JP3893922B2 - レンズの評価方法およびレンズ評価装置 - Google Patents

レンズの評価方法およびレンズ評価装置 Download PDF

Info

Publication number
JP3893922B2
JP3893922B2 JP2001280670A JP2001280670A JP3893922B2 JP 3893922 B2 JP3893922 B2 JP 3893922B2 JP 2001280670 A JP2001280670 A JP 2001280670A JP 2001280670 A JP2001280670 A JP 2001280670A JP 3893922 B2 JP3893922 B2 JP 3893922B2
Authority
JP
Japan
Prior art keywords
image
luminance value
lens
value
resolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001280670A
Other languages
English (en)
Other versions
JP2002202218A (ja
Inventor
雅志 北林
広一 小島
俊次 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001280670A priority Critical patent/JP3893922B2/ja
Priority to US09/976,142 priority patent/US6760097B2/en
Publication of JP2002202218A publication Critical patent/JP2002202218A/ja
Priority to US10/812,095 priority patent/US6989894B2/en
Application granted granted Critical
Publication of JP3893922B2 publication Critical patent/JP3893922B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • G01M11/0264Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested by using targets or reference patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Lens Barrels (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Projection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プロジェクタに用いられるレンズの解像度を評価するために、解像度測定用のテストパターンを含む画像光を、前記投写レンズを介してスクリーン上に照射し、前記スクリーン上に前記解像度測定用のテストパターンの画像を表示して、表示されたテストパターン画像の輝度を撮像素子を用いた画像取り込み装置で検出し、検出された輝度値に基づいて解像度評価値を算出するレンズの評価方法、およびこの評価方法を実行するためのレンズ評価装置に関する。
【0002】
【背景技術】
従来より、複数の色光を画像情報に応じて各色光ごとに変調する複数の液晶パネルと、各液晶パネルで変調された色光を合成するクロスダイクロイックプリズムと、このプリズムで合成された光束を拡大投写して投写画像を形成する投写レンズとを備えたプロジェクタが利用されている。
このプロジェクタに用いられる投写レンズは、その製造工程等のばらつきにより、画像解像度、フレアおよび色収差の特性にもばらつきが生じることがある。投写レンズの特性のばらつきは、プロジェクタによって表示される画像の品質に影響するため、レンズメーカのレンズ出荷前及び、プロジェクタ組立投入前には、レンズの画像解像度、フレアおよび色収差の特性が評価されている。
【0003】
具体的には、例えば、投写レンズの解像度を評価する場合、評価シートに解像度測定用のテストパターンを形成し、このテストパターンに光を照射して、テストパターンを含む画像光を投写レンズに導入し、投写レンズから照射された画像光をスクリーン上に投影する。そして、このスクリーン上に表示されたテストパターンの画像をCCD(Charge Coupled Device)等の撮像素子を用いた画像取り込み装置で検出し、この装置で検出した画像をコンピュータ等で画像処理を行うことによって投写レンズの解像度の評価が行われる。
ここで、一般的にレンズの解像度の評価を行うための解像度評価値として、MTF(Modulation Transfer Function)値が採用され、テストパターン画像中の検出輝度値の最大値をImax、最小値をIminとすると、以下の数4により求められる。
【0004】
【数4】
Figure 0003893922
【0005】
【発明が解決しようとする課題】
しかしながら、上述した構成においては、このような数4で算出されるMTF値は、計測する輝度が相対値となるため、画像の明るさの状態によってMTF値が変化してしまうという問題がある。
そして、上述した投写レンズの解像度の評価において、投写レンズから照射されてスクリーン上に投影された画像光は、中央部分の光の強度が最も強く、周縁部分に行くにしたがって弱くなる傾向にあるため、スクリーン上に投影された画像の複数箇所で輝度値を取得してMTF値を算出しても、同様の基準で評価をすることができないという問題がある。
また、プロジェクタの機種によって投写画像の明るさが異なる場合、各プロジェクタのレンズのMTF値を同列で比較することができないという問題がある。
【0006】
本発明の目的は、レンズの解像度の評価を、プロジェクタの機種や測定場所に影響されることなく、適正に行うことのできるレンズの評価方法、およびレンズ評価装置を提供することにある。
【0007】
【課題を解決するための手段】
前記目的を達成するために、本発明のレンズの評価方法は、レンズの解像度を評価するために、解像度測定用のテストパターンを含む画像光を、前記レンズを介してスクリーン上に照射し、前記スクリーン上に前記解像度測定用のテストパターンの画像を表示して、表示されたテストパターン画像の輝度を撮像素子を用いた画像取り込み装置で検出し、検出された輝度値に基づいて解像度評価値を算出するレンズの評価方法であって、前記テストパターンが形成されていない、バックグラウンド部分の輝度値を、前記撮像素子を用いた画像取り込み装置により取得するバックグラウンド輝度値取得手順と、前記テストパターン画像中の最大輝度値を、前記撮像素子を用いた画像取り込み装置により取得する最大輝度値取得手順と、前記テストパターン画像中の最小輝度値を、前記撮像素子を用いた画像取り込み装置により取得する最小輝度値取得手順と、これら各手順で得られたバックグラウンド輝度値、最大輝度値、および最小輝度値に基づいて、解像度評価値を算出する評価値算出手順とを備え、前記評価値算出手順によって算出される解像度評価値MTFは、バックグラウンド輝度値をIo、最大輝度値をImax、最小輝度値をIminとすると、以下の数5で与えられることを特徴とする。
【0008】
ここで、解像度測定用のテストパターンは、一般的な光学系の評価に用いられる所定の空間周波数で明部、暗部が設定された解像度チャートを採用することができ、空間周波数としては、20本/mm〜80本/mmの間の複数の空間周波数を採用することができる。具体的には、解像度測定用のテストパターンとして、平行線型解像度チャートを用いることができ、空間周波数は、20本/mm、25本/mm、30本/mm、50本/mm、80本/mmに設定し、各空間周波数において、互いに直行する2種類の平行線型解像度チャートを一組としてテストパターンを構成することができる。
また、上述した最大輝度値は、上記テストパターン画像中の最も明るい部分の輝度値をいい、最小輝度値は、最も暗い部分の輝度値をいい、撮像素子で撮像したテストパターン画像において、パターンマッチング処理等の画像の輝度を検出する画像処理を行うことで求めることができる。
【0009】
さらに、本発明の評価方法は、出力側のレベル0の値と入力側のレベル0との間にずれがあり、入力側でレベル0の光を導入しても、出力側でレベル0の光として出力されない、オフセット値が生じるような撮像素子を用いた画像取り込み装置を採用した場合に好適である。撮像素子としては、CCD、MOS(Metal Oxide Semiconductor)センサ等の撮像素子が考えられ、画像取り込み装置としては、これらの撮像素子からの出力が入力され、コンピュータ用の画像信号に変換するビデオキャプチャボード等の画像データ化手段が考えられる。
【0010】
このような本発明によれば、解像度評価値を、バックグラウンド輝度値、最大輝度値、および最小輝度値に基づいて算出しているため、スクリーン上に投影された画像の明るさが異なっても、バックグラウンド輝度値を加味して補正処理することにより、複数箇所で取得したバックグラウンド輝度値、最大輝度値、最小輝度値に基づいて算出された解像度評価値を同様の基準で評価することができ、プロジェクタの機種、表示画像上の場所等に影響されることなく、レンズの解像度を適切に評価することができる。
【0011】
以上において、評価値算出手順によって算出される解像度評価値MTFは、バックグラウンド輝度値をIo、最大輝度値をImax、最小輝度値をIminとすると、以下の数5で算出することができる。
【0012】
【数5】
Figure 0003893922
【0013】
この数5は、次のような手順で求められる。
図1に示されるような平行線型の解像度測定用パターンC1の画像を撮像素子を用いて検出し、撮像素子で検出されたパターンC1の明部、暗部の輝度値に解像度の評価を行う場合、解像度の評価値MTFは、投写レンズに入射する画像光の入力コントラスト比となる入力レベルと、CCDカメラ等の撮像素子で検出された画像の出力コントラスト比となる出力レベルとの比で与えられ、数6の式により求められる。
【0014】
【数6】
Figure 0003893922
【0015】
ここで、数6における出力レベルは、(Imax−Imin)と置き換えられるので、数6は数7のように書き換えることができる。
【0016】
【数7】
Figure 0003893922
【0017】
一方、入力レベルは、図2に示されるように、(I100%−Imax)の値と、(Imin−I0%)の値が等しいとすると、入力側のI0%が出力側と同じ値であることを条件として数8により求められる。
【0018】
【数8】
Figure 0003893922
【0019】
したがって、解像度評価値MTFは、背景技術で説明したと同様に、数9に示される式に基づいて求めることができる。
【0020】
【数9】
Figure 0003893922
【0021】
しかしながら、CCD等の撮像素子を用いた画像取り込み装置で取得した画像から、入力レベルおよび出力レベルの関係を調べると、図3に示されるように、出力レベル側にオフセット値(I0%−ICCD0%)が生じるため、この状態で数9に基づいて入力レベルを算出すると、オフセット値の倍の値が加算されることとなり、真の入力レベル値よりも大きな値となってしまう。また、上記CCD等の撮像素子におけるオフセット値は、バックグラウンド輝度値が変化すると、オフセット値も変化することがある。例えば、バックグラウンド輝度値が暗くなるほど大きな値となるので、その結果として算出される解像度評価値MTFは全体的に真の値よりも小さくなり、さらにバックグラウンド輝度が暗くなればなるほど小さな値となってしまう。
【0022】
したがって、正しい解像度評価値MTFを求めるには、CCD等の撮像素子を用いた画像取り込み装置のオフセット分を除く補正が必要となる。
このようなオフセット分を除くには、入力レベルを、図3に示される出力側の最大輝度値Imax、および最小輝度値Iminと、入力側の最大輝度値I100%における出力側の輝度の読み値Ioが判れば、以下の数10によって求めることができる。
【0023】
【数10】
Figure 0003893922
【0024】
ここで、解像度評価値MTFは、空間周波数0、すなわちパターンがない状態で1となるので、テストパターンのない部分の明るさ、つまりバックグラウンド部分の輝度値を測定すればよい。また、この数10は、CCD等の撮像素子で検出された輝度値の差分のみを加算することにより算出されるため、上記のオフセット分は相殺され、得られた入力レベルは、オフセット分が除かれた値となる。
以上より、CCD等の撮像素子を用いた画像取り込み装置のオフセット分を除いた適正な解像度評価値MTFは、以下の数11によって求められることとなる。
【0025】
【数11】
Figure 0003893922
【0026】
このような本発明によれば、解像度評価値MTFが数11で表される式に基づいて求められるため、正確な解像度評価値MTFを得ることができ、プロジェクタの機種、表示画像上の場所等に影響されることなく、投写レンズの解像度をより適正に評価することができる。
【0027】
また、上述した撮像素子がCCDから構成されている場合、CCDの輝度値に対する出力が比例関係にある部分でバックグラウンド輝度値取得手順と、最大輝度値取得手順と、最小輝度値取得手順とが実施されるのが好ましい。
すなわち、CCD等の撮像素子において、画像光の輝度値に対する関係は、出力が明るすぎる部分、暗すぎる部分で比例関係が失われてしまい、適切な輝度値を取得することができない。そこで、CCD等の撮像素子に入射する画像光の明るさを調整する絞り等の光量調整手段を設けることより、撮像素子の直線関係が維持される部分での測定を行うことができるので、評価値算出手順でより正確な解像度評価値を算出することができる。
【0028】
また、前記レンズは、複数の集光素子を光軸方向に沿って配置した組レンズとして構成され、各集光素子相互の位置を変更することで投影像を拡大縮小するズーム機能を具備し、少なくともこのレンズの最小倍率および最大倍率のそれぞれで前記バックグラウンド輝度値取得手順、最大輝度値取得手順、最小輝度値取得手順、および評価値算出手順が実施されることが好ましい。
すなわち、複数の集光素子を光軸方向に沿って配置した組レンズにおいて、各集光素子相互の位置を変更することで投写像を拡大縮小する際に、解像度評価値MTFは、拡大された投写像および縮小された投写像によって異なる値を示す場合がある。そこで、解像度の評価として、少なくとも組レンズの最小倍率および最大倍率のそれぞれの状態で、各々の解像度評価値MTFを算出し、レンズの評価を行う。したがって、このような評価を行うことで、プロジェクタとしてこの組レンズを組み込んだ時に、投影像を拡大縮小させた状態で生じる解像度評価値MTFのずれを低減させたプロジェクタを提供できる。
【0029】
また、前記撮像素子が、前記スクリーン面に沿って移動可能に構成されている場合、前記スクリーン上に投影された投写画像の外周端部に沿ってこの撮像素子を移動させる撮像素子移動手順と、この撮像素子移動手順による移動中に、所定の位置で前記投写画像の端部画像を、前記撮像素子を用いた画像取り込み装置により取得する端部画像取得手順と、この端部画像取得手順で取得された前記投写画像の端部画像に基づいて、前記投写画像の歪曲収差量を算出する歪曲収差量算出手順とを備えていることが好ましい。
【0030】
このような本発明によれば、撮像素子は、スクリーン面に沿って移動可能であり、撮像素子移動手順と、端部画像取得手順と、歪曲収差量算出手順とを備えていることにより、スクリーン上に投影された投写画像の外周端部に沿って撮像素子を移動させ、所定の位置で端部画像を撮像素子を用いた画像取り込み装置により取得することができる。したがって、投写画像の任意の位置で端部画像を取得して、設計上の画像投写位置と対比して歪曲収差を算出することができ、従来のような目視検査にて行っていた評価精度の曖昧さを解消し、正確にレンズの歪曲収差を評価することができる。
【0031】
ここで、前記テストパターンが形成される検査シートは、前記投写画像の形成領域の外周近傍に形成される枠状部を備え、前記端部画像取得手順は、前記スクリーン上に形成された枠状部の画像を取得することが好ましい。
このような本発明によれば、検査シートが投写画像の形成領域の外周近傍に形成される枠状部を備えている場合、端部画像取得手順は、スクリーン上に形成された枠状部外周形状に沿って、端部画像を取得することにより、取得された枠状部の端部画像から該枠状部の形状を容易にかつ高精度に特定することができ、より高精度にレンズの歪曲収差を評価することができる。
【0032】
さらに、前記バックグラウンド輝度値、前記最大輝度値、および前記最小輝度値に基づいて入力レベル値を算出する入力レベル値算出手順を備え、前記バックグラウンド輝度値取得手順、前記最大輝度値取得手順、前記最小輝度値取得手順、および入力レベル算出手順が、前記投写画像内の複数の位置で実施されている場合、前記投写画像のうち、これらの手順が実施された所定位置における照度を取得する所定位置照度取得手順と、前記所定位置における入力レベル値および照度と、他の位置における入力レベル値とに基づいて、該他の位置の照度を算出して前記投写画像全体の面内照度を算出する面内照度算出取得手順とを備えていることが好ましい。
【0033】
このような本発明によれば、バックグラウンド輝度値取得手順、最大輝度値取得手順、最小輝度値取得手順、および入力レベル算出手順を投写画像内の複数の位置で実施することにより、相対値である入力レベル値を得ることができる。
また、所定位置照度取得手順および面内照度算出取得手順を実施することにより、所定位置における照度と前記入力レベル値とに基づいて、投写画像の面内照度分布を評価することができる。
ここで、入力レベル値は、バックグラウンド輝度値、最大輝度値、および最小輝度値に基づいて算出されていることにより、撮像素子を用いた画像取り込み装置に生じるオフセット値が相殺された評価値となり、所定位置における照度と入力レベル値とに基づいて算出された投写画像の面内照度を同様の基準で評価することができる。したがって、このようにして投写画像の面内照度分布を算出しているため、従来のような、目視による検査精度の曖昧さを解消し、正確な投写画像の面内照度分布を評価することができる。
【0034】
以上より、前記他の位置の照度Leは、該位置における入力レベル値をIie、前記所定位置における入力レベル値をIio、該位置における照度をLoとすると、
【0035】
【数12】
Figure 0003893922
【0036】
で与えられることが好ましい。
【0037】
このような本発明によれば、他の位置の照度が、数12に示すように計算された相対値である入力レベル値の比と、絶対値である所定位置の照度との積によって求められるため、正確な照度を得ることができ、これら複数の照度を比較することにより、投写画像の面内照度分布を評価することができる。したがって、より正確な投写画像の面内照度分布を評価することができる。
【0038】
また、本発明のレンズ評価装置は、レンズの解像度を評価するためのレンズ評価装置であって、解像度測定用のテストパターンが形成された検査シートと、この検査シートに光を照射して前記テストパターンを含む画像光を前記レンズに導入する光源と、前記レンズから照射された画像光を投影するスクリーンと、このスクリーンに表示されたテストパターンの画像を撮像する撮像素子と、この撮像素子で撮像された画像を取り込んで画像信号を生成する画像取り込み部と、この画像取り込み部から出力される画像信号に基づいて、解像度評価値を演算処理する解像度評価値算出手段を含む信号処理部とを備え、前記解像度評価値算出手段は、解像度評価値MTFを、前記検査シートのテストパターンが形成されていない部分のバックグラウンド輝度値をIo、前記テストパターン画像中の最大輝度値をImax、前記テストパターン画像中の最小輝度値をIminとすると、上記数5で算出することを特徴とする。
また、前記撮像素子には、該撮像素子に入射する光の光量を調整する光量調整手段が設けられ、この光量調整手段は、前記信号処理部からの制御信号に基づいて制御されることが好ましい。
ここで、光量調整手段として、信号処理部から遠隔操作可能な自動絞り調整機構のようなものを採用することができる。
【0039】
このような本発明によれば、光量調整手段を備えていることにより、CCD等の撮像素子に入射する光の光量を、スクリーン上の画像光の輝度のばらつきに応じて調整することができるため、撮像素子に入力される光の光量を常に一定に保つことが可能となり、光量を調整した画像から算出された解像度評価値を同様の基準で評価することができる。
さらに、解像度評価値算出手段における解像度評価値は、上述したレンズの評価方法と同様の手順により算出することができ、前記と同様の作用および効果を享受することができる。そして、解像度評価値算出手段は、コンピュータの動作制御を行うOS(Operating System)上に展開されるプログラムとして構成することができ、バックグラウンド輝度値取得部、最大輝度値取得部、最小輝度値取得部、および評価値算出部を含んで構成することができる。
【0040】
また、本発明のレンズ検査装置は、前記撮像素子を前記スクリーン面に沿って移動させる撮像素子移動機構を備え、前記信号処理部は、この撮像素子を前記スクリーン上に投影された投写画像の外周端部に沿って移動制御する撮像素子制御手段と、この撮像素子制御手段による撮像素子の移動中に、所定の位置で前記投写画像の端部画像を、撮像素子を用いた画像取り込み装置により取得する端部画像検出手段と、この端部画像検出手段で取得された投写画像の端部画像に基づいて、前記投写画像の歪曲収差量を算出する歪曲収差量算出手段とを備えていることが好ましい。
このような本発明によれば、撮像素子をスクリーン面に沿って移動させる撮像素子移動機構を備え、信号処理部は撮像素子制御手段と端部画像検出手段と歪曲収差量算出手段とを備えていることにより、歪曲収差量算出手段におけるレンズの歪曲収差量は、上述したレンズの評価方法と同様の手順により算出することができ、前記と同様の作用および効果を享受することができる。
【0041】
さらに、本発明のレンズ検査装置は、前記検査シートは、スクリーン上に投影される投写画像の形成領域の外周近傍に形成される枠状部を備えていることが好ましい。
このような本発明によれば、検査シートは、スクリーン上に投影される投写画像の形成領域の外周近傍に形成される枠状部を備えていることにより、撮像素子制御手段はこの枠状部の外周に沿って撮像素子を移動させ、端部画像検出手段は枠状部の端部画像を所定の位置で取得し、歪曲収差量算出手段は取得された端部画像に基づいて投写画像の歪曲収差量を算出することができる。したがって、信号処理部は、容易に枠状部の端部画像を取得し、歪曲収差量を算出することができ、迅速かつ高精度にレンズの歪曲収差量を評価することができる。
【0042】
また、本発明のレンズ検査装置は、前記投写画像中の所定位置の照度を検出する照度検出装置を備えていることが好ましい。
このような本発明によれば、投写画像中の所定位置の照度を検出する照度検出装置を備えていることにより、検出された照度を検査対象である各レンズにおいて比較することで、レンズに起因する照度の相違を評価することができる。
【0043】
さらに、本発明のレンズ検査装置は、前記解像度評価値算出手段は、前記バックグラウンド輝度値、前記最大輝度値、および前記最小輝度値に基づいて、入力レベル値を演算処理し、該解像度評価値算出手段による入力レベル値の算出は、照度が検出される所定位置を含む投写画像内の複数の位置で行われ、前記信号処理部は、前記照度検出装置で検出された所定位置の照度と、前記解像度評価値算出手段で算出された所定位置の入力レベル値および他の位置の入力レベル値とに基づいて、他の位置の照度を算出して前記投写画像全体の面内照度を算出する面内照度算出手段を備えていることが好ましい。
このような本発明によれば、信号処理部は面内照度算出手段を備えていることにより、面内照度算出手段における面内照度は、上述したレンズの評価方法と同様な手順により算出することができ、前記と同様の作用および効果を享受することができる。
【0044】
【発明の実施の形態】
以下、本発明の実施の一形態を図面に基づいて説明する。
[1.第1実施形態]
(1)投写レンズが組み込まれるプロジェクタの構造
図4には、投写レンズが組み込まれるプロジェクタ100の構造が示されている。このプロジェクタ100は、インテグレータ照明光学系110、色分離光学系120、リレー光学系130、電気光学装置140、色合成光学系となるクロスダイクロイックプリズム150、および投写光学系となる投写レンズ160を備えている。
【0045】
前記インテグレータ照明光学系110は、光源ランプ111Aおよびリフレクタ111Bを含む光源装置111と、第1レンズアレイ113と、第2レンズアレイ115と、反射ミラー117と、重畳レンズ119とを備えている。光源ランプ111Aから射出された光束は、リフレクタ111Bによって射出方向が揃えられ、第1レンズアレイ113によって複数の部分光束に分割され、折り返しミラーによって射出方向を90°折り曲げられた後、第2レンズアレイ115の近傍で結像する。第2レンズアレイ115から射出された各部分光束は、その中心軸(主光線)が後段の重畳レンズ119の入射面に垂直となるように入射し、さらに重畳レンズ119から射出された複数の部分光束は、電気光学装置140を構成する3枚の液晶パネル141R、141G、141B上で重畳する。
【0046】
前記色分離光学系120は、2枚のダイクロイックミラー121、122と、反射ミラー123とを備え、これらのミラー121、122、123によりインテグレータ照明光学系110から射出された複数の部分光束を赤、緑、青の3色の色光に分離する機能を有している。
前記リレー光学系130は、入射側レンズ131、リレーレンズ133、および反射ミラー135、137を備え、この色分離光学系120で分離された色光、例えば、青色光Bを液晶パネル141Bまで導く機能を有している。
【0047】
前記電気光学装置140は、3枚の液晶パネル141R、141G、141Bを備え、これらは、例えば、ポリシリコンTFTをスイッチング素子として用いたものであり、色分離光学系120で分離された各色光は、これら3枚の液晶パネル141R、141G、141Bによって、画像情報に応じて変調されて光学像を形成する。
前記色合成光学系となるクロスダイクロイックプリズム150は、前記3枚の液晶パネル141R、141G、141Bから射出された各色光ごとに変調された画像を合成してカラー画像を形成するものである。クロスダイクロイックプリズム150で合成されたカラー画像は、投写レンズ160から射出され、スクリーン上に拡大投写される。
【0048】
(2)投写レンズ評価装置
図5は、本発明の一実施形態にかかる投写レンズ評価装置を示す説明図である。この装置は、図4のプロジェクタ100に用いられる投写レンズ160を評価するための装置である。
本実施形態にかかる投写レンズ評価装置は、評価対象である投写レンズ160が搭載される投写部400と、ミラー510と、スクリーン500と、測定部600とを備えている。この装置において、投写レンズ160は、取り外し可能であり、他の投写レンズに容易に交換することができる。
【0049】
投写部400から射出された画像光(画像を表す光)は、ミラー510において反射され、スクリーン500を照射する。スクリーン500は、画像光が投写される投写面500aの裏面500b側から画像を観察可能な透過型スクリーンである。測定部600は、スクリーン500上に表示された画像を用いて、投写レンズ160の解像度の評価を行う。
なお、以下の説明では、図5に示すように、評価装置は、スクリーン500の投写面500aと平行な面をXY平面とするXYZ直交座標系で表される。また、投写レンズ160は、図示しない保持部によって、XZ平面に対し所定の角度だけ傾けて配置されている。このため、以下の説明では、投写部400を、XYZ直交座標系をX軸を中心として上記の所定の角度だけ回転させたSTU直交座標系で表す。なお、投写レンズ160の中心軸n1はSU平面に対し平行となっている。
【0050】
図6は、図5の投写部400を+T方向から見たときの様子を示す説明図である。図6に示すように、投写部400は、投写レンズ160の他に、光源装置410と、第1および第2のミラー430,442と、投写レンズ検査シート450と、検査シート保持部440と、検査シート保持部440の配置を調整するための6軸調整部460と、ダミープリズム470とを備えている。
なお、検査シート保持部440は、第2のミラー442に触れないように検査シート450を保持している。図5では、図6に示す光源装置410と第1のミラー430とは、6軸調整部460と検査シート保持部440とダミープリズム470と投写レンズ160よりも、+S方向(紙面奥手方向)に存在するため、便宜上、図示を省略している。
【0051】
なお、図6に示すように、投写部400は、図4のプロジェクタ100において投写レンズが使用される場合とほぼ同様な光が投写レンズ160に入射されるように構成されている。すなわち、光源装置410は図4の光源装置111に対応し、投写レンズ検査シート450は図4の液晶パネル141R、141G、141Bに対応し、ダミープリズム470は図4のクロスダイクロイックプリズム150に対応している。このような投写部400を備える評価装置を用いれば、プロジェクタにおいて投写レンズを使用する場合と同じような環境で、投写レンズを検査することができると考えられる。
【0052】
図6の光源装置410は、光源ランプ412と放物面リフレクタ414とを備えている。放物面リフレクタ414は、その凹面が回転放物面形状となっている。光源ランプ412は、回転放物面形状の凹面の焦点位置近傍に配置されている。この構成により、光源ランプ412から射出され、放物面リフレクタ414で反射された光は、略平行な光線束となって光源装置410から射出される。なお、光源ランプ412としては、メタルハライドランプや高圧水銀ランプなどが用いられる。また、放物面リフレクタ414としては、例えば、ガラスセラミックスで形成された回転放物体の凹面上に、誘電体多層膜や金属膜などの反射膜が形成されているものが利用される。
【0053】
第1および第2のミラー430、442は、光源装置410から射出され、色光フィルタ420を通過した色光を投写レンズ160に導くための導光手段としての機能を有している。第1および第2のミラー430、442としては、すべての色光を反射するような誘電体多層膜が形成されたミラーや金属ミラーなどを用いることができる。
【0054】
投写レンズ検査シート450は、図7に示される通り、ガラスなどの透光性であって所定厚み寸法(例えば、1.1mm)の基材の正面に画像領域(テストパターン)TPが形成されたものであり、基材の縦横が所定寸法(例えば、14.6mm×18mmとされ、その内部には縦横が所定寸法(例えば、10.8mm×14.4mm)の矩形状の画像領域(テストパターン)TPが形成されている。
このテストパターンTPは、図8の正面図に示されるように、複数の解像度測定用のテストパターン10Aを備え、投写レンズ160からの射出光に基づく投写領域の複数の箇所で解像度を測定できるようになっている。尚、図示を略したが、このテストパターンTP中には、投写レンズ160の他の光学特性を調べるためのテストパターンが複数形成されている。具体的には、投写レンズ160の他の光学特性を調べるテストパターンとしては、フォーカス、アライメント調整用のテストパターン、フレア、色収差用のテストパターンがあり、各々、目視検査用、自動検査用のテストパターンが設定されている。
【0055】
解像度測定用のテストパターン10Aは、図9に示すように、縦横が所定寸法(例えば、795μm×1074μm)の矩形状に形成され、さらに、解像度測定領域WAおよびフレア検査領域WBに区画されている。
解像度測定領域WAは、2種類の解像度測定用のパターンPT1、PT2を複数備えている。パターンPT1は、垂直方向に延びる遮光領域PTVを間隔を設けて配列して構成され、隣接する遮光領域PTVの間は透光領域PTSとされる。一方パターンPT2は、水平方向に延びる遮光領域PTHを間隔を設けて配列して構成され、パターンPT1と同様に、遮光領域PTHの間が透光領域PTSとされている。
【0056】
これらパターンPT1、PT2は、その上部に形成される数字PTNの大きさに応じた寸法になっている。数字PTNは、目視検査を行う際の解像度の指標を表すものであり、具体的には、その下方に配置されるパターンPT1、PT2の空間周波数を表している。例えば、「20」の下方に配置される2つのパターンPT1、PT2は、空間周波数が20本/mmのパターンであり、数字「30」の下方にあるパターンPT1、PT2は、空間周波数が30本/mmとなる。
このようなパターンPT1、PT2により目視で解像度を検査する場合、検査者が投写レンズ160から照射され、スクリーン500上に形成されたパターンPT1、PT2を観察し、遮光領域および透光領域の境界が判別できる限界の空間周波数を解像度の指標として用いることとなるが、撮像素子を用いて画像処理を行う場合については後述する。
【0057】
フレア検査領域WBは、縦横が所定寸法(例えば、330μm×340μm)の矩形状に形成され、その内部に略円形の透光領域である4種類の小孔パターンPHa〜PHdが含まれている。小孔パターンPHa〜PHdは直径寸法がそれぞれ異なるものであり、例えば、小孔パターンPHaは直径が26μmであり、小孔パターンPHbは直径が19μmであり、小孔パターンPHcは直径が10μmであり、小孔パターンPHdは直径が5μmである。このフレア検査領域WBは、投写レンズ評価装置の自動測定を行う場合に用いられ、各小孔の孔径と透過した光の画像面積との差からフレア量を特定する。
【0058】
図6において、検査シート保持部440は、6軸調整部460に固定されており、6軸調整部460を制御することによって、検査シート保持部440の配置が調整される。6軸調整部460は、図中、S方向,T方向,U方向の平行移動、および、S軸,T軸,U軸を中心とする回転の可能な6つの可動ステージが組み合わされたものである。この6軸調整部460を制御することにより、検査シート保持部440に保持された検査シート450の空間的な配置を調整することができる。換言すれば、6軸調整部460の制御によって、テストパターンTPの空間的な配置が調整される。
【0059】
ダミープリズム470は、前述したように、図4のプロジェクタ100のクロスダイクロイックプリズム150を模擬するために設けられている。図4に示すクロスダイクロイックプリズム150では、3つの液晶パネル141R,141G,141Bから射出された光を合成するために「X」字状の薄膜が内部に設けられている。しかし、本評価装置においてはこの薄膜は不要なため、クロスダイクロイックプリズム150と同じ立方体形状のガラス体に反射防止コーティングを施したものが、ダミープリズム470として用いられている。
測定対象である投写レンズ160は順次取り替えて評価装置に実装される。
【0060】
以上の投写部400の構成により、光源装置410(図6)から射出された光は、第1および第2のミラー430,442で反射される。第2のミラー442で反射された光は、検査シート450を通過することによって、画像領域TPの画像を表す画像光となって射出される。この画像光は、ダミープリズム470を通過した後、投写レンズ160によって投写される。
【0061】
ところで、図5に示すように、本実施例の投写部400では、投写レンズ160の中心軸n1と、検査シート450の中心を通る法線n2とが、所定の距離だけずれている。これは、プロジェクタにおける「あおり投写」の状態を模擬するためである。投写レンズ160は、このようなあおり投写状態において、歪みのない画像を投写表示するように設計されている。なお、投写レンズ160の中心軸n1と検査シート450の中心を通る法線n2とが一致しないような投写は、通常、「あおり投写」と呼ばれている。
【0062】
図5の測定部600は、処理部610と、スクリーン500の四隅の近傍に配置された4つの調整用CCDカメラ620a〜620dと、1つの測定用CCDカメラ640とを備えている。処理部610は、調整用CCDカメラ620a〜620dおよび測定用CCDカメラ640と電気的に接続されているとともに、投写部400の6軸調整部460とも電気的に接続されている。処理部610は、調整用CCDカメラ620a〜620dによって得られる画像データを解析し、その解析結果に基づいて、6軸調整部460を制御する。なお、上述したように、6軸調整部460を制御することによって、画像領域TPの空間的な配置が調整され、これによって画像のフォーカス状態が調整されることとなる。また、処理部610は、測定用CCDカメラ640によって得られる画像データを処理して、投写レンズの特性値を算出する機能を有している。
【0063】
この説明からも分かるように、本実施例の処理部610が本発明における信号処理部に相当し、測定用CCDカメラ640が撮像素子に相当する。尚、図示を略したが、調整用CCDカメラ620a〜620dおよび測定用CCDカメラ640は、受光量を調整する光量調整手段を具備している。そして、投写画像の明るい部分では、光量調整手段の絞りを小さくして受光量を少なくして測定を行い、投写画像の暗い部分では、光量調整手段の絞りを大きくして受光量を多くして測定を行う。また、この光量調整手段は、CCDカメラ620a〜620d、640の入射光の輝度値と出力信号との直線関係を維持するための調整手段としても機能する。
【0064】
図10は、スクリーン500を+Z方向から見たときの調整用CCDカメラ620a〜620d、および測定用CCDカメラ640の配置を示す説明図である。図示するように、4つの調整用CCDカメラ620a〜620dは、スクリーン500の四隅にそれぞれが設けられており、図示しない移動機構によってXY平面内で移動可能である。また、測定用CCDカメラ640は、スクリーン500の中央付近に設けられており、図示しない移動機構によってXY平面内で移動可能である。ただし、測定用CCDカメラ640は、図5に示すように、各調整用CCDカメラ620a〜620dから+Z方向にずらして配置されているので、各調整用CCDカメラ620a〜620dと干渉しないように移動させることができる。また、調整用CCDカメラ620a〜620d、および測定用CCDカメラ640は、後述する処理部610を含むコンピュータと、ビデオキャプチャボード(図示略)を介して接続されている。スクリーン500上に表示された画像領域TPの画像は、CCDカメラ620a〜620d、640で撮像され、このビデオキャプチャボードによりコンピュータ用の画像信号に変換され、コンピュータによって処理される。
【0065】
解像度評価値算出手段としての処理部610は、CPU(Central Processing Unit)およびハードディスクを備えたコンピュータのCPUを制御するOS上に展開されるプログラムとして構成され、図示を略したが、本例では、バックグラウンド輝度値取得部、最大輝度値取得部、最小輝度値取得部、および評価値算出部を備えている。そして、この処理部610では、前記調整用CCDカメラ620a〜620dからの画像データに基づいて、調整用CCDカメラ620a〜620dの光量調整手段に制御信号を送り、調整用CCDカメラ620a〜620dの受光量の調整を行ったり、測定用CCDカメラ640で検出された画像データに基づいて、制御信号を出力して測定用CCDカメラ640の受光量調整を行ったり、解像度の評価値を算出する。
【0066】
(3)投写レンズの評価方法
次に、上述した投写レンズ評価装置を利用した投写レンズ160の解像度の評価方法について説明する。
前記評価装置による解像度測定に先立ち、スクリーン500上の投写画像の位置調整およびフォーカス調整を行う必要がある。この投写画像の位置調整およびフォーカス調整は、投写レンズ検査シート450の四隅部分に形成された位置調整用のパターン(図8では図示略)に応じてスクリーン500上に形成された画像を、調整用CCDカメラ620a〜620dで撮像し、処理部610でフォーカス調整処理および位置調整処理をする。
このフォーカス調整および位置調整が終了して、スクリーン500の所定位置に合焦状態の画像が形成されたら、この画像に基づいて、解像度の測定を行う。
【0067】
解像度の測定は、図11に示されるフローチャートにしたがって実行され、具体的には、以下のような手順で行われる。
(1) 処理部610からの制御信号に基づいて、測定用CCDカメラ640を解像度測定用のテストパターン10Aの画像を検出できる位置に移動させ(処理S1)、測定用CCDカメラ640の焦点を合わせるとともに(処理S2)、測定用CCDカメラ640内部の撮像素子に入射する光の光量を調整する(処理S3)。尚、光量調整は、CCDカメラ640の検出輝度値に対する出力が比例関係にある部分で測定するために行うものである。
【0068】
(2) 次に、処理部610は、解像度評価値を算出するためのパターンPT1を特定する(処理S4)。特定は、画像処理の一手法であるパターンマッチング処理により行われ、図12に示すように、測定用CCDカメラ640で撮像された画像D1内に表示される複数のパターンPT1のうち、ハードディスクに記憶された基準パターンBPと同様のものを探し出す。
(3) 基準パターンBPには、パターン中心B0の位置と、このパターン中心B0に基づく領域B1が設定されていて、パターンマッチング処理の結果として、基準パターンBPのパターン中心B0に相当するパターンPT1の中心座標A0の位置が返され、これに基づいて、解像度評価値を求める測定領域A1が設定される(処理S5)。
【0069】
(4) 処理S5で設定された測定領域A1内における画像の輝度値の取得を開始する(処理S6)。尚、本実施形態の処理部610における画像処理は、画像の輝度を256階調で表現しており、一番暗い部分が0、一番明るい部分が255の値とされている。
(5) まず、検査シート450をわずかに移動させて、パターンPT1を測定領域A1の外側にずらし、この状態でバックグラウンド部分の測定領域A1内の画像を測定して、バックグラウンド部分の輝度値Ioを取得する(処理S7:バックグラウンド輝度値取得手順)。尚、輝度値Ioの取得は、測定領域A1内のすべての測点の輝度値を平均した値を代表値とすることにより行われ、輝度値Ioは処理部610を構成するメモリに格納される。
【0070】
(6) 次に、パターンPT1を測定領域A1内に戻して、測定用CCDカメラ640で撮像されたパターンPT1の画像中の輝度値を測定する(処理S8)。具体的には、図12に示されるパターンPT1の輝度値を取得する場合、遮光領域PTVの延出方向に沿った1画素ラインで検出される輝度値を積算し、積算した画素数でこの積算値を割って平均化して、遮光領域PTVの延出方向に沿った1画素ラインにおける輝度値の代表値とする。そして、これを遮光領域および透光領域PTSの配列方向、つまり図12におけるL方向に繰り返し、測定領域A1内の遮光領域PTV、および遮光領域PTV内の透光領域PTSにおける輝度値の代表値を取得する。
【0071】
(7) 処理部610は、得られた各ラインにおける輝度値の代表値に基づいて、さらに、第2の補正処理がいるか否かを判定する(処理S9)。すなわち、測定領域A1内のバックグラウンドの明るさが均一な場合、遮光領域PTVおよび透光領域PTSの配列方向に沿った輝度値の分布は、図13のグラフに示されるように、最大輝度値Imaxおよび最小輝度値Iminは、均一化されているため、補正処理を行うことなく、図13のグラフ中の最大輝度値Imaxおよび最小輝度値Iminを取得する(処理S10:最大輝度値取得手順、最小輝度値取得手順)。
【0072】
(8) 一方、測定領域A1内のバックグラウンドの明るさが不均一な場合、輝度値の分布は、投写画像の中心に向かうにしたがってバックグラウンド輝度値が大きくなり、例えば、図14のグラフのように、測定領域A1内でバックグラウンド輝度値の変化に伴って最大、最小輝度値が徐々に大きくなっていく場合が考えられる。この場合、上記のように最小最大輝度値をイの範囲で規定するのは、バックグラウンド輝度値の変化を無視することとなり、正確な最小、最大輝度値が得られない。そこで、より適切なアの範囲で最小、最大輝度値を取得するために、処理部610は、図15のグラフに示すように、測定領域A1内を領域a〜eに分割し、最小輝度値を含む領域a、c、eにおける最小輝度値Iamin、Icmin、Ieminを取得し(処理S11)、最大輝度値を含む領域b、dにおける最大輝度値Ibmax、Idmaxを取得する(処理S12)。
【0073】
(9) 各領域a〜eにおける最小輝度値Iamin、Icmin、Iemin、最大輝度値Ibmax、Idmaxを取得したら、処理部610は、数13、数14に各領域における最小、最大輝度値の値を代入して、最大輝度値Imax、最小輝度値Iminを取得する(処理S13:最大輝度値取得手順、最小輝度値取得手順)。
【0074】
【数13】
Figure 0003893922
【0075】
【数14】
Figure 0003893922
【0076】
尚、数13および数14における分母の数は、分割された領域a〜e内の最大輝度値を含む領域と、最小輝度値を含む領域の数に応じて設定され、解像度測定用のパターンPT1の空間周波数の変化に伴って分母および分子の値は適宜変化する。
【0077】
(10) 以上のようにして、バックグラウンド輝度値Io、最大輝度値Imax、および最小輝度値Iminが取得されたら、処理部610は、数15に基づいて、解像度評価値MTFを算出する(処理S14:評価値算出手順)。
【0078】
【数15】
Figure 0003893922
【0079】
(11) 上記と同様の手順でパターンPT2についての輝度値の測定、および解像度評価値の算出を行い(処理S15)、さらに、図7に示されるテストパターンTP中のすべてのテストパターン10Aについて、同様の測定および評価値算出を繰り返す。
【0080】
(4) 実施形態の効果
前述のような本実施形態によれば、次のような効果がある。
(1) 本実施形態のレンズの評価方法が、バックグラウンド輝度値取得手順S7、最大輝度値取得手順、最小輝度値取得手順S10、S13を備えていることにより、解像度評価値MTFをバックグラウンド輝度値Io、最大輝度値Imax、および最小輝度値Iminに基づいて算出できる。そして、スクリーン500に投影された画像の明るさが異なっても、バックグラウンド輝度値Ioを加味して補正処理することにより、複数箇所で取得した最大輝度値Imax、最小輝度値Iminに基づいて算出された解像度評価値MTFを同様の基準で評価することができる。したがって、評価対象となる投写レンズ160の種類、スクリーン500に表示された解像度測定用のテストパターン10Aの位置等に影響されることなく、投写レンズ160の解像度を適切に評価することができる。
【0081】
(2) 解像度評価値MTFが数15で表される式に基づいて求められるため、正確な解像度評価値MTFを得ることができる。バックグラウンド輝度値の変化に伴う解像度評価値MTFの変化を従来の場合と比較すると、図16に示すように、数15に基づいて求めた解像度評価値MTFの変化は、グラフG1のようになり、バックグラウンド輝度値の変化に影響されないことが判る。これに対して、数16に示される従来の解像度評価値MTFの算出方法では、グラフG2のようになり、バックグラウンド輝度値の変化に伴い、解像度評価値MTFの値が大きく変動することが判る。
【0082】
【数16】
Figure 0003893922
【0083】
(3) 調整用CCDカメラ620a〜620d、測定用CCDカメラ640に光量調整手段が設けられているため、CCDカメラ620a〜620d、640に入射する光の光量を、入力される輝度値に対するCCDの出力が比例関係にある部分で測定することができ、最大輝度値Imax、最小輝度値Iminを正確に取得でき、解像度評価値MTFをより正確に算出することができる。
(4) 輝度値の取得において、第2の補正処理ともいえる処理S11および処理S12を備えているため、測定領域A1内でバックグラウンド輝度値Ioに変化が生じても、この変化に影響されにくい最大輝度値Imax、最小輝度値Iminを取得できるので、解像度評価値MTFの算出を一層正確に行うことができる。
【0084】
[2.第2実施形態]
次に、本発明の第2実施形態を説明する。
以下の説明では、前記第1実施形態と同様の構造および同一部材には同一符号を付して、その詳細な説明は省略または簡略化する。
前記第1実施形態における投写レンズの評価装置では、検査シート450に形成された解像度測定用のテストパターン10Aを用いて、バックグラウンド輝度値取得部、最大輝度値取得部、および最小輝度値取得部により構成される処理部610の解像度評価値算出手段によって、投写レンズ160の解像度評価値MTFの算出が行われていた。
これに対して、本実施形態における投写レンズの評価装置では、投写レンズの解像度評価の他に、投写レンズの歪曲収差の評価、投写画像の面内照度分布の評価を行える点が相違する。
【0085】
このため、処理部710は、図17に示されるように、端部画像検出手段711と、撮像素子制御手段712と、歪曲収差量算出手段713と、面内照度算出手段714と、6軸調整部制御手段715と、蓄積手段716と、解像度評価値算出手段717とを備えている。
具体的には、端部画像検出手段711は、調整用CCDカメラ620a〜620dおよび測定用CCDカメラ640で撮像された投写画像の端部画像を、画像取り込み装置を介して、コンピュータに適合する画像信号として検出する部分であり、検出された画像信号を歪曲収差量算出手段713に出力するとともに、撮像素子制御手段712に投写画像の境界領域が判定できた旨の信号を出力する。
【0086】
撮像素子制御手段712は、調整用CCDカメラ620a〜620dを投写画像に対応した初期位置に移動制御し、また、投写画像の外周端部に沿って測定用CCDカメラ640を移動制御する部分であり、端部画像検出手段711による画像信号の検出が終了したことをトリガとして、投写画像の外周縁に沿って測定用CCDカメラ640を順次移動させる。尚、CCDカメラ640の移動機構はパルスモータを備えていて、撮像素子制御手段712は、このパルスモータに対して、移動量に応じたパルスステップ数の制御信号を加えることにより、測定用CCDカメラ640を所定の位置に移動させることができるようになっている。
【0087】
歪曲収差量算出手段713は、端部画像検出手段711からの画像信号に対して投写画像の歪曲収差量を算出する部分である。具体的には後述するが、端部画像検出手段711からの画像信号について、端部画像検出手段711で検出された部分の投写領域とそれ以外の部分の境界線を取得し、この境界線の位置から投写領域の外周形状を特定し、投写画像の設計上の境界位置との差を取ることにより、歪曲収差を求めることができる。
【0088】
6軸調整部制御手段715は、投写された画像がぼけている場合に、6軸調整部460に制御信号を出力し、検査シート550の位置調整を行う部分であり、調整用CCDカメラ620a〜620dによって撮像される画像をパターンマッチングによって検査シート550に形成されたテストパターンを探索する。撮像された画像データからテストパターンの特定の指標値(エッジ強度)を用いることによって合焦点状態か否かを判断し、フォーカス状態の良否を調べることができる。
【0089】
解像度評価値算出手段717は、図示を略したが、バックグラウンド輝度値取得部、最大輝度値取得部、最小輝度値取得部に加え、入力レベル算出部を備えている。
入力レベル算出部は、バックグラウンド輝度値取得部、最大輝度値取得部、および最小輝度値取得部で取得された輝度値に基づいて、入力レベルを算出する部分である。
具体的には、入力レベル算出部は、以下の数17に基づいて、入力レベル値Iiを算出している。
【0090】
【数17】
Figure 0003893922
【0091】
面内照度算出手段714は、投写画像の面内照度を算出する部分であり、照度検出装置650から出力された信号から照度値を取得し、照度値を取得した部分の入力レベル値と対応づけてメモリに格納するとともに、他の部分の入力レベル値から各位置の照度を算出して、投写画像全体の面内照度を把握する。
【0092】
蓄積手段716は、上記解像度評価値算出手段717、歪曲収差量算出手段713、および面内照度算出手段714によって算出された評価値を投写レンズの製造番号と対応づけて格納する実測データ蓄積部716Aと、予め各種投写レンズの設計データが格納されている設計データ蓄積部716Bとを備えている。設計データとしては、例えば、検査対象となる各種投写レンズの焦点距離に対応した検査シート550の設計上の配置位置、投写画像の設計上の配置位置、および各種投写レンズにおける設計上の評価値等が含まれ、上記撮像素子制御手段712および6軸調整部制御手段715は、この設計上の配置位置を初期位置として調整を行い、解像度評価値算出手段717、歪曲収差量算出手段713および面内照度算出手段714は、この設計上の評価値に基づいて投写レンズの良否を判断する。
【0093】
また、本実施形態における投写レンズの評価装置では、検査シート550は、図18に示されるように、略等間隔に配置された20カ所の解像度測定用テストパターン10Aの他に、この20カ所の解像度測定用テストパターン10Aを囲うように矩形枠状の遮光部10Bを備え、スクリーン上の画像領域下縁中央には照度検出装置650が配置される。また、検査対象となる投写レンズ160は、図示しない複数の集光素子を光軸方向に沿って配置した組レンズとして構成され、各集光素子相互の位置を変更することで、投写される画像の大きさをワイド(大)、ミドル(中)、テレ(小)の3段階に変更することができる。
具体的には、矩形状の遮光部20Bは、画像領域の四隅角部に配置された4カ所のテストパターンPA1〜PA4と、画像領域の矩形状輪郭に沿って配置された12カ所のテストパターンPB1〜PB12と、画像領域の矩形状輪郭に沿って配置された16カ所の見切り線Lとを備えて構成されている。
【0094】
四隅角部に配置されたテストパターンPA1〜PA4は、図19(a)に示されるように、略L字状の遮光部であり、4つの調整用CCDカメラ620a〜620dによってそれぞれの画像が検出される。処理部710は、検出された4つの画像に基づいて遮光部20Bの四隅角部の位置を特定し、投写画像の歪みを評価することができる。
画像領域の矩形状輪郭に沿って配置されたテストパターンPB1〜PB12は、図19(b)に示されるように、正方形状の遮光部であり、測定用CCDカメラ640によって、それぞれの画像が検出される。処理部710は、検出された画像に基づいてテストパターンPB1〜PB12の位置を特定し、上記遮光部20Bの四隅角部の位置とともに遮光部20Bの外形形状を特定することで歪曲収差量を算出することができる。
また、照度検出装置650は、図20に示されるように、スクリーン上の画像領域下縁中央、即ちあおり投写する投写レンズ160の照明光軸中心に対応した位置に配置され、この部分に表示される検査シート550のテストパターン10Aの照度を測定するものである。照度検出装置650は、スクリーン上において測定用CCDカメラ640に対して+Z方向にずれて配置され、測定用CCDカメラ640と干渉しないようになっている。
【0095】
以上のような構成において、投写レンズの評価方法は、図21に示されるフローチャートにしたがって実行され、以下のような手順で行われる。
(1) 解像度評価値算出手段717は、検査シート550に形成されたテストパターン10Aにおいて入力レベルおよび解像度評価値の算出を行い、算出された評価値をテストパターンの位置と対応づけて蓄積手段716の実測データ蓄積部716Aに格納する。なお、入力レベルおよび解像度評価値の算出手順としては、第1実施形態と同様に図11に示されるフローチャートにしたがって行われ、バックグラウンド輝度値Io、最大輝度値Imax、および最小輝度値Iminが取得されたら、解像度評価値算出手段717は、数18に基づいて、入力レベル値Iiを算出するとともに(処理SA1:入力レベル値算出手順)、数19に基づいて解像度評価値MTFを算出する(処理SA2:評価値算出手順)。
【0096】
【数18】
Figure 0003893922
【0097】
【数19】
Figure 0003893922
【0098】
(2) 作業者は、蓄積手段716の実測データ蓄積部716Aに格納された前記解像度評価データに基づいて、投写画像をワイド(大)、ミドル(中)、テレ(小)の3状態から、初期のパラメーター設定で選択された全ての状態で解像度評価を行っているか否かを判定する(処理SA3)。全ての状態で解像度評価を行っていない場合には、投写画像の変更を行い、さらに、解像度評価値算出手段717にて、再度、解像度評価値の算出を行う。なお、解像度評価値の算出は、ワイド(大)、ミドル(中)、テレ(小)の順に行うものとする。
【0099】
(3) 次に、歪曲収差量の算出を行う(処理SA4)。具体的には、図22に示されるフローチャートにしたがって実行される。
(3-1) 撮像素子制御手段712は、蓄積手段716の設計データ蓄積部716Bに格納された設計データに基づいて制御信号を出力し、調整用CCDカメラ620a〜620dを初期位置に移動させる(処理SA41:撮像素子移動手順)。
(3-2) 端部画像検出手段711は、画像領域の四隅角部に形成されたテストパターンPA1〜PA4を特定し、画像を検出する(処理SA42:端部画像取得手順)。なお、テストパターンPA1〜PA4画像の特定は、画像処理の一手法であるパターンマッチング処理により自動的に探すことにより行われる。
(3-3) 歪曲収差量算出手段713は、端部画像検出手段711によって検出された画像の輝度値を取得する(処理SA43)。輝度値の取得は、図19(a)に示されるように、蓄積手段716の設計データ蓄積部716Bに格納された設計データに基づいて、X軸方向およびY軸方向にそれぞれ1画素ラインAX、AYで輝度値の取得を行う。
【0100】
(3-4) さらに、歪曲収差量算出手段713は、取得された輝度値から境界領域の判定を行う(処理SA44)。境界領域の判定は、図23に示されるように、取得された輝度値と所定の輝度値に設定された閾値とからテストパターンの遮光領域を算出し、その遮光領域の中点に対応する座標を境界領域として特定し、この座標をテストパターン位置と対応づけて蓄積手段716の実測データ蓄積部716Aに格納する。
(3-5) 次に、撮像素子制御手段712は、蓄積手段716の設計データ蓄積部716Bに格納された設計データに基づいて制御信号を出力し、測定用CCDカメラ640を移動させ、上記と同様な手順でテストパターンPBの撮像、輝度値取得、および境界領域の判定を行う。また、テストパターンPBの測定は、PB1〜PB12の順で行われる。そして、歪曲収差量算出手段713は、蓄積手段716の実測データ蓄積部716Aに格納された前記テストパターンの座標データに基づいて、テストパターンPB1〜PB12の全ての位置で境界領域判定が行われているか否かを判定し(処理SA45)、全ての位置で行われていない場合には、次の測定位置を設定し、設定された移動量に基づいて撮像素子制御手段712に制御信号が送られる。なお、テストパターンPBの輝度値取得は、図19(b)に示されるように、矩形状の遮光部20Bの辺縁に直交する一画素ラインで取得される。
【0101】
(3-6) 次に、歪曲収差量算出手段713は、蓄積手段716の実測データ蓄積部716Aに格納された前記テストパターンPAおよびPB全ての座標データに基づいて、投写画像の歪み量および歪曲収差量を算出する(処理SA46:歪曲収差量算出手順)。
具体的に、投写画像の歪み量は、図24に示すように、四隅角部に形成されたテストパターンPA1〜PA4の座標データに基づいて算出される。
歪曲収差量算出手段713は、蓄積手段716の実測データ蓄積部716Aに格納された四隅角部に形成されたテストパターンPA1〜PA4の座標データを呼び出し、テストパターンPA2で算出した座標とテストパターンPA3で算出した座標との距離D23と、テストパターンPA1で算出した座標とテストパターンPA4で算出した座標との距離D14とを算出し、数20で画像の歪み量ε1(%)を求める。
【0102】
【数20】
Figure 0003893922
【0103】
また、歪曲収差量は、図25に示されるように、テストパターンPA1〜4およびテストパターンPB1〜PB12で算出された全ての座標データに基づいて算出される。
歪曲収差量算出手段713は、蓄積手段716の実測データ蓄積部716Aに格納されたテストパターンPA1〜PA4およびPB1〜PB12の座標データを呼び出す。そして、投写画像の辺縁毎に各5点の座標データを用いて近似曲線C12、C23、C34、C41を算出し、さらに、テストパターンPA1〜PA4の座標データに基づいて、直線L12、L23、L34、L41を算出する。算出された4つの近似曲線と4つの直線とによって形成される閉曲線で囲まれた面積I1、I2、I3、I4を算出し、算出された4つの面積と設計上の投写画像の面積I0に基づいて、数21で歪曲収差量ε2(%)を求める。
【0104】
【数21】
Figure 0003893922
【0105】
ここで、図25に示されるような糸巻き型歪曲である場合、歪曲収差量ε2(%)はマイナスの値で算出され、反対に樽型歪曲の場合には、歪曲収差量ε2(%)はプラスの値で算出される。
【0106】
(3-7) 歪曲収差量算出手段713は、上記によって算出された画像の歪み量と投写レンズ160の歪曲収差量をレンズの製造番号に対応付けて蓄積手段716の実測データ蓄積部716Aに格納する。
(4) 次に投写画像の面内照度を算出する(処理SA5)。具体的には、図26に示されるフローチャートにしたがって実行される。
(4-1) 照度検出装置650は、画像領域下縁中央に位置するテストパターン10Aの照度Loを測定する(処理SA51:所定位置照度取得手順)。面内照度算出手段714は、蓄積手段716の実測データ蓄積部716Aに格納された入力レベルデータを呼び出し、前記テストパターン10A位置で算出された入力レベル値Iioと照度Loを対応付ける(処理SA52)。
(4-2) 面内照度算出手段714は、その他の位置における照度Leを、該位置における入力レベル値Iieと、テストパターン10Aの照度Loと入力レベル値Iioとに基づいて、数22で算出する(処理SA53:面内照度算出手順)。
【0107】
【数22】
Figure 0003893922
【0108】
(4-3) 面内照度算出手段714は、上記によって算出された面内照度を投写レンズ160の製造番号と対応付けて蓄積手段716の実測データ蓄積部716Aに格納する。
【0109】
前述のような第2実施形態によれば、前記(1)〜(5)と同様の効果の他、
(6) 本実施形態におけるレンズの評価装置は、処理部710に端部画像検出手段711と、撮像素子制御手段712と、歪曲収差量算出手段713とを備え、検査シート550には複数のテストパターン10Aを全て囲うように矩形枠状の遮光部20Bが形成され、該遮光部20Bには矩形状輪郭に沿ってテストパターンPA、PBが配置されていることにより、撮像素子制御手段712は、調整用CCDカメラ620a〜620dおよび測定用CCDカメラ640を移動制御し、端部画像検出手段711は遮光部20Bの矩形状輪郭に沿って配置されたテストパターンPA、PBの画像を検出し、歪曲収差量算出手段713は検出されたテストパターンPA、PB画像に基づいて、投写画像の外形形状を特定して投写画像の歪み量ε1および投写レンズ160の歪曲収差量ε2を見積もることができる。したがって、迅速かつ高精度に投写レンズ160の良否を判断できる。
【0110】
(7) 投写レンズ160の歪曲収差量の算出(処理SA4)において、輝度値の取得(処理SA43)は遮光部20Bに配置されたテストパターンPA、PBを一画素ラインで輝度値を取得し、境界領域の判定(処理SA44)は取得された輝度値と所定の輝度値に設定された閾値とから遮光領域を特定し、遮光領域の中点位置を境界領域としているので、遮光部20Bの形状を高精度に特定することができ、歪曲収差量を適切に評価することができる。
(8) 処理部710は、解像度評価値算出手段717と面内照度算出手段714とを備え、スクリーン上の画像領域下縁中央に照度検出装置650が配置されているので、面内照度算出手段714は、解像度評価値算出手段717により算出された複数の入力レベル値IieおよびIioと、照度検出装置650により測定された照度Loとに基づいて投写画像の面内照度Leを算出することができる。ここで、解像度評価値算出手段717は入力レベル値をバックグラウンド輝度値Ioを加味して補正処理しているので、投写画像の面内照度Leを同様の基準で評価することができる。したがって、評価対象となる投写レンズ160の種類、スクリーン500に表示された解像度評価用のテストパターン10Aの位置等に影響されることなく、投写レンズ160の面内照度を適切に評価することができる。
【0111】
(9) 検査対象となる投写レンズ160は、図示しない複数の集光素子を光軸方向に沿って配置した組レンズとして構成され、各集光素子相互の位置を変更することで、投写される画像の大きさをワイド(大)、ミドル(中)、テレ(小)の3段階に変更することができ、投写レンズ160による投写画像をワイド(大)、ミドル(中)、テレ(小)の3つの状態で解像度評価値MTFを算出して投写レンズ160の良否を判断するので、投写レンズ160をプロジェクタに組み込んだ時に、画像の大きさを変更した場合に生じる解像度評価値MTFのずれを低減させたプロジェクタを提供できる。
(10) 処理部710は、蓄積手段716を備えていることにより、撮像素子制御手段712は蓄積手段716の設計データ蓄積部716Bに格納された設計データに基づいて、調整用CCDカメラ620a〜620dを投写画像に対応した初期位置に移動させ、測定用CCDカメラ640を所定の移動量で移動制御することができる。また、解像度評価値算出手段717、歪曲収差量算出手段713、および面内照度算出手段714によって算出された投写レンズ160の評価値を製造番号に対応付けて蓄積手段716の実測データ蓄積部716Aに格納しておくことができる。
【0112】
(5) 実施形態の変形
本発明は、前記実施形態に限定されるものではなく、以下に示すような変形も含むものである。
上記実施形態では、CCDカメラ620a〜620d、640の光量調整手段を、撮像素子への入射光の輝度値と出力信号との比例関係を維持するために用いていたが、これに限られない。すなわち、バックグラウンド輝度値に変化があった場合、これに応じてCCDカメラ620a〜620d、640の撮像素子に入射する光量を光量調整手段で調整し、撮像素子に入射する光の光量をバックグラウンド輝度値によらず一定にするように構成してもよい。この場合、撮像素子に入射する光の光量が一定になるため、従来の数16で表される式に基づいて解像度評価値を求めても、同様の基準で評価することができる。
【0113】
また、上記実施形態では、数15に表された式で解像度評価値MTFを求めていたが、これに限られない。すなわち、要するに、解像度および照度測定に際して、バックグラウンド輝度値、最大輝度値、および最小輝度値に基づいて、解像度評価値を求めるものであればよく、他の式を用いて解像度評価値を算出してもよい。
さらに、上記実施形態では、投写レンズ160の評価に本発明を用いていたが、これに限られない。すなわち、プロジェクタを構成する他の光学系、プロジェクタ以外の機器に使用される光学系に本発明を用いてもよい。
そして、上記実施形態では、平行線型の解像度測定用のパターンPT1、PT2を採用していたが、これに限らず、濃淡が徐々に変化する正弦波応答関数に基づいた解像度測定用のパターンに本発明を利用してもよく、さらには、他の解像度用のパターンに本発明を利用してもよい。
【0114】
また、第2実施形態では、スクリーン上に表示された遮光部10Bの辺縁毎にテストパターンPA、PBの座標値から近似曲線C12、C23、C34、C41を算出し、テストパターンPAの座標値から直線L12、L23、L34、L41を算出し、算出された4つの近似曲線および直線によって囲まれた面積I1、I2、I3、I4に基づいて投写レンズ160の歪曲収差量ε2を算出していたが、これに限らない。すなわち、歪曲収差量の算出に際して、スクリーン上に表示された検査シート450の遮光部10Bの形状、または、画像形成領域の外周形状に基づいて、歪曲収差量を算出するものであればよく、他の方法を用いて歪曲収差量を算出してもよい。
また、第2実施形態では、照度検出装置650をスクリーン上の画像形成領域下端の中央に配置したが、これに限らない。解像度評価値を取得するテストパターン10Aの位置であればよい。あるいは、移動機構を介して、投写画像面内の複数の位置で照度を測定できるように構成してもよい。
その他、本発明の実施の際の具体的な構造および形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
【0115】
【発明の効果】
前述のような本発明によれば、解像度評価値を、バックグラウンド輝度値、最大輝度値、および最小輝度値に基づいて算出しているため、スクリーン上に投影された画像の明るさが異なっても、バックグラウンド輝度値を加味して補正処理することにより、複数箇所で取得した最大輝度値、最小輝度値に基づいて算出された解像度評価値を同様の基準で評価することができ、プロジェクタの機種、表示画像上の場所等に影響されることなく、レンズの解像度を適切に評価することができる、という効果がある。
【図面の簡単な説明】
【図1】本発明に係る解像度測定用のテストパターンの模式図である。
【図2】本発明の作用を説明するためのグラフである。
【図3】本発明の作用を説明するためのグラフである。
【図4】本発明の実施形態に係る評価対象となる投写レンズを含むプロジェクタの構造を表す模式図である。
【図5】前記実施形態におけるレンズ評価装置の構造を表す模式図である。
【図6】前記実施形態におけるレンズ評価装置の構造を表す模式図である。
【図7】前記実施形態における検査シートを表す側面図である。
【図8】前記実施形態における検査シートを表す正面図である。
【図9】前記実施形態における検査シートに含まれる解像度測定用のパターンを表す正面図である。
【図10】前記実施形態におけるスクリーン上の撮像素子の配置を表す正面図である。
【図11】前記実施形態におけるレンズの評価方法を説明するためのフローチャートである。
【図12】前記実施形態におけるレンズの評価方法の測定領域設定を説明するための模式図である。
【図13】前記実施形態におけるレンズの評価方法の解像度評価値を求めるためのグラフである。
【図14】前記実施形態におけるレンズの評価方法の解像度評価値を求めるためのグラフである。
【図15】前記実施形態におけるレンズの評価方法の解像度評価値を求めるためのグラフである。
【図16】前記実施形態により求められた解像度評価値と従来の方法で求められた解像度評価値とを比較するグラフである。
【図17】前記第2実施形態における処理部の制御構造を表すブロック図である。
【図18】前記第2実施形態における検査シートを表す正面図である。
【図19】前記第2実施形態における検査シートに含まれるテストパターンを表す正面図である。
【図20】前記第2実施形態におけるスクリーン上の照度検出装置の配置を表す正面図である。
【図21】前記第2実施形態におけるレンズの評価方法を説明するフローチャートである。
【図22】前記第2実施形態における歪曲収差量の算出を説明するためのフローチャートである。
【図23】前記第2実施形態における境界領域の判定を説明するためのグラフである。
【図24】前記第2実施形態における画像の歪み量の算出を説明するための図である。
【図25】前記第2実施形態におけるレンズの歪曲収差量を算出するためのグラフである。
【図26】前記第2実施形態における面内照度の評価方法を説明するためのフローチャートである。
【符号の説明】
10A テストパターン
20B 枠状部
160 投写レンズ(レンズ)
410 光源装置(光源)
500 スクリーン
610 処理部(信号処理部)
640 測定用CCDカメラ(撮像素子)
650 照度検出装置
711 端部画像検出手段
712 撮像素子移動手段
713 歪曲収差量算出手段
717 解像度評価値算出手段
Io バックグラウンド輝度値
Imax 最大輝度値
Imin 最小輝度値
MTF、MTFo、MTFe 解像度評価値
Ii 入力レベル値
Lo、Le 照度
S7 バックグラウンド輝度値取得手順
S10、S13 最大輝度値取得手順、最小輝度値取得手順
S14、SA2 評価値算出手順
SA1 入力レベル算出手順
SA41 撮像素子移動手順
SA42 端部画像取得手順
SA46 歪曲収差量算出手順
SA51 所定位置照度取得手順
SA53 面内照度算出取得手順

Claims (13)

  1. レンズの解像度を評価するために、解像度測定用のテストパターンを含む画像光を、前記レンズを介してスクリーン上に照射し、前記スクリーン上に前記解像度測定用のテストパターンの画像を表示して、表示されたテストパターン画像の輝度を撮像素子を用いた画像取り込み装置で検出し、検出された輝度値に基づいて解像度評価値を算出するレンズの評価方法であって、
    前記テストパターンが形成されていない、バックグラウンド部分の輝度値を、前記撮像素子を用いた画像取り込み装置により取得するバックグラウンド輝度値取得手順と、
    前記テストパターン画像中の最大輝度値を、前記撮像素子を用いた画像取り込み装置により取得する最大輝度値取得手順と、
    前記テストパターン画像中の最小輝度値を、前記撮像素子を用いた画像取り込み装置により取得する最小輝度値取得手順と、
    これら各手順で得られたバックグラウンド輝度値、最大輝度値、および最小輝度値に基づいて、解像度評価値を算出する評価値算出手順とを備え、
    前記評価値算出手順によって算出される解像度評価値MTFは、バックグラウンド輝度値をIo、最大輝度値をImax、最小輝度値をIminとすると、
    Figure 0003893922
    で与えられることを特徴とするレンズの評価方法。
  2. 請求項1に記載のレンズの評価方法において、
    前記撮像素子は電荷結合素子であり、この電荷結合素子の輝度値に対する出力が比例関係にある部分で前記バックグラウンド輝度値取得手順と、前記最大輝度値取得手順と、前記最小輝度値取得手順とが実施されることを特徴とするレンズの評価方法。
  3. 請求項1または請求項2に記載のレンズの評価方法において、
    前記レンズは、複数の集光素子を光軸方向に沿って配置した組レンズとして構成され、各集光素子相互の位置を変更することで投影像を拡大縮小するズーム機能を具備し、
    少なくともこのレンズの最小倍率および最大倍率のそれぞれで前記バックグラウンド輝度値取得手順、最大輝度値取得手順、最小輝度値取得手順、および評価値算出手順が実施されることを特徴とするレンズの評価方法。
  4. 請求項1から請求項3のいずれかに記載のレンズの評価方法において、
    前記撮像素子は、前記スクリーン面に沿って移動可能に構成され、
    前記スクリーン上に投影された投写画像の外周端部に沿ってこの撮像素子を移動させる撮像素子移動手順と、
    この撮像素子移動手順による移動中に、所定の位置で前記投写画像の端部画像を、前記撮像素子を用いた画像取り込み装置により取得する端部画像取得手順と、
    この端部画像取得手順で取得された前記投写画像の端部画像に基づいて、前記投写画像の歪曲収差量を算出する歪曲収差量算出手順とを備えていることを特徴とするレンズの評価方法。
  5. 請求項4に記載のレンズの評価方法において、
    前記テストパターンが形成される検査シートは、前記投写画像の形成領域の外周近傍に形成される枠状部を備え、
    前記端部画像取得手順は、前記スクリーン上に形成された枠状部の画像を取得することを特徴とするレンズの評価方法。
  6. 請求項1から請求項5のいずれかに記載のレンズの評価方法において、
    前記バックグラウンド輝度値、前記最大輝度値、前記最小輝度値に基づいて入力レベル値を算出する入力レベル値算出手順を備え、
    前記バックグラウンド輝度値取得手順、前記最大輝度値取得手順、前記最小輝度値取得手順、および前記入力レベル値算出手順は、前記投写画像内の複数の位置で実施され、
    前記投写画像のうち、これらの手順が実施された所定位置における照度を取得する所定位置照度取得手順と、
    前記所定位置における入力レベル値および照度と、他の位置における入力レベル値とに基づいて、該他の位置の照度を算出して前記投写画像全体の面内照度を算出する面内照度算出取得手順とを備えていることを特徴とするレンズの評価方法。
  7. 請求項6に記載のレンズの評価方法において、
    前記他の位置の照度Leは、該位置における入力レベル値をIie、前記所定位置における入力レベル値をIio、該位置における照度をLoとすると、
    Figure 0003893922
    で与えられることを特徴とするレンズの評価方法。
  8. レンズの解像度を評価するためのレンズ評価装置であって、
    解像度測定用のテストパターンが形成された検査シートと、
    この検査シートに光を照射して前記テストパターンを含む画像光を前記レンズに導入する光源と、
    前記レンズから照射された画像光を投影するスクリーンと、
    このスクリーンに表示されたテストパターンの画像を撮像する撮像素子と、
    この撮像素子で撮像された画像を取り込んで画像信号を生成する画像取り込み部と、
    この画像取り込み部から出力される画像信号に基づいて、解像度評価値を演算処理する解像度評価値算出手段を含む信号処理部とを備え、
    前記解像度評価値算出手段は、解像度評価値MTFを、前記検査シートのテストパターンが形成されていない部分のバックグラウンド輝度値をIo、前記テストパターン画像中の最大輝度値をImax、前記テストパターン画像中の最小輝度値をIminとすると、
    Figure 0003893922
    で算出することを特徴とするレンズ評価装置。
  9. 請求項8に記載のレンズ評価装置において、
    前記撮像素子には、該撮像素子に入射する光の光量を調整する光量調整手段が設けられ、この光量調整手段は、前記信号処理部からの制御信号に基づいて制御されることを特徴とするレンズ評価装置。
  10. 請求項8または請求項9に記載のレンズ評価装置において、
    前記撮像素子を前記スクリーン面に沿って移動させる撮像素子移動機構を備え、
    前記信号処理部は、この撮像素子を前記スクリーン上に投影された投写画像の外周端部に沿って移動制御する撮像素子制御手段と、
    この撮像素子制御手段による撮像素子の移動中に、所定の位置で前記投写画像の端部画像を、撮像素子を用いた画像取り込み装置により取得する端部画像検出手段と、
    この端部画像検出手段で取得された投写画像の端部画像に基づいて、前記投写画像の歪曲収差量を算出する歪曲収差量算出手段とを備えていることを特徴とするレンズ評価装置。
  11. 請求項10に記載のレンズ評価装置において、
    前記検査シートは、スクリーン上に投影される投写画像の形成領域の外周近傍に形成される枠状部を備えていることを特徴とするレンズ評価装置。
  12. 請求項10または請求項11に記載のレンズ評価装置において、
    前記投写画像中の所定位置の照度を検出する照度検出装置を備えていることを特徴とするレンズ評価装置。
  13. 請求項12に記載のレンズ評価装置において、
    前記解像度評価値算出手段は、前記バックグラウンド輝度値、前記最大輝度値、および前記最小輝度値に基づいて、入力レベル値を演算処理し、
    該解像度評価値算出手段による入力レベル値の算出は、照度が検出される所定位置を含む投写画像内の複数の位置で行われ、
    前記信号処理部は、前記照度検出装置で検出された所定位置の照度と、前記解像度評価値算出手段で算出された所定位置の入力レベル値および他の位置の入力レベル値とに基づいて、他の位置の照度を算出して前記投写画像全体の面内照度を算出する面内照度算出手段を備えていることを特徴とするレンズ評価装置。
JP2001280670A 2000-10-18 2001-09-14 レンズの評価方法およびレンズ評価装置 Expired - Fee Related JP3893922B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001280670A JP3893922B2 (ja) 2000-10-18 2001-09-14 レンズの評価方法およびレンズ評価装置
US09/976,142 US6760097B2 (en) 2000-10-18 2001-10-15 Lens evaluation method and lens-evaluating apparatus
US10/812,095 US6989894B2 (en) 2000-10-18 2004-03-30 Lens evaluation method and lens-evaluating apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-318541 2000-10-18
JP2000318541 2000-10-18
JP2001280670A JP3893922B2 (ja) 2000-10-18 2001-09-14 レンズの評価方法およびレンズ評価装置

Publications (2)

Publication Number Publication Date
JP2002202218A JP2002202218A (ja) 2002-07-19
JP3893922B2 true JP3893922B2 (ja) 2007-03-14

Family

ID=26602353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001280670A Expired - Fee Related JP3893922B2 (ja) 2000-10-18 2001-09-14 レンズの評価方法およびレンズ評価装置

Country Status (2)

Country Link
US (2) US6760097B2 (ja)
JP (1) JP3893922B2 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893922B2 (ja) * 2000-10-18 2007-03-14 セイコーエプソン株式会社 レンズの評価方法およびレンズ評価装置
KR100493226B1 (ko) * 2001-02-27 2005-06-02 세이코 엡슨 가부시키가이샤 광변조 장치의 위치 조정 장치 및 광변조 장치의 위치조정 방법
US20060239804A1 (en) * 2005-04-25 2006-10-26 Trescott William B Vehicle for placing railcars on railway tracks
US7504718B2 (en) * 2005-05-10 2009-03-17 International Business Machines Corporation Apparatus and methods for constructing balanced chip packages to reduce thermally induced mechanical strain
CN101191995A (zh) * 2006-11-27 2008-06-04 鸿富锦精密工业(深圳)有限公司 光学镜头测试装置
JP2008141229A (ja) * 2006-11-29 2008-06-19 Fujifilm Corp レンズ性能評価装置およびレンズ評価性能方法
US9349153B2 (en) * 2007-04-25 2016-05-24 Digimarc Corporation Correcting image capture distortion
JP2009077230A (ja) * 2007-09-21 2009-04-09 Seiko Epson Corp 画像処理装置、マイクロコンピュータ及び電子機器
US8111290B2 (en) * 2008-06-06 2012-02-07 Microsoft Corporation Radiometric calibration using temporal irradiance mixtures
TWI420088B (zh) * 2008-08-01 2013-12-21 Hon Hai Prec Ind Co Ltd 鏡頭模組眩光檢測設備及其檢測方法
CN102109753A (zh) * 2009-12-25 2011-06-29 鸿富锦精密工业(深圳)有限公司 自动检测镜头方法
JP2013019886A (ja) * 2011-06-13 2013-01-31 Ricoh Co Ltd 画像計測装置
CN103019025A (zh) * 2011-09-23 2013-04-03 鸿富锦精密工业(深圳)有限公司 镜头精密度检测系统及方法
US20130083205A1 (en) * 2011-09-30 2013-04-04 Mark N. Gamadia Full field sharpness test
JP5842694B2 (ja) * 2012-03-21 2016-01-13 セイコーエプソン株式会社 画像処理装置、プロジェクター、およびプロジェクターの制御方法
JP6089424B2 (ja) 2012-03-21 2017-03-08 セイコーエプソン株式会社 画像処理装置、プロジェクター、およびプロジェクターの制御方法
JP6414067B2 (ja) * 2013-09-04 2018-10-31 日本電気株式会社 投射装置、投射装置の制御方法、投射装置の制御装置、およびそのコンピュータプログラム
JP6464568B2 (ja) * 2014-05-07 2019-02-06 ソニー株式会社 投射型画像表示装置及び投射型画像表示装置の制御方法
CN106370397B (zh) * 2016-08-29 2019-01-25 福州锐景达光电科技有限公司 凹面镜成像测量长焦镜头调制传递函数的方法及装置
WO2018051949A1 (ja) * 2016-09-14 2018-03-22 富士フイルム株式会社 評価システム及び評価方法
CN107147905B (zh) * 2017-06-08 2020-06-05 Oppo广东移动通信有限公司 摄像头模组的测试方法、装置及及计算机可读存储介质
CN110567681B (zh) * 2019-09-26 2021-02-12 中国科学院长春光学精密机械与物理研究所 一种检测非共视场自准直光学系统的装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988068A (en) * 1974-05-09 1976-10-26 Itek Corporation Method and apparatus for detecting cosmetic defects in opthalmic lenses
JPS58145278A (ja) * 1982-02-22 1983-08-30 Toshiba Corp 撮像装置
JP2723914B2 (ja) 1988-08-12 1998-03-09 株式会社日立製作所 レンズ鏡筒解像度検査装置
JPH07103853A (ja) 1993-10-01 1995-04-21 Hitachi Ltd レンズ検査装置
US5923416A (en) * 1997-03-20 1999-07-13 Hartford Hospital Automated method and apparatus for evaluating the performance characteristics of endoscopes
JP3893922B2 (ja) * 2000-10-18 2007-03-14 セイコーエプソン株式会社 レンズの評価方法およびレンズ評価装置

Also Published As

Publication number Publication date
US6989894B2 (en) 2006-01-24
JP2002202218A (ja) 2002-07-19
US6760097B2 (en) 2004-07-06
US20040179191A1 (en) 2004-09-16
US20020044275A1 (en) 2002-04-18

Similar Documents

Publication Publication Date Title
JP3893922B2 (ja) レンズの評価方法およびレンズ評価装置
TWI484283B (zh) 影像計算量測方法、影像計算量測裝置及影像檢查裝置
US8199335B2 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium
JP3654220B2 (ja) レンズ検査装置
US6760096B2 (en) Lens-evaluating method and lens-evaluating apparatus
JP5471830B2 (ja) 光変調装置の位置調整方法、光変調装置の位置調整量算出装置、及びプロジェクター
JP4689948B2 (ja) プロジェクタ
JP2003279446A (ja) 撮像用レンズ検査装置、および撮像用レンズ検査方法
CN102829956B (zh) 图像检测方法,图像检测装置以及图像检查装置
JP4100075B2 (ja) プロジェクタ検査装置およびプロジェクタ検査方法
JP3644311B2 (ja) 投写レンズ検査装置および投写レンズ検査方法
JP2006105926A (ja) 検査装置
JP2004186789A (ja) 画像評価装置
JP2006038810A (ja) 光学系性能測定装置及びその方法
JP2003270093A (ja) レンズ検査装置、およびレンズ検査方法
JP3644309B2 (ja) 投写レンズ検査装置および投写レンズ検査方法
CN112782082B (zh) 一种用于线扫描成像的定标装置和方法
JP4228704B2 (ja) レンズ検査装置
JP3807201B2 (ja) 投写レンズ検査シート、投写レンズ検査装置および投写レンズ検査方法
JP2002357506A (ja) カメラmtf測定機
US20180210186A1 (en) Image processing apparatus, image processing system, microscope system, image processing method and computer-readable recording medium
JPH04157336A (ja) レンズ結像特性検査装置
JP2001066111A (ja) 位置計測方法及び位置計測装置、並びに露光方法及び露光装置
CN117092105A (zh) 一种兼容光度立体法和相位偏折法的物体表面特征检测装置及检测方法
JP2011038830A (ja) 検査装置および検査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees