JP3877402B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP3877402B2
JP3877402B2 JP32796897A JP32796897A JP3877402B2 JP 3877402 B2 JP3877402 B2 JP 3877402B2 JP 32796897 A JP32796897 A JP 32796897A JP 32796897 A JP32796897 A JP 32796897A JP 3877402 B2 JP3877402 B2 JP 3877402B2
Authority
JP
Japan
Prior art keywords
island
semiconductor device
semiconductor chip
lead
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32796897A
Other languages
Japanese (ja)
Other versions
JPH11163007A (en
Inventor
治雄 兵藤
孝行 谷
隆生 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32796897A priority Critical patent/JP3877402B2/en
Publication of JPH11163007A publication Critical patent/JPH11163007A/en
Application granted granted Critical
Publication of JP3877402B2 publication Critical patent/JP3877402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor device having an improved space factor. SOLUTION: A semiconductor chip 38 is fixed on an island 33 and is connected with a lead terminal 34 by a wire 39. The entire body is molded by a resin 40. The resin 40 on the back side is partially removed to expose the metal surface at a position corresponding to an external connection electrode. The resin 40 is cut so as to surround the periphery of the semiconductor chip 38, thus dividing the entire body into individual semiconductor devices.

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置に関し、特に、半導体装置のチップ面積と、半導体装置をプリント基板等の実装基板上に実装する実装面積との比率で表す実装有効面積率を向上させた半導体装置に関する。
【0002】
【従来の技術】
一般的にシリコン基板上にトランジスタ素子が形成された半導体装置は、図11(A)に示すような構成が主に用いられる。1はシリコン基板、2はシリコン基板1が実装される放熱板等のアイランド、3はリード端子、及び4は封止用の樹脂モールドである。
トランジスタ素子が形成されたシリコン基板1は、同図に示すように、銅ベースの放熱板等のアイランド2に半田等のろう材5を介して固着実装され、シリコン基板1の周辺に配置されたリード端子3にトランジスタ素子のベース電極、エミッタ電極とがそれぞれワイヤーボンディングによってワイヤー6で電気的に接続されている。コレクタ電極に接続されるリード端子はアイランドと一体に形成されており、シリコン基板をアイランド上に実装することで電気的に接続された後、エポキシ樹脂等の熱硬化型樹脂4によりトランスファーモールドによって、シリコン基板とリード端子の一部を完全に被覆保護し、3端子構造の半導体装置が提供される。
【0003】
図11(B)を参照して、上記のトランスファーモールドでは、上下金型7、8で形成したキャビティ9の内部にダイボンド及びワイヤボンドを施したリードフレーム10を設置し、この状態でキャビティ9内に樹脂を注入することにより行われる。
【0004】
【発明が解決しようとする課題】
第1の課題:
樹脂モールドされた半導体装置は、通常、ガラスエポキシ基板等の実装基板に実装され、実装基板上に実装された他の半導体装置や回路素子と電気的に接続され、所定の回路動作を行うための一部品として取り扱われる。
【0005】
図12(A)は、実装基板上に半導体装置を実装したときの断面図を示し、20は半導体装置、21、23はベース又はエミッタ電極用のリード端子、22はコレクタ用のリード端子、24は実装基板である。
実装基板24上に半導体装置20が実装される実装面積は、リード端子21、22、23の先端部分で囲まれた領域によって表される。実装面積は半導体装置20内のシリコン基板(半導体チップ)面積に比べ大きく、実際に機能を持つ半導体チップの面積に比べ実装面積の殆どはモールド樹脂とリード端子が占めている。
【0006】
ここで、実際に機能を持つ半導体チップ面積と実装面積との比率を有効面積率として考慮すると、樹脂モールドされた半導体装置では有効面積率が極めて低いことが確認されている。有効面積率が低いことは、実装面積の殆どが半導体チップとは直接関係のないデッドスペースとなるので、実装基板24の高密度小型化の妨げとなる。
例えば、EIAJ規格であるSC−75A外形に搭載される半導体チップの最大サイズは、図12(B)に示すように、概ね0.40mm×0.40mm(0.16平方mm)が最大であり、パッケージの実装面積は1.6mm×1.6mm(2.56平方mm)となる。従って有効面積率は約6.25%であり、実装面積の殆どがデットスペースとなっていることが伺える。
【0007】
第2の課題:
金型内に設置したときのリードフレーム10とキャビティ9との位置合わせ精度はプラス・マイナス50μ程度が限界である。このため、アイランド2の大きさは前記合わせ精度を考慮した大きさに設計しなければならない。従って、合わせ精度の問題は、パッケージの外形寸法に対するアイランド2の寸法を小さくし、これがパッケージの外形寸法に対して収納可能な半導体チップ1の最大寸法に制限を与えていた。
【0008】
本発明は、上述した事情に鑑みて成されたものであり、本発明は、半導体装置のベース、エミッタ及びコレクタ用の外部接続電極を同一平面上に配置し、半導体チップ面積と実装基板上に実装される半導体装置の実装面積との比率である有効面積率を最大限向上させ、実装面積のデットスペースを最小限小さくできる半導体装置の製造方法を提供する。
【0009】
【課題を解決するための手段】
本発明は、半導体チップを固着する為のアイランドと、該アイランドに先端を近接する複数本のリード端子と、前記アイランドおよびリード端子を保持するための枠体部とを具備し、前記アイランドと前記リード端子とが多数個行列状に配置され、前記アイランドが互いに連結されかつ互いに連結されたアイランドが前記枠体に保持され、1つのアイランドに対応するリード端子がその隣に位置するアイランドに連結保持されているリードフレームを準備する工程と、
前記アイランドの表面に半導体チップを固着する工程と、
前記半導体チップの表面に形成した電極と前記リード端子とを電気的に接続する工程と、
前記半導体チップを含め、前記アイランドとリード端子を絶縁材料で封止する工程と、
前記絶縁材料の一部を除去してリード端子の裏面側の一部を露出する工程と、
前記絶縁材料を除去した部分を切断して、前記半導体チップを囲む領域で個々のパッケージを形成する工程と、を具備ることを特徴としている。
【0010】
【発明の実施の形態】
以下に本発明の製造方法を詳細に説明する。
第1工程:(図1)
先ず、リードフレーム30を準備する。図1(A)はリードフレーム30の平面図であり、図1(B)は図1(A)のX−X断面図である。本発明で用いられるリードフレーム30は、多数のフレーム31が行方向(又は列方向)に複数個配置されており、複数のフレーム31は連結バー32によって互いに連結されている。該フレーム31は、半導体チップの搭載部となるアイランド33と、外部接続用電極となる複数のリード端子34、35を有する。そして、互いに連結された複数のフレーム31が同じく連結バー32によって外枠36、36の間に連結される。更に、フレーム31に隣接して他のフレーム31Aが連結バー32Aによって同様に連結される。フレーム31のアイランド33に対して、隣のフレーム31Aのアイランド33Aに保持されたリード端子34A、35Aが対応する。この様にフレーム31を行・列方向に複数配置することで、1本の短冊状のリードフレーム30に例えば100個のフレーム31を配置する。各アイランド33、33Aから延在される各リード端子34、35、34A、35Aは、その中間部分の両側がくさび状に形成され、部分的に細く形成されている。
【0011】
上記のリードフレーム30は、例えば、約0.2mm厚の銅系の金属材料で形成された帯状あるいは矩形状のリードフレーム用金属薄板を用意し、このリードフレーム用金属薄板をエッチング加工またはスタンピング加工によってパターニングすることにより得ることができる。ここでは、リードフレーム30の板厚は必要に応じて適宜に設定することができる。
【0012】
第2工程:(図2)
次に、リードフレーム30に対してダイボンド工程とワイヤボンド工程を行う。図2(A)及び図2(B)に示すように、各アイランド33、33Aの一主面上にAgペースト、半田等の導電ペースト37を塗布し、その導電ペースト37を介して各アイランド33、33A上に半導体チップ38を固着する。各アイランド表面に金メッキを行い、そのメッキ上に半導体チップを共晶接続することも可能である。
【0013】
更に、半導体チップ38の表面に形成されたボンディングパッドと、これに対応するリード端子34、35とをワイヤ39でワイヤボンディングする。ワイヤ39は例えば直径が20μの金線から成る。ここで、ワイヤ39は各アイランド33上に固着した半導体チップ38の表面電極と、その隣に隣接した他のアイランド33Aから延在するリード端子34A、35Aとを接続する。
半導体チップ38が固着された各アイランド33、33Aの裏面は、係る半導体チップ38の外部接続用の電極となり、ワイヤ39で電気的に接続されたリード34A、35A、34、35も外部接続用の電極となる。アイランド33、33Aの裏面を接続用端子の1つとして用いる形態は、半導体チップ38として例えばトランジスタ、パワーMOSFET等の、電流経路が垂直方向になる半導体デバイス素子に適している。
【0014】
半導体チップ38を固着するために塗布した導電性ペースト37は、図2(A)から明らかなように、半導体チップ38が固着されるアイランド33、34A上に選択的に塗布形成する。リード端子34、35...上に導電性ペースト37が付着すると、ワイヤボンディングを行う場合に、ボンディング装置のキャピラリーの先端部分に導電性ペーストがつまりボンディング不良が生じ生産性が低下する恐れがあるためである。この様な問題がない場合には、導電性ペーストをフレーム31、31A全面に塗布しても良い。
【0015】
第3工程:(図3)
次に、全体を樹脂モールドする。図3(A)に示すように、リードフレーム30上にエポキシ樹脂等の熱硬化性の封止用樹脂層40を形成し、各フレーム31、31A..、半導体チップ38及びワイヤ39を封止保護する。樹脂層40は、素子A、素子B、素子C……を個別にパッケージングするものではなく、半導体チップ38の全部を被うように形成する。また、リードフレーム30の裏面側にも0.05mm程度の厚みで樹脂を被着する。これで、アイランド33とリード端子34、35は完全に樹脂40内部に埋設されることになる。モールド後のリードフレーム30の状態を図3(B)に示す。
【0016】
この樹脂層40は、射出成形用の上下金型が形成する空間(キャビティ)内にリードフレーム30を設置し、該空間内にエポキシ樹脂を充填、成形する事によって形成する。
第4工程:(図4)
次に、リードフレーム30の裏面側の樹脂40を部分的に除去してスリット孔41を形成する。このスリット孔41は、ダイシング装置のブレードによって樹脂40を切削することによって形成したものであり、前記ブレード厚みに応じて切削を複数回繰り返すことにより、幅が約0.5mmのスリット孔41を形成する。また、樹脂40を切削すると同時にリード端子34、35の裏面側も約0.1mm程切削して、リードフレーム20の金属表面を露出させる。このスリット孔41は、各リード端子34、35...の中間に形成した「くさび状部分」の付近に一本、あるいは複数本形成する。
【0017】
第5工程:(図5(A))
次に、図5(A)に示すように、スリット孔41の内部に露出したリード端子34、35、34A、35A..の表面に半田メッキ等のメッキ層42を形成する。このメッキ層42は、リードフレーム30を電極の一方とする電解メッキ法により行われる。スリット孔41はリード端子34、35の板厚の全部を切断していないので、アイランド33とリード端子34、35は未だ電気的な導通が保たれている。更に各フレーム31、31A..が連結バー32、32Aによって共通接続されている。このように露出した金属表面のすべてが電気的に導通しているので、一回のメッキ工程でメッキ層42を形成することができる。
【0018】
第6工程:(図5(B))
次に、樹脂層40を切断して各々の素子A、素子B、素子C....を分離する。即ち、アイランド33とこの上に固着された半導体チップ38に接続されたリード端子34A、35Aとを囲む領域(同図の矢印43、及び図3Aの一点鎖線43)で切断することにより、個々に分割した半導体装置を形成する。切断にはダイシング装置が用いられ、ダイシング装置のブレードによって樹脂層40とリードフレーム30とを同時に切断する。切断する際には裏面側(スリット孔91を設けた側)にブルーシート(例えば、商品名:UVシート、リンテック株式会社製)を貼り付けた状態で、前記ダイシングブレードがブルーシートの表面に到達するような切削深さで行う。スリット孔41が位置する箇所では、少なくともスリット孔41の側壁に付着したメッキ層42を残すように形成する。この様に残存させたメッキ層42は、半導体装置をプリント基板上に実装する際に利用される。また、切断したリード端子34、35の他方はアイランド33に連続する突起部33aとして残存し、切断した連結バー32、32Aはアイランド33に連続する突起部33b(図6Bに示した)として残存する。切断されたリード端子34、35及び突起部33a、33bの切断面は、樹脂層40の切断面と同一平面を形成し、該同一平面に露出する。
【0019】
図6は斯かる製造方法によって形成した完成後の半導体装置を示す、(A)断面図、(B)裏面図、(C)側面図である。更に図7は、装置を裏面側からみたときの斜視図である。
所望の能動素子を形成したシリコン半導体チップ38が導電性の接着剤によってアイランド33の一主面上に接着されている。アイランド33は外部接続電極の一部として使用される。リード端子34、35がアイランド33とは離れた位置に複数本設けられている。半導体チップ38の表面部分に形成した電極パッドとリード端子34、35の表面とがボンディングワイヤ39によって電気的に接続される。半導体チップ38とボンディングワイヤ39を含めて、アイランド33とリード端子34、35が樹脂40でモールドされて、大略直方体のパッケージ形状を形成する。樹脂40は熱硬化性エポキシ樹脂である。アイランド33とリード端子34、35は、厚さが約0.2mmの銅系の金属材料から成る。樹脂40の外形寸法は、縦×横×高さが、約0.7mm×1.0mm×0.6mmである。
【0020】
直方体のパッケージ外形を形成する6面のうち、上面40aと裏面40bはモールド金型によって形成された面で構成される。前記6面の内、側面40c、40d、40e、40fは樹脂40を切断した(第6工程参照)切断面で構成される。該切断面に沿ってリード端子33、35の切断面が露出する。アイランド33には切断されたリード端子34、35の名残である突起部33aと連結部32の名残である突起部33bを有し、これらの突起部33a、33bの切断面も露出する。
【0021】
図7を参照して、側面40d、40fの裏面側には第4工程で形成したスリット孔41の名残である段差部43を有し、該段差部43の表面にアイランド33の裏面側と、リード端子34、35の裏面側の一部が露出する。アイランド3とリード端子34、35の露出した表面には半田メッキなどの金属メッキ層42が形成される。リード端子34、35の露出部分とアイランド33の露出部との間は、樹脂40で被覆される。
【0022】
この装置をプリント基板上に実装した状態を図8に示す。実装基板24上に形成した素子間接続用のプリント配線25に対して段差部43に露出したリード端子34、35とアイランド33の突起部33aを位置合わせし、半田26等によって両者を接続する。この時、上記の第5工程で形成した金属メッキ層42が半田の塗れ性を良好にする。
【0023】
以上の方法によって製造された半導体装置は、以下のメリットを有する。
図9を参照して、本願発明者は、チップサイズが0.40mm×0.40mmのトランジスタチップをアイランド33上に設置し、上述の製造方法によってパッケージサイズが1.0mm×0.7mmの半導体装置を実現した。この時の、アイランド33のサイズは0.5mm×0.5mm、リード端子34、35のサイズは0.25mm×0.15mmとすることができた。これらのサイズは実装される半導体チップサイズに応じて任意に設定することができる。
【0024】
ここで、上述した本発明の半導体装置の製造方法によって製造された半導体装置の有効面積率を、図12(B)に示した従来の半導体装置と比較する。従来の半導体装置のチップサイズは、0.40mm×0.40mm(0.16平方mm)で、半導体装置の実装面積は1.6mm×1.6mm(2.56平方mm)である。従って、従来の半導体装置の有効面積率は約6.25%である。
【0025】
それに対して、本発明の製造方法によって製造した半導体装置は、金属製リード端子がパッケージから突出しないので、実装面積を半導体装置の大きさと同じ程度の大きさにすることができる。即ち1.0mm×0.7mm(0.7平方mm)とすることができる。。従って、本発明の有効面積率は22.85%となり、従来と比べて約3.6倍向上する事ができた。これにより、実装基板上に実装する実装面積のデットスペースを小さくすることができ、実装基板の小型化に寄与することができる。
【0026】
上記のメリットに加えて、本発明では以下のメリットを得ることができる。
分割された半導体装置の各外部接続用電極の表面にはメッキ層42が形成されているので、実装基板上に半田固着した際に該半田が切断面の上部まで(スリット孔41の側壁に相当する部分)容易に盛り上がって半田フィレットを形成する。従って半田接合力が向上し熱ストレス等の応力による劣化を防止することができる。
【0027】
この装置の外部接続端子は、段差部43に露出し、段差部43と段差部43との間の領域は樹脂40によって被覆されるので露出しない。従って実装基板24上に実装した際に半田26と半田26との距離を比較的大きく設計でき、半田ブリッジによる外部接続端子間の短絡事故を防止できる。
分割された半導体装置のリード端子34、35の終端は、図6(B)に示すように、半導体装置の終端部分でくさび状に形成されるために、リード端子34、35が樹脂層40の側面から抜け落ちることを防止している。
【0028】
多数個の素子をまとめてパッケージングするので、個々にパッケージングする場合に比べて無駄にする材料を少なくでき。材料費の低減につながる
パッケージの外形をダイシング装置のブレードで切断することにより構成したので、あらかじめリードフレーム30の外枠36に位置あわせマークを形成しておき、該マークを使用してダイシングを行うことにより、リードフレーム30のパターンに対する樹脂外形の精度を向上できる。即ち、モールド金型による合わせ精度がプラス・マイナス50μ程度であるのに対して、ダイシング装置によって切断した樹脂外形はプラス・マイナス10μ程度に小さくできる。合わせ精度を小さくできることは、アイランド33の面積を増大して、搭載可能な半導体チップ38のチップ面積を増大できることを意味する。
【0029】
尚、上述した実施形態では、3端子用のリードフレームを用いて説明をしたが、4端子用にする場合には、図10に示すように、アイランド33から3本のリード端子34、35、50を延在させて上述した方法で製造を行えば4端子用の半導体装置を提供することができる。
また、上述した実施形態では、各アイランドに1つの半導体チップ38を固着したが、1つのアイランドに、例えばトランジスタを複数個固着すること、及び、トタンジスタと縦型パワーMOSFET等の他の素子との複合固着も可能である。この様な場合には、リードフレームは図10に示すような多数のリード端子を有するものが使用される。
【0030】
さらに、本実施形態では、半導体チップ38にトランジスタを形成したが、縦型或いは比較的発熱量の少ない横型のデバイスであればこれに限らず、例えば、パワーMOSFET、IGBT、HBT等のデバイスを形成した半導体チップであっても、本発明に応用ができることは説明するまでもない。加えて、リード端子の本数を増大することでBIP、MOS型等の集積回路等にも応用することができる。
【0031】
【発明の効果】
以上説明したように、本発明によれば、リード端子34,35がパッケージから突出しない半導体装置を得ることができる。従って、半導体装置を実装したときのデッドスペースを削減し、高密度実装に適した半導体装置を得ることができる。
【0032】
外部接続端子と外部接続端子との間を樹脂層40で被覆した構造にできるので、装置を実装したときの半田ブリッジ等による端子間短絡の事故を防止できる。パッケージの外形をダイシングブレードによる切断面で構成することにより、アイランド33と樹脂40の端面との寸法精度を向上できる。従って、アイランド33の面積を増大して、収納可能な半導体チップ38のチップサイズを増大できる。
【図面の簡単な説明】
【図1】本発明の製造方法を説明する図。
【図2】本発明の製造方法を説明する図。
【図3】本発明の製造方法を説明する図。
【図4】本発明の製造方法を説明する図。
【図5】本発明の製造方法を説明する図。
【図6】本発明の半導体装置を説明する図。
【図7】本発明の半導体装置を説明する図。
【図8】本発明の半導体装置を実装したときの状態を説明する図。
【図9】本発明の半導体装置を説明する図。
【図10】他の実施の形態を説明する図。
【図11】従来の半導体装置を説明する図。
【図12】従来の半導体装置を説明する図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device, and more particularly to a semiconductor device having an improved mounting effective area ratio expressed by a ratio between a chip area of the semiconductor device and a mounting area where the semiconductor device is mounted on a mounting substrate such as a printed circuit board.
[0002]
[Prior art]
In general, a semiconductor device in which a transistor element is formed over a silicon substrate mainly has a structure as shown in FIG. 1 is a silicon substrate, 2 is an island such as a heat sink on which the silicon substrate 1 is mounted, 3 is a lead terminal, and 4 is a resin mold for sealing.
As shown in the figure, the silicon substrate 1 on which the transistor elements are formed is fixedly mounted on an island 2 such as a copper-based heat dissipation plate via a brazing material 5 such as solder, and is arranged around the silicon substrate 1. The base electrode and emitter electrode of the transistor element are electrically connected to the lead terminal 3 by wires 6 by wire bonding. The lead terminal connected to the collector electrode is formed integrally with the island, and after being electrically connected by mounting the silicon substrate on the island, transfer molding with a thermosetting resin 4 such as epoxy resin, A semiconductor device having a three-terminal structure in which a silicon substrate and a part of a lead terminal are completely covered and protected is provided.
[0003]
Referring to FIG. 11B, in the transfer mold described above, a lead frame 10 to which die bonding and wire bonding are applied is placed inside the cavity 9 formed by the upper and lower molds 7 and 8, and in this state the inside of the cavity 9 This is done by injecting resin into the resin.
[0004]
[Problems to be solved by the invention]
First issue:
A resin-molded semiconductor device is usually mounted on a mounting substrate such as a glass epoxy substrate, and is electrically connected to other semiconductor devices and circuit elements mounted on the mounting substrate to perform a predetermined circuit operation. Treated as a single part.
[0005]
FIG. 12A shows a cross-sectional view when a semiconductor device is mounted on a mounting substrate, where 20 is a semiconductor device, 21 and 23 are base or emitter electrode lead terminals, 22 is a collector lead terminal, and 24. Is a mounting substrate.
The mounting area where the semiconductor device 20 is mounted on the mounting substrate 24 is represented by a region surrounded by the tip portions of the lead terminals 21, 22, and 23. The mounting area is larger than the area of the silicon substrate (semiconductor chip) in the semiconductor device 20, and most of the mounting area is occupied by the mold resin and the lead terminal as compared to the area of the semiconductor chip that actually has a function.
[0006]
Here, it is confirmed that the effective area ratio is extremely low in the resin-molded semiconductor device when the effective area ratio is considered as the ratio between the actually functioning semiconductor chip area and the mounting area. When the effective area ratio is low, most of the mounting area becomes a dead space that is not directly related to the semiconductor chip, which hinders high-density downsizing of the mounting substrate 24.
For example, as shown in FIG. 12B, the maximum size of the semiconductor chip mounted on the EIAJ standard SC-75A outline is approximately 0.40 mm × 0.40 mm (0.16 square mm). The package mounting area is 1.6 mm × 1.6 mm (2.56 square mm). Therefore, the effective area ratio is about 6.25%, and it can be seen that most of the mounting area is a dead space.
[0007]
Second issue:
The alignment accuracy between the lead frame 10 and the cavity 9 when installed in the mold is limited to about plus or minus 50 μm. For this reason, the size of the island 2 must be designed in consideration of the alignment accuracy. Accordingly, the problem of alignment accuracy is that the size of the island 2 is reduced with respect to the package outer dimension, which limits the maximum size of the semiconductor chip 1 that can be accommodated with respect to the package outer dimension.
[0008]
The present invention has been made in view of the above-described circumstances. In the present invention, external connection electrodes for a base, an emitter, and a collector of a semiconductor device are arranged on the same plane, and the semiconductor chip area and the mounting substrate are arranged. Provided is a semiconductor device manufacturing method capable of improving the effective area ratio, which is a ratio to the mounting area of the semiconductor device to be mounted, to the maximum, and reducing the dead space of the mounting area to the minimum.
[0009]
[Means for Solving the Problems]
The present invention comprises an island for fixing a semiconductor chip, a plurality of lead terminals having tips close to the island, and a frame body portion for holding the island and the lead terminals, A plurality of lead terminals are arranged in a matrix, the islands are connected to each other, and the islands connected to each other are held by the frame, and the lead terminals corresponding to one island are connected and held by the island located next to the island. a step of preparing a lead frame that has been,
Fixing a semiconductor chip to the surface of the island;
Electrically connecting the electrode formed on the surface of the semiconductor chip and the lead terminal;
Including the semiconductor chip, sealing the island and the lead terminal with an insulating material;
Removing a portion of the insulating material to expose a portion of the back side of the lead terminal;
Cutting the portion from which the insulating material has been removed, and forming individual packages in regions surrounding the semiconductor chip.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The production method of the present invention will be described in detail below.
First step: (Fig. 1)
First, the lead frame 30 is prepared. 1A is a plan view of the lead frame 30, and FIG. 1B is a cross-sectional view taken along line XX of FIG. 1A. In the lead frame 30 used in the present invention, a plurality of frames 31 are arranged in the row direction (or column direction), and the plurality of frames 31 are connected to each other by a connecting bar 32. The frame 31 includes an island 33 serving as a semiconductor chip mounting portion and a plurality of lead terminals 34 and 35 serving as external connection electrodes. A plurality of frames 31 connected to each other are also connected between the outer frames 36 and 36 by the connecting bar 32. Further, another frame 31A adjacent to the frame 31 is similarly connected by the connection bar 32A. The lead terminals 34A and 35A held by the island 33A of the adjacent frame 31A correspond to the island 33 of the frame 31. In this manner, by arranging a plurality of frames 31 in the row and column directions, for example, 100 frames 31 are arranged on one strip-like lead frame 30. Each lead terminal 34, 35, 34 A, 35 A extending from each island 33, 33 A is formed in a wedge shape on both sides of the intermediate portion and partially formed in a thin shape.
[0011]
The lead frame 30 is prepared by, for example, preparing a strip or rectangular lead frame metal thin plate made of a copper metal material having a thickness of about 0.2 mm, and etching or stamping the lead frame metal thin plate. Can be obtained by patterning. Here, the plate thickness of the lead frame 30 can be appropriately set as required.
[0012]
Second step: (FIG. 2)
Next, a die bonding process and a wire bonding process are performed on the lead frame 30. As shown in FIGS. 2A and 2B, a conductive paste 37 such as Ag paste or solder is applied on one main surface of each of the islands 33 and 33A, and each island 33 is interposed through the conductive paste 37. , 33A is fixed to the semiconductor chip 38. It is also possible to perform gold plating on the surface of each island and connect the semiconductor chip to the eutectic connection on the plating.
[0013]
Further, the bonding pads formed on the surface of the semiconductor chip 38 and the corresponding lead terminals 34 and 35 are wire-bonded with wires 39. The wire 39 is made of, for example, a gold wire having a diameter of 20 μm. Here, the wire 39 connects the surface electrode of the semiconductor chip 38 fixed on each island 33 to the lead terminals 34A and 35A extending from the other adjacent island 33A.
The back surfaces of the islands 33 and 33A to which the semiconductor chip 38 is fixed serve as external connection electrodes of the semiconductor chip 38, and the leads 34A, 35A, 34, and 35 electrically connected by the wire 39 are also used for external connection. It becomes an electrode. The form in which the rear surfaces of the islands 33 and 33A are used as one of the connection terminals is suitable for a semiconductor device element such as a transistor or a power MOSFET as the semiconductor chip 38, in which the current path is vertical.
[0014]
As is apparent from FIG. 2A, the conductive paste 37 applied for fixing the semiconductor chip 38 is selectively applied and formed on the islands 33 and 34A to which the semiconductor chip 38 is fixed. Lead terminals 34, 35. . . If the conductive paste 37 adheres to the top, there is a possibility that when wire bonding is performed, the conductive paste at the tip portion of the capillary of the bonding apparatus, that is, bonding failure may occur and productivity may be reduced. If there is no such problem, conductive paste may be applied to the entire surfaces of the frames 31 and 31A.
[0015]
Third step: (Fig. 3)
Next, the whole is resin-molded. As shown in FIG. 3A, a thermosetting sealing resin layer 40 such as an epoxy resin is formed on the lead frame 30, and the frames 31, 31A. . The semiconductor chip 38 and the wire 39 are sealed and protected. The resin layer 40 does not package the elements A, B, C, etc. individually, but is formed so as to cover the entire semiconductor chip 38. The resin is also applied to the back side of the lead frame 30 with a thickness of about 0.05 mm. As a result, the island 33 and the lead terminals 34 and 35 are completely embedded in the resin 40. The state of the lead frame 30 after molding is shown in FIG.
[0016]
The resin layer 40 is formed by installing a lead frame 30 in a space (cavity) formed by upper and lower molds for injection molding, filling the space with an epoxy resin, and molding the space.
Fourth step: (FIG. 4)
Next, the resin 40 on the back side of the lead frame 30 is partially removed to form slit holes 41. The slit hole 41 is formed by cutting the resin 40 with a blade of a dicing apparatus, and the slit hole 41 having a width of about 0.5 mm is formed by repeating cutting a plurality of times according to the blade thickness. To do. At the same time as the resin 40 is cut, the back surfaces of the lead terminals 34 and 35 are also cut by about 0.1 mm to expose the metal surface of the lead frame 20. The slit hole 41 is connected to each lead terminal 34, 35. . . One or more are formed in the vicinity of the “wedge-shaped portion” formed in the middle.
[0017]
Fifth step: (FIG. 5A)
Next, as shown in FIG. 5A, the lead terminals 34, 35, 34A, 35A. . A plating layer 42 such as solder plating is formed on the surface of the substrate. The plating layer 42 is performed by an electrolytic plating method using the lead frame 30 as one of the electrodes. Since the slit hole 41 does not cut the entire thickness of the lead terminals 34 and 35, the island 33 and the lead terminals 34 and 35 are still electrically connected. Further, each frame 31, 31A. . Are commonly connected by connecting bars 32 and 32A. Since all the exposed metal surfaces are electrically connected in this way, the plating layer 42 can be formed in a single plating step.
[0018]
Sixth step: (FIG. 5B)
Next, the resin layer 40 is cut and each element A, element B, element C. . . . Isolate. That is, by cutting along the region (the arrow 43 in the figure and the one-dot chain line 43 in FIG. 3A) surrounding the island 33 and the lead terminals 34A and 35A connected to the semiconductor chip 38 fixed on the island 33, individually A divided semiconductor device is formed. A dicing apparatus is used for cutting, and the resin layer 40 and the lead frame 30 are simultaneously cut by a blade of the dicing apparatus. When cutting, the dicing blade reaches the surface of the blue sheet with a blue sheet (for example, trade name: UV sheet, manufactured by Lintec Co., Ltd.) attached to the back side (the side where the slit hole 91 is provided). The cutting depth is as follows. In the place where the slit hole 41 is located, at least the plating layer 42 attached to the side wall of the slit hole 41 is formed. The plating layer 42 left in this way is used when the semiconductor device is mounted on a printed board. Further, the other of the cut lead terminals 34 and 35 remains as a protrusion 33a continuous with the island 33, and the cut connection bars 32 and 32A remain as a protrusion 33b (shown in FIG. 6B) continuous with the island 33. . The cut surfaces of the cut lead terminals 34 and 35 and the protrusions 33a and 33b form the same plane as the cut surface of the resin layer 40 and are exposed to the same plane.
[0019]
FIG. 6A is a cross-sectional view, FIG. 6B is a back view, and FIG. 6C is a side view showing a completed semiconductor device formed by such a manufacturing method. Furthermore, FIG. 7 is a perspective view when the apparatus is viewed from the back side.
A silicon semiconductor chip 38 on which a desired active element is formed is bonded onto one main surface of the island 33 with a conductive adhesive. The island 33 is used as a part of the external connection electrode. A plurality of lead terminals 34 and 35 are provided at positions distant from the island 33. The electrode pads formed on the surface portion of the semiconductor chip 38 and the surfaces of the lead terminals 34 and 35 are electrically connected by bonding wires 39. The island 33 and the lead terminals 34 and 35 including the semiconductor chip 38 and the bonding wire 39 are molded with the resin 40 to form a substantially rectangular parallelepiped package shape. The resin 40 is a thermosetting epoxy resin. The island 33 and the lead terminals 34 and 35 are made of a copper-based metal material having a thickness of about 0.2 mm. The external dimensions of the resin 40 are about 0.7 mm × 1.0 mm × 0.6 mm in length × width × height.
[0020]
Of the six surfaces forming the outer shape of the rectangular parallelepiped package, the upper surface 40a and the rear surface 40b are configured by surfaces formed by a mold. Of the six surfaces, the side surfaces 40c, 40d, 40e, and 40f are constituted by cut surfaces obtained by cutting the resin 40 (see the sixth step). The cut surfaces of the lead terminals 33 and 35 are exposed along the cut surface. The island 33 has a protruding portion 33a which is a remnant of the cut lead terminals 34 and 35 and a protruding portion 33b which is a remnant of the connecting portion 32, and the cut surfaces of these protruding portions 33a and 33b are also exposed.
[0021]
With reference to FIG. 7, the back surface side of the side surfaces 40 d and 40 f has a stepped portion 43 that is a remnant of the slit hole 41 formed in the fourth step, and the back surface side of the island 33 is formed on the surface of the stepped portion 43. A part of the back side of the lead terminals 34 and 35 is exposed. A metal plating layer 42 such as solder plating is formed on the exposed surfaces of the island 3 and the lead terminals 34 and 35. The exposed portion of the lead terminals 34 and 35 and the exposed portion of the island 33 are covered with a resin 40.
[0022]
FIG. 8 shows a state in which this apparatus is mounted on a printed circuit board. The lead terminals 34 and 35 exposed at the stepped portion 43 and the projection 33a of the island 33 are aligned with the printed wiring 25 for inter-element connection formed on the mounting substrate 24, and both are connected by solder 26 or the like. At this time, the metal plating layer 42 formed in the fifth step improves solderability.
[0023]
The semiconductor device manufactured by the above method has the following merits.
Referring to FIG. 9, the present inventor installed a transistor chip having a chip size of 0.40 mm × 0.40 mm on an island 33, and a semiconductor having a package size of 1.0 mm × 0.7 mm by the above-described manufacturing method. Realized the device. At this time, the size of the island 33 could be 0.5 mm × 0.5 mm, and the size of the lead terminals 34 and 35 could be 0.25 mm × 0.15 mm. These sizes can be arbitrarily set according to the size of the semiconductor chip to be mounted.
[0024]
Here, the effective area ratio of the semiconductor device manufactured by the semiconductor device manufacturing method of the present invention described above is compared with the conventional semiconductor device shown in FIG. The chip size of the conventional semiconductor device is 0.40 mm × 0.40 mm (0.16 square mm), and the mounting area of the semiconductor device is 1.6 mm × 1.6 mm (2.56 square mm). Therefore, the effective area ratio of the conventional semiconductor device is about 6.25%.
[0025]
On the other hand, in the semiconductor device manufactured by the manufacturing method of the present invention, since the metal lead terminals do not protrude from the package, the mounting area can be made as large as the size of the semiconductor device. That is, it can be set to 1.0 mm × 0.7 mm (0.7 square mm). . Therefore, the effective area ratio of the present invention is 22.85%, which is an improvement of about 3.6 times compared to the conventional case. Thereby, the dead space of the mounting area mounted on a mounting board | substrate can be made small, and it can contribute to size reduction of a mounting board | substrate.
[0026]
In addition to the above merits, the present invention can obtain the following merits.
Since the plating layer 42 is formed on the surface of each external connection electrode of the divided semiconductor device, when the solder is fixed on the mounting substrate, the solder reaches the upper part of the cut surface (corresponding to the side wall of the slit hole 41). Part to be raised easily to form a solder fillet. Therefore, the solder bonding force is improved and deterioration due to stress such as thermal stress can be prevented.
[0027]
The external connection terminal of this device is exposed at the stepped portion 43, and the region between the stepped portion 43 and the stepped portion 43 is covered with the resin 40 and is not exposed. Therefore, when mounted on the mounting substrate 24, the distance between the solder 26 and the solder 26 can be designed to be relatively large, and a short circuit accident between the external connection terminals due to the solder bridge can be prevented.
As shown in FIG. 6B, the terminal ends of the divided semiconductor device lead terminals 34 and 35 are formed in a wedge shape at the terminal portion of the semiconductor device. Prevents falling off from the side.
[0028]
Since many devices are packaged together, less material is wasted compared to individual packaging. Since the outer shape of the package that leads to a reduction in material costs is cut by the blade of the dicing apparatus, alignment marks are formed in advance on the outer frame 36 of the lead frame 30, and dicing is performed using the marks. Thereby, the precision of the resin outer shape with respect to the pattern of the lead frame 30 can be improved. That is, while the alignment accuracy by the mold is about plus / minus 50 μm, the outer shape of the resin cut by the dicing apparatus can be reduced to about plus / minus 10 μm. The fact that the alignment accuracy can be reduced means that the area of the island 33 can be increased and the chip area of the mountable semiconductor chip 38 can be increased.
[0029]
In the above-described embodiment, the description has been given using the lead frame for three terminals. However, when the lead frame is used for four terminals, as shown in FIG. 10, three lead terminals 34, 35, If 50 is extended and manufactured by the method described above, a four-terminal semiconductor device can be provided.
In the above-described embodiment, one semiconductor chip 38 is fixed to each island. For example, a plurality of transistors are fixed to one island, and a transistor and other elements such as a vertical power MOSFET are connected. Composite fixing is also possible. In such a case, a lead frame having a large number of lead terminals as shown in FIG. 10 is used.
[0030]
Furthermore, in the present embodiment, the transistor is formed on the semiconductor chip 38, but the device is not limited to this as long as it is a vertical type or a horizontal type device with a relatively small amount of heat generation. For example, a device such as a power MOSFET, IGBT, or HBT is formed. It goes without saying that the semiconductor chip can be applied to the present invention. In addition, by increasing the number of lead terminals, it can be applied to integrated circuits such as BIP and MOS type.
[0031]
【The invention's effect】
As described above, according to the present invention, a semiconductor device in which the lead terminals 34 and 35 do not protrude from the package can be obtained. Therefore, the dead space when the semiconductor device is mounted can be reduced, and a semiconductor device suitable for high-density mounting can be obtained.
[0032]
Since it can be made the structure which coat | covered between the external connection terminal and the external connection terminal with the resin layer 40, the accident of the short circuit between terminals by the solder bridge etc. when a device is mounted can be prevented. By configuring the outer shape of the package with a cut surface by a dicing blade, the dimensional accuracy between the island 33 and the end surface of the resin 40 can be improved. Therefore, the area of the island 33 can be increased, and the chip size of the semiconductor chip 38 that can be accommodated can be increased.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a production method of the present invention.
FIG. 2 is a view for explaining a production method of the present invention.
FIG. 3 is a view for explaining a production method of the present invention.
FIG. 4 is a view for explaining a production method of the present invention.
FIG. 5 is a view for explaining a manufacturing method of the present invention.
6A and 6B illustrate a semiconductor device of the present invention.
FIG. 7 illustrates a semiconductor device of the present invention.
FIG. 8 illustrates a state when a semiconductor device of the present invention is mounted.
FIG 9 illustrates a semiconductor device of the present invention.
FIG. 10 illustrates another embodiment.
FIG. 11 illustrates a conventional semiconductor device.
FIG. 12 illustrates a conventional semiconductor device.

Claims (4)

半導体チップを固着する為のアイランドと、該アイランドに先端を近接する複数本のリード端子と、前記アイランドおよびリード端子を保持するための枠体部とを具備し、前記アイランドと前記リード端子とが多数個行列状に配置され、前記アイランドが互いに連結されかつ互いに連結されたアイランドが前記枠体に保持され、1つのアイランドに対応するリード端子がその隣に位置するアイランドに連結保持されているリードフレームを準備する工程と、
前記アイランドの表面に半導体チップを固着する工程と、
前記半導体チップの表面に形成した電極と前記リード端子とを電気的に接続する工程と、前記半導体チップを含め、前記アイランドとリード端子を絶縁材料で封止する工程と、
前記絶縁材料の一部を除去してリード端子の裏面側の一部を露出する工程と、
前記絶縁材料を除去した部分を切断して個々のパッケージを形成する工程と、
を具備することを特徴とする半導体装置の製造方法。
An island for fixing a semiconductor chip; a plurality of lead terminals having tips close to the island; and a frame portion for holding the island and the lead terminal, wherein the island and the lead terminal A plurality of leads arranged in a matrix, the islands are connected to each other and the islands connected to each other are held by the frame, and lead terminals corresponding to one island are connected to and held by an island located next to the island. Preparing the frame;
Fixing a semiconductor chip to the surface of the island;
Electrically connecting the electrode formed on the surface of the semiconductor chip and the lead terminal; sealing the island and the lead terminal with an insulating material including the semiconductor chip;
Removing a portion of the insulating material to expose a portion of the back side of the lead terminal;
Cutting the portion from which the insulating material has been removed to form individual packages;
A method for manufacturing a semiconductor device, comprising:
前記絶縁材料を除去した後に前記露出したリード端子表面に金属メッキを施す工程を具備することを特徴とする請求項1記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of performing metal plating on the exposed lead terminal surface after removing the insulating material. 前記リードフレームには、前記アイランドと前記リード端子とが行列状に多数個配置されていることを特徴とする請求項1記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, wherein a plurality of the islands and the lead terminals are arranged in a matrix on the lead frame. 前記絶縁材料を除去する工程が、ダイシング装置のブレードによるものであることを特徴とする請求項1記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, wherein the step of removing the insulating material is performed by a blade of a dicing apparatus.
JP32796897A 1997-11-28 1997-11-28 Manufacturing method of semiconductor device Expired - Fee Related JP3877402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32796897A JP3877402B2 (en) 1997-11-28 1997-11-28 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32796897A JP3877402B2 (en) 1997-11-28 1997-11-28 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPH11163007A JPH11163007A (en) 1999-06-18
JP3877402B2 true JP3877402B2 (en) 2007-02-07

Family

ID=18205030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32796897A Expired - Fee Related JP3877402B2 (en) 1997-11-28 1997-11-28 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3877402B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672201B2 (en) * 2001-07-26 2011-04-20 ローム株式会社 Manufacturing method of semiconductor device
JP2003086750A (en) * 2001-09-11 2003-03-20 Rohm Co Ltd Method for manufacturing electronic device
JP3915992B2 (en) 2004-06-08 2007-05-16 ローム株式会社 Manufacturing method of surface mount type electronic components
JP2006165411A (en) * 2004-12-10 2006-06-22 New Japan Radio Co Ltd Semiconductor device and manufacturing method thereof
JP5217800B2 (en) 2008-09-03 2013-06-19 日亜化学工業株式会社 Light emitting device, resin package, resin molded body, and manufacturing method thereof
JP4887346B2 (en) * 2008-11-20 2012-02-29 オンセミコンダクター・トレーディング・リミテッド Semiconductor device
JP2013145908A (en) * 2013-03-06 2013-07-25 Nichia Chem Ind Ltd Light-emitting device, resin package, resin molding and method for manufacturing them
JP5527450B2 (en) * 2013-03-06 2014-06-18 日亜化学工業株式会社 Light emitting device, resin package, resin molded body, and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11163007A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
JP3877401B2 (en) Manufacturing method of semiconductor device
JP3819574B2 (en) Manufacturing method of semiconductor device
US6734536B2 (en) Surface-mounting semiconductor device and method of making the same
US20120181676A1 (en) Power semiconductor device packaging
US20130017652A1 (en) Method of manufacturing a semiconductor device package with a heatsink
JP3877409B2 (en) Manufacturing method of semiconductor device
JPH10261756A (en) Semiconductor device and its manufacture
US5844779A (en) Semiconductor package, and semiconductor device using the same
JP3877410B2 (en) Manufacturing method of semiconductor device
JP3877402B2 (en) Manufacturing method of semiconductor device
JP3877405B2 (en) Manufacturing method of semiconductor device
JP3269025B2 (en) Semiconductor device and manufacturing method thereof
JP3831504B2 (en) Lead frame
US20120181677A1 (en) Semiconductor device package with two component lead frame
JP4784945B2 (en) Manufacturing method of semiconductor device
JP2004247613A (en) Semiconductor device and its manufacturing process
JP2000150543A (en) Manufacture of semiconductor device
JP4887346B2 (en) Semiconductor device
JP3203228B2 (en) Semiconductor device and manufacturing method thereof
CN114981940A (en) Packaged electronic device with segmented die pads in robust package substrate
JP5086315B2 (en) Manufacturing method of semiconductor device
JP4165952B2 (en) Semiconductor device
JP4383436B2 (en) Semiconductor device
WO2022202242A1 (en) Semiconductor device and manufacturing method for semiconductor device
JP4162303B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050607

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees