JP3883247B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP3883247B2
JP3883247B2 JP06834197A JP6834197A JP3883247B2 JP 3883247 B2 JP3883247 B2 JP 3883247B2 JP 06834197 A JP06834197 A JP 06834197A JP 6834197 A JP6834197 A JP 6834197A JP 3883247 B2 JP3883247 B2 JP 3883247B2
Authority
JP
Japan
Prior art keywords
etching
pattern
contact hole
frequency power
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06834197A
Other languages
English (en)
Other versions
JPH10270416A (ja
Inventor
智幸 佐々木
俊介 久呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP06834197A priority Critical patent/JP3883247B2/ja
Publication of JPH10270416A publication Critical patent/JPH10270416A/ja
Application granted granted Critical
Publication of JP3883247B2 publication Critical patent/JP3883247B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年、半導体装置の高集積化、高密度がますます進んできており、その中で、エッチング工程の加工精度に対する要求も微細化と共に厳しくなってきている。特にゲート電極の加工寸法は、MOSトランジスタの特性に直接影響を与えるだけでなく、半導体集積回路装置全体の特性をも大きく支配するものである。マイクロプロセッサーやメモリーをはじめとするこうした半導体集積回路装置においては、その表面上の広い領域に孤立して配置されるゲート電極(疎なパターン)と、同一幅の多くのゲート電極が微小間隔で配列されるパターン(密なパターン)とが同一半導体基板上に形成されるのが一般的である。従って、このような半導体集積回路装置を製造する場合には、疎なパターンと密なパターンとを、同時に精度良く加工する必要がある。
【0003】
また、半導体集積回路においては、集積度を向上させるためにますます多層配線化が進んでいる。このため、シリコン基板と配線との間に形成されるコンタクトホールや、配線と配線とを結ぶために形成されるコンタクトホールの加工精度もますます厳しくなってきている。半導体集積回路においては、大口径のコンタクトホールと小口径のコンタクトホールとが同一半導体基板上に共存しているのが一般的である。絶縁膜に両者を開口するときのエッチング速度が異なる場合には、エッチング速度が遅い方のコンタクトホールにエッチング時間を揃える必要があるため、エッチング速度の速い方は下地に対してオーバーエッチングがかかり過ぎる。そして、絶縁膜と下地の膜とのエッチング速度選択比が十分でない場合には、オーバーエッチングがかかり過ぎた方のコンタクトホールが下地の膜を突き破るといった問題が生じてしまう。このため、ゲート電極の加工と同様に、大口径のコンタクトホールと小口径のコンタクトホールをできる限り近いエッチング速度で加工することが求められている。
【0004】
以下に、ゲート電極パターンの配置に疎密がある場合に適用される従来のエッチング方法について説明する。図12は従来のゲート電極パターンのエッチング方法を説明するための半導体装置の製造工程の一部を示す断面図である。図12に示すように、まず、シリコン基板121の主面上に、ゲート酸化膜として熱酸化膜122を形成する。次いで、熱酸化膜122の上に、ゲート電極としてポリシリコン膜123を形成する。次いで、ポリシリコン膜123の上に、孤立したホトレジストパターン124と密なホトレジストパターン(ラインアンドスペースパターン)125を形成する。次いで、図12(b)に示すように、RIE(反応性イオンエッチング)装置により、塩素系ガス及びO2 ガスの混合ガスを用いてドライエッチングを行い、ポリシリコン膜123のパターン(孤立したポリシリコン膜126、密なポリシリコン膜127)を形成する。この場合、例えば図13に示すようなRIE型のエッチング装置が用いられる。
【0005】
図13に示すように、チャンバー131の底板の上には下部電極132が設けられており、この下部電極132は高周波電源135に接続されている。この場合、下部電極132はウエハー(半導体基板)を配置するための固定台としても用いられる。チャンバー131の天板は上部電極134となっており、この上部電極134は接地されている。以上のように構成されたエッチング装置の下部電極132の上に、被エッチング膜が形成されたシリコン基板133を配置し、下部電極132に高周波電力を印加する。そして、下部電極132に印加する高周波電力を制御することにより、エッチング速度、選択比、エッチング形状、寸法シフト量等のすべてが同時に制御される。
【0006】
【発明が解決しようとする課題】
しかし、上記のような従来の半導体装置の製造方法において、例えば高周波電力:400W、ガス圧:150mTorr、Cl2 ガスの流量:60sccm、O2 ガスの流量:2sccmでエッチングを行い、終点検出後に、エッチング残渣防止のために30%のオーバーエッチを行ったところ、孤立したホトレジストパターン124でマスクされたポリシリコン膜126の寸法シフト量は+0.08μmであるのに対し、密なホトレジストパターン(ラインアンドスペースパターン)125でマスクされたポリシリコン膜127の寸法シフト量は+0.01μmであった。ここで、寸法シフト量とは、『リソグラフィー仕上がり寸法』から『エッチング後の寸法』を差し引いた量のことである。このように、従来の半導体装置の製造方法においては、ホトレジストパターン124及び125の寸法が同一であっても、孤立したポリシリコン膜126の方が密なポリシリコン膜127よりもかなり太く仕上がり、MOSトランジスタの特性がゲート電極パターン上の配列によって異なってしまうという問題があった。
【0007】
また、エッチング速度についても、孤立したホトレジストパターン124でマスクされたポリシリコン膜126のエッチング速度は200nm/分であるのに対し、密なホトレジストパターン(ラインアンドスペースパターン)125でマスクされたポリシリコン膜127の寸法シフト量は150nm/分であった。エッチング時間は、常にエッチング速度の遅い密なホトレジストパターン(ラインアンドスペースパターン)125でマスクされたポリシリコン膜127に合わせるため、孤立したホトレジストパターン124でマスクされたポリシリコン膜126に対してオーバーエッチが20%以上多くかかるという問題もあった。
【0008】
RIE型のエッチング装置においては、下部電極132に高周波電力を印加することにより、寸法シフト量、エッチング速度、選択比、エッチング形状等のすべてが同時に制御されるため、これらをある程度独立して制御することによって上記のような複数の問題を個別に解決することはできない。
【0009】
本発明は、従来技術における前記課題を解決するためになされたものであり、孤立パターンと密なラインアンドスペースパターンなどセパレーション幅の異なる場合や、大口径と小口径のコンタクトホールなど寸法の異なる場合のエッチングにおいて、仕上がり寸法及びエッチング速度を制御することの可能な半導体装置の製造方法を提供することを目的とする。
【0010】
【問題点を解決するための手段】
前記目的を達成するため、本発明に係る半導体装置の製造方法は、ホトレジストのパターンをその上に有するシリコン酸化膜が形成された半導体基板をチャンバー内に配置し、前記チャンバー内にエッチングガスを流した状態で、高周波電力を少なくとも2箇所から前記チャンバー内に供給することによりプラズマ化した前記エッチングガスを用いて、前記シリコン酸化膜に大口径及び小口径のコンタクトホールをエッチング形成する工程を備えた半導体装置の製造方法であって、前記少なくとも2箇所から供給した高周波電力の1つを前記半導体基板を配置する台に供給すると共にその高周波電力を変化させることにより、前記プラズマ中の自己バイアス電圧を変化させて、前記大口径及び小口径のコンタクトホールの底面に向かう方向のエッチング速度の差が小さくなるように前記高周波電力の出力比を制御して1つに設定し、前記設定した出力比を用いて前記ホトレジストをマスクとして前記シリコン酸化膜に大口径及び小口径のコンタクトホールをエッチング形成することを特徴とする。この半導体装置の製造方法によれば、大口径のコンタクトホールパターンのエッチング速度と小口径のコンタクトホールパターンのエッチング速度との差を、小さくすることができる。その結果、良好な状態で口径の異なるコンタクトホールパターンを同時に形成することができる。
【0011】
また、前記本発明の半導体装置の第1の製造方法においては、誘導結合型エッチング装置、ECR(Electron cyclotron resonance)型エッチング装置、ヘリコン型エッチング装置及びトライオード型エッチング装置のうちの1つを用いて、高周波電力をチャンバー内に供給するのが好ましい。
【0016】
【発明の実施の形態】
以下、実施の形態を用いて本発明をさらに具体的に説明する。
〈第1の実施の形態〉
図1は本発明の第1の実施の形態における半導体装置の製造方法の一部を示す工程断面図である。
【0017】
図1(a)に示すように、まず、シリコン基板11を酸素又は水蒸気の雰囲気中で高温(1000℃程度)で熱処理することにより、その主面上にゲート酸化膜として膜厚9nmの熱酸化膜12を形成する。次いで、熱酸化膜12の上に、減圧CVD法によりゲート電極として膜厚250nmのポリシリコン膜13を形成する。ここで、ポリシリコン膜13のP濃度は7×1020cm-3である。次いで、ポリシリコン膜13の上に膜厚1.0μmのホトレジストを塗布し、リソグラフィーによって孤立パターンのホトレジスト膜14と密な(ラインアンドスペース)パターンのホトレジスト膜15とを形成する。この場合、パターン寸法は0.4μmであり、密な(ラインアンドスペース)パターンのライン幅とスペース幅との比は1:1である。
【0018】
次に、図1(b)に示すように、ポリシリコン膜13に対して、孤立パターンのホトレジスト膜14と密な(ラインアンドスペース)パターンのホトレジスト膜15とをマスクとしてCl2 ガス及びO2 ガスを用いたドライエッチングを施すことにより、ポリシリコン膜13のパターン形成を行う。これにより、孤立パターンのポリシリコン膜16と密な(ラインアンドスペース)パターンのポリシリコン膜17とが形成される。
【0019】
図2に、このとき用いられる『誘導結合型』のエッチング装置の断面構造を示す。図2に示すように、チャンバー21の底板の上には下部電極22が設けられており、この下部電極22には高周波電源26が接続されている。この場合、下部電極22はウエハー(半導体基板)23を配置するための固定台としても用いられる。チャンバー21の天板24の上には、スパイラル状のアンテナ25が設けられており、このスパイラル状アンテナ25の一端は接地され、他端には高周波電源27が接続されている。エッチングを行う場合、スパイラル状アンテナ25にはソースパワーとして13.56MHzの高周波電力が供給され、下部電極22にはバイアスパワーとして13.56MHzの高周波電力が供給される。そして、ソースパワーとバイアスパワーとの比を変化させることにより、最適なエッチング条件が設定される。
【0020】
Cl2 ガスの流量を60sccm、O2 ガスの流量を2sccm、ガス圧を10mTorrとし、プラズマの発光によって終点を検出した後、エッチング残渣防止のために30%のオーバーエッチングを行うという条件で、エッチングの実験を行った。その結果を図3、図4に示す。図3に示すように、ソースパワーを一定値(300W)に保持した状態で、バイアスパワーを下げると、エッチング速度が減少するが、孤立パターンのポリシリコン膜16のエッチング速度の減少の方が、密な(ラインアンドスペース)パターンのポリシリコン膜17のエッチング速度の減少よりも大きく、両者のエッチング速度は互いに近づく。また、図4に示すように、バイアスパワーを下げると、孤立パターンのポリシリコン膜16のパターン寸法も、密な(ラインアンドスペース)パターンのポリシリコン膜17のパターン寸法も小さくなり、両者共に細くなる。この場合、孤立パターンのポリシリコン膜16の寸法シフトの変化量の方が、密な(ラインアンドスペース)パターンのポリシリコン膜17の寸法シフトの変化量より大きく、両者のパターン寸法シフト量は互いに近づいていく。このように、ソースパワーが一定のとき、エッチング速度の差及び寸法シフト量の差がバイアスパワーに依存するため、孤立パターンのポリシリコン膜16と密な(ラインアンドスペース)パターンのポリシリコン膜17のエッチング速度の差及び寸法シフト量の差を、バイアスパワーを制御することによって小さくすることができる。その結果、孤立パターンのポリシリコン膜16と密な(ラインアンドスペース)パターンのポリシリコン膜17のようなセパレーション幅の異なるパターンを良好な状態で同時に形成することができる。
【0021】
図3あるいは図4に示された特性に対応する現象は、次のように説明される。図5に示すように、バイアスパワーを上げると、高周波電力によるエッチングガスのプラズマ中で生じる自己バイアス電圧が上昇する。このとき、図3に示すように、孤立パターンのポリシリコン膜16のエッチング速度も、密な(ラインアンドスペース)パターンのポリシリコン膜17のエッチング速度も増加し、その結果、反応生成物であるSiClx (x:1〜4の定数)の生成量が多くなる。SiClx は堆積性のガスであるため、生成量が多くなるほどポリシリコン膜16及び17の側壁に堆積物として付着し、エッチング後のパターン寸法が大きくなる。このように、バイアスパワーを上昇させると、孤立パターンのポリシリコン膜16も、密な(ラインアンドスペース)パターンのポリシリコン膜17もエッチング後のパターン寸法が大きくなると考えられる。
【0022】
しかし、バイアスパワーの上昇に伴ってプラズマ中の自己バイアス電圧が上昇するため、密な(ラインアンドスペース)パターンのホトレジスト15はますます正にチャージアップしていく。このため、バイアスパワーを上げても、塩素イオンはこのチャージアップした密な(ラインアンドスペース)パターンのホトレジスト15に捕獲され、密な(ラインアンドスペース)パターンのポリシリコン膜17まで達しにくくなる。従って、密な(ラインアンドスペース)パターンのポリシリコン膜17のエッチング速度の上昇は、孤立パターンのポリシリコン膜16のエッチング速度の上昇に比べて小さくなる。このとき、孤立パターンのポリシリコン膜16の方が、密な(ラインアンドスペース)パターンのポリシリコン膜17よりもエッチング速度が速くなるため、反応生成物であるSiClx (x:1〜4の定数)の生成量が多くなり、孤立パターンのポリシリコン膜16の側壁に堆積するため、エッチング後のパターン寸法が大きくなる。
【0023】
〈第2の実施の形態〉
図6は本発明の第2の実施の形態における半導体装置の製造方法の一部を示す工程断面図である。
【0024】
図6(a)に示すように、まず、シリコン基板61の主面上に、常圧CVD法により層間絶縁膜として膜厚1000nmのBPSGシリコン酸化膜62を形成する。次いで、BPSGシリコン酸化膜62の上に膜厚1.0μmのホトレジストを塗布し、リソグラフィーによって2.0μm径のコンタクトホールレジストパターン63と0.4μm径のコンタクトホールレジストパターン64とを形成する。
【0025】
次に、BPSGシリコン酸化膜62に対して、コンタクトホールレジストパターン63、64を形成した後のホトレジストをマスクとしてC2 6 ガスを用いたドライエッチングを施すことにより、BPSGシリコン酸化膜62に2.0μm径のコンタクトホールBPSGパターン65と0.4μm径のコンタクトホールBPSGパターン66とを形成する(図6(b)又は(C))。
【0026】
図7に、このとき用いられる誘導結合型のエッチング装置の断面構造を示す。図7に示すように、チャンバー71の底板の上には下部電極72が設けられており、この下部電極72には高周波電源76に接続されている。この場合、下部電極72はウエハー(半導体基板)73を配置するための固定台としても用いられる。チャンバー71の天板は上部電極74となっており、この上部電極74は接地されている。チャンバー71の側壁の外周にはコイル状のアンテナ75が設けられており、このコイル状アンテナ75には高周波電源77が接続されている。エッチングを行う場合、コイル状アンテナ75にはソースパワーとして2MHzの高周波電力が印加され、下部電極72にはバイアスパワーとして1.8MHzの高周波電力が印加される。そして、ソースパワーとバイアスパワーとの比を変化させることにより、口径の異なるコンタクトホールのパターン形成に最適なエッチング条件が設定される。
【0027】
2 6 ガスの流量を60sccm、ガス圧を5mTorrとし、2.0μm径のコンタクトホールBPSGパターン65に対して、エッチング時間で30%のオーバーエッチングを行うという条件で、エッチングの実験を行った。その結果を図6(b)、(c)及び図8に示す。
【0028】
ソースパワーが2000W、バイアスパワーが1700Wの場合には、0.4μm径のコンタクトホールBPSGパターン66はボトム(シリコン基板61の上面)まで開口しないのに対し、2.0μm径のコンタクトホールBPSGパターン65はボトムまで完全に開口し、シリコン基板61の表面も一部削られた状態となった(図6(b))。一方、ソースパワーが2000W、バイアスパワーが700Wの場合には、2.0μm径のコンタクトホールBPSGパターン65も、0.4μm径のコンタクトホールBPSGパターン66もボトムまで完全に開口した状態となった(図6(c))。
【0029】
図8に示すように、ソースパワーを一定値(2000W)に保持した状態で、バイアスパワーを下げると、エッチング速度が減少するが、2.0μm径のコンタクトホールBPSGパターン65のエッチング速度の減少の方が、0.4μm径のコンタクトホールBPSGパターン66のエッチング速度の減少よりも大きく、両者のエッチング速度は互いに近づいていく(エッチング速度の差は小さくなる)。このように、ソースパワーが一定のとき、エッチング速度の差がバイアスパワーに依存するため、2.0μm径のコンタクトホールBPSGパターン65のエッチング速度と0.4μm径のコンタクトホールBPSGパターン66のエッチング速度との差を、バイアスパワーを制御することによって小さくすることができる。その結果、図6(a)のように良好な状態で口径の異なるコンタクトホールBPSGパターンを同時に形成することができる。
【0030】
このエッチング速度のバイアスパワー依存性に対応する現象は、次のように説明される。すなわち、バイアスパワーを上げると、高周波電力によるエッチングガスのプラズマ中で生じる自己バイアス電圧が上昇する。このとき、図8に示すように、2.0μm径のコンタクトホールBPSGパターン65のエッチング速度も、0.4μm径のコンタクトホールBPSGパターン66のエッチング速度も増加する。
【0031】
しかし、バイアスパワーの上昇に伴ってプラズマ中の自己バイアス電圧が上昇するため、0.4μm径のコンタクトホールレジストパターン64が形成された部分のホトレジストはますます正にチャージアップしていく。このため、バイアスパワーを上げても、フッ素系イオンはこのチャージアップしたホトレジストに捕獲され、0.4μm径のコンタクトホールBPSGパターン66まで達しにくくなる。一方、2.0μm径のコンタクトホールレジストパターン63は口径が大きいため、チャージアップしてもフッ素系イオンの入射が阻害されることは少ない。従って、バイアスパワーを大きくすると、2.0μm径のコンタクトホールBPSGパターン65のエッチング速度の方が、0.4μm径のコンタクトホールBPSGパターン66のエッチング速度よりも大きくなり、図6(b)のような状態でエッチングされてしまう。
【0032】
尚、上記第1及び第2の実施の形態においては、誘導結合型のエッチング装置を用いた場合を例に挙げて説明したが、必ずしもこの方式のエッチング装置を用いた場合に限定されるものではない。要するに、少なくともソースパワーとバイアスパワーの供給源となる2種の電極を有するものであれば、所期の目的を達成することができる。例えば、ECR(Electron cycrotron resonance)型のエッチング装置(図9)、ヘリコン型のエッチング装置(図10)、トライオード型のエッチング装置(図11)のような2つ以上の高周波電力供給源を有する反応性イオンエッチング装置を用いることができる。以下に、これらのエッチング装置について説明する。
【0033】
まず、図9に示すECR型のエッチング装置について説明する。図9に示すように、チャンバー91の底板の上には下部電極92が設けられており、この下部電極92には高周波電源96に接続されている。この場合、下部電極92はウエハー(半導体基板)93を設置するための固定台としても用いられる。チャンバー91の天板には、ベルジャー97を介して導波管95が接続されており、この導波管95を通してチャンバー91内にマイクロ波が供給される。ベルジャー97の周りとチャンバー91の側壁の周りには、それぞれ磁石94が配置されている。そして、チャンバー91内に供給されたマイクロ波がチャンバー91内の磁場によって共鳴し、これによりプラズマが生成される。エッチングは、このプラズマによって行われる。この場合、下部電極92にも高周波電源96から高周波電力が供給され、この高周波電力を制御することにより、最適なエッチング条件が設定される。
【0034】
次に、図10に示すヘリコン型のエッチング装置について説明する。図10に示すように、チャンバー101の底板の上には下部電極102が設けられており、この下部電極102には高周波電源106に接続されている。この場合、下部電極102はウエハー(半導体基板)103を設置するための固定台としても用いられる。チャンバー101の天板にはベルジャー107が設けられており、このベルジャー107にはアンテナ105が取り付けられている。アンテナ105には、マッチングボックス108を介して高周波電源109が接続されている。ベルジャー107の周りとチャンバー101の側壁の周りには、それぞれ磁石104が配置されている。そして、アンテナ105からチャンバー101内に供給されたヘリコン波がチャンバー101内でランダウ減衰しながら、プラズマが生成される。エッチングは、このプラズマによって行われる。この場合、下部電極102にも高周波電源106から高周波電力が供給され、この高周波電力を制御することにより、最適なエッチング条件が設定される。
【0035】
次に、図11に示すトライオード型のエッチング装置について説明する。図11に示すように、チャンバー111の底板の上には下部電極112が設けられており、この下部電極112には高周波電源116に接続されている。この場合、下部電極112はウエハー(半導体基板)113を設置するための固定台としても用いられる。チャンバー111の天板は上部電極114となっており、この上部電極114は接地されている。チャンバー111の側壁には側壁電極115が設けられており、この側壁電極115には高周波電源117が接続されている。そして、側壁電極115に接続された高周波電源117によってチャンバー111内でプラズマが生成され、このプラズマによってエッチングが行われる。この場合、下部電極112にも高周波電源116から高周波電力が供給され、この高周波電力を制御することにより、最適なエッチング条件が設定される。
【0036】
また、上記第1及び第2の実施の形態においては、ポリシリコン膜とBPSGシリコン酸化膜のエッチング工程を例に挙げて説明したが、必ずしもこれらの膜をエッチングする場合に限定されるものではない。例えば、アルミニウム膜、アルミニウム合金膜、ポリサイド膜、シリサイド膜、シリコン窒化膜、シリコン酸化膜等の他の被エッチング膜の場合にも、上記したエッチング現象の機構を考慮してエッチングすることにより、同様の効果が得られる。
【0037】
また、上記第1及び第2の実施の形態においては、高周波電力を2箇所から供給しているが、必ずしもこの構成に限定されるものではなく、高周波電力を3箇所以上から供給するようにしてもよい。
【0038】
また、上記第1及び第2の実施の形態においては、高周波出力を少なくとも2箇所からチャンバー内に供給し、その出力比を変化させることにより、プラズマ中の自己バイアス電圧を変化させて、被加工膜の加工寸法又は加工速度を制御するようにしているが、必ずしもこの構成に限定されるものではない。プラズマ中の自己バイアス電圧を変化させることのできる構成であれば、例えば、ガス圧力を低圧化させてもよい。
【0039】
【発明の効果】
以上説明したように、本発明によれば、孤立パターンと密な(ラインアンドスペース)パターンのエッチング速度の差及び寸法シフト量の差を、小さくすることができる。その結果、孤立パターンと密な(ラインアンドスペース)パターンのようなセパレーション幅の異なるパターンを良好な状態で同時に形成することができる。また、大口径のコンタクトホールパターンのエッチング速度と小口径のコンタクトホールパターンのエッチング速度との差を、小さくすることができる。その結果、良好な状態で口径の異なるコンタクトホールパターンを同時に形成することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における半導体装置の製造方法の一部を示す工程断面図である。
【図2】本発明の第1の実施の形態における半導体装置の製造方法で用いたエッチング装置を示す断面図である。
【図3】本発明の第1の実施の形態のエッチング装置を用いた場合のバイアスパワーとエッチング速度との関係を示す図である。
【図4】本発明の第1の実施の形態のエッチング装置を用いた場合のバイアスパワーと寸法シフト量との関係を示す図である。
【図5】本発明の第1の実施の形態のエッチング装置を用いた場合のバイアスパワーと自己バイアス電圧との関係を示す図である。
【図6】本発明の第2の実施の形態における半導体装置の製造方法の一部を示す工程断面図である。
【図7】本発明の第2の実施の形態における半導体装置の製造方法で用いたエッチング装置を示す断面図である。
【図8】本発明の第2の実施の形態のエッチング装置を用いた場合のバイアスパワーとエッチング速度との関係を示す図である。
【図9】本発明で使用されるエッチング装置の他の例(ECR型)を示す断面図である。
【図10】本発明で使用されるエッチング装置のさらに他の例(ヘリコン型)を示す断面図である。
【図11】本発明で使用されるエッチング装置のさらに他の例(トライオード型)を示す断面図である。
【図12】従来技術における半導体装置の製造方法の一部を示す工程断面図である。
【図13】従来技術の半導体装置の製造方法に使用されるエッチング装置を示す断面図である。
【符号の説明】
11、61 シリコン基板
12 熱酸化膜
13 ポリシリコン膜
14 孤立パターンのホトレジスト膜
15 密な(ラインアンドスペース)パターンのホトレジスト膜
16 孤立パターンのポリシリコン膜
17 密な(ラインアンドスペース)パターンのポリシリコン膜
21、71、91、101、111 チャンバー
22、72、92、102、112 下部電極
23、73、93、103、113 ウエハー(半導体基板)
24 天板
25 スパイダル状アンテナ
26、27、76、77、96、106、116、117 高周波電源
62 BPSGシリコン酸化膜
63 2.0μm径のコンタクトホールレジストパターン
64 0.4μm径のコンタクトホールレジストパターン
65 2.0μm径のコンタクトホールBPSGパターン
66 0.4μm径のコンタクトホールBPSGパターン
74、114 上部電極
75 コイル状アンテナ
94 磁石
95 導波管
105 アンテナ
115 側壁電極

Claims (2)

  1. ホトレジストのパターンをその上に有するシリコン酸化膜が形成された半導体基板をチャンバー内に配置し、前記チャンバー内にエッチングガスを流した状態で、高周波電力を少なくとも2箇所から前記チャンバー内に供給することによりプラズマ化した前記エッチングガスを用いて、前記シリコン酸化膜に大口径及び小口径のコンタクトホールをエッチング形成する工程を備えた半導体装置の製造方法であって、前記少なくとも2箇所から供給した高周波電力の1つを前記半導体基板を配置する台に供給すると共にその高周波電力を変化させることにより、前記プラズマ中の自己バイアス電圧を変化させて、前記大口径及び小口径のコンタクトホールの底面に向かう方向のエッチング速度の差が小さくなるように前記高周波電力の出力比を制御して1つに設定し、前記設定した出力比を用いて前記ホトレジストをマスクとして前記シリコン酸化膜に大口径及び小口径のコンタクトホールをエッチング形成することを特徴とする半導体装置の製造方法。
  2. 誘導結合型エッチング装置、ECR(Electron cyclotron resonance)型エッチング装置、ヘリコン型エッチング装置及びトライオード型エッチング装置のうちの1つを用いて、高周波電力をチャンバー内に供給する請求項1に記載の半導体装置の製造方法。
JP06834197A 1997-03-21 1997-03-21 半導体装置の製造方法 Expired - Fee Related JP3883247B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06834197A JP3883247B2 (ja) 1997-03-21 1997-03-21 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06834197A JP3883247B2 (ja) 1997-03-21 1997-03-21 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPH10270416A JPH10270416A (ja) 1998-10-09
JP3883247B2 true JP3883247B2 (ja) 2007-02-21

Family

ID=13371049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06834197A Expired - Fee Related JP3883247B2 (ja) 1997-03-21 1997-03-21 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP3883247B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5207892B2 (ja) * 2008-09-11 2013-06-12 東京エレクトロン株式会社 ドライエッチング方法
JP5264383B2 (ja) * 2008-09-17 2013-08-14 東京エレクトロン株式会社 ドライエッチング方法
JP2010093158A (ja) * 2008-10-10 2010-04-22 Toshiba Corp 半導体装置の製造方法

Also Published As

Publication number Publication date
JPH10270416A (ja) 1998-10-09

Similar Documents

Publication Publication Date Title
KR100413894B1 (ko) 플라즈마에칭방법
JP3400918B2 (ja) 半導体装置の製造方法
JP4351806B2 (ja) フォトレジストマスクを使用してエッチングするための改良技術
KR100430189B1 (ko) 플라즈마 에칭 방법
US6227211B1 (en) Uniformity improvement of high aspect ratio contact by stop layer
KR100593769B1 (ko) 에칭 방법
US6008132A (en) Dry etching suppressing formation of notch
JP3862035B2 (ja) 半導体装置およびその製造方法
JP2006156486A (ja) 基板処理方法および半導体装置の製造方法
US5968278A (en) High aspect ratio contact
JP3883247B2 (ja) 半導体装置の製造方法
JP5058406B2 (ja) 半導体装置の製造方法
JPH10312899A (ja) プラズマ処理方法及びプラズマ処理装置
JPH1126578A (ja) 微細接続孔の形成方法
JPH0774147A (ja) ドライエッチング方法およびドライエッチング装置
JPH10189727A (ja) 半導体装置の製造方法
JP2000164571A (ja) コンタクトホール形成方法およびプラズマエッチング方法
JP4128365B2 (ja) エッチング方法及びエッチング装置
TWI650814B (zh) 電漿蝕刻方法
US5951879A (en) Method of etching polysilicon layer
JP2000183027A (ja) 半導体装置の製造方法
JP4066517B2 (ja) 電子装置の製造方法
JP2917993B1 (ja) ドライエッチング方法
JPH11330045A (ja) 酸化膜及びシリコン層の積層膜のエッチング方法
JPH0982691A (ja) プラズマエッチング方法およびプラズマエッチング装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees