを備え前記分割された絶縁基板は角が厚さ方向に切り欠かれた略矩形状とされ、素子載置面とその裏面、その両面にわたる前記長孔状スルーホールで形成された一対の両側面及び切り欠かれた面に前記電極を延在させると共に、前記分割された絶縁基板のダイシングによる切断面の一方をマザーボードの配線パターン上に載置して前記電極と配線パターンをボンディングすることを特徴とするチップ電子部品。
A long hole-like through hole extending over a plurality of chip portions is formed in the insulating substrate, and an inner surface of the long hole-like through hole is notched along the boundary of each chip portion to form a notch portion, and the insulating substrate is formed on the notch portion. It is a chip electronic component formed by dicing at each location and dividing into each chip part,
A divided insulating substrate; an electrode provided on the divided insulating substrate; a semiconductor element placed on an upper surface of the divided insulating substrate and electrically connected to the electrode; and the semiconductor element and a resin sealing portion for covering said divided insulating substrate is a substantially rectangular shape square is cut out in the thickness direction, the element mounting surface and the back surface, the slot-like through-over on both sides together extend the electrode to the total surface which is cut a pair of opposite side surfaces and cut formed in the hall, the by placing one of the cut surface by dicing of the divided insulating substrate on the motherboard of the wiring pattern A chip electronic component characterized by bonding an electrode and a wiring pattern.
前記半導体素子が発光素子であることを特徴とする請求項1記載のチップ電子部品。  The chip electronic component according to claim 1, wherein the semiconductor element is a light emitting element.
JP36882698A 1998-12-25 1998-12-25 Chip electronic components Expired - Fee Related JP3907145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36882698A JP3907145B2 (en) 1998-12-25 1998-12-25 Chip electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36882698A JP3907145B2 (en) 1998-12-25 1998-12-25 Chip electronic components

Publications (2)

Publication Number Publication Date
JP2000196000A JP2000196000A (en) 2000-07-14
JP3907145B2 true JP3907145B2 (en) 2007-04-18

Family

ID=18492863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36882698A Expired - Fee Related JP3907145B2 (en) 1998-12-25 1998-12-25 Chip electronic components

Country Status (1)

Country Link
JP (1) JP3907145B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105594002A (en) * 2013-09-27 2016-05-18 欧司朗光电半导体有限公司 Optoelectronic semiconductor element and method for producing an optoelectronic semiconductor element

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4643843B2 (en) * 2001-03-09 2011-03-02 シチズン電子株式会社 Light emitting diode
JP3924481B2 (en) * 2002-03-08 2007-06-06 ローム株式会社 Semiconductor device using semiconductor chip
US7710016B2 (en) 2005-02-18 2010-05-04 Nichia Corporation Light emitting device provided with lens for controlling light distribution characteristic
DE102005017527A1 (en) * 2005-04-15 2006-11-02 Osram Opto Semiconductors Gmbh Surface-mountable optoelectronic component
KR100638876B1 (en) * 2005-07-22 2006-10-27 삼성전기주식회사 Side view led with improved arrangement of protection device
US7494920B2 (en) * 2005-10-14 2009-02-24 Honeywell International Inc. Method of fabricating a vertically mountable IC package
JP2007207921A (en) 2006-01-31 2007-08-16 Stanley Electric Co Ltd Method for manufacturing surface-mounting optical semiconductor device
JP4193905B2 (en) 2007-03-20 2008-12-10 日亜化学工業株式会社 Manufacturing method of semiconductor device
JP5391943B2 (en) * 2009-09-07 2014-01-15 豊田合成株式会社 Method for manufacturing ceramic substrate, light emitter and light emitting device
JP2011114032A (en) * 2009-11-24 2011-06-09 Sumitomo Metal Electronics Devices Inc Ceramic package for storing electronic component
JP2011114031A (en) * 2009-11-24 2011-06-09 Sumitomo Metal Electronics Devices Inc Ceramic package for storing electronic component
US9018653B2 (en) 2010-09-03 2015-04-28 Nichia Corporation Light emitting device, circuit board, packaging array for light emitting device, and method for manufacturing packaging array for light emitting device
KR101816955B1 (en) * 2010-09-03 2018-01-09 니치아 카가쿠 고교 가부시키가이샤 Light emitting device, and package array for light emitting device
JP2015149448A (en) * 2014-02-07 2015-08-20 ローム株式会社 Light emitting module, light emitting device and method of manufacturing light emitting module
US10090448B2 (en) 2014-02-07 2018-10-02 Rohm Co., Ltd. Light-emitting module, light-emitting device and method of making light-emitting module
JP6322828B2 (en) * 2014-02-07 2018-05-16 ローム株式会社 Light emitting module and light emitting device
JP6405697B2 (en) 2014-05-21 2018-10-17 日亜化学工業株式会社 Light emitting device
JP7283938B2 (en) * 2019-03-27 2023-05-30 ローム株式会社 semiconductor light emitting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163352U (en) * 1988-04-30 1989-11-14
JP4010424B2 (en) * 1997-02-05 2007-11-21 シチズン電子株式会社 Electrode structure of side surface type electronic component and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105594002A (en) * 2013-09-27 2016-05-18 欧司朗光电半导体有限公司 Optoelectronic semiconductor element and method for producing an optoelectronic semiconductor element
US9780269B2 (en) 2013-09-27 2017-10-03 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component comprising an optoelectronic semiconductor chip being partly embedded in a shaped body serving as support and method for producing an optoelectronic semiconductor component comprising an optoelectronic semiconductor chip being partly embedded in a shaped body serving as support

Also Published As

Publication number Publication date
JP2000196000A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
JP3907145B2 (en) Chip electronic components
JP3553405B2 (en) Chip type electronic components
JP3915992B2 (en) Manufacturing method of surface mount type electronic components
JP4010424B2 (en) Electrode structure of side surface type electronic component and manufacturing method thereof
US20070096271A1 (en) Substrate frame
JP2006156462A (en) Surface-mounted light emitting diode
JPH10150138A (en) Side-use electronic component provided with lower electrode
US5105261A (en) Semiconductor device package having particular lead structure for mounting multiple circuit boards
JP3139613B2 (en) Surface mounted semiconductor light emitting device and method of manufacturing the same
JP2000196153A (en) Chip electronic component and manufacture thereof
JP2000031545A (en) Semiconductor light emitting element and its manufacture
US11600561B2 (en) Semiconductor device
JPH11340609A (en) Manufacture of printed wiring board and manufacture of unit wiring board
JP2006156643A (en) Surface-mounted light-emitting diode
JP3331720B2 (en) Light emitting diode
JP2000036621A (en) Electrode structure of side-surface electronic component
JPH05335438A (en) Leadless chip carrier
JPS62134945A (en) Molded transistor
JP2000012995A (en) Mounting apparatus for terminal components on printed circuit board
JPS635248Y2 (en)
JP2005093559A (en) Semiconductor package and method of manufacturing same
JP2753713B2 (en) Lead frame assembly sheet
JP2516394Y2 (en) Semiconductor device
JPH0726803Y2 (en) Network resistor
JP2773707B2 (en) Manufacturing method of hybrid integrated circuit device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070115

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees