JP3884321B2 - 3次元情報取得装置、3次元情報取得における投影パターン、及び、3次元情報取得方法 - Google Patents

3次元情報取得装置、3次元情報取得における投影パターン、及び、3次元情報取得方法 Download PDF

Info

Publication number
JP3884321B2
JP3884321B2 JP2002128905A JP2002128905A JP3884321B2 JP 3884321 B2 JP3884321 B2 JP 3884321B2 JP 2002128905 A JP2002128905 A JP 2002128905A JP 2002128905 A JP2002128905 A JP 2002128905A JP 3884321 B2 JP3884321 B2 JP 3884321B2
Authority
JP
Japan
Prior art keywords
pattern
dimensional information
information acquisition
image
gradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002128905A
Other languages
English (en)
Other versions
JP2003083730A (ja
Inventor
文行 白谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002128905A priority Critical patent/JP3884321B2/ja
Priority to US10/179,494 priority patent/US7092563B2/en
Publication of JP2003083730A publication Critical patent/JP2003083730A/ja
Application granted granted Critical
Publication of JP3884321B2 publication Critical patent/JP3884321B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/257Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/2224Studio circuitry; Studio devices; Studio equipment related to virtual studio applications
    • H04N5/2226Determination of depth image, e.g. for foreground/background separation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/189Recording image signals; Reproducing recorded image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0081Depth or disparity estimation from stereoscopic image signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、3次元形状を計測するために、被写体にパターンを投影し、受光パターンと投光パターンとの対応を求めることにより、奥行き値を取得可能な3次元情報取得装置、そのような3次元情報取得における投影パターン、及び、3次元情報取得方法に関する。
【0002】
【従来の技術】
従来の3次元物体の形状計測方法には、大きく分けて次の2種類がある。一つは、光の伝播時間の測定による方法であり、もう一つは、三角測量の原理を利用した方法である。前者は、死角がなく、原理的には理想的な方法であるが、現状では、計測時間及び精度に問題があるため、主に後者の三角測量法が利用されている。
【0003】
この三角測量を利用した方法には、能動的な手法であるアクティブ法と、受動的な手法であるパッシブステレオ法とがある。
【0004】
上記パッシブステレオ法は、位置の異なる2台のカメラから得られたステレオの画像間の対応づけを行ない、その対応づけの結果と予め計測されている2台のカメラの位置関係とから三角測量の原理により、被写体までの距離を求める方法である。この方法は、画像間の対応づけの困難さが伴う上、テクスチャの無い物体の形状を求めることができないという欠点を有している。
【0005】
これに対し、三角測量の原理を利用したアクティブ法として、上記2台のカメラの一方を光源に置き換え、物体表面での上記光源の像をもう一方の視点に設定したカメラで観察し、形状計測する光投影法がある。この光投影法は、更に、スポット光投影法、スリット光投影法及びパターン光投影法に分類することができる。
【0006】
上記スポット光投影法では、1回の画像入力で被写体の1点しか計測できない。
【0007】
上記スリット光投影法では、1回の画像入力で物体の1ラインの計測を行なうことができるが、やはり、被写体全域の形状計測を行なうためには、投影光を偏向させながら何度も画像入力を繰り返す必要があり、入力に時間がかかる。
【0008】
上記パターン光投影法は、縞パターンまたは格子パターンのような2次元的なパターンを被写体に投影するもので、パターン投影画像の入力回数が少なくてよいため、計測を短時間で行なうことができるというメリットがある。
【0009】
このパターン光投影法は、空間コード化とも呼ばれ、これは更にパターン形状コード化と階調コード化とに分けられる。
【0010】
前者のパターン形状コード化として、スリットの開口幅の分布によるものと、M系列コードを利用したものとが提案されているが、計測密度及び計測の安定性に問題があり、実用性に乏しいといわれている。
【0011】
一方、後者の階調コード化には、濃淡によるものと色によるものとがある。
【0012】
まず、濃淡によるコード化については、パターンの明暗ピッチを倍々に変えて投影していく2値パターンによる時系列空間コード化法がよく知られている。この方法は、位置ずれやノイズによるコード化誤りを±1に抑えることができるなどの優れた特徴を持っており、N本のスリット光と同じ分解能を得るためには、logN回の2値パターンを投影すればよい。例えば、128本のスリット画像と同じ分解能を7枚の2値パターンの投影で実現できる。
【0013】
しかしながら、2値パターンによる時系列コード化では、三脚に固定せずに手で持って撮影する場合や、人間や動物などのようにじっと止まっていられない被写体の場合に充分に対処できない。なぜなら、投影回数が多いと手ぶれや被写体のぶれを許容できる時間内に撮影を終えることができないからである。更に、フラッシュの充電時間や発光量の制約もあり、これらを満足できる投影回数では済まないからである。
【0014】
そこで、パターンの投影回数を減らすために、2値パターンを多値パターンにすることが考えられる。これに関しては、例えば、(精密工学会誌 vol.62,No.6,pp.830−834,1996)中で提案されている。そこでは、フラッシュ撮影画像とフラッシュ無し撮影画像の各画素での輝度差を階調数で分割して、作成時の輝度値がどこの区間に収まるかで多階調を判別している。
【0015】
このため、取得画像にガンマ特性などの非線型性がある場合や、反射輝度差が少ない領域においてデコード誤りを起こし易く、通常照明下での安定した測定が困難であった。また、計測結果が物体表面の色などの状態に影響されていた。これらの問題を解決すべく、上記文献中で参照用投影などの提案がされているが、投影回数が増えてしまうなど現実的ではない。このように、輝度の多階調によるコード化は、輝度の変動の影響を受け易いため、適切な閾値を設定することが困難であった。
【0016】
一方、色によるコード化に関しては、例えば、(電子情報通信学会論文誌 vol.J61−D,No.6,pp.411−418,1978)中で提案されている。図9は、R,G,Bの色によってコード化された縞パターンの例である。R,G,Bの間に最小輝度レベルである黒の領域を設けたことによって、光の拡散による混色を軽減することができるように工夫されている。
【0017】
図10を用いて従来の色によるカラーパターン投影法における処理の流れを説明する。
【0018】
まず、図9のようなコード化済みのカラーパターンを被写体に投影し(ステップS101)、この投影パターンを撮影した画像データ(Pr,Pg,Pb)を得る(ステップS102)。
【0019】
続いて、上記画像データより縞構造(Pr,Pg,Pbの極大位置及び極小位置)を検出する(ステップS103)。そして、各縞に対し、Pr,Pg,Pbの中で最大となる成分によって当該縞の射出時の色を特定する(ステップS104)。
【0020】
次に、受光した縞のコード系列(色の並び方)を書き出し(ステップS105)、受光したコード系列の各コード番号とパターン射出時のコード系列のコード番号とを、コード系列内の配列関係も含めてマッチングする(ステップS106)。その結果、パターンの射出位置と反射光の受光位置とを一意的に対応づけることができ、これに三角測量の原理を適用して奥行き値を算出する(ステップS107)。
【0021】
そして、得られた奥行き値と撮影した2次元画像情報とから3次元画像を生成する(ステップS108)。
【0022】
従来の色によるカラーパターン投影法は、以上のような処理を行なっている。
【0023】
【発明が解決しようとする課題】
しかしながら、従来の色によるカラーパターン投影法は、特に濃色系の物体に対しての3次元形状の測定が困難であった。図9を用いて、このことを説明する。
【0024】
例えば、G成分とB成分の反射信号がほとんどゼロに近く、R成分の反射信号が強いような表面反射率特性を持つ物体(つまり、リンゴのような濃い赤の物体)に対しては、R成分の輝度値において、一つの極大の信号が得られるが、G成分とB成分の輝度値は、ほとんどノイズレベルになってしまう。このような状況下では、G成分とB成分の縞構造は抽出することすらできず、ましてや、縞を特定することなどできない。つまり、R,G,Bのうち一つの成分でも、その反射信号がゼロに近いような表面反射率特性を持つ物体に対してはデコードが困難になる。言い換えると、白色系または淡色系の物体表面に対しては、うまくデコードできるが、R,G,B成分の反射信号のうち一つでも、ほとんどゼロに近いノイズレベルの値となるような表面反射率特性を持つ物体に対しては、R,G,Bの組み合わせから求まる、色による判定は困難になってしまう。
【0025】
なお、ここでは、縞パターンの例を挙げて説明したが、格子パターンなどの場合にも同様のことがあてはまる。
【0026】
本発明は、上記の事情に鑑みてなされたもので、白色系や淡色系だけでなく濃色系の物体に対しても、コード化されたパターンの投影像から正しいデコードが可能となるような3次元情報取得装置、3次元情報取得における投影パターン、及び、3次元情報取得方法を提供することを目的とする。
【0027】
【課題を解決するための手段】
上記の目的を達成するために、本発明による3次元情報取得装置は、撮影手段から所定の距離離れた位置から複数の色成分のパターンが重畳された所定の投影パターンが投影された撮影対象を上記撮影手段で撮影し、上記撮影手段で撮影された画像を解析することにより、上記撮影対象の3次元情報を取得する3次元情報取得装置であって、光源からの光によって照明された上記撮影対象を撮影した第1の画像、上記光源を消灯あるいは遮光して上記光源からの光による照明を行なわずに上記撮影対象を撮影した第2の画像、及び上記光源からの光または上記光源と同じ特性を有する他の光源からの光を利用して上記投影パターンが投影された上記撮影対象を撮影した第3の画像を記憶する画像記憶手段と、上記撮影対象に投影される上記投影パターンを予め記憶するパターン記憶手段と、上記画像記憶手段に記憶された上記第1、第2及び第3の画像を利用して上記撮影対象の表面反射率および外光の影響を補正し、上記補正を行なって得られたパターン各部の色または階調(輝度)に基づいて撮影されたパターンの構造を推定するパターン構造推定手段と、上記パターン構造推定手段による上記推定の結果と上記パターン記憶手段に記憶された上記投影パターンとの対応関係を特定し、上記対応関係の特定結果に基づいて上記撮影対象の奥行き値を算出する奥行き算出手段とを備えることを特徴とするものである。
【0028】
また、本発明による3次元情報取得方法は、撮影手段から所定の距離離れた位置から複数の色成分のパターンが重畳された所定の投影パターンが投影された撮影対象を上記撮影手段で撮影し、上記撮影手段で撮影された画像を解析することにより、上記撮影対象の3次元情報を取得する3次元情報取得方法であって、光源からの光によって照明された上記撮影対象を撮影することで第1の画像を得、上記光源を消灯あるいは遮光して上記光源からの光による照明を行なわずに上記撮影対象を撮影することで第2の画像を得、上記光源からの光または上記光源と同じ特性を有する他の光源からの光を利用して上記投影パターンが投影された上記撮影対象を撮影することで第3の画像を得、これら第1、第2及び第3の画像を利用して上記撮影対象の表面反射率および外光の影響を補正し、上記補正を行なって得られたパターン各部の色または階調(輝度)に基づいて撮影されたパターンの構造を推定し、上記推定の結果と上記投影した所定の投影パターンとの対応関係を特定し、上記対応関係の特定結果に基づいて上記撮影対象の奥行き値を算出することを特徴とするものである。
【0029】
即ち、本発明の3次元情報取得装置及び3次元情報取得方法によれば、白色系や淡色系物体測定用である色による特徴と濃色系物体測定用である同一色成分の階調による特徴という2つの異なる特徴を併せ持つ投影パターンを用い、第1の画像(光源点灯)と第2の画像(光源消灯)と第3の画像(パターン投影)とから撮影対象の表面反射率及び外光の影響を補正して、パターン特定を行なった上で、奥行き値を算出するようにしているので、淡色系物体だけでなく濃色系物体においても3次元情報を取得することができる。
【0030】
また、上記の目的を達成するために、本発明による3次元情報取得装置は、撮影手段から所定の距離離れた位置から複数の色成分のパターンが重畳された所定の投影パターンが投影された撮影対象を上記撮影手段で撮影し、上記撮影手段で撮影された画像を解析することにより、上記撮影対象の3次元情報を取得する3次元情報取得装置であって、光源からの光によって照明された上記撮影対象を撮影した第1の画像と、上記光源からの光または上記光源と同じ特性を有する他の光源からの光を利用して上記投影パターンが投影された上記撮影対象を撮影した第2の画像とを記憶する画像記憶手段と、上記撮影対象に投影される上記投影パターンを予め記憶するパターン記憶手段と、上記画像記憶手段に記憶された上記第1及び第2の画像を利用して上記撮影対象の表面反射率の影響を補正し、上記補正を行なって得られたパターン各部の色または階調(輝度)に基づいて撮影されたパターンの構造を推定するパターン構造推定手段と、上記パターン構造推定手段による上記推定の結果と上記パターン記憶手段に記憶された上記投影パターンとの対応関係を特定し、上記対応関係の特定結果を利用して上記撮影対象の奥行き値を算出する奥行き算出手段とを備えることを特徴とするものである。
【0031】
また、本発明による3次元情報取得方法は、撮影手段から所定の距離離れた位置から複数の色成分のパターンが重畳された所定の投影パターンが投影された撮影対象を上記撮影手段で撮影し、上記撮影手段で撮影された画像を解析することにより、上記撮影対象の3次元情報を取得する3次元情報取得方法であって、光源からの光によって照明された上記撮影対象を撮影することで第1の画像を得、上記光源からの光または上記光源と同じ特性を有する他の光源からの光を利用して上記投影パターンが投影された上記撮影対象を撮影することで第2の画像を得、これら第1及び第2の画像を利用して上記撮影対象の表面反射率の影響を補正し、上記補正を行なって得られたパターン各部の色または階調(輝度)に基づいて撮影されたパターンの構造を推定し、上記推定の結果と上記投影した所定の投影パターンとの対応関係を特定し、上記対応関係の特定結果を利用して上記撮影対象の奥行き値を算出することを特徴とするものである。
【0032】
即ち、本発明の3次元情報取得装置及び3次元情報取得方法によれば、白色系や淡色系物体測定用である色による特徴と濃色系物体測定用である同一色成分の階調による特徴という2つの異なる特徴を併せ持つ投影パターンを用い、第1の画像(光源点灯、高速シャッタ)と第2の画像(パターン投影、高速シャッタ)とから撮影対象の表面反射率及び外光の影響を補正して、パターン特定を行なった上で、奥行き値を算出するようにしているので、淡色系物体だけでなく濃色系物体においても3次元情報を取得することができる。
【0033】
更に、上記の目的を達成するために、本発明による3次元情報取得装置は、撮影手段から所定の距離離れた位置から複数の色成分のパターンが重畳された所定の投影パターンが投影された撮影対象を上記撮影手段で撮影し、上記撮影手段で撮影された画像を解析することにより、上記撮影対象の3次元情報を取得する3次元情報取得装置であって、上記投影パターンが投影された上記撮影対象を撮影した画像を記憶する画像記憶手段と、上記撮影対象に投影される上記投影パターンを予め記憶するパターン記憶手段と、上記画像中に含まれるパターンの色により撮影されたパターンの構造を推定する第1の推定方法と、全ての色成分でない一つ以上の色成分の階調(輝度)により上記撮影されたパターンの構造を推定する第2の推定方法とを選択的に実行するパターン構造推定手段と、上記パターン構造推定手段による上記第1または第2の推定方法による推定結果と上記パターン記憶手段に記憶された上記投影パターンとの対応関係を特定し、上記対応関係の特定結果を利用して上記撮影対象の奥行き値を算出する奥行き算出手段とを備えることを特徴とするものである。
【0034】
また、本発明による3次元情報取得方法は、撮影手段から所定の距離離れた位置から複数の色成分のパターンが重畳された所定の投影パターンが投影された撮影対象を上記撮影手段で撮影し、上記撮影手段で撮影された画像を解析することにより、上記撮影対象の3次元情報を取得する3次元情報取得方法であって、上記投影パターンが投影された上記撮影対象を撮影することで画像を得、この画像中に含まれるパターンの色により撮影されたパターン構造を推定する第1の推定方法と、全ての色成分でない一つ以上の色成分の階調(輝度)により上記撮影されたパターンの構造を推定する第2の推定方法とを選択的に実行し、上記第1または第2の推定方法による推定結果と上記投影した所定の投影パターンとの対応関係を特定し、上記対応関係の特定結果を利用して上記撮影対象の奥行き値を算出することを特徴とするものである。
【0035】
即ち、本発明の3次元情報取得装置及び3次元情報取得方法によれば、白色系や淡色系物体測定用である色による特徴と濃色系物体測定用である同一色成分の階調による特徴という2つの異なる特徴を併せ持つ投影パターンを用い、色成分が重畳された色(R,G,B)によりパターン構造を推定する第1の推定方法を実行することで淡色系物体に対処し、色成分毎(Rのみ,Gのみ,Bのみ)にパターン構造を推定する第2の推定方法とを選択的に実行することで濃色系物体に対処することができるので、淡色系物体、濃色系物体の何れにおいても3次元情報を取得することができる。
【0036】
また、上記の目的を達成するために、本発明による3次元情報取得における投影パターンは、撮影対象を撮影した画像を解析して上記撮影対象の3次元情報を取得するに際して、上記撮影対象に投影される投影パターンであって、複数の色成分のパターンが重畳されたものであり、異なる有彩色に着色された複数の領域を含み、上記有彩色の領域は、上記各色成分のパターンの所定の階調(輝度)を有する領域の組み合わせで構成されたものであると共に、一つの色成分のパターンにおける任意の上記領域の階調(輝度)は、他の色成分のパターンにおける上記任意の領域の階調と互いに異なり、これによって上記任意の領域が上記投影パターンの中のどの領域であるかの対応が特定できるように、上記投影パターンが符号化されていることを特徴とするものである。
【0037】
即ち、本発明の3次元情報取得における投影パターンによれば、白色系や淡色系物体測定用である色による特徴と濃色系物体測定用である同一色成分の階調による特徴という2つの異なる特徴を併せ持つので、該投影パターンを用いることで淡色系物体だけでなく濃色系物体においても3次元情報を取得することができるようになる。
【0038】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を説明する。
【0039】
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る3次元情報取得装置の適用された3次元形状測定装置1の構成を示す図である。
【0040】
この3次元形状測定装置1は、本発明の第1の実施の形態に係る3次元情報取得装置2と3次元画像生成部3とから構成されている。そして、上記3次元情報取得装置2は、パターンメモリ21、ストロボ22、パターン切り替え部23、撮影部24、画像メモリ25、2次元画像情報生成部26、奥行き算出部27、及び、制御部28より構成されている。
【0041】
ここで、上記パターンメモリ21は、上記パターン記憶手段に相当するもので、被写体(図示せず)に投光する投影パターンのコード系列などを記憶しておくものである。上記ストロボ22は、光を照射するためのものであり、上記パターン切り替え部23は、このストロボ22のストロボ光の強度(光の透過率)を場所によって変調する投影パターンの有無を切り替えるものである。上記撮影部24は、上記撮影手段に相当するものであり、上記被写体からの反射光を集光する集光レンズ241と、この集光レンズ241で集めた光を受光する受光部(撮像素子)242とから構成される。上記画像メモリ25は、上記画像記憶手段に相当するものであり、上記撮影部24で撮影した画像を記憶する。上記2次元画像情報生成部26は、上記パターン構造抽出手段に相当するものであり、上記画像メモリ25に記憶されている画像から2次元画像情報を生成する機能に加えて、上記画像メモリ25に記憶されている画像から撮影されたパターンの構造を推定し、その推定結果を上記画像メモリ25に記憶させる機能も備えている。上記奥行き算出部27は、上記奥行き算出手段に相当するものであり、上記画像メモリ25に記憶されている上記推定結果と上記パターンメモリ21に記憶されている投影パターンとから奥行き値を算出する。そして、上記制御部28は、上記ストロボ22の発光制御、上記パターン切り替え部23の投影パターンの有無の切り替え制御、及び上記受光部242の受光制御、などを行なうものである。
【0042】
なお、上記パターン切り替え部23は、本実施の形態では、透過型の液晶装置により構成しており、上記切り替え制御は、上記制御部28が、上記パターンメモリ21に記憶されている投影パターンに従った像を上記透過型液晶装置に表示する/しない、により行なうようになっている。あるいは、上記パターン切り替え部23は、上記パターンメモリ21に記憶された投影パターンと同様のパターンを構成したフィルムを上記ストロボ22の光路上に機械的に進退させる構造とし、その進退を上記制御部28で制御するようにしても良い。更には、機械的に進退させるのではなく、操作者が人手によりストロボ光路上に進退させるものであっても構わない。この場合には、制御部28は直接パターン切り替え部23を制御しないが、例えば、図示しないインジケータやブザーにより、操作者にそのような進退を指示する、あるいは、逆に、操作者の上記フィルムの進退操作後にその操作終了を当該制御部28に指示するための図示しない操作部の操作を判別するような構成を取ることが好ましい。
【0043】
そして、上記3次元画像生成部3は、上記2次元画像情報生成部26で生成された2次元画像情報と、上記奥行き算出部27で算出された奥行き値とから、3次元画像を生成するものである。
【0044】
次に、このような構成の3次元形状測定装置1の動作について説明する。
予め、上記パターンメモリ21には、投影パターンのコード情報を記憶しておく。そして、まず、上記制御部28は、上記パターンメモリ21より上記パターンコード情報を読み出し、そのパターンコード情報に従ったパターンを上記パターン切り替え部23に表示して、上記ストロボ22を発光させることで、上記パターンコード情報に従ったパターン付きフラッシュ即ち投影パターンを被写体(図示せず)に投光する。このとき、上記被写体からの反射光は、上記集光レンズ241によって集光され、上記受光部242に導かれる。よって、上記制御部28は、上記ストロボ22の発光に同期して上記受光部242を動作させ、この受光部242で得られた画像を上記画像メモリ25に記憶する。
【0045】
次に、制御部28は、上記パターン切り替え部23の上記パターン表示を無くした上で、上記と同様にストロボ22及び受光部242を制御することで、パターン無し且つフラッシュ発光有り撮影を行ない、得られた画像を上記画像メモリ25に記憶する。
【0046】
更に、パターン無し且つフラッシュ無し撮影を行なって、得られた画像を上記画像メモリ25に記憶する。
【0047】
こうして3種類の画像を得た後、上記2次元画像情報生成部26では、上記画像メモリ25に記憶された上記3種類の画像から、撮影されたパーンの構造を表すパターン情報を抽出し、画像メモリ25に書き込む。この抽出方法の詳細については後述する。なお、2次元画像情報生成部26は、上記パターン無しフラッシュ画像を上記画像メモリ25から読み出し、平面的な写真情報(2次元画像情報)をいつでも生成できるようになっている。
【0048】
次に、上記奥行き算出部27において、上記パターンメモリ21に記憶された投影パターンのコード情報と、上記画像メモリ25に書き込まれた上記2次元画像情報生成部26で抽出されたパターン情報とを比較、照合し、投影したパターンと撮影されたパターンとの対応関係を決定する。続いて、反射パターン受光位置と焦点距離の情報とから入射角を算出し、上記投影パターンの射出地点と被写体から反射されたパターンの受光地点との間の距離間隔と光の射出角度の情報とから、三角測量の原理によって奥行き値を算出する。
【0049】
最後に、上記3次元画像生成部3において、上記2次元画像情報生成部26で生成された2次元画像情報と、上記奥行き算出部27で算出された奥行き値とから、3次元画像を生成する。
【0050】
上記投影されるパターンについて、図2を用いて説明する。
図2は、上記パターンメモリ21に記憶されたコード情報に従って被写体に投影されるコード済みのカラーパターン4を示しており、更に、このカラーパターン4の下には、R,G,B成分それぞれの輝度値(階調値)を示してある。なお、この図2の例は縞パターンであるが、格子パターンを用いても構わないことは勿論である。
【0051】
このパターン構造は、R,G,Bの各成分に対して、極大(有彩色)と極小(黒)が交互に配置されており、同図には、パターンの縞を識別するためのコード番号を(1),(2),(3)で表している。ここで、コード番号kが割り当てられている縞のR,G,Bの各成分をそれぞれr[k],g[k],b[k]で表すと、図2の例では、各コード番号のR,G,Bの値を次式のように表現することができる。なお、この値は、R,G,Bをそれぞれ256階調とした場合である。
【0052】
(r[1],g[1],b[1])=(85,170,255)
(r[2],g[2],b[2])=(170,255,85)
(r[3],g[3],b[3])=(255,85,170)
この例は、以下に説明する特徴を持ったコード化パターンになっている。
【0053】
コード番号の並び方を利用して、受光したパターン中の縞を射出時のパターン中の縞に一意的に対応づけることは、従来と同じであるが、本実施の形態では、縞の特徴づけに特長がある。
【0054】
まず、第1の特徴は、同一縞内における異なる成分間の関係、例えば、縞の大小、縞の大きさの比、色相などを用いて縞の特徴づけを行なっているものである。この同一縞内における色による特徴づけは、例えば、以下の関係を用いて縞のコード番号を特定することができるコード化方法である。
【0055】
0≪r[1]≪g[1]≪b[1]
0≪b[2]≪r[2]≪g[2]
0≪g[3]≪b[3]≪r[3]
ここで、記号≪は、ノイズの影響による大小関係の逆転が無いぐらいに右辺が左辺よりも充分大きいということを示している。
【0056】
第2の特徴は、異なる縞間における同一成分の大小関係を用いて縞の特徴づけを行なっているものである。この同一成分の階調(輝度)による特徴づけは、例えば、以下の式の関係を用いて縞のコード番号を特定することができるコード化方法である。
【0057】
0≪r[1]≪r[2]≪r[3]
0≪g[3]≪g[1]≪g[2]
0≪b[2]≪g[3]≪g[1]
これら2つの特徴を一つのパターン中に埋め込んだコード化パターンを用いることが、本実施の形態の特長である。
【0058】
そして、この2重の特徴を埋め込んだコード化パターンを、R,G,Bの3成分を共に反射してくるような白色系や淡色系の被写体に対しては、上記第1の特徴である色による特徴によって、パターン射出時の縞の色(コード番号)を特定し、R,G,Bの1成分または2成分を反射するような濃色系の被写体に対しては、上記第2の特徴である同一成分の階調による特徴によってパターン射出時の縞の色を特定するというふうに使い分ける。
【0059】
なお、R,G,Bの3成分を共に反射してくる白色系や淡色系の被写体に色相などの色による特徴を用いてパターン射出時の縞を特定する方法を採用するメリットは、次のように説明できる。R,G,Bの3成分を色相H、彩度S、明度VからなるHSV空間にマッピングして考える。その変換式として、次の式が知られている。
【0060】
H=arctan{(G−B)/(2R−G−B)}
S={(B−R)+(R−G)+(G−B)}/3
V=R+G+B
仮にR,G,Bの値が、それぞれk倍になったとする。このとき、彩度Sはk倍、明度Vはk倍になってしまうが、色相Hは不変である。即ち、各成分の輝度値が、局所領域毎にそろって定数倍になる状況を想定すると、色相の判定方法は、その影響を受けないが、輝度の階調による判定方法は、影響が大きい。なお、HSV空間でなく、均等色空間(HCV)に変換してもほぼ同様のことが言える。
【0061】
ところで、縞にコード番号を割り当てた場合に、各縞を縞の並びに対して一意的に特定するために、本実施の形態では、最低階調レベル(最小輝度レベル)である黒縞を挟んで隣り合う有彩色縞のコード番号の並びが、一意的となるようなコード系列(コードの並び)を生成する。
【0062】
例えば、3色の色数(コードの種類)を用いた場合に、黒縞を挟んで隣り合う有彩色縞の(同色を許した)組み合わせを考えると、(1)(2)(2)(3)(1)(3)(3)(2)(1)というコード系列ができる。更に長いコード系列が必要ならば、色数を4乃至5色に増やす、または、2本の縞の組み合わせでなく、3乃至4本の縞の色(コード番号)の組み合わせが一意的となるようなコード系列を採用すればよい。
【0063】
このような2重の特徴を埋め込んだコード化パターンは、従来から知られている縞と縞の間の検出法にも利用することができることは勿論であるが、本実施の形態のような装置と組み合わせる事で、より効果を発揮できるものである。
【0064】
次に、画像処理の流れについて図3を用いて説明する。
まず、コード化済みのカラーパターン4を被写体に投影する(ステップS1)。次に、投影されたパターンを撮影し、その画像データ(Pr,Pg,Pb)を上記画像メモリ25に入力する(ステップS2)。
【0065】
続いて、パターン無しのフラッシュ撮影を行ない、その画像データ(Fr,Fg,Fb)を上記画像メモリ25に入力する(ステップS3)。
【0066】
そして、パターン無しフラッシュ無しの撮影を行ない、その画像データ(Nr,Ng,Nb)を上記画像メモリ25に入力する(ステップS4)。これらステップS1からステップS4までの一連の処理は、一瞬のうちに行なわれ、必要な情報の入力が完了する。
【0067】
この後、上記2次元画像情報生成部26において、上記画像メモリ25に入力した情報からパターンの縞構造を抽出し、各縞に対して当該縞の射出時の色を特定し、デコード処理を実施していくことになるが、それぞれの処理を以下に詳しく説明する。
【0068】
まず、パターン像から、外光や被写体の表面反射率特性の違いによる影響を取り除き、射出時のパターンを推定する処理を施す。ここで、図4を用いて、この処理に必要な関係式を説明する。図4のように、フラッシュの投光強度をL、パターンの透過率をT、被写体の表面反射率をR、外光の強度をSとし、これらを受光した画像の各画素の関数として考える。ここで、上記パターン切り替え部23から射出した光線と上記受光部242に入射する光線が、光の拡散などを無視して1対1の関係で記述できると近似して考えれば、
投影パターン撮影画像の画素強度P=R(TL+S)
フラッシュ撮影画像の画素強度F=R(L+S)
フラッシュ無し撮影画像の画素強度N=RS
と書くことができる。これら3式を連立させてTについて解くと
T=(P−N)/(F−N)
例えば、R,G,Bの3成分に対して画素強度値が得られる場合には、R,G,Bが互いに独立であると近似して考えれば、R,G,Bに対する推定パターン透過率Tr,Tg,Tbは、
Tr=(Pr−Nr)/(Fr−Nr)
Tg=(Pg−Ng)/(Fg−Ng)
Tb=(Pb−Nb)/(Fb−Nb)
という式によって求められる。ただし、ノイズなどの影響に対処するため、分母がゼロに近い場合には、その成分を除いて考える必要がある。
【0069】
ここで図3に戻り、画像処理の流れの説明を再開する。
即ち、ステップS5で、上式の分母、即ち(Fi−Ni)(ここでi=r,g,b)が、予め設定してあるノイズレベル以上であるか否かを判定し、ノイズレベル以上であるならば、その成分の推定パターン透過率Tiを上式を用いて算出する(ステップS6)。これに対して、ノイズレベル未満であれば、その成分の推定パターン透過率を不定とし、以後の処理に影響を与えないような値を入力しておく(ステップS7)。
【0070】
次に、パターンの縞構造(Tiのグラフの極大、極小位置)を検出する(ステップS8)。これには、例えばSobelフィルタなどにより、縞のエッジ部分を抽出し、エッジに挟まれた区間で、Tiの強度が極大となるか、極小となるかを判定する。この縞構造の抽出処理においても投影パターン撮影画像Piでなく、推定パターン透過率Tiを用いているので、外光や被写体の表面反射率特性の違いによる影響を大幅に緩和することができる。
【0071】
続いて、エッジに挟まれた区間に対して、当該縞の射出時の色を特定する処理に移る。
【0072】
即ち、まず、(Fi−Ni)(ここでi=r,g,b)がノイズレベル以上となる成分数を調べる(ステップS9)。
【0073】
ここで、成分数が0であれば、その領域の3次元形状は推定できないことになる(ステップS10)。これは、黒色の被写体の場合である。
【0074】
もし、ノイズレベル以上となる成分数が1であれば、1成分のみ反射する領域において、推定パターン透過率Tiのヒストグラムを作成する(ステップS11)。このヒストグラムに対し、例えば、判別分析の手法により、ヒストグラムをパターン作成時の階調数、例えば本実施の形態では3分割に分割するような閾値を自動的に設定する(ステップS12)。次に、上記ステップS12で設定した閾値を用いて、推定パターン透過率Tiの階調を判定する(ステップS13)。そして、上記判別した推定パターン透過率Tiの階調によって当該縞の射出時の色を特定し、コード番号を推定する(ステップS14)。
【0075】
また、ノイズレベル以上となる成分数が2であれば、その2成分の推定パターン透過率Tiの大きさを比較する(ステップS15)。次に、2成分の推定パターン透過率Tiの和を算出し、2成分を反射する領域における和の値のヒストグラムを作成する(ステップS16)。次に、例えば判別分析の手法により、ヒストグラムを2分割するような閾値を自動的に設定する(ステップS17)。その後、この設定した閾値を用いて、2成分の推定パターン透過率Tiの和の階調を判定する(ステップS18)。そして、2成分の推定パターン透過率Ti間の大小関係及び2成分の推定パターン透過率Tiの和に対する階調値によって、当該縞の射出時の色を特定し、コード番号を推定する(ステップS19)。
【0076】
更に、ノイズレベル以上となる成分数が3であれば、3成分の(255*Ti)の値から色相を算出し(ステップS20)、算出された色相が射出時の色相のどれに最も近いかを判定し、当該縞の射出時の色を特定し、コード番号を推定する(ステップS21)。なお、色相で縞の色を特定する代わりに、例えば、3成分間の比または大小関係を利用してもよい。
【0077】
この手続きを最大視差の区間内の画素に対して行なうことで、コード番号の列が推定され、その推定結果が、この2次元画像情報生成部26で抽出された上記パターン情報として、上記画像メモリ25に書き込まれる。
【0078】
次に、上記奥行き算出部27において、このパターン情報におけるコード番号の列と、上記パターンメモリ21に記憶されているコード系列とを比較、照合する。本実施の形態では、黒縞を挟んで隣り合う有彩色縞の組み合わせが一致しているものを探す。上記推定されたコード番号の列における黒縞を挟んで隣り合う有彩色縞の組み合わせと一致するコード系列が複数ある場合には、例えば、上記推定されたコード番号の列と連続して一致するコード番号との長さが最大のコード系列を信頼性が高いとして選択する。この処理を繰り返すことによって、デコード処理が完了し、投光パターンと受光パターンとの各縞に対して、1対1の対応関係が定まる。最後に、三角測量の原理から被写体の各点での奥行き値が算出される。
【0079】
以上説明したように本実施の形態によれば、濃色系の被写体においても射出時の縞の色を推定可能なパターンを提供しているので、白色系または淡色系だけでなく濃色系の被写体に対してまで3次元形状を取得することができ、被写体の色に関する制約を緩めることができる効果がある。
【0080】
即ち、図9に示したような従来例では、例えば、赤い被写体上に、R成分の強度変化がないパターン領域(GまたはBの強度変化があるパターン領域)が投射された場合に縞と縞の間の変化を検出できず、その部分に対して3次元形状の取得ができないという問題があった。これに対し、本実施の形態によれば、縞と縞の間ではR,G,B全ての成分値が必ず変化しているので、黒以外のどんな被写体にパターンが投影されても、縞と縞の間の変化を必ず検出することができ、3次元形状の取得ができない領域を減らす効果がある。勿論、本実施の形態のようなコード済みのカラーパターン4を用い、従来から知られている縞と縞の間の検出法を適用することによっても、この効果を得ることができるが、本実施の形態のような装置と組み合わせる事で、より効果を発揮できる。
【0081】
また、本実施の形態によれば、蛍光灯または電球など、様々な色の外光の下でも、または、表面反射率特性が異なる種々の被写体に対しても、パターン付きフラッシュ撮影画像、パターン無しフラッシュ撮影画像及びパターン無しフラッシュ無し撮影画像の3種類の画像を用いることによって、パターンの射出時の色をより正確に確定することができ、3次元計測の誤りを少なくできる効果がある。
【0082】
更に、本実施の形態によれば、縞と縞との間ではR,G,B全ての成分値が必ず変化しているので、黒以外のどんな被写体にパターンが投影されても、縞と縞との間の変化を必ず検出することができ、3次元形状の取得ができない領域を減らす効果がある。
【0083】
また、本実施の形態によれば、R,G,B全ての成分値が、極大、極小となる区間または領域を交互に配置しているので、縞と縞との境界で変曲点を許すようなパターン構造に比べて、縞と縞との境界を容易に検出できる効果がある。更に、光の拡散によって縞と縞との境界が消失してしまう危険性を減らす効果もある。
【0084】
[第2の実施の形態]
次に、本発明の第2の実施の形態を説明する。本第2の実施の形態は、方法部分は、上記第1の実施の形態で用いた3次元情報取得方法と同じであるが、装置構成が異なる。
【0085】
即ち、本第2の実施の形態に係る3次元情報取得装置2は、図5に示すように、被写体に投光するパターンを記憶しておくパターンメモリ21、光を照射するためのストロボ22、場所によって光の強度(透過率)を変調するパターンの有無を切り替えるパターン切り替え部23、反射された光を集光する集光レンズ241R及び241L、これら集光レンズ241R及び241Lで集光された光を受光する受光部242R及び5242、撮影された画像を記憶する画像メモリ25R及び25L、これら画像メモリ25R及び25Lに記憶された画像から2次元画像情報を生成する2次元画像情報生成部26、上記画像メモリ25R及び25Lに記憶された画像と上記パターンメモリ21に記憶されたパターンとの対応を決定する対応関係決定部29、該対応関係決定部29で決定された対応関係から三角測量の原理を用いて奥行き値を算出する奥行き算出部27、及び上記ストロボ22、パターン切り替え部23、受光部242R,242Lを制御する制御部28から構成されている。
【0086】
そして、このような3次元情報取得装置2と共に3次元形状測定装置1を構成する3次元画像生成部3は、上記2次元画像情報生成部26に記憶された2次元画像情報と上記奥行き算出部27で算出された奥行き値とから3次元画像を生成するようになっている。
【0087】
次に、このような本第2の実施の形態に係る3次元情報取得装置2の動作について説明する。
【0088】
まず、上記制御部28により上記ストロボ22を発光し、上記パターン切り替え部23で光を変調して被写体(図示せず)にパターンを投影する。この投影像は、2つの異なる位置、例えば上記ストロボ22及びパターン切り替え部23の右と左に配置された集光用レンズ241R及び241Lによって集光される。続いて、集光された光は、それぞれ受光部242R、242Lで受光され、各々、画像メモリ25R、25Lに記憶される。パターン無しフラッシュ撮影画像とパターン無しフラッシュ無し撮影画像についてもそれぞれ同様にして画像メモリ25R、25Lに記憶される。上記第1の実施の形態との違いは、これら3種類の画像が、視点の異なる2個所の画像メモリに書き込まれている点である。
【0089】
そして、上記第1の実施の形態における場合と同様に、上記2次元画像情報生成部26で左右それぞれについて3種類の画像から、射出時の推定パターン情報を算出し、画像メモリ25R及び25Lに書き込む。
【0090】
次に、上記対応関係決定部29において、上記パターンメモリ21に記憶されたパターン情報と上記画像メモリ25Rに書き込んだ右の推定パターン情報、上記パターンメモリ21に記憶されたパターン情報と上記画像メモリ25Lに書き込んだ左の推定パターン情報、上記右の画像メモリ25Rに書き込んだパターン情報と上記左の画像メモリ25Lに書き込んだパターン情報の推定パターン情報、及び上記右の受光部242Rと上記左の受光部242Lとで受光したパターン無しフラッシュ投影画像、の4通りの対応づけが行なわれる。
【0091】
このとき、パッシブステレオ法の場合に問題となるテクスチャの無い領域への対応づけの困難さがかなり軽減されている。
【0092】
更に、上記第1の実施の形態においては、投影したパターンと撮影されたパターンとの対応関係を奥行き値算出の手がかりとしたが、本実施の形態においては、左右のパターン無し画像及びパターン有り画像の対応関係をも利用できるので、より信頼性の高い対応づけを実現できる。
【0093】
以上説明したように本第2の実施の形態によれば、2つ以上の視点に置かれた撮像素子でパターンの投影像を取得し、投影したパターンと撮影されたパターンとの対応づけだけでなく、複数画像間の対応づけも行なうため、より正確な対応づけが可能となり、計測精度と信頼性が向上する効果がある。
【0094】
[第3の実施の形態]
次に、本発明の第3の実施の形態を説明する。
【0095】
本第3の実施の形態の装置構成については、前述の第1の実施の形態あるいは第2の実施の形態のそれと同様である。異なる点は、高速シャッタ(例えば、1/500秒)で撮影することによって外光の影響を抑える点である。これによって、パターン無しフラッシュ無し撮影を省くことが可能になるので、投影パターン撮影とパターン無しフラッシュ撮影との2回で画像の取り込みが完了する。
【0096】
これに伴って、処理の流れが前述の第1の実施の形態等よりも、少し簡素化される。図6を用いて、これを説明する。
【0097】
まず、コード化済みのカラーパターン4を被写体に投影する(ステップS1)。次に、投影されたパターンを撮影し、その画像データ(Pr,Pg,Pb)を上記画像メモリ25に入力する(ステップS2)。
【0098】
続いて、パターン無しのフラッシュ撮影を行ない、その画像データ(Fr,Fg,Fb)を上記画像メモリ25に入力する(ステップS3)。これらステップS1からステップS3までの一連の処理は、一瞬のうちに行なわれ、必要な情報の入力が完了する。
【0099】
この後、上記2次元画像情報生成部26において、上記画像メモリ25に入力した情報からパターンの縞構造を抽出し、各縞に対して当該縞の射出時の色を特定し、デコード処理を実施していくことになるが、それぞれの処理を以下に詳しく説明する。
【0100】
まず、パターン像から、外光や被写体の表面反射率特性の違いによる影響を取り除き、射出時のパターンを推定する処理を施す。ここで、図4を用いて、この処理に必要な関係式を説明する。図4のように、フラッシュの投光強度をL、パターンの透過率をT、被写体の表面反射率をR、外光の強度をSとし、これらを受光した画像の各画素の関数として考える。ここで、上記パターン切り替え部23から射出した光線と上記受光部242に入射する光線が、光の拡散などを無視して1対1の関係で記述できると近似して考えれば、
投影パターン撮影画像の画素強度P=R(TL+S)
フラッシュ撮影画像の画素強度F=R(L+S)
と書くことができる。本第3の実施の形態においては、高速シャッタで撮影するので、Sを近似的に0とみなすことができる。この時、これら2式を連立させTについて解くと
T=P/F
例えば、R,G,Bの3成分に対して画素強度値が得られる場合には、R,G,Bが互いに独立であると近似して考えれば、R,G,Bに対する推定パターン透過率Tr,Tg,Tbは、
Tr=Pr/Fr
Tg=Pg/Fg
Tb=Pb/Fb
という式によって求められる。ただし、ノイズなどの影響に対処するため、分母がゼロに近い場合には、その成分を除いて考える必要がある。
【0101】
そこで図6に戻るが、ステップS31で、上式の分母、即ちFi(ここでi=r,g,b)が、予め設定してあるノイズレベル以上か否かを判定し、そうであれば、その成分の推定パターン透過率Tiを上式を用いて算出する(ステップS32)。これに対して、ノイズレベル未満であれば、その成分の推定パターン透過率を不定とし、以後の処理に影響を与えないような値を入力しておく(ステップS7)。
【0102】
次に、パターンの縞構造(Tiのグラフの極大、極小位置)を検出する(ステップS8)。これには、例えばSobelフィルタなどにより、縞のエッジ部分を抽出し、エッジに挟まれた区間で、Tiの強度が極大となるか、極小となるかを判定する。この縞構造の抽出処理においても投影パターン撮影画像Piでなく、推定パターン透過率Tiを用いているので、外光や被写体の表面反射率特性の違いによる影響を大幅に緩和することができ、縞を安定して抽出することができる。
【0103】
続いて、エッジに挟まれた区間に対して、当該縞の射出時の色を特定する処理に移る。
【0104】
即ち、まず、Fi(ここでi=r,g,b)がノイズレベル以上となる成分数を調べる(ステップS33)。
【0105】
ここで、成分数が0であれば、その領域の3次元形状は推定できないことになる(ステップS10)。これは、黒色の被写体の場合である。
【0106】
もし、ノイズレベル以上となる成分数が1であれば、1成分のみ反射する領域において、推定パターン透過率Tiのヒストグラムを作成する(ステップS11)。このヒストグラムに対し、例えば、判別分析の手法により、ヒストグラムをパターン作成時の階調数に分割するような閾値を自動的に設定する(ステップS12)。次に、上記ステップS12で設定した閾値を用いて、推定パターン透過率Tiの階調を判定する(ステップS13)。そして、上記判別した推定パターン透過率Tiの階調によって当該縞の射出時の色を特定し、コード番号を推定する(ステップS14)。
【0107】
また、ノイズレベル以上となる成分数が2であれば、その2成分の推定パターン透過率Tiの大きさを比較する(ステップS15)。次に、2成分の推定パターン透過率Tiの和を算出し、2成分を反射する領域における和の値のヒストグラムを作成する(ステップS16)。次に、例えば判別分析の手法により、ヒストグラムを2分割するような閾値を自動的に設定する(ステップS17)。その後、この設定した閾値を用いて、2成分の推定パターン透過率Tiの和の階調を判定する(ステップS18)。そして、2成分の推定パターン透過率Ti間の大小関係及び2成分の推定パターン透過率Tiの和に対する階調値によって、当該縞の射出時の色を特定し、コード番号を推定する(ステップS19)。
【0108】
更に、ノイズレベル以上となる成分数が3であれば、3成分の(255*Ti)の値から色相を算出し(ステップS20)、算出された色相が射出時の色相のどれに最も近いかを判定し、当該縞の射出時の色を特定し、コード番号を推定する(ステップS21)。なお、色相で縞の色を特定する代わりに、例えば、3成分間の比または大小関係を利用してもよい。
【0109】
この手続きを最大視差の区間内の画素に対して実施していくことにより、コード番号の列が推定され、その推定結果が、この2次元画像情報生成部26で抽出された上記パターン情報として、上記画像メモリ25に書き込まれる。
【0110】
そして、上記奥行き算出部27での、上記パターン情報におけるコード番号の列と、上記パターンメモリ21に記憶されているコード系列とを照合した後、奥行きを算出するまでの処理は、前述の第1の実施の形態と同じである。
【0111】
[第4の実施の形態]
次に、本発明の第4の実施の形態を説明する。
【0112】
本第4の実施の形態では、装置構成が、前述の第1の実施の形態と少し異なる。
【0113】
即ち、図7に示すように、前述の第1の実施の形態におけるストロボ22及びパターン切り替え部23の代わりに、本第4の実施の形態では、パターン照射用ストロボ22−1と、該パターン照射用ストロボ22−1の前面に配されたフィルム上に設けられた固定のパターン41と、ストロボ22−2とを備えた構成になっている。ここで、前述したような投影パターン撮影の際には上記パターン照射用ストロボ22−1を発光させ、上記パターン無しフラッシュ撮影の際には上記ストロボ22−2を発光させるよう、上記制御部28によって制御されるものである。
【0114】
このような構成の第4の実施の形態では、前述の第1の実施の形態におけるパターン切り替え部223のような可動部がないため、壊れにくい、消費電力が少なくて済む、等のメリットがある。
【0115】
ただし、上記パターン照射用ストロボ22−1による照射条件と上記ストロボ22−2による照射条件とが、ほぼ同一の条件となるようにする必要がある。即ち、発光特性が似たものを互いに近い位置に設置し、フラッシュの照射方向も同じにしておく方が望ましい。
【0116】
尚、処理の流れについては、前述の第1の実施の形態、または、高速シャッタ撮影による上記第3の実施の形態と同様である。
【0117】
[第5の実施の形態]
次に、本発明の第5の実施の形態を説明する。
【0118】
この第5の実施の形態における装置構成については、前述の第1の実施の形態あるいは前述の第2の実施の形態のそれと同様である。異なる点は、高速シャッタで撮影することによって外光の影響を抑える点、及び、例えばリンゴのようにほぼ均一で一様な色をしている被写体を3次元計測の対象物として想定している点である。
【0119】
この場合、パターン無しフラッシュ無し撮影とパターン無しフラッシュ撮影とを省き、投影パターン撮影1回のみで画像の取り込みを完了させる。
【0120】
これに伴って、処理の流れが、前述の第1の実施の形態等よりも、さらに簡素化される。図8を用いて、これを説明する。
【0121】
まず、コード化済みのカラーパターン4を被写体に投影する(ステップS1)。次に、投影されたパターンを撮影し、その画像データ(Pr,Pg,Pb)を上記画像メモリ25に入力する(ステップS2)。
【0122】
この後、上記2次元画像情報生成部26において、上記画像メモリ25に入力した情報からパターンの縞構造を抽出し、各縞に対して当該縞の射出時の色を特定し、デコード処理を実施していくことになるが、それぞれの処理を以下に詳しく説明する。
【0123】
即ち、まず、Pi(ここでi=r,g,b)が、予め設定してあるノイズレベル以上であるか否かを判定し(ステップS51)、ノイズレベル未満であれば、その成分の推定パターン透過率を不定とし、以後の処理に影響を与えないような値を入力しておく(ステップS7)。
【0124】
また、ノイズレベル以上であれば、パターンの縞構造(Piのグラフの極大、極小位置)を検出する(ステップS52)。これには、例えばSobelフィルタなどにより、縞のエッジ部分を抽出し、エッジに挟まれた区間で、Piの強度が極大となるか、極小となるかを判定する。
【0125】
続いて、エッジに挟まれた区間に対して、当該縞の射出時の色を特定する処理に移る。
【0126】
即ち、まず、Pi(ここでi=r,g,b)がノイズレベル以上となる成分数を調べる(ステップS53)。
【0127】
ここで、成分数が0であれば、その領域の3次元形状は推定できないことになる(ステップS10)。これは、黒色の被写体の場合である。
【0128】
もし、ノイズレベル以上となる成分数が1であれば、1成分のみ反射する領域において、推定パターン透過率Piのヒストグラムを作成する(ステップS54)。このヒストグラムに対し、例えば、判別分析の手法により、ヒストグラムをパターン作成時の階調数に分割するような閾値を自動的に設定する(ステップS12)。次に、上記ステップS12で設定した閾値を用いて、推定パターン透過率Piの階調を判定する(ステップS55)。そして、上記判別した推定パターン透過率Piの階調によって当該縞の射出時の色を特定し、コード番号を推定する(ステップS56)。
【0129】
また、ノイズレベル以上となる成分数が2であれば、その2成分の推定パターン透過率Piの大きさを比較する(ステップS57)。次に、2成分の推定パターン透過率Piの和を算出し、2成分を反射する領域における和の値のヒストグラムを作成する(ステップS58)。次に、例えば判別分析の手法により、ヒストグラムを2分割するような閾値を自動的に設定する(ステップS17)。その後、この設定した閾値を用いて、2成分の推定パターン透過率Piの和の階調を判定する(ステップS59)。そして、2成分の推定パターン透過率Pi間の大小関係及び2成分の推定パターン透過率Piの和に対する階調値によって、当該縞の射出時の色を特定し、コード番号を推定する(ステップS60)。
【0130】
更に、ノイズレベル以上となる成分数が3であれば、3成分のPiの値から色相を算出し(ステップS61)、算出された色相が射出時の色相のどれに最も近いかを判定し、当該縞の射出時の色を特定し、コード番号を推定する(ステップS21)。なお、色相で縞の色を特定する代わりに、例えば、3成分間の比または大小関係を利用してもよい。
【0131】
この手続きを最大視差の区間内の画素に対して実施していくことにより、コード番号の列が推定され、その推定結果が、この2次元画像情報生成部26で抽出された上記パターン情報として、上記画像メモリ25に書き込まれる。
【0132】
そしてその後の、上記奥行き算出部27における、このパターン情報におけるコード番号の列と、上記パターンメモリ21に記憶されているコード系列とを照合した後、奥行きを算出するまでの処理は、前述の第1実施の形態と同じである。
【0133】
以上、実施の形態に基づいて本発明を説明したが、本発明は上述した実施の形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能である。
【0134】
ここで、本発明の要旨をまとめると特許請求の範囲に記載したものに加えて以下のようなものを含む。
【0135】
(1) カラーパターンを投影し、この投影像をR,G,B信号のように複数の独立な周波数成分に分けて受光する素子を有する3次元画像取得装置において、
該カラーパターンは、
全信号成分の組み合わせである色によるコード化と、
階調によるコード化と、
が同時に一つのパターン中に備わっていることを特徴とする3次元情報取得装置。
【0136】
(2) 予めコード化済みのパターンをフラッシュ(ストロボ)やプロジェクタなどの照明手段を発光させて被写体に向けて投影し、この投影像をカメラで撮影して得られるパターン付きフラッシュ撮影画像と、
パターン無しでフラッシュ撮影して得られるフラッシュ撮影画像と、
パターン無しフラッシュ無しで撮影して得られるフラッシュ無し撮影画像と、の3タイプの画像を取得し、これら3種類の画像からパターンの縞構造の抽出及び縞のデコードを行なうことを特徴とする3次元情報取得装置。
【0137】
(3) 上記3次元情報取得装置は、予めコード化済みのパターンをフラッシュ(ストロボ)やプロジェクタなどの照明手段を発光させて被写体に向けて投影し、この投影像をカメラで撮影して得られるパターン付きフラッシュ撮影画像と、
パターン無しでフラッシュ撮影して得られるフラッシュ撮影画像と、
パターン無しフラッシュ無しで撮影して得られるフラッシュ無し撮影画像と、の3タイプの画像を取得し、これら3種類の画像からパターンの縞構造の抽出及び縞のデコードを行なうことを特徴とする(1)に記載の3次元情報取得装置。
【0138】
(4) 上記3次元情報取得装置は、
カラーコード化パターンの有無を切り替えるパターン切り替え部と、
上記パターンを投射するための光投射部と、
上記カラーパターンのコードを記憶するパターンメモリと、
被写体から反射された光を受光する受光部と、
上記画像メモリに記憶されたパターンと上記パターンメモリで記憶されたパターンとから被写体の奥行き情報を算出する奥行き算出部と、
上記受光部で受光された情報を記憶する画像メモリと、
上記画像メモリから2次元画像情報を生成する2次元画像情報生成部と、
上記2次元画像情報生成部で生成された2次元画像情報と上記奥行き算出部で算出された奥行き値とから3次元画像を生成する3次元画像生成部と、
を有することを特徴とする(1)に記載の3次元情報取得装置。
【0139】
(5) 上記3次元情報取得装置は、
上記受光部と上記画像メモリとをそれぞれ複数具備し、
これら複数の画像メモリ同士の内容をマッチングし、画像間の対応づけを行なう対応関係決定部と、
上記対応関係決定部で決定された情報を基に上記奥行き算出部で被写体の奥行き値を算出し、上記2次元画像情報生成部で生成された2次元画像情報と上記奥行き算出部で算出された奥行き値とから3次元画像を生成する3次元画像生成部と、
を更に具備することを特徴とする(4)に記載の3次元情報取得装置。
【0140】
(6) カラーパターンを投影し、この投影像をR,G,B信号のように複数の独立な周波数成分に分けて受光し、上記受光した信号をデコードすることで3次元情報を取得する3次元画像取得方法において、
該カラーパターンは、
全ての信号成分値の組み合わせである色によるコード化と、
階調によるコード化と、
が同時に一つのパターン中に備わっていることを特徴とする3次元情報取得方法。
【0141】
(7) 上記3次元情報取得方法は、縞パターンまたは格子パターンのような縞状のパターンであって、縞と縞の間では、上記全ての信号成分値が必ず変化していることを特徴とする(6)に記載の3次元情報取得方法。
【0142】
(8) 上記3次元情報取得方法は、上記全ての信号成分値が、極大または極小となる区間もしくは領域を交互に配置したことを特徴とする(6)に記載の3次元情報取得方法。
【0143】
(9) 上記3次元情報取得方法は、2本以上の色の組み合わせから一意的に縞が特定されることを特徴とする(6)に記載の3次元情報取得方法。
【0144】
(10) 上記3次元情報取得方法は、フラッシュ撮影画像及びフラッシュ無し撮影画像を用いて、利用可能な反射光の成分を判定し、全ての成分が利用可能ならば、色によってコード番号を特定し、全ての成分ではないが一つ以上の成分が利用可能ならば、各成分の階調によってコード番号を特定することを特徴とする(6)に記載の3次元情報取得方法。
【0145】
(11) 上記投影パターンにおける各色成分のパターンは、隣り合う領域が互いに階調(輝度)が異なるように複数の領域が配置されたものであることを特徴とする請求項26乃至28の何れかに記載の3次元情報取得方法。
【0146】
(12) 上記投影パターンにおける各色成分のパターンは、階調(輝度)が極大となる領域と極小となる領域を交互に配置されたものであることを特徴とする請求項26乃至28の何れかに記載の3次元情報取得方法。
【0147】
(13) 上記階調(輝度)が極小となる領域は、最低階調(最小輝度)レベルであることを特徴とする(12)に記載の3次元情報取得方法。
【0148】
(14) 上記投影パターンは、異なる有彩色に着色された複数の領域を含み、
上記投影パターン中の有彩色の領域は、上記各色成分のパターンの所定の階調(輝度)を有する領域の組み合わせで構成されたものであると共に、一つの色成分のパターンにおける任意の上記領域の階調(輝度)は、他の色成分のパターンにおける上記任意の領域の階調と互いに異なり、これによって上記任意の領域が上記投影パターンの中のどの領域であるかの対応が特定できるように、上記投影パターンが符号化されている、
ことを特徴とする請求項26乃至28の何れかに記載の3次元情報取得方法。
【0149】
(15) 上記複数の色成分は、R,G,Bの3成分であることを特徴とする請求項26乃至28の何れかに記載の3次元情報取得方法。
【0150】
(16) 上記パターン構造の推定は、上記撮影されたパターンの色により上記撮影されたパターンの構造を推定する第1の推定方法と、全ての色成分でない一つ以上の色成分の階調(輝度)により上記撮影されたパターンの構造を推定する第2の推定方法とを選択的に実行することで行なわれ、
上記第1または第2の推定方法による推定結果が以降の処理に利用されることを特徴とする請求項26又は27に記載の3次元情報取得方法。
【0151】
【発明の効果】
以上詳述したように、本発明によれば、白色系や淡色系物体測定用である色による特徴と濃色系物体測定用である同一色成分の階調による特徴という2つの異なる特徴を併せ持つ投影パターンを用い、投影パターン撮影画像とフラッシュ撮影画像とフラッシュ無し撮影画像との3種類の画像から、反射率、外光補正を行なって、パターン特定を行なった上で、奥行き値を算出するようにしているので、淡色系物体だけでなく濃色系物体においても3次元情報を取得することができる3次元情報取得装置、3次元情報取得における投影パターン、及び、3次元情報取得方法を提供することができる。
【0152】
また、本発明によれば、色(成分値の組み合わせ)による縞の特徴づけと同一成分の階調による特徴づけとを一つのパターン中に同時に埋め込んだコード化を行ない、白色系や淡色系の物体については、色による特徴によって、濃色系の物体についてはノイズレベル未満の反射成分値の階調による特徴によってデコードしているので、濃色系も含めた様々な色の物体に対して投光パターン中の位置と受光パターン中の位置を確実に対応づけることが可能な3次元情報取得装置、3次元情報取得における投影パターン、及び、3次元情報取得方法を提供することができる。その結果、様々な色の物体に対して3次元形状の測定をより正確に行なえる効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る3次元情報取得装置の適用された3次元形状測定装置のブロック構成図である。
【図2】第1の実施の形態において被写体に投影されるパターンの例を示す図である。
【図3】第1の実施の形態における画像処理の射出時の色を特定するまでの流れを説明するためのフローチャートを示す図である。
【図4】第1の実施の形態における撮影時の種々のパラメータについて説明するための図である。
【図5】本発明の第2の実施の形態に係る3次元情報取得装置の適用された3次元形状測定装置のブロック構成図である。
【図6】本発明の第3の実施の形態における画像処理の射出時の色を特定するまでの流れを説明するためのフローチャートを示す図である。
【図7】本発明の第4の実施の形態に係る3次元情報取得装置の適用された3次元形状測定装置のブロック構成図である。
【図8】本発明の第5の実施の形態における画像処理の射出時の色を特定するまでの流れを説明するためのフローチャートを示す図である。
【図9】従来の技術によるパターンの例を示す図である。
【図10】従来の技術によるカラーパターン投影法の処理の流れを説明するためのフローチャートを示す図である。
【符号の説明】
1 3次元形状測定装置
2 3次元情報取得装置
3 3次元画像生成部
4 カラーパターン
21 パターンメモリ
22,22−2 ストロボ
22−1 パターン照射用ストロボ
23 パターン切り替え部
24,24R,24L 撮影部
25,25R,25L 画像メモリ
26 2次元画像情報生成部
27 奥行き算出部
28 制御部
29 対応関係決定部
241,241R,241L 集光レンズ
242,242R,242L 受光部

Claims (28)

  1. 撮影手段から所定の距離離れた位置から複数の色成分のパターンが重畳された所定の投影パターンが投影された撮影対象を上記撮影手段で撮影し、上記撮影手段で撮影された画像を解析することにより、上記撮影対象の3次元情報を取得する3次元情報取得装置であって、
    光源からの光によって照明された上記撮影対象を撮影した第1の画像、上記光源を消灯あるいは遮光して上記光源からの光による照明を行なわずに上記撮影対象を撮影した第2の画像、及び上記光源からの光または上記光源と同じ特性を有する他の光源からの光を利用して上記投影パターンが投影された上記撮影対象を撮影した第3の画像を記憶する画像記憶手段と、
    上記撮影対象に投影される上記投影パターンを予め記憶するパターン記憶手段と、
    上記画像記憶手段に記憶された上記第1、第2及び第3の画像を利用して上記撮影対象の表面反射率および外光の影響を補正し、上記補正を行なって得られたパターン各部の色または階調に基づいて撮影されたパターンの構造を推定するパターン構造推定手段と、
    上記パターン構造推定手段による上記推定の結果と上記パターン記憶手段に記憶された上記投影パターンとの対応関係を特定し、上記対応関係の特定結果に基づいて上記撮影対象の奥行き値を算出する奥行き算出手段と、
    を具備することを特徴とする3次元情報取得装置。
  2. 上記投影パターンにおける各色成分のパターンは、隣り合う領域が互いに階調が異なるように複数の領域が配置されたものであることを特徴とする請求項1に記載の3次元情報取得装置。
  3. 上記投影パターンにおける各色成分のパターンは、階調が極大となる領域と極小となる領域を交互に配置されたものであることを特徴とする請求項1に記載の3次元情報取得装置。
  4. 上記階調が極小となる領域は、最低階調レベルであることを特徴とする請求項3に記載の3次元情報取得装置。
  5. 上記投影パターンは、異なる有彩色に着色された複数の領域を含み、
    上記投影パターン中の有彩色の領域は、上記各色成分のパターンの所定の階調を有する領域の組み合わせで構成されたものであると共に、一つの色成分のパターンにおける任意の上記領域の階調は、他の色成分のパターンにおける上記任意の領域の階調と互いに異なり、これによって上記任意の領域が上記投影パターンの中のどの領域であるかの対応が特定できるように、上記投影パターンが符号化されている、
    ことを特徴とする請求項1に記載の3次元情報取得装置。
  6. 上記複数の色成分は、R,G,Bの3成分であることを特徴とする請求項1に記載の3次元情報取得装置。
  7. 上記パターン構造推定手段は、上記撮影されたパターンの色により上記撮影されたパターンの構造を推定する第1の推定方法と、全ての色成分でない一つ以上の色成分の階調により上記撮影されたパターンの構造を推定する第2の推定方法とを選択的に実行し、
    上記奥行き算出手段は、上記第1または第2の推定方法による推定結果を利用して上記撮影対象の奥行き値を算出することを特徴とする請求項1に記載の3次元情報取得装置。
  8. 撮影手段から所定の距離離れた位置から複数の色成分のパターンが重畳された所定の投影パターンが投影された撮影対象を上記撮影手段で撮影し、上記撮影手段で撮影された画像を解析することにより、上記撮影対象の3次元情報を取得する3次元情報取得装置であって、
    光源からの光によって照明された上記撮影対象を撮影した第1の画像と、上記光源からの光または上記光源と同じ特性を有する他の光源からの光を利用して上記投影パターンが投影された上記撮影対象を撮影した第2の画像とを記憶する画像記憶手段と、
    上記撮影対象に投影される上記投影パターンを予め記憶するパターン記憶手段と、
    上記画像記憶手段に記憶された上記第1及び第2の画像を利用して上記撮影対象の表面反射率の影響を補正し、上記補正を行なって得られたパターン各部の色または階調に基づいて撮影されたパターンの構造を推定するパターン構造推定手段と、
    上記パターン構造推定手段による上記推定の結果と上記パターン記憶手段に記憶された上記投影パターンとの対応関係を特定し、上記対応関係の特定結果を利用して上記撮影対象の奥行き値を算出する奥行き算出手段と、
    を具備することを特徴とする3次元情報取得装置。
  9. 上記投影パターンにおける各色成分のパターンは、隣り合う領域が互いに階調が異なるように複数の領域が配置されたものであることを特徴とする請求項8に記載の3次元情報取得装置。
  10. 上記投影パターンにおける各色成分のパターンは、階調が極大となる領域と極小となる領域を交互に配置されたものであることを特徴とする請求項8に記載の3次元情報取得装置。
  11. 上記階調が極小となる領域は、最低階調レベルであることを特徴とする請求項10に記載の3次元情報取得装置。
  12. 上記投影パターンは、異なる有彩色に着色された複数の領域を含み、
    上記投影パターン中の有彩色の領域は、上記各色成分のパターンの所定の階調を有する領域の組み合わせで構成されたものであると共に、一つの色成分のパターンにおける任意の上記領域の階調は、他の色成分のパターンにおける上記任意の領域の階調と互いに異なり、これによって上記任意の領域が上記投影パターンの中のどの領域であるかの対応が特定できるように、上記投影パターンが符号化されている、
    ことを特徴とする請求項8に記載の3次元情報取得装置。
  13. 上記複数の色成分は、R,G,Bの3成分であることを特徴とする請求項8に記載の3次元情報取得装置。
  14. 上記パターン構造推定手段は、上記撮影されたパターンの色により上記撮影されたパターンの構造を推定する第1の推定方法と、全ての色成分でない一つ以上の色成分の階調により上記撮影されたパターンの構造を推定する第2の推定方法とを選択的に実行し、
    上記奥行き算出手段は、上記第1または第2の推定方法による推定結果を利用して上記撮影対象の奥行き値を算出することを特徴とする請求項8に記載の3次元情報取得装置。
  15. 撮影手段から所定の距離離れた位置から複数の色成分のパターンが重畳された所定の投影パターンが投影された撮影対象を上記撮影手段で撮影し、上記撮影手段で撮影された画像を解析することにより、上記撮影対象の3次元情報を取得する3次元情報取得装置であって、
    上記投影パターンが投影された上記撮影対象を撮影した画像を記憶する画像記憶手段と、
    上記撮影対象に投影される上記投影パターンを予め記憶するパターン記憶手段と、
    上記画像中に含まれるパターンの色により撮影されたパターンの構造を推定する第1の推定方法と、全ての色成分でない一つ以上の色成分の階調により上記撮影されたパターンの構造を推定する第2の推定方法とを選択的に実行するパターン構造推定手段と、
    上記パターン構造推定手段での上記第1または第2の推定方法による推定結果と上記パターン記憶手段に記憶された上記投影パターンとの対応関係を特定し、上記対応関係の特定結果を利用して上記撮影対象の奥行き値を算出する奥行き算出手段と、
    を具備することを特徴とする3次元情報取得装置。
  16. 上記投影パターンにおける各色成分のパターンは、隣り合う領域が互いに階調が異なるように複数の領域が配置されたものであることを特徴とする請求項15に記載の3次元情報取得装置。
  17. 上記投影パターンにおける各色成分のパターンは、階調が極大となる領域と極小となる領域を交互に配置されたものであることを特徴とする特徴とする請求項15に記載の3次元情報取得装置。
  18. 上記階調が極小となる領域は、最低階調レベルであることを特徴とする請求項17に記載の3次元情報取得装置。
  19. 上記投影パターンは、異なる有彩色に着色された複数の領域を含み、
    上記投影パターン中の有彩色の領域は、上記各色成分のパターンの所定の階調を有する領域の組み合わせで構成されたものであると共に、一つの色成分のパターンにおける任意の上記領域の階調は、他の色成分のパターンにおける上記任意の領域の階調と互いに異なり、これによって上記任意の領域が上記投影パターンの中のどの領域であるかの対応が特定できるように、上記投影パターンが符号化されている、
    ことを特徴とする請求項15に記載の3次元情報取得装置。
  20. 上記複数の色成分は、R,G,Bの3成分であることを特徴とする請求項15に記載の3次元情報取得装置。
  21. 撮影対象を撮影した画像を解析して上記撮影対象の3次元情報を取得するに際して、上記撮影対象に投影される投影パターンであって、
    複数の色成分のパターンが重畳されたものであり、
    異なる有彩色に着色された複数の領域を含み、
    上記有彩色の領域は、上記各色成分のパターンの所定の階調を有する領域の組み合わせで構成されたものであると共に、一つの色成分のパターンにおける任意の上記領域の階調は、他の色成分のパターンにおける上記任意の領域の階調と互いに異なり、これによって上記任意の領域が上記投影パターンの中のどの領域であるかの対応が特定できるように、上記投影パターンが符号化されている、
    ことを特徴とする3次元情報取得における投影パターン。
  22. 上記各色成分のパターンは、隣り合う領域が互いに階調が異なるように複数の領域が配置されたものであることを特徴とする請求項21に記載の3次元情報取得における投影パターン。
  23. 上記各色成分のパターンは、階調が極大となる領域と極小となる領域を交互に配置されたものであることを特徴とする請求項21に記載の3次元情報取得における投影パターン。
  24. 上記階調が極小となる領域は、最低階調レベルであることを特徴とする請求項21に記載の3次元情報取得における投影パターン。
  25. 上記複数の色成分は、R,G,Bの3成分であることを特徴とする請求項21に記載の3次元情報取得における投影パターン。
  26. 撮影手段から所定の距離離れた位置から複数の色成分のパターンが重畳された所定の投影パターンが投影された撮影対象を上記撮影手段で撮影し、上記撮影手段で撮影された画像を解析することにより、上記撮影対象の3次元情報を取得する3次元情報取得方法であって、
    光源からの光によって照明された上記撮影対象を撮影することで第1の画像を得、
    上記光源を消灯あるいは遮光して上記光源からの光による照明を行なわずに上記撮影対象を撮影することで第2の画像を得、
    上記光源からの光または上記光源と同じ特性を有する他の光源からの光を利用して上記投影パターンが投影された上記撮影対象を撮影することで第3の画像を得、
    これら第1、第2及び第3の画像を利用して上記撮影対象の表面反射率および外光の影響を補正し、上記補正を行なって得られたパターン各部の色または階調に基づいて撮影されたパターンの構造を推定し、
    上記推定の結果と上記投影した所定の投影パターンとの対応関係を特定し、
    上記対応関係の特定結果に基づいて上記撮影対象の奥行き値を算出する、
    ことを特徴とする3次元情報取得方法。
  27. 撮影手段から所定の距離離れた位置から複数の色成分のパターンが重畳された所定の投影パターンが投影された撮影対象を上記撮影手段で撮影し、上記撮影手段で撮影された画像を解析することにより、上記撮影対象の3次元情報を取得する3次元情報取得方法であって、
    光源からの光によって照明された上記撮影対象を撮影することで第1の画像を得、
    上記光源からの光または上記光源と同じ特性を有する他の光源からの光を利用して上記投影パターンが投影された上記撮影対象を撮影することで第2の画像を得、
    これら第1及び第2の画像を利用して上記撮影対象の表面反射率の影響を補正し、上記補正を行なって得られたパターン各部の色または階調に基づいて撮影されたパターンの構造を推定し、
    上記推定の結果と上記投影した所定の投影パターンとの対応関係を特定し、
    上記対応関係の特定結果を利用して上記撮影対象の奥行き値を算出する、
    ことを特徴とする3次元情報取得方法。
  28. 撮影手段から所定の距離離れた位置から複数の色成分のパターンが重畳された所定の投影パターンが投影された撮影対象を上記撮影手段で撮影し、上記撮影手段で撮影された画像を解析することにより、上記撮影対象の3次元情報を取得する3次元情報取得方法であって、
    上記投影パターンが投影された上記撮影対象を撮影することで画像を得、
    この画像中に含まれるパターンの色により撮影されたパターン構造を推定する第1の推定方法と、全ての色成分でない一つ以上の色成分の階調により上記撮影されたパターンの構造を推定する第2の推定方法とを選択的に実行し、
    上記第1または第2の推定方法による推定結果と上記投影した所定の投影パターンとの対応関係を特定し、
    上記対応関係の特定結果を利用して上記撮影対象の奥行き値を算出する、
    ことを特徴とする3次元情報取得方法。
JP2002128905A 2001-06-26 2002-04-30 3次元情報取得装置、3次元情報取得における投影パターン、及び、3次元情報取得方法 Expired - Fee Related JP3884321B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002128905A JP3884321B2 (ja) 2001-06-26 2002-04-30 3次元情報取得装置、3次元情報取得における投影パターン、及び、3次元情報取得方法
US10/179,494 US7092563B2 (en) 2001-06-26 2002-06-24 Three-dimensional information acquisition apparatus and three-dimensional information acquisition method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001193555 2001-06-26
JP2001-193555 2001-06-26
JP2002128905A JP3884321B2 (ja) 2001-06-26 2002-04-30 3次元情報取得装置、3次元情報取得における投影パターン、及び、3次元情報取得方法

Publications (2)

Publication Number Publication Date
JP2003083730A JP2003083730A (ja) 2003-03-19
JP3884321B2 true JP3884321B2 (ja) 2007-02-21

Family

ID=26617592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002128905A Expired - Fee Related JP3884321B2 (ja) 2001-06-26 2002-04-30 3次元情報取得装置、3次元情報取得における投影パターン、及び、3次元情報取得方法

Country Status (2)

Country Link
US (1) US7092563B2 (ja)
JP (1) JP3884321B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9560250B2 (en) 2013-06-26 2017-01-31 Canon Kabushiki Kaisha Information processing apparatus, measurement system, control system, light amount determination method and storage medium
US9714829B2 (en) 2013-06-26 2017-07-25 Canon Kabushiki Kaisha Information processing apparatus, assembly apparatus, information processing method, and storage medium that generate a measurement pattern having different amounts of irradiation light depending on imaging regions
US10121246B2 (en) 2015-03-04 2018-11-06 Canon Kabushiki Kaisha Measurement apparatus that obtains information of a shape of a surface using a corrected image and measurement method

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3884321B2 (ja) * 2001-06-26 2007-02-21 オリンパス株式会社 3次元情報取得装置、3次元情報取得における投影パターン、及び、3次元情報取得方法
US6709116B1 (en) * 2003-03-21 2004-03-23 Mitsubishi Electric Research Laboratories, Inc. Shape-adaptive projector system
US8224064B1 (en) * 2003-05-21 2012-07-17 University Of Kentucky Research Foundation, Inc. System and method for 3D imaging using structured light illumination
TWI257072B (en) * 2003-06-20 2006-06-21 Ind Tech Res Inst 3D color information acquisition method and device thereof
WO2005008174A1 (ja) * 2003-07-23 2005-01-27 Brother Kogyo Kabushiki Kaisha 3次元形状検出装置、撮像装置、及び、3次元形状検出方法
US7929752B2 (en) * 2003-10-31 2011-04-19 Nano Picture Co., Ltd. Method for generating structured-light pattern
JP2006058092A (ja) * 2004-08-18 2006-03-02 Fuji Xerox Co Ltd 3次元形状測定装置および方法
JP4577126B2 (ja) * 2005-07-08 2010-11-10 オムロン株式会社 ステレオ対応づけのための投光パターンの生成装置及び生成方法
JP4923500B2 (ja) 2005-09-29 2012-04-25 カシオ計算機株式会社 プロジェクタ装置、及びその光源制御方法
US7551807B2 (en) * 2005-11-14 2009-06-23 Korea Institute Of Industrial Technology Apparatus and method for searching for 3-dimensional shapes
US7970177B2 (en) * 2006-03-23 2011-06-28 Tyzx, Inc. Enhancing stereo depth measurements with projected texture
WO2007142643A1 (en) * 2006-06-08 2007-12-13 Thomson Licensing Two pass approach to three dimensional reconstruction
JP2008070611A (ja) * 2006-09-14 2008-03-27 Casio Comput Co Ltd 撮像装置、露出条件調整方法及びプログラム
WO2008036092A1 (en) 2006-09-21 2008-03-27 Thomson Licensing A method and system for three-dimensional model acquisition
US8265343B2 (en) * 2006-12-25 2012-09-11 Nec Corporation Apparatus, method and program for distance measurement
JP4986679B2 (ja) * 2007-03-29 2012-07-25 学校法人福岡工業大学 非静止物体の三次元画像計測装置、三次元画像計測方法および三次元画像計測プログラム
US8659698B2 (en) 2007-05-17 2014-02-25 Ilya Blayvas Compact 3D scanner with fixed pattern projector and dual band image sensor
FI20075975L (fi) * 2007-12-31 2009-07-01 Metso Automation Oy Rainan mittaus
JP5163163B2 (ja) * 2008-02-04 2013-03-13 株式会社ニコン 3次元形状測定装置および3次元形状測定方法
US8150105B2 (en) * 2008-05-22 2012-04-03 International Electronic Machines Corporation Inspection using three-dimensional profile information
US8274507B2 (en) * 2009-07-02 2012-09-25 Robert Bosch Gmbh Method and apparatus for obtaining 3-dimensional data with a portable device
JP5449899B2 (ja) * 2009-07-22 2014-03-19 本田技研工業株式会社 撮像システム
US8908958B2 (en) * 2009-09-03 2014-12-09 Ron Kimmel Devices and methods of generating three dimensional (3D) colored models
CA2771727C (en) 2009-11-04 2013-01-08 Technologies Numetrix Inc. Device and method for obtaining three-dimensional object surface data
WO2011071929A2 (en) * 2009-12-07 2011-06-16 Photon-X, Inc. 3d visualization system
US9179106B2 (en) * 2009-12-28 2015-11-03 Canon Kabushiki Kaisha Measurement system, image correction method, and computer program
KR101628383B1 (ko) * 2010-02-26 2016-06-21 연세대학교 산학협력단 영상 처리 장치 및 방법
CN101840575B (zh) * 2010-04-30 2012-01-11 长春理工大学 一种将De Bruijn彩色结构光图像转化为赋权有向图模型和赋权有向图模型简化方法
DE102010022827A1 (de) * 2010-06-05 2011-12-08 TSK Prüfsysteme GmbH Höhenvermessungs-Vorrichtung zur Höhenvermessung einer Kraftfahrzeug-Zentralelektrik
JP5587137B2 (ja) * 2010-10-29 2014-09-10 キヤノン株式会社 測定装置及び測定方法
JP5587756B2 (ja) * 2010-12-10 2014-09-10 日立マクセル株式会社 光学式距離計測装置、光学式距離計測装置の距離計測方法および距離計測用プログラム
JP5132832B1 (ja) * 2011-07-11 2013-01-30 キヤノン株式会社 計測装置および情報処理装置
US9325966B2 (en) * 2012-07-30 2016-04-26 Canon Kabushiki Kaisha Depth measurement using multispectral binary coded projection and multispectral image capture
US8970827B2 (en) * 2012-09-24 2015-03-03 Alces Technology, Inc. Structured light and time of flight depth capture with a MEMS ribbon linear array spatial light modulator
KR101314101B1 (ko) * 2012-09-24 2013-10-04 위프코 주식회사 3차원 계측 시스템 및 그 방법
US20150009290A1 (en) * 2013-07-05 2015-01-08 Peter MANKOWSKI Compact light module for structured-light 3d scanning
JP6201783B2 (ja) * 2014-01-22 2017-09-27 富士通株式会社 距離測定装置、距離測定方法および距離測定プログラム
DE202014100974U1 (de) * 2014-03-04 2015-06-08 Retsch Technology Gmbh Vorrichtung zur Bestimmung der Partikelgröße und/oder der Partikelform eines Partikelgemisches
US9325973B1 (en) * 2014-07-08 2016-04-26 Aquifi, Inc. Dynamically reconfigurable optical pattern generator module useable with a system to rapidly reconstruct three-dimensional data
US9729809B2 (en) * 2014-07-11 2017-08-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of semiconductor device or electronic device
US9778476B2 (en) 2014-11-03 2017-10-03 Aquifi, Inc. 3D depth sensor and projection system and methods of operating thereof
US9881235B1 (en) * 2014-11-21 2018-01-30 Mahmoud Narimanzadeh System, apparatus, and method for determining physical dimensions in digital images
FR3030066B1 (fr) * 2014-12-16 2017-12-22 Commissariat Energie Atomique Projecteur de lumiere structuree et scanner tridimensionnel comportant un tel projecteur
US10186034B2 (en) * 2015-01-20 2019-01-22 Ricoh Company, Ltd. Image processing apparatus, system, image processing method, calibration method, and computer-readable recording medium
JP6552230B2 (ja) * 2015-03-18 2019-07-31 キヤノン株式会社 計測装置
JP2017003331A (ja) * 2015-06-05 2017-01-05 キヤノン株式会社 被計測物の形状を計測する計測装置、算出装置、算出方法及びプログラム
CN105300319B (zh) * 2015-11-20 2017-11-07 华南理工大学 一种基于彩色光栅的快速三维立体重建方法
US9800795B2 (en) * 2015-12-21 2017-10-24 Intel Corporation Auto range control for active illumination depth camera
WO2018200685A2 (en) 2017-04-27 2018-11-01 Ecosense Lighting Inc. Methods and systems for an automated design, fulfillment, deployment and operation platform for lighting installations
JP7005175B2 (ja) * 2017-05-30 2022-01-21 キヤノン株式会社 距離測定装置、距離測定方法及び撮像装置
JP6969164B2 (ja) * 2017-05-31 2021-11-24 株式会社リコー 評価装置、評価プログラム及び評価方法
CN107516324B (zh) * 2017-07-20 2019-12-17 大连理工大学 一种基于光条几何特征突变的目标边界提取方法
JP6897389B2 (ja) * 2017-07-25 2021-06-30 富士通株式会社 判別用コンピュータプログラム、判別装置及び判別方法ならびに通信システム
US10559211B2 (en) 2017-11-27 2020-02-11 Uber Technologies, Inc. Real-time service provider progress monitoring
US10733473B2 (en) * 2018-09-20 2020-08-04 Uber Technologies Inc. Object verification for a network-based service
US10999299B2 (en) * 2018-10-09 2021-05-04 Uber Technologies, Inc. Location-spoofing detection system for a network service
US11089279B2 (en) * 2018-12-06 2021-08-10 Htc Corporation 3D image processing method, camera device, and non-transitory computer readable storage medium
CN114080535A (zh) * 2019-06-28 2022-02-22 佳能株式会社 测量设备、摄像设备、测量系统、控制方法以及程序
CN113985425A (zh) * 2020-07-10 2022-01-28 广州印芯半导体技术有限公司 测距装置以及测距方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687326A (en) * 1985-11-12 1987-08-18 General Electric Company Integrated range and luminance camera
DE4130237A1 (de) * 1991-09-11 1993-03-18 Zeiss Carl Fa Verfahren und vorrichtung zur dreidimensionalen optischen vermessung von objektoberflaechen
JP3347385B2 (ja) * 1992-03-27 2002-11-20 オリンパス光学工業株式会社 内視鏡画像処理装置
US6445814B2 (en) * 1996-07-01 2002-09-03 Canon Kabushiki Kaisha Three-dimensional information processing apparatus and method
US6438272B1 (en) * 1997-12-31 2002-08-20 The Research Foundation Of State University Of Ny Method and apparatus for three dimensional surface contouring using a digital video projection system
US6064423A (en) * 1998-02-12 2000-05-16 Geng; Zheng Jason Method and apparatus for high resolution three dimensional display
US6078307A (en) * 1998-03-12 2000-06-20 Sharp Laboratories Of America, Inc. Method for increasing luminance resolution of color panel display systems
JP2000292134A (ja) * 1999-04-07 2000-10-20 Minolta Co Ltd 3次元情報入力カメラ
CA2267519A1 (en) * 1999-04-13 2000-10-13 Inspeck Inc. Optical full human body 3d digitizer
JP3417377B2 (ja) * 1999-04-30 2003-06-16 日本電気株式会社 三次元形状計測方法及び装置並びに記録媒体
DE19928341C2 (de) * 1999-06-21 2002-06-20 Inb Vision Ag Verfahren zur dreidimensionalen optischen Vermessung von Objektoberflächen
US6341016B1 (en) * 1999-08-06 2002-01-22 Michael Malione Method and apparatus for measuring three-dimensional shape of object
JP2001159510A (ja) * 1999-12-01 2001-06-12 Matsushita Electric Ind Co Ltd 三次元形状計測方法及びその装置
US6937348B2 (en) * 2000-01-28 2005-08-30 Genex Technologies, Inc. Method and apparatus for generating structural pattern illumination
US6700669B1 (en) * 2000-01-28 2004-03-02 Zheng J. Geng Method and system for three-dimensional imaging using light pattern having multiple sub-patterns
EP1126412B1 (en) * 2000-02-16 2013-01-30 FUJIFILM Corporation Image capturing apparatus and distance measuring method
JP4040825B2 (ja) * 2000-06-12 2008-01-30 富士フイルム株式会社 画像撮像装置及び距離測定方法
US6509559B1 (en) * 2000-06-20 2003-01-21 Ppt Vision, Inc. Binary optical grating and method for generating a moire pattern for 3D imaging
US6668078B1 (en) * 2000-09-29 2003-12-23 International Business Machines Corporation System and method for segmentation of images of objects that are occluded by a semi-transparent material
US6618123B2 (en) * 2000-10-20 2003-09-09 Matsushita Electric Industrial Co., Ltd. Range-finder, three-dimensional measuring method and light source apparatus
US6573912B1 (en) * 2000-11-07 2003-06-03 Zaxel Systems, Inc. Internet system for virtual telepresence
JP2002191058A (ja) * 2000-12-20 2002-07-05 Olympus Optical Co Ltd 3次元画像取得装置および3次元画像取得方法
WO2002075245A1 (en) * 2001-03-13 2002-09-26 Solutionix Co., Ltd. Apparatus and method for measuring three dimensional shape with multi-stripe patterns
JP3519698B2 (ja) * 2001-04-20 2004-04-19 照明 與語 3次元形状測定方法
JP3884321B2 (ja) * 2001-06-26 2007-02-21 オリンパス株式会社 3次元情報取得装置、3次元情報取得における投影パターン、及び、3次元情報取得方法
JP2003042735A (ja) * 2001-08-01 2003-02-13 Minolta Co Ltd 3次元計測方法および装置並びにコンピュータプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9560250B2 (en) 2013-06-26 2017-01-31 Canon Kabushiki Kaisha Information processing apparatus, measurement system, control system, light amount determination method and storage medium
US9714829B2 (en) 2013-06-26 2017-07-25 Canon Kabushiki Kaisha Information processing apparatus, assembly apparatus, information processing method, and storage medium that generate a measurement pattern having different amounts of irradiation light depending on imaging regions
US10121246B2 (en) 2015-03-04 2018-11-06 Canon Kabushiki Kaisha Measurement apparatus that obtains information of a shape of a surface using a corrected image and measurement method

Also Published As

Publication number Publication date
US7092563B2 (en) 2006-08-15
JP2003083730A (ja) 2003-03-19
US20020196415A1 (en) 2002-12-26

Similar Documents

Publication Publication Date Title
JP3884321B2 (ja) 3次元情報取得装置、3次元情報取得における投影パターン、及び、3次元情報取得方法
CN105049829B (zh) 滤光片、图像传感器、成像装置以及三维成像系统
CN107607040B (zh) 一种适用于强反射表面的三维扫描测量装置及方法
CN108052878B (zh) 人脸识别设备和方法
US8199335B2 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium
US9007602B2 (en) Three-dimensional measurement apparatus, three-dimensional measurement method, and computer-readable medium storing control program
US20190156557A1 (en) 3d geometric modeling and 3d video content creation
US6341016B1 (en) Method and apparatus for measuring three-dimensional shape of object
TW385360B (en) 3D imaging system
US7995097B2 (en) Techniques of motion estimation when acquiring an image of a scene that may be illuminated with a time varying luminance
US20080118143A1 (en) 3D Geometric Modeling And Motion Capture Using Both Single And Dual Imaging
CN107451561A (zh) 虹膜识别补光方法和装置
JP3482990B2 (ja) 3次元画像撮影装置
WO2000070303A1 (en) Color structured light 3d-imaging system
JP2004212385A (ja) 撮影装置とその撮影装置の撮影方法及び制御方法
JP4778156B2 (ja) 距離情報取得装置又はシステム、パターン投影装置、及び、距離情報取得方法
CN108592886B (zh) 图像采集设备和图像采集方法
CN110231018B (zh) 一种结构光测距方法、装置及计算机可读存储介质
CN107483815A (zh) 运动物体的拍摄方法和装置
KR101407818B1 (ko) 텍스쳐 영상과 깊이 영상을 추출하는 장치 및 방법
CN208536839U (zh) 图像采集设备
JP5743433B2 (ja) 三次元形状計測装置
JP3729035B2 (ja) 3次元画像撮像装置および3次元画像撮像方法
JP4556555B2 (ja) 三次元画像取得装置および方法
KR101346982B1 (ko) 텍스쳐 영상과 깊이 영상을 추출하는 장치 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees