WO2022202242A1 - Semiconductor device and manufacturing method for semiconductor device - Google Patents
Semiconductor device and manufacturing method for semiconductor device Download PDFInfo
- Publication number
- WO2022202242A1 WO2022202242A1 PCT/JP2022/009631 JP2022009631W WO2022202242A1 WO 2022202242 A1 WO2022202242 A1 WO 2022202242A1 JP 2022009631 W JP2022009631 W JP 2022009631W WO 2022202242 A1 WO2022202242 A1 WO 2022202242A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor device
- lead
- back surface
- sealing resin
- protrusion
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 253
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 229920005989 resin Polymers 0.000 claims abstract description 138
- 239000011347 resin Substances 0.000 claims abstract description 138
- 238000007789 sealing Methods 0.000 claims abstract description 93
- 229910052751 metal Inorganic materials 0.000 claims description 32
- 239000002184 metal Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 29
- 238000005530 etching Methods 0.000 claims description 18
- 238000005520 cutting process Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 description 23
- 238000012986 modification Methods 0.000 description 17
- 230000004048 modification Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
Definitions
- the present disclosure relates to a semiconductor device and a method for manufacturing the semiconductor device.
- Patent Document 1 discloses a semiconductor device in which a semiconductor element is mounted on the main surface of the mounting portion of the first lead, and the rear surface of the mounting portion is exposed from the sealing resin and becomes a rear surface terminal.
- the first lead has a recess on the back side of the mounting portion recessed in the z-direction from the back surface of the mounting portion.
- the inner surface is flat because it is formed by half-etching when the lead frame is formed by etching the metal plate. Therefore, the thermal stress generated by the difference in linear expansion coefficient between the die pad and the encapsulating resin may cause the encapsulating resin to peel off from the inner surface.
- the present disclosure has been conceived under the circumstances described above, and has an object to provide a semiconductor device capable of suppressing peeling of the sealing resin on the inner surface, and a method of manufacturing the same.
- a semiconductor device provided by the present disclosure includes: a semiconductor element; first leads on which the semiconductor element is mounted; a second lead arranged and conducting to the semiconductor element; and a sealing resin covering the semiconductor element, wherein the first lead has a first main surface to which the semiconductor element is bonded and the thickness of the second lead. a first back surface facing in a direction opposite to the first main surface and exposed from the sealing resin; and a first inner surface connected to the first back surface and covered with the sealing resin. and the first inner surface includes a first convex portion protruding toward the side facing the first back surface, and a second convex portion perpendicular to the thickness direction and the first direction with respect to the first convex portion. and a first concave portion that is aligned in the direction and concave toward the first main surface facing the first convex portion.
- a method of manufacturing a semiconductor device is a method of manufacturing a semiconductor device including a first lead having a first main surface and a first back surface facing opposite sides in the thickness direction, preparing a metal plate having a main surface and a back surface facing opposite sides; and a first mask for forming the first back surface and a plurality of rectangular masks in a checkered pattern on the back surface of the metal plate. forming a second mask arranged in a shape; forming a lead frame by etching the metal plate from the main surface side and the back surface side; and bonding a semiconductor element to the lead frame. forming a sealing resin covering the semiconductor element; and cutting the lead frame and the sealing resin.
- FIG. 1 is a perspective view showing a semiconductor device according to a first embodiment of the present disclosure
- FIG. FIG. 2 is a plan view of the semiconductor device shown in FIG. 1, and is a view through a sealing resin.
- 3 is a bottom view of the semiconductor device shown in FIG. 1.
- FIG. FIG. 4 is a cross-sectional view taken along line IV-IV of FIG.
- FIG. 5 is a cross-sectional view along line VV in FIG.
- FIG. 6 is a cross-sectional view taken along line VI-VI of FIG.
- FIG. 7 is a cross-sectional view taken along line VII--VII in FIG.
- FIG. 8 is a flow chart showing a method of manufacturing the semiconductor device shown in FIG.
- FIG. 9A to 9D are cross-sectional views showing steps in the method of manufacturing the semiconductor device shown in FIG. 10 is a plan view of the process shown in FIG. 9.
- FIG. 11 is a bottom view of the process shown in FIG. 9.
- FIG. 12A to 12C are cross-sectional views showing steps in the method of manufacturing the semiconductor device shown in FIG. 13A and 13B are cross-sectional views showing steps in the method of manufacturing the semiconductor device shown in FIG. 14A and 14B are cross-sectional views showing steps in the method of manufacturing the semiconductor device shown in FIG. 15 is a bottom view of the semiconductor device according to the first modification of the first embodiment;
- FIG. 16 is a bottom view of a semiconductor device according to a second modification of the first embodiment;
- FIG. 17 is a bottom view of a semiconductor device according to a third modification of the first embodiment;
- FIG. 18 is a bottom view of a semiconductor device according to a fourth modification of the first embodiment;
- FIG. 19 is a bottom view of a semiconductor device according to a fifth modification of the first embodiment;
- FIG. FIG. 20 is a bottom view showing the semiconductor device according to the second embodiment of the present disclosure;
- 21 is a bottom view of a semiconductor device according to a third embodiment of the present disclosure;
- FIG. FIG. 22 is a bottom view showing a semiconductor device according to a fourth embodiment of the present disclosure;
- 23 is a plan view showing a semiconductor device according to a fifth embodiment of the present disclosure;
- a certain entity A is formed on a certain entity B” and “a certain entity A is formed on a certain entity B” mean “a certain entity A is formed on a certain entity B”. It includes "being directly formed in entity B” and “being formed in entity B while another entity is interposed between entity A and entity B”.
- ⁇ an entity A is placed on an entity B'' and ⁇ an entity A is located on an entity B'' mean ⁇ an entity A is located on an entity B.'' It includes "directly placed on B” and "some entity A is placed on an entity B while another entity is interposed between an entity A and an entity B.”
- ⁇ an object A is located on an object B'' means ⁇ an object A is adjacent to an object B and an object A is positioned on an object B. and "the thing A is positioned on the thing B while another thing is interposed between the thing A and the thing B".
- ⁇ an object A overlaps an object B when viewed in a certain direction'' means ⁇ an object A overlaps all of an object B'' and ⁇ an object A overlaps an object B.'' It includes "overlapping a part of a certain thing B".
- FIG. 1 A semiconductor device A10 according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 7.
- FIG. The semiconductor device A10 includes leads 1, leads 2, a semiconductor element 6, wires 7, and a sealing resin 8. As shown in FIG.
- FIG. 1 is a perspective view showing the semiconductor device A10.
- FIG. 2 is a plan view showing the semiconductor device A10.
- the outer shape of the sealing resin 8 is shown by an imaginary line (chain double-dashed line) through the sealing resin 8.
- FIG. 3 is a bottom view showing the semiconductor device A10.
- FIG. 4 is a cross-sectional view taken along line IV-IV of FIG.
- FIG. 5 is a cross-sectional view along line VV in FIG.
- FIG. 6 is a cross-sectional view taken along line VI-VI of FIG.
- FIG. 7 is a cross-sectional view taken along line VII--VII in FIG.
- the semiconductor device A10 shown in these figures is a device that is surface-mounted on circuit boards of various devices.
- the application and function of the semiconductor device A10 are not particularly limited.
- the package format of the semiconductor device A10 is DFN (Dual Flatpack No-leaded). Note that the package format of the semiconductor device A10 is not limited to DFN.
- the shape of the semiconductor device A10 when viewed in the thickness direction is rectangular.
- the thickness direction (planar view direction) of the semiconductor device A10 is defined as the z direction, and the direction along one side of the semiconductor device A1 orthogonal to the z direction (horizontal direction in FIGS.
- each dimension of the semiconductor device A10 is not particularly limited, and in this embodiment, for example, the x-direction dimension is about 0.6 mm, the y-direction dimension is about 1 mm, and the z-direction dimension is about 0.4 mm.
- the leads 1 and 2 are electrically connected to the semiconductor element 6.
- Leads 1 and 2 are formed, for example, by etching a metal plate.
- the leads 1 and 2 are made of metal, preferably Cu or Ni, or an alloy thereof, 42 alloy, or the like. In this embodiment, an example in which the leads 1 and 2 are made of Cu will be described.
- the thickness of the leads 1 and 2 is not particularly limited, and is, for example, 0.05 to 0.3 mm, and about 0.125 mm in this embodiment.
- the lead 1 is arranged at the end of the semiconductor device A10 on the y1 side in the y direction and spreads all over the x direction.
- the lead 2 is arranged at the end on the y-direction y2 side of the semiconductor device A10 and spreads over the entire x-direction. Lead 2 is spaced apart from lead 1 in the y-direction.
- the lead 1 supports the semiconductor element 6 and has a main surface 11, a back surface 12, an inner surface 13, and connecting end surfaces 14 and 15.
- the main surface 11 and the back surface 12 face opposite to each other in the z direction.
- the main surface 11 faces the z-direction z2 side.
- the main surface 11 is a surface on which the semiconductor element 6 is mounted.
- the shape of the main surface 11 is a rectangular shape having portions protruding on both sides in the y direction y1 and in the x direction.
- the portion protruding in the y direction y1 reaches the edge of the semiconductor device A10 on the y direction y1 side.
- the portion protruding in the x direction x1 reaches the edge of the semiconductor device A10 on the x direction x1 side.
- the portion protruding in the x direction x2 reaches the edge of the semiconductor device A10 on the x direction x2 side.
- the number of each projecting portion is not limited.
- the rear surface 12 is exposed from the sealing resin 8 and becomes a rear surface terminal.
- the back surface 12 has a rectangular shape elongated in the x direction.
- the inner surface 13 is connected to the back surface 12 and is a portion where a part of the lead 1 is recessed from the back surface 12 toward the main surface 11 side.
- the inner surface 13 is formed on the y2 side, the y1 side, the x1 side, and the x2 side of the back surface 12 in the y direction.
- the shape and arrangement position of the inner surface 13 are not limited.
- the inner surface 13 may be formed so as to surround the entire periphery of the back surface 12 or may not be formed on the y-direction y1 side of the back surface 12 . As shown in FIGS.
- the thickness (dimension in the z direction) of the portion of the lead 1 where the inner surface 13 is located is smaller than the thickness of the portion where the back surface 12 is located, for example about half.
- the inner surface 13 is formed, for example, by half-etching. As shown in FIG. 3 , the inner surface 13 is covered with the sealing resin 8 without being exposed from the sealing resin 8 . This prevents the lead 1 from peeling off from the sealing resin 8 toward the z1 side in the z direction.
- inner surface 131 formed on the lead 2 side (y2 side in the y direction) with respect to the rear surface 12 in the y direction has a plurality of protrusions 16 and a plurality of recesses 17. I have.
- each convex portion 16 protrudes from the periphery toward the side facing the back surface 12 (the z-direction z1 side). This is a portion located on the z-direction z1 side of the imaginary line a (indicated by a two-dot chain line in FIGS. 4 to 7) indicating the position.
- the entire inner surface 13 is covered with the sealing resin 8 , and the protrusions 16 are also not exposed from the sealing resin 8 .
- the z-direction dimension T2 (see FIG. 4) of each protrusion 16 from the main surface 11 is not particularly limited, but is 50% or more and 90% or less of the z-direction dimension T1 from the main surface 11 to the back surface 12 of the lead 1. is desirable.
- Each recess 17 is recessed on the side (z direction z2 side) facing the main surface 11 with respect to each protrusion 16, and is a portion of the inner surface 131 located on the z direction z2 side from the imaginary line a. .
- the dimension T3 of the unevenness difference which is the dimension in the z direction from the bottom of the concave portion 17 to the top of the convex portion 16, is not particularly limited, but is preferably 10% or more and 50% or less of the dimension T1.
- the protrusions 16 and the recesses 17 are aligned in the x direction as shown in FIGS. 4 and 5, and are also aligned in the y direction as shown in FIGS.
- the convex portions 16 are arranged in a checkered pattern when viewed in the z direction. That is, the convex portions 16 and the concave portions 17 are alternately arranged in the x direction, and the convex portions 16 and the concave portions 17 are also alternately arranged in the y direction.
- the convex portions 16 are arranged in six rows in the x direction and three rows in the y direction.
- each convex portion 16 is hatched for convenience of understanding. Note that the number of projections 16 arranged in the x-direction and the y-direction is not particularly limited.
- each arrangement is appropriately set according to the size of the inner surface 131 as viewed in the z direction and the size of the convex portion 16 as viewed in the z direction. It is desirable that the number of arrays in both the x-direction and the y-direction should be three or more.
- the shape of each projection 16 when viewed in the z direction is not particularly limited, and may be a square shape, a rectangular shape elongated in the x direction, or a rectangular shape elongated in the y direction. good too. Also, the shape of each projection 16 as viewed in the z-direction may be other shapes such as a circular shape or an elliptical shape.
- the plurality of protrusions 16 includes protrusions 161 , 162 , 163 and 164 .
- the convex portion 161 is arranged on the inner surface 13 closest to the x1 side in the x direction and closest to the y1 side in the y direction.
- the convex portion 162 is arranged adjacent to the convex portion 161 on the x-direction x2 side of the convex portion 161 . That is, the convex portion 162 is arranged in the x direction with respect to the convex portion 161 .
- a recess 17 is arranged between the protrusion 161 and the protrusion 162 .
- the concave portion 17 is arranged in the x direction with respect to the convex portion 161 .
- the convex portion 163 is arranged adjacent to the convex portion 161 on the y-direction y2 side of the convex portion 161 . That is, the convex portion 163 is arranged in the y direction with respect to the convex portion 161 .
- a recess 17 is arranged between the protrusion 161 and the protrusion 163 . That is, the recess 17 is arranged in the y direction with respect to the protrusion 161 .
- the convex portion 164 is arranged between the convex portions 161 and 162 in the x direction and between the convex portions 161 and 163 in the y direction.
- the convex portion 164 is located on a line segment b (indicated by a chain double-dashed line in FIG. 3) connecting the vertex of the convex portion 162 and the vertex of the convex portion 163 when viewed in the z direction.
- the protrusions 16 and the recesses 17 of the inner surface 13 are formed by etching from the back surface 12 side using a mask arranged in a checkered pattern.
- the connecting end surfaces 14 and 15 are surfaces orthogonal to the main surface 11 and the back surface 12 and are connected to the main surface 11 and the inner surface 13 .
- the connecting end surfaces 14 and 15 are exposed from the sealing resin 8 .
- the connecting end surfaces 14 and 15 are formed by dicing in the cutting process in the manufacturing process.
- the shape of the lead 1 is not limited to the one described above.
- the back surface 12 extends to the edge of the semiconductor device A10 on the y-direction y1 side
- the connection end surface 14 extends to the edge on the z-direction z1 side of the semiconductor device A10
- the back surface 12 and the connection end surface 14 are connected to form a continuous line. It may be exposed from the sealing resin 8 .
- the shape of the lead 1 is appropriately designed according to the application and specifications.
- the lead 2 is electrically connected to the semiconductor element 6 and has a main surface 21, a back surface 22, an inner surface 23, and connecting end surfaces 24 and 25.
- the main surface 21 and the back surface 22 face opposite sides in the z direction.
- the main surface 21 faces the same side as the main surface 11 of the lead 1 (z2 side in the z direction).
- the main surface 21 is the surface to which the wire 7 is joined.
- the main surface 21 has a rectangular shape that is long in the x direction and has portions that protrude on the y2 side in the y direction and on both sides in the x direction.
- the portion protruding in the y direction y2 reaches the edge of the semiconductor device A10 on the y direction y2 side.
- the portion protruding in the x direction x1 reaches the edge of the semiconductor device A10 on the x direction x1 side.
- the portion protruding in the x direction x2 reaches the edge of the semiconductor device A10 on the x direction x2 side.
- the back surface 22 faces the same side as the back surface 12 of the lead 1 (z1 side in the z direction).
- the rear surface 22 is exposed from the sealing resin 8 and becomes a rear surface terminal.
- the shape of the back surface 22 is a rectangular shape elongated in the x direction.
- the inner surface 23 is connected to the back surface 22 and is a portion in which a part of the lead 2 is recessed from the back surface 22 toward the main surface 21 side.
- the inner surface 23 is formed on the y-direction y2 side, the x-direction x1 side, and the x-direction x2 side of the back surface 22, respectively.
- the shape and arrangement position of the inner surface 23 are not particularly limited.
- the inner surface 23 may be formed so as to surround the entire periphery of the back surface 22 or may be formed on the y-direction y1 side of the back surface 22 as well. As shown in FIGS.
- the thickness (dimension in the z direction) of the portion of the lead 2 where the inner surface 23 is located is smaller than the thickness of the portion where the back surface 22 is located, for example about half.
- the inner surface 23 is formed, for example, by half-etching. As shown in FIG. 3 , the inner surface 23 is covered with the sealing resin 8 without being exposed from the sealing resin 8 . This prevents the lead 2 from peeling off from the sealing resin 8 toward the z1 side in the z direction.
- the connecting end surfaces 24 and 25 are surfaces perpendicular to the main surface 21 and the back surface 22 and are connected to the main surface 21 and the inner surface 23 .
- the connecting end surfaces 24 and 25 are exposed from the sealing resin 8 .
- the connecting end surfaces 24 and 25 are formed by dicing in the cutting process in the manufacturing process.
- the shape of the lead 2 is not limited to the one described above.
- the back surface 22 extends to the edge of the semiconductor device A10 on the y-direction y2 side
- the connection end surface 24 extends to the edge on the z-direction z1 side of the semiconductor device A10
- the back surface 22 and the connection end surface 24 are connected to form a continuous line. It may be exposed from the sealing resin 8 .
- the shape of the lead 2 is appropriately designed according to the application and specifications.
- the semiconductor element 6 is an element that exerts electrical functions of the semiconductor device A10.
- the type of semiconductor element 6 is not particularly limited.
- the semiconductor element 6 is a diode.
- the semiconductor element 6 has an element body 60 , a first electrode 631 and a second electrode 632 .
- the element body 60 has a rectangular plate shape when viewed in the z direction.
- the element body 60 is made of a semiconductor material, and is made of Si (silicon) in this embodiment.
- the material of element body 60 is not particularly limited, and may be other materials such as SiC (silicon carbide) and GaN (gallium nitride).
- the element body 60 has an element main surface 61 and an element back surface 62 .
- the element main surface 61 and the element back surface 62 face opposite to each other in the z direction.
- the element main surface 61 faces the z-direction z2 side.
- the element back surface 62 faces the z-direction z1 side.
- the first electrode 631 is arranged on the element main surface 61 .
- the second electrode 632 is arranged on the element back surface 62 . In this embodiment, the first electrode 631 is the anode electrode and the second electrode 632 is the cathode electrode.
- the semiconductor element 6 is bonded to the center (or approximately the center) of the main surface 11 of the lead 1 via a bonding material 79, as shown in FIGS.
- the bonding material 79 is a conductive bonding material such as solder.
- the bonding material 79 may be other conductive bonding materials such as silver paste and sintered silver bonding material.
- the semiconductor element 6 has the element rear surface 62 bonded to the main surface 11 of the lead 1 by the bonding material 79 .
- a second electrode 632 of the semiconductor element 6 is conductively connected to the lead 1 via a bonding material 79 .
- the lead 1 is conductively connected to the second electrode 632 (anode electrode) of the semiconductor element 6 and functions as an anode terminal.
- the first electrode 631 of the semiconductor element 6 is conductively connected to the lead 2 via the wire 7, as shown in FIG.
- the lead 2 is conductively connected to the first electrode 631 (cathode electrode) of the semiconductor element 6 and functions as a cathode terminal.
- the wire 7 connects the semiconductor element 6 and the lead 2 to make them conductive.
- the wire 7 is made of metal such as Cu, Au, Ag or Al.
- the material of the wire 7 is not particularly limited.
- the wire 7 is joined to the first electrode 631 of the semiconductor element 6 and the main surface 21 of the lead 2 .
- the first electrode 631 is connected to the lead 2 with one wire 7 .
- the number of wires 7 is not particularly limited.
- semiconductor element 6 and leads 2 may be connected by a conductive connection member (for example, a metal plate, a metal ribbon, or the like) other than wire 7 .
- the sealing resin 8 partially covers the leads 1 and 2, the semiconductor element 6, the bonding material 79, and the wires 7 as a whole.
- Sealing resin 8 is made of, for example, black epoxy resin.
- the material of the sealing resin 8 is not particularly limited.
- the sealing resin 8 has a resin main surface 81 , a resin back surface 82 and four resin side surfaces 83 .
- the resin main surface 81 and the resin back surface 82 face opposite sides in the z-direction.
- the resin main surface 81 is a surface facing the z-direction z2 side
- the resin back surface 82 is a surface facing the z-direction z1 side.
- the four resin side surfaces 83 are surfaces orthogonal to the resin main surface 81 and the resin back surface 82 and connecting the resin main surface 81 and the resin back surface 82 .
- Each resin side surface 83 faces outward in the x direction or the y direction.
- Each resin side surface 83 is formed by dicing in a cutting step in the manufacturing process.
- the four resin sides 83 include a resin side 831 , a resin side 832 , a resin side 833 , and a resin side 834 .
- the resin side surface 831 and the resin side surface 832 face opposite sides in the x direction.
- the resin side surface 831 is a surface arranged on the x-direction x1 side and facing the x-direction x1 side.
- the resin side surface 832 is a surface arranged on the x-direction x2 side and facing the x-direction x2 side.
- the resin side surface 833 and the resin side surface 834 face opposite sides in the y direction.
- the resin side surface 833 is a surface arranged on the y-direction y1 side and facing the y-direction y1 side.
- the resin side surface 834 is a surface that is arranged on the y-direction y2 side and faces the y-direction y2 side.
- the back surface 12 of the lead 1 and the back surface 22 of the lead 2 are exposed from the resin back surface 82 of the sealing resin 8 and are flush with the resin back surface 82 .
- the connection end surface 15 of the lead 1 facing the x-direction x1 side and the connection end surface 25 of the lead 2 facing the x-direction x1 side are exposed from the resin side surface 831 and are flush with the resin side surface 831 .
- the connection end surface 15 of the lead 1 facing the x-direction x2 side and the connection end surface 25 of the lead 2 facing the x-direction x2 side are exposed from the resin side surface 832 and are flush with the resin side surface 832 .
- the connecting end surface 14 of the lead 1 is exposed from the resin side surface 833 and is flush with the resin side surface 833 .
- the connecting end surface 24 of the lead 2 is exposed from the resin side surface 834 and is flush with the resin side surface 834 .
- FIG. 8 An example of a method for manufacturing the semiconductor device A10 will be described below with reference to FIGS. 8 to 14.
- FIG. 8
- FIG. 8 is a flow chart showing the manufacturing method of the semiconductor device A10.
- 9 to 14 are diagrams showing steps related to the method of manufacturing the semiconductor device A10.
- 9 and 12 to 14 are sectional views corresponding to FIG. 6.
- FIG. 10 is a plan view corresponding to FIG. 2.
- FIG. 11 is a bottom view, corresponding to FIG. 3.
- the method for manufacturing the semiconductor device A10 includes a lead frame forming step S10, a die bonding step S20, a wire bonding step S30, a sealing step S40, and a cutting step S50.
- the lead frame creation step S10 is a step of creating a lead frame from a metal plate.
- a metal plate 91 (see FIG. 9) that will be the material of the lead frame is prepared (S11).
- the metal plate 91 is made of Cu in this embodiment.
- the metal plate 91 has a main surface 911 and a back surface 912 facing opposite to each other in the z direction.
- a mask 92 is formed on the metal plate 91 (S12).
- Masks 92 are formed on both main surface 911 and back surface 912 of metal plate 91 .
- the mask 92 is formed, for example, by forming a photosensitive resin layer on the main surface 911 and the back surface 912 of the metal plate 91 and exposing and developing the layers. Note that the method of forming the mask 92 is not particularly limited.
- Mask 92 (see FIG. 10) formed on main surface 911 is a mask for forming main surface 11 of lead 1 and main surface 21 of lead 2 .
- Masks 92 (see FIG. 11) formed on back surface 912 include masks 921 , 922 , and 925 .
- Mask 921 is a mask for forming rear surface 12 of lead 1 .
- a mask 925 is a mask for forming the back surface 22 of the lead 2 .
- a mask 922 is a mask for forming the inner surface 131 of the lead 1 .
- the mask 922 has a plurality of rectangular masks 923 arranged in a checkered pattern. That is, in the mask 922, the masks 923 and the openings 924 are alternately arranged in the x direction, and the masks 923 and the openings 924 are also alternately arranged in the y direction.
- the masks 923 are arranged in six rows in the x direction and three rows in the y direction. Note that the number of arrays of the masks 923 in the x direction and the y direction is not particularly limited.
- isotropic etching is performed from both the main surface 911 side and the back surface 912 side of the metal plate 91 on which the mask 92 is formed (S13).
- the etching process is performed, for example, by immersing the metal plate 91 with the mask 92 formed thereon in an etchant that dissolves the components of the metal plate 91 .
- the etching treatment may be dry etching.
- portions of the metal plate 91 where the mask 92 is not formed are etched to form a lead frame 95 as shown in FIG.
- a principal surface 911 of the metal plate 91 is a partially etched principal surface 951 .
- the back surface 912 of the metal plate 91 is a back surface 952 that is partly etched.
- the lead frame 95 includes a portion penetrating in the z-direction and a portion half-etched only from the z-direction z1 side. A portion of the metal plate 91 where the mask 92 is not formed on the main surface 911 and the mask 92 is not formed on the back surface 912 is penetrated by etching from both sides. As a result, in the lead frame 95, the portion that will become the lead 1 and the portion that will become the lead 2 of the same semiconductor device A10 are formed in a state separated from each other.
- the main surface 951 of the lead 1 portion of the lead frame 95 is the main surface 11
- the main surface 951 of the lead 2 portion is the main surface 21 .
- the back surface 952 of the lead 1 portion of the lead frame 95 becomes the back surface 12
- the back surface 952 of the lead 2 portion becomes the back surface 22
- a portion of the metal plate 91 where the mask 92 is formed on the main surface 911 and the mask 921 and the mask 925 are not formed on the back surface 912 is etched only from the z-direction z1 side, and is etched from the back surface 952 to the main surface.
- An inner surface 953 recessed on the 951 side is formed.
- the inner surface 953 of the lead 1 portion of the lead frame 95 is the inner surface 13
- the inner surface 953 of the lead 2 portion is the inner surface 23 .
- the portion facing the mask 922 is etched to form the convex portion 16 and the concave portion 17 by etching the back surface 912 on which the mask 922 was formed in FIG. ing.
- the portion of the back surface 912 on which the mask 922 is formed, where the opening 924 is located, is etched in the same manner as the portion where the mask 92 is not formed.
- isotropic etching proceeds in directions other than the z-direction, so that the portion of the back surface 912 where the mask 922 is formed, where the mask 923 is located, is also etched from the periphery.
- the portion where the mask 923 is positioned is less etched than the portion where the opening 924 is positioned, the protrusion 16 projecting from the periphery is formed.
- a concave portion 17 that is recessed from the convex portion 16 is formed in a portion where the opening portion 924 is located. Since the plurality of masks 923 are arranged in a checkered pattern in the mask 922, the convex portions 16 are also formed in a checkered pattern.
- the mask 92 is then removed.
- the lead frame 95 is produced by the above. In the lead frame 95, a plurality of portions to be the semiconductor device A10 are connected to each other.
- the die bonding step S20 is a step of bonding the semiconductor element 6 to the lead frame 95.
- the semiconductor elements 6 are bonded to the main surfaces 951 of the portions of the lead frame 95 that will become the leads 1 via the bonding material 79 .
- a solder paste that will become the joining material 79 is applied to the center of each main surface 951 of the portion that will become each lead 1 .
- semiconductor elements 6 are placed on the applied solder paste.
- a reflow process is performed to melt and then solidify the solder paste.
- the semiconductor element 6 is joined to the lead frame 95 .
- the bonding method of the semiconductor element 6 in the die bonding step S20 is not particularly limited.
- the wire bonding step S30 is a step of forming the wires 7.
- the wire 7 is joined to the first electrode 631 of the semiconductor element 6 and the main surface 951 of the portion of the lead frame 95 that will become each lead 2 .
- the wire 7 is formed by a wire bonder using a capillary. Specifically, first, the tip of the wire is protruded from the capillary of the wire bonder and melted to form the tip of the wire into a ball shape. This ball-shaped tip is pressed against the first electrode 631 of the semiconductor element 6 . Next, the wire is pulled out from the capillary and the capillary is moved to press the wire against the main surface 951 of the portion of the lead frame 95 that will become each lead 2 . Then, while holding down the wire with a clamper of the capillary, the capillary is lifted to cut the wire.
- the wire 7 is formed by the above.
- a method for forming the wires 7 in the wire bonding step S30 is not particularly limited.
- the sealing step S40 is a step of forming the sealing resin 96.
- a resin material is cured to form a sealing resin 96 that covers a portion of the lead frame 95, the semiconductor element 6, and the wires 7, as shown in FIG.
- the process is performed, for example, by well-known transfer molding using a mold. Specifically, the lead frame 95 to which the semiconductor element 6 and the wire 7 are joined is set in a molding machine. Next, the fluidized resin material is poured into a cavity in a mold for molding. Then, the resin material is cured. As described above, the sealing resin 96 is formed. The back surface 952 of the lead frame 95 is exposed from the sealing resin 96 by setting the lead frame 95 with the back surface 952 in contact with the mold.
- the back surface 952 of the lead frame 95 and the back surface 962 of the sealing resin 96 are flush with each other. Also, since the resin material flows between the mold and the inner surface 953 , the inner surface 953 is covered with the sealing resin 96 .
- the method of forming the sealing resin 96 in the sealing step S40 is not particularly limited.
- the cutting step S50 is a step of cutting the lead frame 95 and the sealing resin 96 .
- a blade is used to cut the lead frame 95 and the sealing resin 96 into individual pieces.
- an individual piece to be the semiconductor device A10 is formed.
- the leads 1 and 2 are obtained by cutting the lead frame 95 .
- the cut surfaces formed at this time become the connection end surfaces 14 and 15 of the lead 1 and the connection end surfaces 24 and 25 of the lead 2 .
- the sealing resin 8 is formed by cutting the sealing resin 96 .
- the cut surface formed at this time becomes the resin side surface 83 .
- the cutting method in the cutting step S50 is not particularly limited. Through the above steps, the semiconductor device A10 described above is manufactured.
- the inner surface 131 of the lead 1 has a plurality of protrusions 16 and a plurality of recesses 17 .
- the contact area between the inner surface 131 and the sealing resin 8 is increased. Therefore, the adhesion of the sealing resin 8 to the inner surface 131 is improved. Thereby, the semiconductor device A10 can suppress peeling of the sealing resin 8 on the inner surface 131 .
- the plurality of convex portions 16 are arranged in a checkered pattern when viewed in the z direction. Since the protrusions 16 and the recesses 17 are alternately arranged in both the x-direction and the y-direction, the thermal stress generated in the x-direction and the thermal stress in the y-direction on the inner surface 131 Peeling of the sealing resin 8 can be suppressed. Further, when a crack occurs between the inner surface 131 of the lead 1 and the sealing resin 8, the crack can be prevented from growing in the direction in which the convex portion 16 and the concave portion 17 are arranged.
- a mask 922 in which a plurality of rectangular masks 923 are arranged in a checkered pattern is formed on the back surface 912 of the metal plate 91, and isotropic from the back surface 912 side.
- An internal surface 131 is formed by etching.
- each convex portion 16 is arranged in a checkered pattern when viewed in the z direction, but the present invention is not limited to this.
- a method of arranging the projections 16 as viewed in the z-direction is not particularly limited.
- the case where the shape of each convex portion 16 as viewed in the z direction is rectangular has been described, but the shape is not limited to this.
- the shape of each convex portion 16 when viewed in the z-direction is not particularly limited, and may be another polygonal shape or another shape such as a circular shape.
- FIG. 15 is a bottom view showing the semiconductor device A11 according to the first modification of the first embodiment, and corresponds to FIG.
- the projections 16 arranged on the inner surface 131 have smaller dimensions in the x-direction and the y-direction than the semiconductor device A10, and the projections 16 are arranged in a larger number.
- the convex portions 16 are arranged in nine rows in the x direction and five rows in the y direction on the inner surface 131 .
- the number of projections 16 arranged in the x-direction and the y-direction is not particularly limited, and may be larger or smaller than in this modification. Also, it may be less than in the case of the semiconductor device A10 according to the first embodiment.
- the convex portions 16 may be arranged in two or more rows in the x direction, and may also be arranged in two or more rows in the y direction.
- FIG. 16 is a bottom view showing the semiconductor device A12 according to the second modification of the first embodiment, corresponding to FIG.
- the semiconductor device A12 differs from the semiconductor device A10 in the method of arranging the plurality of protrusions 16 on the inner surface 131 as viewed in the z direction.
- the protrusions 16 and the recesses 17 are alternately arranged in the x direction, and the rows of the same arrangement are arranged across the recesses 17 in the y direction.
- the arrangement of the protrusions 16 in the semiconductor device A12 is similar to the arrangement of the protrusions 16 in the semiconductor device A10, in which the protrusions 16 in the central row in the y direction (the protrusion 164 and the two protrusions aligned in the x direction x2 side thereof) are arranged. 16) is deleted.
- the convex portions 16 are arranged in three rows in the x direction and two rows in the y direction.
- the number of projections 16 arranged in the x-direction and the y-direction is not particularly limited. The number of each arrangement is appropriately set according to the size of the inner surface 131 and the size of the convex portion 16 when viewed in the z direction.
- the arrangement intervals of the projections 16 in the x-direction or the y-direction that is, the dimensions of the recesses 17 in the x-direction or the y-direction may be reduced or increased.
- FIG. 17 is a bottom view showing the semiconductor device A13 according to the third modification of the first embodiment, corresponding to FIG.
- the semiconductor device A13 differs from the semiconductor device A10 in the shape and arrangement method of the plurality of protrusions 16 on the inner surface 131 as viewed in the z direction.
- each projection 16 has a rectangular shape that is long in the y direction when viewed in the z direction, and three projections 16 are arranged with the recess 17 interposed therebetween in the x direction. That is, the convex portions 16 and the concave portions 17 are alternately arranged in the x-direction and extend in the y-direction.
- the number of projections 16 arranged in the x direction is not particularly limited.
- the number of arrays is appropriately set according to the x-direction dimension of the inner surface 131 and the x-direction dimension of the projections 16 and the recesses 17 . Also, the arrangement interval of each convex portion 16 in the x direction, that is, the dimension of each concave portion 17 in the x direction may be reduced or increased.
- FIG. 18 is a bottom view showing the semiconductor device A14 according to the fourth modification of the first embodiment, corresponding to FIG.
- the semiconductor device A14 differs from the semiconductor device A10 in the size and arrangement method of the plurality of protrusions 16 on the inner surface 131 as viewed in the z direction.
- each projection 16 is arranged irregularly.
- the size of each projection 16 as viewed in the z direction is smaller than that of the semiconductor device A10. Note that the size of each convex portion 16 when viewed in the z direction is not particularly limited.
- FIG. 19 is a bottom view showing the semiconductor device A15 according to the fifth modification of the first embodiment, corresponding to FIG.
- the semiconductor device A15 differs from the semiconductor device A10 in the shape of the plurality of protrusions 16 on the inner surface 131 as viewed in the z direction.
- each projection 16 has a circular shape when viewed in the z direction. Note that the shape of each projection 16 as viewed in the z-direction is not limited to a rectangular shape or a circular shape, and may be other shapes such as other polygonal shapes and elliptical shapes.
- each convex portion 16 is arranged on the inner surface 131 has been described, but the present invention is not limited to this.
- Each protrusion 16 may be arranged on another inner surface 13 .
- each convex portion 16 may be arranged on the inner surface 23 of the lead 2 . Even if each convex portion 16 is arranged on another inner surface 13 or inner surface 23, the shape, size, and arrangement method of each convex portion 16 when viewed in the z-direction are not particularly limited. Even in these cases, variations similar to those of the first to fifth modifications are conceivable.
- FIG. 20 is a diagram for explaining the semiconductor device A20 according to the second embodiment of the present disclosure.
- FIG. 20 is a bottom view of the semiconductor device A20, corresponding to FIG.
- the semiconductor device A20 according to the present embodiment differs from the semiconductor device A10 according to the first embodiment in that a plurality of protrusions 16 are arranged on the inner surface 13 other than the inner surface 131.
- FIG. The configuration and operation of other portions of this embodiment are the same as those of the first embodiment.
- each part of said 1st Embodiment may be combined arbitrarily.
- the area of the inner surface 131 of the lead 1 according to this embodiment is smaller than that of the first embodiment.
- the area of the inner surface 13 (hereinafter referred to as "inner surface 132") formed on the opposite side (y1 side in the y direction) of the lead 2 with respect to the back surface 12 in the y direction. is larger than in the first embodiment.
- the plurality of protrusions 16 are arranged on the inner surface 132 instead of the inner surface 131 .
- the shape, size, and arrangement method of each projection 16 as viewed in the z-direction are the same as those of the first modification of the first embodiment.
- the shape, size, and arrangement method of each projection 16 when viewed in the z direction are not particularly limited, and various variations shown in the first embodiment are conceivable.
- the inner surface 132 of the lead 1 has a plurality of protrusions 16 and a plurality of recesses 17 .
- the contact area between the inner surface 132 and the sealing resin 8 is increased. Therefore, the adhesion of the sealing resin 8 to the inner surface 132 is improved.
- the semiconductor device A20 can suppress peeling of the sealing resin 8 on the inner surface 132 .
- the semiconductor device A20 has the same effect as the semiconductor device A10 due to the configuration common to the semiconductor device A10.
- FIG. 21 is a diagram for explaining the semiconductor device A30 according to the third embodiment of the present disclosure.
- FIG. 21 is a bottom view of the semiconductor device A30, corresponding to FIG.
- the semiconductor device A30 according to the present embodiment is different from the semiconductor device A10 according to the first embodiment in that a plurality of protrusions 16 are also arranged on the inner surface 13 other than the inner surface 131 .
- the configuration and operation of other portions of this embodiment are the same as those of the first embodiment. Note that each part of the above first and second embodiments may be combined arbitrarily.
- the area of the back surface 12 of the lead 1 according to this embodiment is smaller than that of the first embodiment.
- the inner surfaces 13 the inner surface 132, the inner surface 13 formed on the x-direction x1 side of the back surface 12 (hereinafter referred to as the “inner surface 133”), and the x-direction x2 side of the back surface 12
- the area of the formed inner surface 13 (hereinafter referred to as "inner surface 134”) is larger than in the first embodiment.
- the inner surfaces 131 to 134 are connected and formed so as to surround the entire circumference of the back surface 12 .
- the plurality of protrusions 16 are arranged not only on the inner surface 131 but also on the inner surfaces 132 , 133 , and 134 .
- the shape, size, and arrangement method of each projection 16 as viewed in the z-direction are the same as those of the first modification of the first embodiment.
- the shape, size, and arrangement method of each projection 16 when viewed in the z direction are not particularly limited, and various variations shown in the first embodiment are conceivable.
- the inner surfaces 131 to 134 of the lead 1 are provided with a plurality of protrusions 16 and a plurality of recesses 17, respectively.
- the contact area between the inner surfaces 131 to 134 and the sealing resin 8 is increased. Therefore, the adhesion of the sealing resin 8 to the inner surfaces 131-134 is improved.
- the semiconductor device A30 can suppress peeling of the sealing resin 8 on the inner surfaces 131 to 134 . Further, the semiconductor device A30 has the same effect as the semiconductor device A10 due to the configuration common to the semiconductor device A10.
- FIG. 22 is a diagram for explaining a semiconductor device A40 according to the fourth embodiment of the present disclosure.
- FIG. 22 is a bottom view of the semiconductor device A40, corresponding to FIG.
- the semiconductor device A40 according to the present embodiment differs from the semiconductor device A10 according to the first embodiment in that a plurality of protrusions 16 are also arranged on the inner surface 23 of the lead 2 .
- the configuration and operation of other portions of this embodiment are the same as those of the first embodiment. Note that each part of the above first to third embodiments may be combined arbitrarily.
- the inner surface 23 of the lead 2 is formed on the lead 1 side (the y1 side in the y direction) with respect to the rear surface 22 in the y direction (hereinafter referred to as "inner surface 231"). is further provided.
- the plurality of protrusions 16 are arranged not only on the inner surface 131 of the lead 1 but also on the inner surface 231 of the lead 2 .
- the plurality of protrusions 16 may be arranged on another inner surface 23 of the lead 2 .
- the shape, size, and arrangement method of each projection 16 as viewed in the z-direction are the same as those of the first modification of the first embodiment.
- the shape, size, and arrangement method of each projection 16 when viewed in the z direction are not particularly limited, and various variations shown in the first embodiment are conceivable.
- the inner surface 131 of lead 1 and the inner surface 231 of lead 2 are provided with a plurality of protrusions 16 and a plurality of recesses 17, respectively.
- the contact area between the inner surfaces 131 and 231 and the sealing resin 8 is increased compared to the case where the plurality of protrusions 16 and the plurality of recesses 17 are not provided. Therefore, the adhesion of the sealing resin 8 to the inner surfaces 131, 231 is improved.
- the semiconductor device A40 can suppress peeling of the sealing resin 8 on the inner surfaces 131 and 231 .
- the semiconductor device A40 has the same effect as the semiconductor device A10 due to the configuration common to the semiconductor device A10.
- FIG. 23 is a diagram for explaining the semiconductor device A50 according to the fifth embodiment of the present disclosure.
- FIG. 23 is a plan view showing the semiconductor device A50, corresponding to FIG.
- the semiconductor device A50 according to the present embodiment is different from the semiconductor device A10 according to the first embodiment in the type of the semiconductor element 6, and is further provided with leads 3, unlike the semiconductor device A10 according to the first embodiment. different.
- the configuration and operation of other portions of this embodiment are the same as those of the first embodiment. It should be noted that each part of the above-described first to fourth embodiments may be combined arbitrarily.
- the semiconductor device A50 further includes leads 3 .
- Lead 3 is spaced apart from lead 1 and lead 2 .
- the lead 2 is arranged on the y-direction y2 side of the semiconductor device A50 at the end portion on the x-direction x1 side (the upper left corner in FIG. 23), and the lead 3 is arranged on the y-direction y2 side of the semiconductor device A50. It is arranged at the end on the direction x2 side (upper right corner in FIG. 23). That is, the lead 3 is arranged on the same side as the lead 2 with respect to the lead 1 in the y direction.
- the lead 3 is electrically connected to the semiconductor element 6 and has a principal surface 31 , a back surface 32 , an inner surface 33 , and connecting end surfaces 34 and 35 .
- the main surface 31 and the back surface 32 face opposite sides in the z direction.
- the main surface 31 faces the same side as the main surface 11 of the lead 1 (z2 side in the z direction).
- the main surface 31 is the surface to which the wire 7 is joined.
- the shape of the main surface 31 is a rectangular shape having portions protruding in the y direction y2 and in the x direction x2.
- the portion protruding in the y direction y2 reaches the edge of the semiconductor device A50 on the y direction y2 side.
- the portion protruding in the x direction x2 reaches the edge of the semiconductor device A50 on the x direction x2 side.
- the number of each projecting portion is not particularly limited.
- the back surface 32 faces the same side as the back surface 12 of the lead 1 (z1 side in the z direction).
- the rear surface 32 is exposed from the sealing resin 8 and becomes a rear surface terminal.
- the shape of the back surface 32 is rectangular.
- the inner surface 33 is connected to the back surface 32 and is a portion where a part of the lead 3 is recessed from the back surface 32 toward the main surface 31 side.
- the inner surface 33 is formed on the y-direction y2 side and the x-direction x2 side of the back surface 32, respectively.
- the shape and arrangement position of the inner surface 33 are not particularly limited.
- the inner surface 33 may be formed so as to surround the entire periphery of the back surface 32, or may be formed on the y-direction y1 side or the x-direction x1 side of the back surface 32 as well.
- the thickness (dimension in the z direction) of the portion of the lead 3 where the inner surface 33 is located is smaller than the thickness of the portion where the back surface 32 is located, for example about half.
- the inner surface 33 is formed, for example, by half-etching.
- the inner surface 33 is covered with the sealing resin 8 without being exposed from the sealing resin 8 . This prevents the leads 3 from peeling off from the sealing resin 8 toward the z1 side in the z direction.
- the connecting end surfaces 34 , 35 are surfaces perpendicular to the main surface 31 and the back surface 32 and are connected to the main surface 31 and the inner surface 33 .
- the connecting end surfaces 34 and 35 are exposed from the sealing resin 8 .
- the connecting end surfaces 34 and 35 are formed by dicing in the cutting process in the manufacturing process.
- the shape of the lead 3 is not limited to the one described above.
- the back surface 32 extends to the edge of the semiconductor device A50 on the y-direction y2 side
- the connection end surface 34 extends to the edge on the z-direction z1 side of the semiconductor device A50
- the back surface 32 and the connection end surface 34 are connected to form a continuous line. It may be exposed from the sealing resin 8 .
- the shape of the lead 3 is appropriately designed according to the application and specifications.
- the semiconductor element 6 is, for example, a MOSFET (metal-oxide-semiconductor field-effect transistor).
- the semiconductor element 6 may be another transistor such as an IGBT (Insulated Gate Bipolar Transistor).
- the semiconductor element 6 further includes a third electrode 633 arranged on the element main surface 61 .
- the first electrode 631 is the source electrode
- the second electrode 632 is the drain electrode
- the third electrode 633 is the gate electrode.
- a second electrode 632 of the semiconductor element 6 is conductively connected to the lead 1 via a bonding material 79 .
- the lead 1 is conductively connected to the second electrode 632 (drain electrode) of the semiconductor element 6 and functions as a drain terminal.
- a first electrode 631 of the semiconductor element 6 is conductively connected to the lead 2 via the wire 7 .
- the lead 2 is conductively connected to the first electrode 631 (source electrode) of the semiconductor element 6 and functions as a source terminal.
- a third electrode 633 of the semiconductor element 6 is conductively connected to the lead 3 via the wire 7 .
- the lead 3 is conductively connected to the third electrode 633 (gate electrode) of the semiconductor element 6 and functions as a gate terminal.
- the inner surface 131 of the lead 1 has a plurality of protrusions 16 and a plurality of recesses 17 .
- the contact area between the inner surface 131 and the sealing resin 8 is increased. Therefore, the adhesion of the sealing resin 8 to the inner surface 131 is improved.
- the semiconductor device A50 can suppress peeling of the sealing resin 8 on the inner surface 131 .
- the semiconductor device A50 has the same effect as the semiconductor device A10 due to the configuration common to the semiconductor device A10.
- Lead 3 may be arranged on the opposite side of lead 1 to lead 2 in the y-direction.
- the semiconductor element 6 is a diode
- the semiconductor element 6 is a transistor
- the present invention is not limited to this.
- the type of semiconductor element 6 is not particularly limited, and other semiconductor elements such as integrated circuits may be used.
- the case where two or three leads are arranged has been described, but the present invention is not limited to this.
- the number and arrangement of leads to be arranged are not particularly limited, and are appropriately set according to the number and arrangement of electrodes arranged on the element main surface 61 of the semiconductor element 6 .
- the semiconductor device and the semiconductor device manufacturing method according to the present disclosure are not limited to the above-described embodiments.
- the specific configuration of each part of the semiconductor device according to the present disclosure and the specific processing of each step of the method for manufacturing the semiconductor device of the present disclosure can be changed in design in various ways.
- the present disclosure includes embodiments described in the appendices below.
- Appendix 1 a semiconductor element (6); a first lead (1) on which the semiconductor element is mounted; a second lead (2) spaced apart from the first lead in a first direction perpendicular to the thickness direction of the first lead and conducting to the semiconductor element; a sealing resin (8) covering the semiconductor element; with The first lead is a first main surface (11) to which the semiconductor element is bonded; a first rear surface (12) facing the side opposite to the first main surface in the thickness direction and exposed from the sealing resin; a first inner surface (131) connected to the first back surface and covered with the sealing resin; with The first inner surface is a first protrusion (161) protruding toward the side facing the first back surface; A first concave portion arranged in a second direction orthogonal to the thickness direction and the first direction with respect to the first convex portion and concave on a side of the first convex portion facing the first main surface.
- a semiconductor device comprising: Appendix 2.
- semiconductor device Appendix 3.
- the first inner surface has a third protrusion (163) that protrudes toward the first rear surface and is aligned in the first direction with respect to the first protrusion.
- Appendix 4. The first inner surface protrudes toward the side facing the first back surface, and is between the first convex portion and the second convex portion in the second direction, and the first convex portion in the first direction 3.
- Appendix 5 The semiconductor device according to appendix 4, wherein the fourth protrusion is positioned on a line segment connecting a vertex of the second protrusion and a vertex of the third protrusion when viewed in the thickness direction.
- Appendix 6. The semiconductor device according to appendix 1, wherein the first protrusion and the first recess extend in the first direction.
- Appendix 7. 7.
- the first protrusion has a dimension (T2) in the thickness direction from the first main surface that is equal to a dimension (T1) in the thickness direction from the first main surface to the first rear surface of the first lead.
- T2 dimension in the thickness direction from the first main surface that is equal to a dimension (T1) in the thickness direction from the first main surface to the first rear surface of the first lead.
- T3 dimension in the thickness direction from the bottom of the first recess to the top of the first protrusion is the dimension in the thickness direction from the first main surface to the first rear surface of the first lead.
- Appendix 10. (Third Embodiment, FIG. 21) The first inner surface protrudes toward the first rear surface and is located on the opposite side of the first rear surface to the second lead in the first direction.
- the second lead is a second main surface (21) facing the same side as the first main surface; a second back surface (22) facing the same side as the first back surface and exposed from the sealing resin; A second inner surface (23) connected to the second back surface and covered with the sealing resin, 12.
- Appendix 12-1. 13 The semiconductor device according to any one of Appendixes 1 to 12, wherein the semiconductor element is a diode. Appendix 13. (Fifth embodiment, FIG. 23) 13.
- a method of manufacturing a semiconductor device including a first lead having a first main surface and a first back surface facing opposite sides in a thickness direction comprising: a step of preparing a metal plate having a main surface and a back surface facing opposite to each other in the thickness direction (S11); forming a first mask for forming the first back surface and a second mask in which a plurality of rectangular masks are arranged in a checkered pattern on the back surface of the metal plate (S12); a step (S13) of creating a lead frame by etching the metal plate from the main surface side and the back surface side; a step of bonding a semiconductor element to the lead frame (S20); forming a sealing resin covering the semiconductor element (S40); a step of cutting the lead frame and the sealing resin (S50); A method of manufacturing a semiconductor device, comprising: Appendix 15.
- the rectangular masks are arranged in three or more rows in a first direction orthogonal to the thickness direction and in a second direction orthogonal to the thickness direction and the first direction.
- A10 to A15, A20, A30, A40, A50 Semiconductor device 1: Lead 11: Main surface 12: Back surface 13, 131 to 134: Internal surface 14: Connection end surface 15: Connection end surface 16, 161 to 164: Convex portion 17: Recess 2: Lead 21: Main surface 22: Back surface 23: Internal surface 231: Internal surface 24: Connection end surface 25: Connection end surface 3: Lead 31: Main surface 32: Back surface 33: Internal surface 34: Connection end surface 35: Connection end surface 6 : Semiconductor element 60: Element body 61: Element principal surface 62: Element back surface 631: First electrode 632: Second electrode 633: Third electrode 7: Wire 79: Bonding material 8: Sealing resin 81: Resin principal surface 82: Resin back surface 83, 831 to 834: Resin side surface 91: Metal plate 911: Main surface 912: Back surface 92, 921, 922, 923: Mask 924: Opening 925: Mask 95: Lead frame 951: Main surface 952:
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
This semiconductor device comprises: a semiconductor element; a first lead on which the semiconductor element is mounted; a second lead which is disposed away from the first lead in a first direction perpendicular to the thickness direction of the first lead and which has electrical continuity with the semiconductor element; and a sealing resin which covers the semiconductor element. The first lead comprises: a first main surface to which the semiconductor element is joined; a first rear surface which faces the opposite direction of the first main surface in the thickness direction and which is exposed from the sealing resin; and a first internal surface which is connected to the first rear surface and which is covered by the sealing resin. The first internal surface comprises: a first convex part that projects in the direction toward which the first rear surface faces; and a first concave part that is arrayed, relative to the first convex part, in a second direction perpendicular to the first direction and the thickness direction and that is recessed, relative to the first convex part, in the direction toward which the first rear surface faces.
Description
本開示は、半導体装置、および、半導体装置の製造方法に関する。
The present disclosure relates to a semiconductor device and a method for manufacturing the semiconductor device.
半導体素子を備えた半導体装置は、様々な構成が提案されている。半導体装置の一例として、ダイパッドに搭載された半導体素子がワイヤによってリードに接続され、これらが封止樹脂で覆われた半導体装置がある。このような半導体装置において、ダイパッドの裏面が封止樹脂から露出して裏面端子になるものがある。この場合、ダイパッドが封止樹脂の裏面から抜け落ちることを防ぐために、ダイパッドに、裏面と同じ側を向き、かつ、封止樹脂に覆われた内部面が形成される。特許文献1には、第1リードの搭載部主面に半導体素子が搭載され、搭載部裏面が封止樹脂から露出して裏面端子になる半導体装置が開示されている。当該半導体装置において、第1リードは、搭載部裏面からz方向に凹んだ搭載部裏面側凹部を備えている。
Various configurations have been proposed for semiconductor devices that include semiconductor elements. As an example of a semiconductor device, there is a semiconductor device in which a semiconductor element mounted on a die pad is connected to leads by wires and these are covered with a sealing resin. In such a semiconductor device, the back surface of the die pad may be exposed from the sealing resin and used as a back surface terminal. In this case, in order to prevent the die pad from falling out of the back surface of the sealing resin, the die pad has an inner surface facing the same side as the back surface and covered with the sealing resin. Patent Document 1 discloses a semiconductor device in which a semiconductor element is mounted on the main surface of the mounting portion of the first lead, and the rear surface of the mounting portion is exposed from the sealing resin and becomes a rear surface terminal. In the semiconductor device, the first lead has a recess on the back side of the mounting portion recessed in the z-direction from the back surface of the mounting portion.
内部面は、金属板をエッチング処理することでリードフレームを形成する際に、ハーフエッチングにより形成されるので、平坦な面になっている。したがって、ダイパッドと封止樹脂との線膨張係数の違いにより発生する熱応力によって、内部面から封止樹脂が剥離する場合がある。
The inner surface is flat because it is formed by half-etching when the lead frame is formed by etching the metal plate. Therefore, the thermal stress generated by the difference in linear expansion coefficient between the die pad and the encapsulating resin may cause the encapsulating resin to peel off from the inner surface.
本開示は、上記した事情のもとで考え出されたものであって、内部面における封止樹脂の剥離を抑制できる半導体装置、および、その製造方法を提供することを一の課題とする。
The present disclosure has been conceived under the circumstances described above, and has an object to provide a semiconductor device capable of suppressing peeling of the sealing resin on the inner surface, and a method of manufacturing the same.
本開示によって提供される半導体装置は、半導体素子と、前記半導体素子が搭載された第1リードと、前記第1リードから、前記第1リードの厚さ方向に直交する第1方向に離間して配置され、かつ、前記半導体素子に導通する第2リードと、前記半導体素子を覆う封止樹脂とを備え、前記第1リードは、前記半導体素子が接合された第1主面と、前記厚さ方向において前記第1主面とは反対側を向き、かつ、前記封止樹脂から露出する第1裏面と、前記第1裏面につながり、かつ、前記封止樹脂に覆われている第1内部面とを備え、前記第1内部面は、前記第1裏面が向く側に突出する第1凸部と、前記第1凸部に対して前記厚さ方向と前記第1方向とに直交する第2方向に並び、かつ、前記第1凸部に対して前記第1主面が向く側に凹む第1凹部とを備えている。
A semiconductor device provided by the present disclosure includes: a semiconductor element; first leads on which the semiconductor element is mounted; a second lead arranged and conducting to the semiconductor element; and a sealing resin covering the semiconductor element, wherein the first lead has a first main surface to which the semiconductor element is bonded and the thickness of the second lead. a first back surface facing in a direction opposite to the first main surface and exposed from the sealing resin; and a first inner surface connected to the first back surface and covered with the sealing resin. and the first inner surface includes a first convex portion protruding toward the side facing the first back surface, and a second convex portion perpendicular to the thickness direction and the first direction with respect to the first convex portion. and a first concave portion that is aligned in the direction and concave toward the first main surface facing the first convex portion.
本開示にかかる半導体装置の製造方法は、厚さ方向において互いに反対側を向く第1主面および第1裏面を有する第1リードを備える半導体装置の製造方法であって、前記厚さ方向において互いに反対側を向く主面および裏面を有する金属板を準備する工程と、前記金属板の前記裏面に、前記第1裏面を形成するための第1マスク、および、複数の矩形状のマスクが市松模様状に配列された第2マスクを形成する工程と、前記金属板に前記主面側および前記裏面側からエッチング処理を行うことで、リードフレームを作成する工程と、前記リードフレームに半導体素子を接合する工程と、前記半導体素子を覆う封止樹脂を形成する工程と、前記リードフレームおよび前記封止樹脂を切断する工程とを備えている。
A method of manufacturing a semiconductor device according to the present disclosure is a method of manufacturing a semiconductor device including a first lead having a first main surface and a first back surface facing opposite sides in the thickness direction, preparing a metal plate having a main surface and a back surface facing opposite sides; and a first mask for forming the first back surface and a plurality of rectangular masks in a checkered pattern on the back surface of the metal plate. forming a second mask arranged in a shape; forming a lead frame by etching the metal plate from the main surface side and the back surface side; and bonding a semiconductor element to the lead frame. forming a sealing resin covering the semiconductor element; and cutting the lead frame and the sealing resin.
上記構成によれば、半導体装置において、内部面における封止樹脂の剥離を抑制できる。
According to the above configuration, peeling of the sealing resin on the inner surface of the semiconductor device can be suppressed.
本開示のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
Other features and advantages of the present disclosure will become clearer from the detailed description given below with reference to the accompanying drawings.
以下、本開示の好ましい実施の形態を、添付図面を参照して具体的に説明する。
Preferred embodiments of the present disclosure will be specifically described below with reference to the accompanying drawings.
本開示において、「ある物Aがある物Bに形成されている」および「ある物Aがある物B上に形成されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接形成されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに形成されていること」を含む。同様に、「ある物Aがある物Bに配置されている」および「ある物Aがある物B上に配置されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接配置されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに配置されていること」を含む。同様に、「ある物Aがある物B上に位置している」とは、特段の断りのない限り、「ある物Aがある物Bに接して、ある物Aがある物B上に位置していること」、および、「ある物Aとある物Bとの間に他の物が介在しつつ、ある物Aがある物B上に位置していること」を含む。また、「ある物Aがある物Bにある方向に見て重なる」とは、特段の断りのない限り、「ある物Aがある物Bのすべてに重なること」、および、「ある物Aがある物Bの一部に重なること」を含む。
In the present disclosure, unless otherwise specified, the terms “a certain entity A is formed on a certain entity B” and “a certain entity A is formed on a certain entity B” mean “a certain entity A is formed on a certain entity B”. It includes "being directly formed in entity B" and "being formed in entity B while another entity is interposed between entity A and entity B". Similarly, unless otherwise specified, ``an entity A is placed on an entity B'' and ``an entity A is located on an entity B'' mean ``an entity A is located on an entity B.'' It includes "directly placed on B" and "some entity A is placed on an entity B while another entity is interposed between an entity A and an entity B." Similarly, unless otherwise specified, ``an object A is located on an object B'' means ``an object A is adjacent to an object B and an object A is positioned on an object B. and "the thing A is positioned on the thing B while another thing is interposed between the thing A and the thing B". In addition, unless otherwise specified, ``an object A overlaps an object B when viewed in a certain direction'' means ``an object A overlaps all of an object B'' and ``an object A overlaps an object B.'' It includes "overlapping a part of a certain thing B".
図1~図7に基づき、本開示の第1実施形態にかかる半導体装置A10について説明する。半導体装置A10は、リード1、リード2、半導体素子6、ワイヤ7、および封止樹脂8を備えている。
A semiconductor device A10 according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 7. FIG. The semiconductor device A10 includes leads 1, leads 2, a semiconductor element 6, wires 7, and a sealing resin 8. As shown in FIG.
図1は、半導体装置A10を示す斜視図である。図2は、半導体装置A10を示す平面図である。図2においては、理解の便宜上、封止樹脂8を透過して、封止樹脂8の外形を想像線(二点鎖線)で示している。図3は、半導体装置A10を示す底面図である。図4は、図2のIV-IV線に沿う断面図である。図5は、図2のV-V線に沿う断面図である。図6は、図2のVI-VI線に沿う断面図である。図7は、図2のVII-VII線に沿う断面図である。
FIG. 1 is a perspective view showing the semiconductor device A10. FIG. 2 is a plan view showing the semiconductor device A10. In FIG. 2, for convenience of understanding, the outer shape of the sealing resin 8 is shown by an imaginary line (chain double-dashed line) through the sealing resin 8. As shown in FIG. FIG. 3 is a bottom view showing the semiconductor device A10. FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. FIG. 5 is a cross-sectional view along line VV in FIG. FIG. 6 is a cross-sectional view taken along line VI-VI of FIG. FIG. 7 is a cross-sectional view taken along line VII--VII in FIG.
これらの図に示す半導体装置A10は、様々な機器の回路基板に表面実装される装置である。なお、半導体装置A10の用途や機能は特に限定されない。半導体装置A10のパッケージ形式は、DFN(Dual Flatpack No-leaded)である。なお、半導体装置A10のパッケージ形式は、DFNに限定されない。半導体装置A10の厚さ方向視の形状は矩形状である。説明の便宜上、半導体装置A10の厚さ方向(平面視方向)をz方向とし、z方向に直交する半導体装置A1の一方の辺に沿う方向(図2および図3における左右方向)をx方向、z方向およびx方向に直交する方向(図2および図3における上下方向)をy方向とする。z方向は「厚さ方向」の一例であり、y方向は「第1方向」の一例であり、x方向は「第2方向」の一例である。半導体装置A10の各寸法は特に限定されず、本実施形態においては、たとえばx方向寸法が0.6mm程度、y方向寸法が1mm程度、z方向寸法が0.4mm程度である。
The semiconductor device A10 shown in these figures is a device that is surface-mounted on circuit boards of various devices. The application and function of the semiconductor device A10 are not particularly limited. The package format of the semiconductor device A10 is DFN (Dual Flatpack No-leaded). Note that the package format of the semiconductor device A10 is not limited to DFN. The shape of the semiconductor device A10 when viewed in the thickness direction is rectangular. For convenience of explanation, the thickness direction (planar view direction) of the semiconductor device A10 is defined as the z direction, and the direction along one side of the semiconductor device A1 orthogonal to the z direction (horizontal direction in FIGS. 2 and 3) is defined as the x direction, A direction perpendicular to the z-direction and the x-direction (vertical direction in FIGS. 2 and 3) is defined as the y-direction. The z-direction is an example of the "thickness direction", the y-direction is an example of the "first direction", and the x-direction is an example of the "second direction". Each dimension of the semiconductor device A10 is not particularly limited, and in this embodiment, for example, the x-direction dimension is about 0.6 mm, the y-direction dimension is about 1 mm, and the z-direction dimension is about 0.4 mm.
リード1,2は、半導体素子6と導通している。リード1,2は、たとえば、金属板にエッチング処理を施すことにより形成されている。リード1,2は、金属からなり、好ましくはCuおよびNiのいずれか、またはこれらの合金や42アロイなどからなる。本実施形態においては、リード1,2が、Cuからなる場合を例に説明する。リード1,2の厚さは特に限定されず、たとえば0.05~0.3mmであり、本実施形態においては0.125mm程度である。
The leads 1 and 2 are electrically connected to the semiconductor element 6. Leads 1 and 2 are formed, for example, by etching a metal plate. The leads 1 and 2 are made of metal, preferably Cu or Ni, or an alloy thereof, 42 alloy, or the like. In this embodiment, an example in which the leads 1 and 2 are made of Cu will be described. The thickness of the leads 1 and 2 is not particularly limited, and is, for example, 0.05 to 0.3 mm, and about 0.125 mm in this embodiment.
図2に示すように、リード1は、半導体装置A10のy方向のy1側の端部に配置され、x方向の全体に広がっている。リード2は、半導体装置A10のy方向y2側の端部に配置され、x方向の全体に広がっている。リード2は、リード1からy方向に離間して配置されている。
As shown in FIG. 2, the lead 1 is arranged at the end of the semiconductor device A10 on the y1 side in the y direction and spreads all over the x direction. The lead 2 is arranged at the end on the y-direction y2 side of the semiconductor device A10 and spreads over the entire x-direction. Lead 2 is spaced apart from lead 1 in the y-direction.
リード1は、半導体素子6を支持し、主面11、裏面12、内部面13、および連結端面14,15を備えている。
The lead 1 supports the semiconductor element 6 and has a main surface 11, a back surface 12, an inner surface 13, and connecting end surfaces 14 and 15.
主面11および裏面12は、z方向において互いに反対側を向いている。主面11は、z方向z2側を向いている。主面11は、半導体素子6が搭載される面である。本実施形態では、主面11の形状は、矩形状からy方向y1側およびx方向の両側に突出した部分を有する形状である。y方向y1側に突出した部分は、半導体装置A10のy方向y1側の端縁まで達している。x方向x1側に突出した部分は、半導体装置A10のx方向x1側の端縁まで達している。x方向x2側に突出した部分は、半導体装置A10のx方向x2側の端縁まで達している。なお、各突出した部分の数は限定されない。裏面12は、封止樹脂8から露出して、裏面端子になる。本実施形態では、裏面12の形状は、x方向に長い矩形状である。
The main surface 11 and the back surface 12 face opposite to each other in the z direction. The main surface 11 faces the z-direction z2 side. The main surface 11 is a surface on which the semiconductor element 6 is mounted. In this embodiment, the shape of the main surface 11 is a rectangular shape having portions protruding on both sides in the y direction y1 and in the x direction. The portion protruding in the y direction y1 reaches the edge of the semiconductor device A10 on the y direction y1 side. The portion protruding in the x direction x1 reaches the edge of the semiconductor device A10 on the x direction x1 side. The portion protruding in the x direction x2 reaches the edge of the semiconductor device A10 on the x direction x2 side. Note that the number of each projecting portion is not limited. The rear surface 12 is exposed from the sealing resin 8 and becomes a rear surface terminal. In this embodiment, the back surface 12 has a rectangular shape elongated in the x direction.
内部面13は、裏面12につながり、リード1の一部が裏面12から主面11側に凹んだ部分である。本実施形態では、内部面13は、図3に示すように、裏面12のy方向y2側、y方向y1側、x方向x1側、およびx方向x2側に、それぞれ形成されている。なお、内部面13の形状および配置位置は限定されない。内部面13は、たとえば、裏面12の周囲全体を囲むように形成されてもよいし、裏面12のy方向y1側に形成されなくてもよい。図4~図7に示すように、リード1のうち内部面13が位置する部分の厚さ(z方向の寸法)は、裏面12が位置する部分の厚さより小さく、たとえば半分程度である。内部面13は、たとえばハーフエッチング処理により形成される。図3に示すように、内部面13は、封止樹脂8から露出せず、封止樹脂8によって覆われている。これにより、リード1が封止樹脂8からz方向のz1側に剥離することが抑制される。
The inner surface 13 is connected to the back surface 12 and is a portion where a part of the lead 1 is recessed from the back surface 12 toward the main surface 11 side. In this embodiment, as shown in FIG. 3, the inner surface 13 is formed on the y2 side, the y1 side, the x1 side, and the x2 side of the back surface 12 in the y direction. In addition, the shape and arrangement position of the inner surface 13 are not limited. For example, the inner surface 13 may be formed so as to surround the entire periphery of the back surface 12 or may not be formed on the y-direction y1 side of the back surface 12 . As shown in FIGS. 4 to 7, the thickness (dimension in the z direction) of the portion of the lead 1 where the inner surface 13 is located is smaller than the thickness of the portion where the back surface 12 is located, for example about half. The inner surface 13 is formed, for example, by half-etching. As shown in FIG. 3 , the inner surface 13 is covered with the sealing resin 8 without being exposed from the sealing resin 8 . This prevents the lead 1 from peeling off from the sealing resin 8 toward the z1 side in the z direction.
y方向において裏面12に対してリード2側(y方向y2側)に形成された内部面13(以下では、「内部面131」と記載する)は、複数の凸部16および複数の凹部17を備えている。
The inner surface 13 (hereinafter referred to as “inner surface 131”) formed on the lead 2 side (y2 side in the y direction) with respect to the rear surface 12 in the y direction has a plurality of protrusions 16 and a plurality of recesses 17. I have.
各凸部16は、図4~図7に示すように、周囲より裏面12が向く側(z方向z1側)に突出しており、内部面131のうち、内部面131のz方向における平均的な位置を示す仮想線a(図4~図7において二点鎖線で示す)よりz方向z1側に位置する部分である。内部面13は全体が封止樹脂8によって覆われており、各凸部16も封止樹脂8から露出しない。各凸部16の主面11からのz方向の寸法T2(図4参照)は、特に限定されないが、リード1の主面11から裏面12までのz方向の寸法T1の50%以上90%以下が望ましい。
As shown in FIGS. 4 to 7, each convex portion 16 protrudes from the periphery toward the side facing the back surface 12 (the z-direction z1 side). This is a portion located on the z-direction z1 side of the imaginary line a (indicated by a two-dot chain line in FIGS. 4 to 7) indicating the position. The entire inner surface 13 is covered with the sealing resin 8 , and the protrusions 16 are also not exposed from the sealing resin 8 . The z-direction dimension T2 (see FIG. 4) of each protrusion 16 from the main surface 11 is not particularly limited, but is 50% or more and 90% or less of the z-direction dimension T1 from the main surface 11 to the back surface 12 of the lead 1. is desirable.
各凹部17は、各凸部16に対して、主面11が向く側(z方向z2側)に凹んでおり、内部面131のうち、仮想線aよりz方向z2側に位置する部分である。凹部17の底から凸部16の頂点までのz方向の寸法である凹凸差の寸法T3は、特に限定されないが、寸法T1の10%以上50%以下が望ましい。各凸部16と各凹部17とは、図4および図5に示すようにx方向に並んでおり、かつ、図6および図7に示すようにy方向にも並んでいる。
Each recess 17 is recessed on the side (z direction z2 side) facing the main surface 11 with respect to each protrusion 16, and is a portion of the inner surface 131 located on the z direction z2 side from the imaginary line a. . The dimension T3 of the unevenness difference, which is the dimension in the z direction from the bottom of the concave portion 17 to the top of the convex portion 16, is not particularly limited, but is preferably 10% or more and 50% or less of the dimension T1. The protrusions 16 and the recesses 17 are aligned in the x direction as shown in FIGS. 4 and 5, and are also aligned in the y direction as shown in FIGS.
各凸部16は、図3に示すように、z方向視において市松模様状に配列されている。すなわち、x方向において凸部16と凹部17とが交互に配列され、かつ、y方向においても凸部16と凹部17とが交互に配列されている。本実施形態では、凸部16は、x方向に6列配列され、y方向に3列配列されている。図3においては、理解の便宜上、各凸部16にハッチングを付している。なお、凸部16のx方向およびy方向の配列数は、特に限定されない。各配列数は、z方向視における内部面131の大きさ、および、z方向視における凸部16の大きさに応じて、適宜設定される。x方向およびy方向の配列数は、ともに3列以上あるのが望ましい。また、各凸部16のz方向視の形状は、特に限定されず、正方形状であってもよいし、x方向に長い矩形状であってもよいし、y方向に長い矩形状であってもよい。また、各凸部16のz方向視の形状は、円形状または楕円形状などの他の形状であってもよい。
As shown in FIG. 3, the convex portions 16 are arranged in a checkered pattern when viewed in the z direction. That is, the convex portions 16 and the concave portions 17 are alternately arranged in the x direction, and the convex portions 16 and the concave portions 17 are also alternately arranged in the y direction. In this embodiment, the convex portions 16 are arranged in six rows in the x direction and three rows in the y direction. In FIG. 3, each convex portion 16 is hatched for convenience of understanding. Note that the number of projections 16 arranged in the x-direction and the y-direction is not particularly limited. The number of each arrangement is appropriately set according to the size of the inner surface 131 as viewed in the z direction and the size of the convex portion 16 as viewed in the z direction. It is desirable that the number of arrays in both the x-direction and the y-direction should be three or more. The shape of each projection 16 when viewed in the z direction is not particularly limited, and may be a square shape, a rectangular shape elongated in the x direction, or a rectangular shape elongated in the y direction. good too. Also, the shape of each projection 16 as viewed in the z-direction may be other shapes such as a circular shape or an elliptical shape.
複数の凸部16は、凸部161、凸部162、凸部163、および凸部164を含んでいる。凸部161は、内部面13において、最もx方向x1側で最もy方向y1側に配置されている。凸部162は、凸部161のx方向x2側に、凸部161に隣接して配置されている。つまり、凸部162は、凸部161に対して、x方向に並んでいる。また、凸部161と凸部162との間には、凹部17が配置されている。つまり、当該凹部17は、凸部161に対して、x方向に並んでいる。凸部163は、凸部161のy方向y2側に、凸部161に隣接して配置されている。つまり、凸部163は、凸部161に対して、y方向に並んでいる。また、凸部161と凸部163との間には、凹部17が配置されている。つまり、当該凹部17は、凸部161に対して、y方向に並んでいる。
The plurality of protrusions 16 includes protrusions 161 , 162 , 163 and 164 . The convex portion 161 is arranged on the inner surface 13 closest to the x1 side in the x direction and closest to the y1 side in the y direction. The convex portion 162 is arranged adjacent to the convex portion 161 on the x-direction x2 side of the convex portion 161 . That is, the convex portion 162 is arranged in the x direction with respect to the convex portion 161 . A recess 17 is arranged between the protrusion 161 and the protrusion 162 . In other words, the concave portion 17 is arranged in the x direction with respect to the convex portion 161 . The convex portion 163 is arranged adjacent to the convex portion 161 on the y-direction y2 side of the convex portion 161 . That is, the convex portion 163 is arranged in the y direction with respect to the convex portion 161 . A recess 17 is arranged between the protrusion 161 and the protrusion 163 . That is, the recess 17 is arranged in the y direction with respect to the protrusion 161 .
凸部164は、x方向において凸部161と凸部162の間で、かつ、y方向において凸部161と凸部163の間である位置に配置されている。凸部164は、z方向視において凸部162の頂点と凸部163の頂点とを結ぶ線分b(図3において二点鎖線で示す)上に位置する。内部面13の各凸部16および各凹部17は、後述するように、市松模様状に配列されたマスクを用いて、裏面12側からエッチングすることで形成される。
The convex portion 164 is arranged between the convex portions 161 and 162 in the x direction and between the convex portions 161 and 163 in the y direction. The convex portion 164 is located on a line segment b (indicated by a chain double-dashed line in FIG. 3) connecting the vertex of the convex portion 162 and the vertex of the convex portion 163 when viewed in the z direction. As will be described later, the protrusions 16 and the recesses 17 of the inner surface 13 are formed by etching from the back surface 12 side using a mask arranged in a checkered pattern.
連結端面14,15は、主面11および裏面12に直交する面であり、主面11および内部面13につながっている。連結端面14,15は、封止樹脂8から露出している。連結端面14は、1個であり、y方向y1側を向いている。連結端面15は2個あり、一方の連結端面15はx方向x1側を向き、他方の連結端面15はx方向x2側を向いている。連結端面14,15は、製造工程における切断工程でのダイシングにより形成される。
The connecting end surfaces 14 and 15 are surfaces orthogonal to the main surface 11 and the back surface 12 and are connected to the main surface 11 and the inner surface 13 . The connecting end surfaces 14 and 15 are exposed from the sealing resin 8 . There is one connecting end face 14, and it faces the y direction y1 side. There are two connecting end faces 15, one connecting end face 15 faces the x direction x1 side, and the other connecting end face 15 faces the x direction x2 side. The connecting end surfaces 14 and 15 are formed by dicing in the cutting process in the manufacturing process.
なお、リード1の形状は上記したものに限定されない。たとえば、裏面12が半導体装置A10のy方向y1側の端縁まで広がり、連結端面14が半導体装置A10のz方向z1側の端縁まで広がり、裏面12と連結端面14とがつながって連続的に封止樹脂8から露出してもよい。リード1の形状は、用途や仕様に応じて、適宜設計される。
It should be noted that the shape of the lead 1 is not limited to the one described above. For example, the back surface 12 extends to the edge of the semiconductor device A10 on the y-direction y1 side, the connection end surface 14 extends to the edge on the z-direction z1 side of the semiconductor device A10, and the back surface 12 and the connection end surface 14 are connected to form a continuous line. It may be exposed from the sealing resin 8 . The shape of the lead 1 is appropriately designed according to the application and specifications.
リード2は、半導体素子6に導通し、主面21、裏面22、内部面23、および連結端面24,25を備えている。
The lead 2 is electrically connected to the semiconductor element 6 and has a main surface 21, a back surface 22, an inner surface 23, and connecting end surfaces 24 and 25.
主面21および裏面22は、z方向において互いに反対側を向いている。主面21は、リード1の主面11と同じ側(z方向z2側)を向いている。主面21は、ワイヤ7が接合される面である。本実施形態では、主面21の形状は、x方向に長い矩形状からy方向y2側およびx方向の両側に突出した部分を有する形状である。y方向y2側に突出した部分は、半導体装置A10のy方向y2側の端縁まで達している。x方向x1側に突出した部分は、半導体装置A10のx方向x1側の端縁まで達している。x方向x2側に突出した部分は、半導体装置A10のx方向x2側の端縁まで達している。なお、各突出した部分の数は特に限定されない。裏面22は、リード1の裏面12と同じ側(z方向z1側)を向いている。裏面22は、封止樹脂8から露出して、裏面端子になる。本実施形態では、裏面22の形状は、x方向に長い矩形状である。
The main surface 21 and the back surface 22 face opposite sides in the z direction. The main surface 21 faces the same side as the main surface 11 of the lead 1 (z2 side in the z direction). The main surface 21 is the surface to which the wire 7 is joined. In this embodiment, the main surface 21 has a rectangular shape that is long in the x direction and has portions that protrude on the y2 side in the y direction and on both sides in the x direction. The portion protruding in the y direction y2 reaches the edge of the semiconductor device A10 on the y direction y2 side. The portion protruding in the x direction x1 reaches the edge of the semiconductor device A10 on the x direction x1 side. The portion protruding in the x direction x2 reaches the edge of the semiconductor device A10 on the x direction x2 side. Note that the number of each projecting portion is not particularly limited. The back surface 22 faces the same side as the back surface 12 of the lead 1 (z1 side in the z direction). The rear surface 22 is exposed from the sealing resin 8 and becomes a rear surface terminal. In this embodiment, the shape of the back surface 22 is a rectangular shape elongated in the x direction.
内部面23は、裏面22につながり、リード2の一部が裏面22から主面21側に凹んだ部分である。本実施形態では、内部面23は、図3に示すように、裏面22のy方向y2側、x方向x1側、およびx方向x2側に、それぞれ形成されている。なお、内部面23の形状および配置位置は特に限定されない。内部面23は、たとえば、裏面22の周囲全体を囲むように形成されてもよいし、裏面22のy方向y1側にも形成されてもよい。図4~図7に示すように、リード2のうち内部面23が位置する部分の厚さ(z方向の寸法)は、裏面22が位置する部分の厚さより小さく、たとえば半分程度である。内部面23は、たとえばハーフエッチング処理により形成される。図3に示すように、内部面23は、封止樹脂8から露出せず、封止樹脂8によって覆われている。これにより、リード2が封止樹脂8からz方向のz1側に剥離することが抑制される。
The inner surface 23 is connected to the back surface 22 and is a portion in which a part of the lead 2 is recessed from the back surface 22 toward the main surface 21 side. In this embodiment, as shown in FIG. 3, the inner surface 23 is formed on the y-direction y2 side, the x-direction x1 side, and the x-direction x2 side of the back surface 22, respectively. The shape and arrangement position of the inner surface 23 are not particularly limited. For example, the inner surface 23 may be formed so as to surround the entire periphery of the back surface 22 or may be formed on the y-direction y1 side of the back surface 22 as well. As shown in FIGS. 4 to 7, the thickness (dimension in the z direction) of the portion of the lead 2 where the inner surface 23 is located is smaller than the thickness of the portion where the back surface 22 is located, for example about half. The inner surface 23 is formed, for example, by half-etching. As shown in FIG. 3 , the inner surface 23 is covered with the sealing resin 8 without being exposed from the sealing resin 8 . This prevents the lead 2 from peeling off from the sealing resin 8 toward the z1 side in the z direction.
連結端面24,25は、主面21および裏面22に直交する面であり、主面21および内部面23につながっている。連結端面24,25は、封止樹脂8から露出している。連結端面24は、1個であり、y方向y2側を向いている。連結端面25は2個あり、一方の連結端面25はx方向x1側を向き、他方の連結端面25はx方向x2側を向いている。連結端面24,25は、製造工程における切断工程でのダイシングにより形成される。
The connecting end surfaces 24 and 25 are surfaces perpendicular to the main surface 21 and the back surface 22 and are connected to the main surface 21 and the inner surface 23 . The connecting end surfaces 24 and 25 are exposed from the sealing resin 8 . There is one connecting end surface 24, and it faces the y direction y2 side. There are two connecting end faces 25, one connecting end face 25 faces the x direction x1 side, and the other connecting end face 25 faces the x direction x2 side. The connecting end surfaces 24 and 25 are formed by dicing in the cutting process in the manufacturing process.
なお、リード2の形状は上記したものに限定されない。たとえば、裏面22が半導体装置A10のy方向y2側の端縁まで広がり、連結端面24が半導体装置A10のz方向z1側の端縁まで広がり、裏面22と連結端面24とがつながって連続的に封止樹脂8から露出してもよい。リード2の形状は、用途や仕様に応じて、適宜設計される。
It should be noted that the shape of the lead 2 is not limited to the one described above. For example, the back surface 22 extends to the edge of the semiconductor device A10 on the y-direction y2 side, the connection end surface 24 extends to the edge on the z-direction z1 side of the semiconductor device A10, and the back surface 22 and the connection end surface 24 are connected to form a continuous line. It may be exposed from the sealing resin 8 . The shape of the lead 2 is appropriately designed according to the application and specifications.
半導体素子6は、半導体装置A10の電気的機能を発揮する要素である。半導体素子6の種類は特に限定されない。本実施形態では、半導体素子6は、ダイオードである。半導体素子6は、素子本体60、第1電極631、および第2電極632を備えている。
The semiconductor element 6 is an element that exerts electrical functions of the semiconductor device A10. The type of semiconductor element 6 is not particularly limited. In this embodiment, the semiconductor element 6 is a diode. The semiconductor element 6 has an element body 60 , a first electrode 631 and a second electrode 632 .
素子本体60は、z方向視矩形状の板状である。素子本体60は、半導体材料からなり、本実施形態では、Si(シリコン)からなる。なお、素子本体60の材料は特に限定されず、たとえばSiC(シリコンカーバイド)やGaN(ガリウムナイトライド)などの他の材料であってもよい。素子本体60は、素子主面61および素子裏面62を有する。素子主面61および素子裏面62は、z方向において互いに反対側を向いている。素子主面61は、z方向z2側を向いている。素子裏面62は、z方向z1側を向いている。第1電極631は、素子主面61に配置されている。第2電極632は、素子裏面62に配置されている。本実施形態においては、第1電極631はアノード電極であり、第2電極632はカソード電極である。
The element body 60 has a rectangular plate shape when viewed in the z direction. The element body 60 is made of a semiconductor material, and is made of Si (silicon) in this embodiment. The material of element body 60 is not particularly limited, and may be other materials such as SiC (silicon carbide) and GaN (gallium nitride). The element body 60 has an element main surface 61 and an element back surface 62 . The element main surface 61 and the element back surface 62 face opposite to each other in the z direction. The element main surface 61 faces the z-direction z2 side. The element back surface 62 faces the z-direction z1 side. The first electrode 631 is arranged on the element main surface 61 . The second electrode 632 is arranged on the element back surface 62 . In this embodiment, the first electrode 631 is the anode electrode and the second electrode 632 is the cathode electrode.
半導体素子6は、図4、図6、および図7に示すように、接合材79を介して、リード1の主面11の中央(あるいは略中央)に接合されている。本実施形態では、接合材79は、導電性の接合材であり、たとえばはんだである。なお、接合材79は、銀ペーストおよび焼結銀接合材などの他の導電性接合材であってもよい。半導体素子6は、接合材79によって、素子裏面62がリード1の主面11に接合されている。半導体素子6の第2電極632は、接合材79を介して、リード1に導通接続されている。これにより、リード1は、半導体素子6の第2電極632(アノード電極)に導通接続されて、アノード端子として機能する。
The semiconductor element 6 is bonded to the center (or approximately the center) of the main surface 11 of the lead 1 via a bonding material 79, as shown in FIGS. In this embodiment, the bonding material 79 is a conductive bonding material such as solder. Note that the bonding material 79 may be other conductive bonding materials such as silver paste and sintered silver bonding material. The semiconductor element 6 has the element rear surface 62 bonded to the main surface 11 of the lead 1 by the bonding material 79 . A second electrode 632 of the semiconductor element 6 is conductively connected to the lead 1 via a bonding material 79 . As a result, the lead 1 is conductively connected to the second electrode 632 (anode electrode) of the semiconductor element 6 and functions as an anode terminal.
半導体素子6の第1電極631は、図2に示すように、ワイヤ7を介して、リード2に導通接続されている。これにより、リード2は、半導体素子6の第1電極631(カソード電極)に導通接続されて、カソード端子として機能する。
The first electrode 631 of the semiconductor element 6 is conductively connected to the lead 2 via the wire 7, as shown in FIG. As a result, the lead 2 is conductively connected to the first electrode 631 (cathode electrode) of the semiconductor element 6 and functions as a cathode terminal.
ワイヤ7は、半導体素子6とリード2とを接続し、これらを導通させるものである。ワイヤ7は、たとえばCu,Au,Ag,Alなどの金属からなる。なお、ワイヤ7の材料は特に限定されない。図2に示すように、ワイヤ7は、半導体素子6の第1電極631と、リード2の主面21とに接合されている。本実施形態では、第1電極631は、1本のワイヤ7で、リード2に接続されている。なお、ワイヤ7の数は特に限定されない。また、半導体素子6とリード2とは、ワイヤ7以外の導電性を有する接続部材(たとえば金属板および金属リボンなど)によって接続されてもよい。
The wire 7 connects the semiconductor element 6 and the lead 2 to make them conductive. The wire 7 is made of metal such as Cu, Au, Ag or Al. In addition, the material of the wire 7 is not particularly limited. As shown in FIG. 2, the wire 7 is joined to the first electrode 631 of the semiconductor element 6 and the main surface 21 of the lead 2 . In this embodiment, the first electrode 631 is connected to the lead 2 with one wire 7 . Note that the number of wires 7 is not particularly limited. Also, semiconductor element 6 and leads 2 may be connected by a conductive connection member (for example, a metal plate, a metal ribbon, or the like) other than wire 7 .
封止樹脂8は、各リード1,2の一部ずつと、半導体素子6、接合材79、およびワイヤ7の全体とを覆っている。封止樹脂8は、たとえば黒色のエポキシ樹脂からなる。なお、封止樹脂8の材料は特に限定されない。
The sealing resin 8 partially covers the leads 1 and 2, the semiconductor element 6, the bonding material 79, and the wires 7 as a whole. Sealing resin 8 is made of, for example, black epoxy resin. In addition, the material of the sealing resin 8 is not particularly limited.
封止樹脂8は、樹脂主面81、樹脂裏面82、および4個の樹脂側面83を有する。樹脂主面81および樹脂裏面82は、z方向において互いに反対側を向いている。樹脂主面81は、z方向z2側を向く面であり、樹脂裏面82は、z方向z1側を向く面である。
The sealing resin 8 has a resin main surface 81 , a resin back surface 82 and four resin side surfaces 83 . The resin main surface 81 and the resin back surface 82 face opposite sides in the z-direction. The resin main surface 81 is a surface facing the z-direction z2 side, and the resin back surface 82 is a surface facing the z-direction z1 side.
4個の樹脂側面83は、それぞれ、樹脂主面81および樹脂裏面82に直交し、樹脂主面81および樹脂裏面82をつなぐ面である。各樹脂側面83は、x方向またはy方向の外側を向いている。各樹脂側面83は、製造工程における切断工程でのダイシングにより形成される。4個の樹脂側面83は、樹脂側面831、樹脂側面832、樹脂側面833、および樹脂側面834を含んでいる。樹脂側面831および樹脂側面832は、x方向において互いに反対側を向いている。樹脂側面831は、x方向x1側に配置されてx方向x1側を向く面である。樹脂側面832は、x方向x2側に配置されてx方向x2側を向く面である。樹脂側面833および樹脂側面834は、y方向において互いに反対側を向いている。樹脂側面833は、y方向y1側に配置されてy方向y1側を向く面である。樹脂側面834は、y方向y2側に配置されてy方向y2側を向く面である。
The four resin side surfaces 83 are surfaces orthogonal to the resin main surface 81 and the resin back surface 82 and connecting the resin main surface 81 and the resin back surface 82 . Each resin side surface 83 faces outward in the x direction or the y direction. Each resin side surface 83 is formed by dicing in a cutting step in the manufacturing process. The four resin sides 83 include a resin side 831 , a resin side 832 , a resin side 833 , and a resin side 834 . The resin side surface 831 and the resin side surface 832 face opposite sides in the x direction. The resin side surface 831 is a surface arranged on the x-direction x1 side and facing the x-direction x1 side. The resin side surface 832 is a surface arranged on the x-direction x2 side and facing the x-direction x2 side. The resin side surface 833 and the resin side surface 834 face opposite sides in the y direction. The resin side surface 833 is a surface arranged on the y-direction y1 side and facing the y-direction y1 side. The resin side surface 834 is a surface that is arranged on the y-direction y2 side and faces the y-direction y2 side.
図3、図6、および図7に示すように、リード1の裏面12およびリード2の裏面22は、封止樹脂8の樹脂裏面82から露出し、樹脂裏面82と互いに面一である。リード1のx方向x1側を向く連結端面15、および、リード2のx方向x1側を向く連結端面25は、樹脂側面831から露出し、樹脂側面831と互いに面一である。リード1のx方向x2側を向く連結端面15、および、リード2のx方向x2側を向く連結端面25は、樹脂側面832から露出し、樹脂側面832と互いに面一である。リード1の連結端面14は、樹脂側面833から露出し、樹脂側面833と互いに面一である。リード2の連結端面24は、樹脂側面834から露出し、樹脂側面834と互いに面一である。
As shown in FIGS. 3, 6 and 7, the back surface 12 of the lead 1 and the back surface 22 of the lead 2 are exposed from the resin back surface 82 of the sealing resin 8 and are flush with the resin back surface 82 . The connection end surface 15 of the lead 1 facing the x-direction x1 side and the connection end surface 25 of the lead 2 facing the x-direction x1 side are exposed from the resin side surface 831 and are flush with the resin side surface 831 . The connection end surface 15 of the lead 1 facing the x-direction x2 side and the connection end surface 25 of the lead 2 facing the x-direction x2 side are exposed from the resin side surface 832 and are flush with the resin side surface 832 . The connecting end surface 14 of the lead 1 is exposed from the resin side surface 833 and is flush with the resin side surface 833 . The connecting end surface 24 of the lead 2 is exposed from the resin side surface 834 and is flush with the resin side surface 834 .
次に、半導体装置A10の製造方法の一例について、図8~図14を参照して以下に説明する。
Next, an example of a method for manufacturing the semiconductor device A10 will be described below with reference to FIGS. 8 to 14. FIG.
図8は、半導体装置A10の製造方法を示すフローチャートである。図9~図14は、半導体装置A10の製造方法にかかる工程を示す図である。図9、図12~図14は断面図であり、図6に対応する図である。図10は、平面図であり、図2に対応する図である。図11は、底面図であり、図3に対応する図である。なお、図9~図14に示すx方向、y方向、およびz方向は、図1~図7と同じ方向を示している。
FIG. 8 is a flow chart showing the manufacturing method of the semiconductor device A10. 9 to 14 are diagrams showing steps related to the method of manufacturing the semiconductor device A10. 9 and 12 to 14 are sectional views corresponding to FIG. 6. FIG. 10 is a plan view corresponding to FIG. 2. FIG. 11 is a bottom view, corresponding to FIG. 3. FIG. Note that the x-direction, y-direction, and z-direction shown in FIGS. 9 to 14 are the same directions as in FIGS.
図8に示すように、半導体装置A10の製造方法は、リードフレーム作成工程S10、ダイボンディング工程S20、ワイヤボンディング工程S30、封止工程S40、および切断工程S50を備えている。
As shown in FIG. 8, the method for manufacturing the semiconductor device A10 includes a lead frame forming step S10, a die bonding step S20, a wire bonding step S30, a sealing step S40, and a cutting step S50.
リードフレーム作成工程S10は、金属板からリードフレームを作成する工程である。当該工程では、まず、リードフレームの材料になる金属板91(図9参照)を準備する(S11)。金属板91は、本実施形態においてはCuからなる。金属板91は、z方向において互いに反対側を向く主面911および裏面912を有する。
The lead frame creation step S10 is a step of creating a lead frame from a metal plate. In this step, first, a metal plate 91 (see FIG. 9) that will be the material of the lead frame is prepared (S11). The metal plate 91 is made of Cu in this embodiment. The metal plate 91 has a main surface 911 and a back surface 912 facing opposite to each other in the z direction.
次に、図9~図11に示すように、金属板91にマスク92を形成する(S12)。マスク92は、金属板91の主面911および裏面912の両方にそれぞれ形成される。マスク92は、たとえば、金属板91の主面911および裏面912に感光性樹脂層を形成し、露光・現像処理を施すことにより形成される。なお、マスク92の形成方法は特に限定されない。主面911に形成されるマスク92(図10参照)は、リード1の主面11およびリード2の主面21を形成するためのマスクである。裏面912に形成されるマスク92(図11参照)には、マスク921、マスク922、およびマスク925が含まれる。マスク921は、リード1の裏面12を形成するためのマスクである。マスク925は、リード2の裏面22を形成するためのマスクである。
Next, as shown in FIGS. 9 to 11, a mask 92 is formed on the metal plate 91 (S12). Masks 92 are formed on both main surface 911 and back surface 912 of metal plate 91 . The mask 92 is formed, for example, by forming a photosensitive resin layer on the main surface 911 and the back surface 912 of the metal plate 91 and exposing and developing the layers. Note that the method of forming the mask 92 is not particularly limited. Mask 92 (see FIG. 10) formed on main surface 911 is a mask for forming main surface 11 of lead 1 and main surface 21 of lead 2 . Masks 92 (see FIG. 11) formed on back surface 912 include masks 921 , 922 , and 925 . Mask 921 is a mask for forming rear surface 12 of lead 1 . A mask 925 is a mask for forming the back surface 22 of the lead 2 .
マスク922は、リード1の内部面131を形成するためのマスクである。マスク922は、複数の矩形状のマスク923が市松模様状に配列されている。つまり、マスク922は、x方向においてマスク923と開口部924とが交互に配列され、かつ、y方向においてもマスク923と開口部924とが交互に配列されている。本実施形態では、マスク923は、x方向に6列配列され、y方向に3列配列されている。なお、マスク923のx方向およびy方向の配列数は、特に限定されない。
A mask 922 is a mask for forming the inner surface 131 of the lead 1 . The mask 922 has a plurality of rectangular masks 923 arranged in a checkered pattern. That is, in the mask 922, the masks 923 and the openings 924 are alternately arranged in the x direction, and the masks 923 and the openings 924 are also alternately arranged in the y direction. In this embodiment, the masks 923 are arranged in six rows in the x direction and three rows in the y direction. Note that the number of arrays of the masks 923 in the x direction and the y direction is not particularly limited.
次に、マスク92が形成された金属板91の主面911側および裏面912側の両方から、等方性エッチングによりエッチング処理を行う(S13)。エッチング処理は、たとえば、金属板91の構成成分を溶解するエッチング液中に、マスク92が形成された金属板91を浸漬することで行われる。なお、エッチング処理は、ドライエッチングでもよい。エッチング処理により、金属板91のマスク92が形成されていない部分がエッチングされ、図12に示すように、リードフレーム95が形成される。金属板91の主面911は、一部がエッチングされた主面951になっている。また、金属板91の裏面912は、一部がエッチングされた裏面952になっている。
Next, isotropic etching is performed from both the main surface 911 side and the back surface 912 side of the metal plate 91 on which the mask 92 is formed (S13). The etching process is performed, for example, by immersing the metal plate 91 with the mask 92 formed thereon in an etchant that dissolves the components of the metal plate 91 . The etching treatment may be dry etching. By the etching process, portions of the metal plate 91 where the mask 92 is not formed are etched to form a lead frame 95 as shown in FIG. A principal surface 911 of the metal plate 91 is a partially etched principal surface 951 . Also, the back surface 912 of the metal plate 91 is a back surface 952 that is partly etched.
リードフレーム95には、z方向に貫通した部分、および、z方向z1側からだけハーフエッチングされた部分が含まれている。金属板91のうち、主面911にマスク92が形成されず、かつ、裏面912にもマスク92が形成されていない部分は、両方からのエッチングにより貫通している。これにより、リードフレーム95において、同じ半導体装置A10のリード1になる部分とリード2になる部分とが離間した状態で形成される。リードフレーム95のうちリード1になる部分の主面951が主面11になり、リード2になる部分の主面951が主面21になる。また、リードフレーム95のうちリード1になる部分の裏面952が裏面12になり、リード2になる部分の裏面952が裏面22になる。また、金属板91のうち、主面911にマスク92が形成され、かつ、裏面912にマスク921およびマスク925が形成されていない部分は、z方向z1側からのみエッチングされ、裏面952から主面951側に凹んだ内部面953が形成されている。リードフレーム95のうちリード1になる部分の内部面953が内部面13になり、リード2になる部分の内部面953が内部面23になる。
The lead frame 95 includes a portion penetrating in the z-direction and a portion half-etched only from the z-direction z1 side. A portion of the metal plate 91 where the mask 92 is not formed on the main surface 911 and the mask 92 is not formed on the back surface 912 is penetrated by etching from both sides. As a result, in the lead frame 95, the portion that will become the lead 1 and the portion that will become the lead 2 of the same semiconductor device A10 are formed in a state separated from each other. The main surface 951 of the lead 1 portion of the lead frame 95 is the main surface 11 , and the main surface 951 of the lead 2 portion is the main surface 21 . Further, the back surface 952 of the lead 1 portion of the lead frame 95 becomes the back surface 12 , and the back surface 952 of the lead 2 portion becomes the back surface 22 . A portion of the metal plate 91 where the mask 92 is formed on the main surface 911 and the mask 921 and the mask 925 are not formed on the back surface 912 is etched only from the z-direction z1 side, and is etched from the back surface 952 to the main surface. An inner surface 953 recessed on the 951 side is formed. The inner surface 953 of the lead 1 portion of the lead frame 95 is the inner surface 13 , and the inner surface 953 of the lead 2 portion is the inner surface 23 .
リードフレーム95のリード1になる部分の内部面953のうちマスク922に対向する部分には、図9においてマスク922が形成されていた裏面912がエッチングされて、凸部16および凹部17が形成されている。マスク922が形成されていた裏面912のうち開口部924が位置する部分は、マスク92が形成されていない部分と同様にエッチングされる。一方、等方性エッチングによりz方向以外にもエッチングが進むので、マスク922が形成されていた裏面912のうちマスク923が位置する部分も周囲からエッチングされる。マスク923が位置する部分は、開口部924が位置する部分と比較するとエッチングが進まないので、周囲より突出した凸部16が形成される。一方、開口部924が位置する部分は、凸部16に対して凹んだ凹部17が形成される。マスク922において複数のマスク923が市松模様状に配置されていたので、凸部16も市松模様状に配置された状態で形成される。
In the inner surface 953 of the portion of the lead frame 95 that will become the lead 1, the portion facing the mask 922 is etched to form the convex portion 16 and the concave portion 17 by etching the back surface 912 on which the mask 922 was formed in FIG. ing. The portion of the back surface 912 on which the mask 922 is formed, where the opening 924 is located, is etched in the same manner as the portion where the mask 92 is not formed. On the other hand, isotropic etching proceeds in directions other than the z-direction, so that the portion of the back surface 912 where the mask 922 is formed, where the mask 923 is located, is also etched from the periphery. Since the portion where the mask 923 is positioned is less etched than the portion where the opening 924 is positioned, the protrusion 16 projecting from the periphery is formed. On the other hand, a concave portion 17 that is recessed from the convex portion 16 is formed in a portion where the opening portion 924 is located. Since the plurality of masks 923 are arranged in a checkered pattern in the mask 922, the convex portions 16 are also formed in a checkered pattern.
次に、マスク92が除去される。以上により、リードフレーム95が作成される。リードフレーム95では、半導体装置A10になる部分が複数、互いに連結された状態になっている。
The mask 92 is then removed. The lead frame 95 is produced by the above. In the lead frame 95, a plurality of portions to be the semiconductor device A10 are connected to each other.
ダイボンディング工程S20は、リードフレーム95に、半導体素子6を接合する工程である。当該工程では、図13に示すように、リードフレーム95の各リード1になる部分の主面951に、接合材79を介して、それぞれ半導体素子6を接合する。当該工程では、まず、接合材79になるはんだペーストを、各リード1になる部分の主面951のそれぞれ中央に塗布する。次に、塗布されたはんだペーストの上に、半導体素子6をそれぞれ載置する。次に、リフロー処理を行って、はんだペーストを溶融させた後に固化させる。以上により、リードフレーム95に、半導体素子6が接合される。なお、ダイボンディング工程S20での半導体素子6の接合方法は特に限定されない。
The die bonding step S20 is a step of bonding the semiconductor element 6 to the lead frame 95. In this step, as shown in FIG. 13, the semiconductor elements 6 are bonded to the main surfaces 951 of the portions of the lead frame 95 that will become the leads 1 via the bonding material 79 . In this step, first, a solder paste that will become the joining material 79 is applied to the center of each main surface 951 of the portion that will become each lead 1 . Next, semiconductor elements 6 are placed on the applied solder paste. Next, a reflow process is performed to melt and then solidify the solder paste. As described above, the semiconductor element 6 is joined to the lead frame 95 . Incidentally, the bonding method of the semiconductor element 6 in the die bonding step S20 is not particularly limited.
ワイヤボンディング工程S30は、ワイヤ7を形成する工程である。当該工程では、図13に示すように、ワイヤ7を、半導体素子6の第1電極631と、リードフレーム95の各リード2になる部分の主面951とに接合する。ワイヤ7の形成は、キャピラリを用いたワイヤボンダによって行う。具体的には、まず、ワイヤボンダのキャピラリからワイヤの先端部を突出させ、これを溶融させて、ワイヤの先端部をボール状にする。このボール状の先端部を半導体素子6の第1電極631に押し付ける。次に、キャピラリからワイヤを引き出しつつキャピラリを移動させ、リードフレーム95の各リード2になる部分の主面951にワイヤを押し付ける。そして、キャピラリのクランパでワイヤを押さえながら、キャピラリを持ち上げ、ワイヤを切断する。以上により、ワイヤ7が形成される。なお、ワイヤボンディング工程S30でのワイヤ7の形成方法は特に限定されない。
The wire bonding step S30 is a step of forming the wires 7. In this step, as shown in FIG. 13, the wire 7 is joined to the first electrode 631 of the semiconductor element 6 and the main surface 951 of the portion of the lead frame 95 that will become each lead 2 . The wire 7 is formed by a wire bonder using a capillary. Specifically, first, the tip of the wire is protruded from the capillary of the wire bonder and melted to form the tip of the wire into a ball shape. This ball-shaped tip is pressed against the first electrode 631 of the semiconductor element 6 . Next, the wire is pulled out from the capillary and the capillary is moved to press the wire against the main surface 951 of the portion of the lead frame 95 that will become each lead 2 . Then, while holding down the wire with a clamper of the capillary, the capillary is lifted to cut the wire. The wire 7 is formed by the above. A method for forming the wires 7 in the wire bonding step S30 is not particularly limited.
封止工程S40は、封止樹脂96を形成する工程である。当該工程では、樹脂材料を硬化させることにより、図14に示すように、リードフレーム95の一部、半導体素子6、およびワイヤ7を覆う封止樹脂96を形成する。当該工程は、たとえば、金型を用いた、周知のトランスファモールド成形により行われる。具体的には、半導体素子6およびワイヤ7を接合したリードフレーム95を、金型成形機にセットする。次に、流動化させた樹脂材料を金型内のキャビティに流し込み、モールド成形する。そして、樹脂材料を硬化させる。以上により、封止樹脂96が形成される。リードフレーム95が裏面952を金型に当接させた状態でセットされることで、リードフレーム95の裏面952が封止樹脂96から露出する。また、リードフレーム95の裏面952と、封止樹脂96の裏面962とが、互いに面一になる。また、金型と内部面953との間には樹脂材料が流れ込むので、内部面953は、封止樹脂96に覆われる。なお、封止工程S40での封止樹脂96の形成方法は特に限定されない。
The sealing step S40 is a step of forming the sealing resin 96. In this step, a resin material is cured to form a sealing resin 96 that covers a portion of the lead frame 95, the semiconductor element 6, and the wires 7, as shown in FIG. The process is performed, for example, by well-known transfer molding using a mold. Specifically, the lead frame 95 to which the semiconductor element 6 and the wire 7 are joined is set in a molding machine. Next, the fluidized resin material is poured into a cavity in a mold for molding. Then, the resin material is cured. As described above, the sealing resin 96 is formed. The back surface 952 of the lead frame 95 is exposed from the sealing resin 96 by setting the lead frame 95 with the back surface 952 in contact with the mold. Also, the back surface 952 of the lead frame 95 and the back surface 962 of the sealing resin 96 are flush with each other. Also, since the resin material flows between the mold and the inner surface 953 , the inner surface 953 is covered with the sealing resin 96 . The method of forming the sealing resin 96 in the sealing step S40 is not particularly limited.
切断工程S50は、リードフレーム95および封止樹脂96を切断する工程である。当該工程では、たとえばブレードを用いて、リードフレーム95および封止樹脂96を切断して個片化する。これにより、半導体装置A10となる個片が形成される。リードフレーム95が切断されることで、リード1およびリード2になる。このとき形成された切断面が、リード1の連結端面14,15およびリード2の連結端面24,25になる。また、封止樹脂96が切断されることで封止樹脂8になる。このとき形成された切断面が、樹脂側面83になる。なお、切断工程S50での切断方法は特に限定されない。以上の工程を経ることにより、上述した半導体装置A10が製造される。
The cutting step S50 is a step of cutting the lead frame 95 and the sealing resin 96 . In this step, for example, a blade is used to cut the lead frame 95 and the sealing resin 96 into individual pieces. As a result, an individual piece to be the semiconductor device A10 is formed. The leads 1 and 2 are obtained by cutting the lead frame 95 . The cut surfaces formed at this time become the connection end surfaces 14 and 15 of the lead 1 and the connection end surfaces 24 and 25 of the lead 2 . Further, the sealing resin 8 is formed by cutting the sealing resin 96 . The cut surface formed at this time becomes the resin side surface 83 . Note that the cutting method in the cutting step S50 is not particularly limited. Through the above steps, the semiconductor device A10 described above is manufactured.
次に、半導体装置A10の作用効果について説明する。
Next, the effects of the semiconductor device A10 will be described.
本実施形態によると、リード1の内部面131は、複数の凸部16および複数の凹部17を備えている。複数の凸部16および複数の凹部17を備えない場合と比較して、内部面131と封止樹脂8とが接する面積が大きくなる。したがって、内部面131に対する封止樹脂8の密着性が向上する。これにより、半導体装置A10は、内部面131における封止樹脂8の剥離を抑制できる。
According to this embodiment, the inner surface 131 of the lead 1 has a plurality of protrusions 16 and a plurality of recesses 17 . Compared to the case where the plurality of protrusions 16 and the plurality of recesses 17 are not provided, the contact area between the inner surface 131 and the sealing resin 8 is increased. Therefore, the adhesion of the sealing resin 8 to the inner surface 131 is improved. Thereby, the semiconductor device A10 can suppress peeling of the sealing resin 8 on the inner surface 131 .
また、本実施形態によると、複数の凸部16は、z方向視において市松模様状に配列されている。x方向においてもy方向においても、凸部16と凹部17とが交互に配列されているので、x方向に生じる熱応力に対しても、y方向生じる熱応力に対しても、内部面131における封止樹脂8の剥離を抑制できる。また、リード1の内部面131と封止樹脂8との間に亀裂が生じた場合に、凸部16と凹部17とが並ぶ方向において、亀裂の進展を抑制することができる。
Also, according to the present embodiment, the plurality of convex portions 16 are arranged in a checkered pattern when viewed in the z direction. Since the protrusions 16 and the recesses 17 are alternately arranged in both the x-direction and the y-direction, the thermal stress generated in the x-direction and the thermal stress in the y-direction on the inner surface 131 Peeling of the sealing resin 8 can be suppressed. Further, when a crack occurs between the inner surface 131 of the lead 1 and the sealing resin 8, the crack can be prevented from growing in the direction in which the convex portion 16 and the concave portion 17 are arranged.
また、本実施形態によると、リードフレーム作成工程では、金属板91の裏面912に、複数の矩形状のマスク923が市松模様状に配列されたマスク922を形成し、裏面912側から等方性エッチングを行うことで、内部面131を形成する。これにより、リードフレーム作成工程は、複数の凸部16がz方向視において市松模様状に配列された内部面131を、容易に形成することができる。
Further, according to the present embodiment, in the lead frame production process, a mask 922 in which a plurality of rectangular masks 923 are arranged in a checkered pattern is formed on the back surface 912 of the metal plate 91, and isotropic from the back surface 912 side. An internal surface 131 is formed by etching. As a result, the lead frame forming process can easily form the inner surface 131 in which the plurality of protrusions 16 are arranged in a checkered pattern when viewed in the z direction.
なお、本実施形態では、各凸部16がz方向視において市松模様状に配列されている場合について説明したが、これに限られない。各凸部16のz方向視における配列方法は特に限定されない。また、本実施形態では、各凸部16のz方向視の形状が矩形状である場合について説明したが、これに限られない。各凸部16のz方向視の形状は特に限定されず、他の多角形状であってもよいし、円形状などの他の形状であってもよい。
In addition, in the present embodiment, a case has been described in which the convex portions 16 are arranged in a checkered pattern when viewed in the z direction, but the present invention is not limited to this. A method of arranging the projections 16 as viewed in the z-direction is not particularly limited. Also, in the present embodiment, the case where the shape of each convex portion 16 as viewed in the z direction is rectangular has been described, but the shape is not limited to this. The shape of each convex portion 16 when viewed in the z-direction is not particularly limited, and may be another polygonal shape or another shape such as a circular shape.
図15~図19は、第1実施形態にかかる内部面131の変形例を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付して、重複する説明を省略する。
15 to 19 show modifications of the inner surface 131 according to the first embodiment. In these figures, the same or similar elements as those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and redundant explanations are omitted.
図15は、第1実施形態の第1変形例にかかる半導体装置A11を示す底面図であり、図3に対応する図である。半導体装置A11は、半導体装置A10と比較して、内部面131に配列された各凸部16のx方向およびy方向の寸法が小さく、凸部16の配列数が多い。本変形例では、内部面131に、凸部16がx方向に9列配列され、y方向に5列配列されている。なお、凸部16のx方向およびy方向の配列数は、特に限定されず、本変形例より多くてもよいし、少なくてもよい。また、第1実施形態にかかる半導体装置A10の場合より少なくてもよい。凸部16は、x方向に2列以上配列されていればよいし、y方向にも2列以上配列されていればよい。
FIG. 15 is a bottom view showing the semiconductor device A11 according to the first modification of the first embodiment, and corresponds to FIG. In the semiconductor device A11, the projections 16 arranged on the inner surface 131 have smaller dimensions in the x-direction and the y-direction than the semiconductor device A10, and the projections 16 are arranged in a larger number. In this modification, the convex portions 16 are arranged in nine rows in the x direction and five rows in the y direction on the inner surface 131 . The number of projections 16 arranged in the x-direction and the y-direction is not particularly limited, and may be larger or smaller than in this modification. Also, it may be less than in the case of the semiconductor device A10 according to the first embodiment. The convex portions 16 may be arranged in two or more rows in the x direction, and may also be arranged in two or more rows in the y direction.
図16は、第1実施形態の第2変形例にかかる半導体装置A12を示す底面図であり、図3に対応する図である。半導体装置A12は、内部面131における複数の凸部16のz方向視における配列方法が、半導体装置A10とは異なる。半導体装置A12では、x方向において凸部16と凹部17とが交互に配列されており、同じ配列の列がy方向において凹部17を挟んで配列されている。すなわち、半導体装置A12における凸部16の配列は、半導体装置A10における凸部16の配列において、y方向における中央の列の凸部16(凸部164およびそのx方向x2側に並ぶ2個の凸部16)を削除した配列である。本実施形態では、凸部16は、x方向に3列配列され、y方向に2列配列されている。なお、凸部16のx方向およびy方向の配列数は、特に限定されない。各配列数は、z方向視における内部面131の大きさ、および、凸部16の大きさに応じて、適宜設定される。また、各凸部16のx方向またはy方向の配置間隔、すなわち、各凹部17のx方向またはy方向の寸法を、小さくしてもよいし、大きくしてもよい。
FIG. 16 is a bottom view showing the semiconductor device A12 according to the second modification of the first embodiment, corresponding to FIG. The semiconductor device A12 differs from the semiconductor device A10 in the method of arranging the plurality of protrusions 16 on the inner surface 131 as viewed in the z direction. In the semiconductor device A12, the protrusions 16 and the recesses 17 are alternately arranged in the x direction, and the rows of the same arrangement are arranged across the recesses 17 in the y direction. That is, the arrangement of the protrusions 16 in the semiconductor device A12 is similar to the arrangement of the protrusions 16 in the semiconductor device A10, in which the protrusions 16 in the central row in the y direction (the protrusion 164 and the two protrusions aligned in the x direction x2 side thereof) are arranged. 16) is deleted. In this embodiment, the convex portions 16 are arranged in three rows in the x direction and two rows in the y direction. Note that the number of projections 16 arranged in the x-direction and the y-direction is not particularly limited. The number of each arrangement is appropriately set according to the size of the inner surface 131 and the size of the convex portion 16 when viewed in the z direction. Also, the arrangement intervals of the projections 16 in the x-direction or the y-direction, that is, the dimensions of the recesses 17 in the x-direction or the y-direction may be reduced or increased.
図17は、第1実施形態の第3変形例にかかる半導体装置A13を示す底面図であり、図3に対応する図である。半導体装置A13は、内部面131における複数の凸部16のz方向視における形状および配列方法が、半導体装置A10とは異なる。半導体装置A13では、各凸部16のz方向視における形状がy方向に長い矩形状であり、3個の凸部16がx方向においてそれぞれ凹部17を挟んで配列されている。つまり、各凸部16および各凹部17は、x方向に交互に配列されて、かつ、それぞれがy方向に延びている。なお、凸部16のx方向の配列数は、特に限定されない。当該配列数は、内部面131のx方向の寸法と、凸部16および凹部17のx方向の寸法に応じて、適宜設定される。また、各凸部16のx方向の配置間隔、すなわち、各凹部17のx方向の寸法を、小さくしてもよいし、大きくしてもよい。
FIG. 17 is a bottom view showing the semiconductor device A13 according to the third modification of the first embodiment, corresponding to FIG. The semiconductor device A13 differs from the semiconductor device A10 in the shape and arrangement method of the plurality of protrusions 16 on the inner surface 131 as viewed in the z direction. In the semiconductor device A13, each projection 16 has a rectangular shape that is long in the y direction when viewed in the z direction, and three projections 16 are arranged with the recess 17 interposed therebetween in the x direction. That is, the convex portions 16 and the concave portions 17 are alternately arranged in the x-direction and extend in the y-direction. The number of projections 16 arranged in the x direction is not particularly limited. The number of arrays is appropriately set according to the x-direction dimension of the inner surface 131 and the x-direction dimension of the projections 16 and the recesses 17 . Also, the arrangement interval of each convex portion 16 in the x direction, that is, the dimension of each concave portion 17 in the x direction may be reduced or increased.
図18は、第1実施形態の第4変形例にかかる半導体装置A14を示す底面図であり、図3に対応する図である。半導体装置A14は、内部面131における複数の凸部16のz方向視における大きさおよび配列方法が、半導体装置A10とは異なる。半導体装置A14では、各凸部16が不規則に配置されている。また、各凸部16のz方向視における大きさが、半導体装置A10の場合と比較して小さい。なお、各凸部16のz方向視における大きさは特に限定されない。
FIG. 18 is a bottom view showing the semiconductor device A14 according to the fourth modification of the first embodiment, corresponding to FIG. The semiconductor device A14 differs from the semiconductor device A10 in the size and arrangement method of the plurality of protrusions 16 on the inner surface 131 as viewed in the z direction. In the semiconductor device A14, each projection 16 is arranged irregularly. In addition, the size of each projection 16 as viewed in the z direction is smaller than that of the semiconductor device A10. Note that the size of each convex portion 16 when viewed in the z direction is not particularly limited.
図19は、第1実施形態の第5変形例にかかる半導体装置A15を示す底面図であり、図3に対応する図である。半導体装置A15は、内部面131における複数の凸部16のz方向視における形状が、半導体装置A10とは異なる。半導体装置A15では、各凸部16のz方向視における形状が円形状である。なお、各凸部16のz方向視における形状は、矩形状または円形状に限定されず、他の多角形状、楕円形状などの他の形状であってもよい。
FIG. 19 is a bottom view showing the semiconductor device A15 according to the fifth modification of the first embodiment, corresponding to FIG. The semiconductor device A15 differs from the semiconductor device A10 in the shape of the plurality of protrusions 16 on the inner surface 131 as viewed in the z direction. In the semiconductor device A15, each projection 16 has a circular shape when viewed in the z direction. Note that the shape of each projection 16 as viewed in the z-direction is not limited to a rectangular shape or a circular shape, and may be other shapes such as other polygonal shapes and elliptical shapes.
また、本実施形態では、各凸部16が内部面131に配置されている場合について説明したが、これに限られない。各凸部16は、他の内部面13に配置されてもよい。また、各凸部16は、リード2の内部面23に配置されてもよい。各凸部16が他の内部面13または内部面23に配置される場合でも、各凸部16のz方向視の形状、大きさ、および配列方法は特に限定されない。これらの場合でも、第1~第5変形例と同様のバリエーションが考えられる。
Also, in the present embodiment, the case where each convex portion 16 is arranged on the inner surface 131 has been described, but the present invention is not limited to this. Each protrusion 16 may be arranged on another inner surface 13 . Also, each convex portion 16 may be arranged on the inner surface 23 of the lead 2 . Even if each convex portion 16 is arranged on another inner surface 13 or inner surface 23, the shape, size, and arrangement method of each convex portion 16 when viewed in the z-direction are not particularly limited. Even in these cases, variations similar to those of the first to fifth modifications are conceivable.
図20~図23は、本開示の他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付して、重複する説明を省略する。
20 to 23 show other embodiments of the present disclosure. In these figures, the same or similar elements as those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and redundant explanations are omitted.
図20は、本開示の第2実施形態にかかる半導体装置A20を説明するための図である。図20は、半導体装置A20を示す底面図であり、図3に対応する図である。本実施形態にかかる半導体装置A20は、複数の凸部16が内部面131以外の内部面13に配置されている点で、第1実施形態にかかる半導体装置A10と異なる。本実施形態の他の部分の構成および動作は、第1実施形態と同様である。なお、上記の第1実施形態の各部が任意に組み合わせられてもよい。
FIG. 20 is a diagram for explaining the semiconductor device A20 according to the second embodiment of the present disclosure. FIG. 20 is a bottom view of the semiconductor device A20, corresponding to FIG. The semiconductor device A20 according to the present embodiment differs from the semiconductor device A10 according to the first embodiment in that a plurality of protrusions 16 are arranged on the inner surface 13 other than the inner surface 131. FIG. The configuration and operation of other portions of this embodiment are the same as those of the first embodiment. In addition, each part of said 1st Embodiment may be combined arbitrarily.
本実施形態にかかるリード1における内部面131の面積は、第1実施形態の場合と比較して小さい。一方、内部面13のうち、y方向において裏面12に対してリード2とは反対側(y方向y1側)に形成された内部面13(以下では、「内部面132」と記載する)の面積は、第1実施形態の場合と比較して大きい。本実施形態では、複数の凸部16が、内部面131ではなく、内部面132に配置されている。本実施形態では、各凸部16のz方向視の形状、大きさ、および配列方法が、第1実施形態の第1変形例と同様になっている。なお、各凸部16のz方向視の形状、大きさ、および配列方法は特に限定されず、第1実施形態に示した様々なバリエーションが考えられる。
The area of the inner surface 131 of the lead 1 according to this embodiment is smaller than that of the first embodiment. On the other hand, among the inner surfaces 13, the area of the inner surface 13 (hereinafter referred to as "inner surface 132") formed on the opposite side (y1 side in the y direction) of the lead 2 with respect to the back surface 12 in the y direction. is larger than in the first embodiment. In this embodiment, the plurality of protrusions 16 are arranged on the inner surface 132 instead of the inner surface 131 . In this embodiment, the shape, size, and arrangement method of each projection 16 as viewed in the z-direction are the same as those of the first modification of the first embodiment. The shape, size, and arrangement method of each projection 16 when viewed in the z direction are not particularly limited, and various variations shown in the first embodiment are conceivable.
本実施形態によると、リード1の内部面132は、複数の凸部16および複数の凹部17を備えている。複数の凸部16および複数の凹部17を備えない場合と比較して、内部面132と封止樹脂8とが接する面積が大きくなる。したがって、内部面132に対する封止樹脂8の密着性が向上する。これにより、半導体装置A20は、内部面132における封止樹脂8の剥離を抑制できる。また、半導体装置A20は、半導体装置A10と共通する構成により、半導体装置A10と同等の効果を奏する。
According to this embodiment, the inner surface 132 of the lead 1 has a plurality of protrusions 16 and a plurality of recesses 17 . Compared to the case where the plurality of protrusions 16 and the plurality of recesses 17 are not provided, the contact area between the inner surface 132 and the sealing resin 8 is increased. Therefore, the adhesion of the sealing resin 8 to the inner surface 132 is improved. Thereby, the semiconductor device A20 can suppress peeling of the sealing resin 8 on the inner surface 132 . Moreover, the semiconductor device A20 has the same effect as the semiconductor device A10 due to the configuration common to the semiconductor device A10.
図21は、本開示の第3実施形態にかかる半導体装置A30を説明するための図である。図21は、半導体装置A30を示す底面図であり、図3に対応する図である。本実施形態にかかる半導体装置A30は、複数の凸部16が内部面131以外の内部面13にも配置されている点で、第1実施形態にかかる半導体装置A10と異なる。本実施形態の他の部分の構成および動作は、第1実施形態と同様である。なお、上記の第1~2実施形態の各部が任意に組み合わせられてもよい。
FIG. 21 is a diagram for explaining the semiconductor device A30 according to the third embodiment of the present disclosure. FIG. 21 is a bottom view of the semiconductor device A30, corresponding to FIG. The semiconductor device A30 according to the present embodiment is different from the semiconductor device A10 according to the first embodiment in that a plurality of protrusions 16 are also arranged on the inner surface 13 other than the inner surface 131 . The configuration and operation of other portions of this embodiment are the same as those of the first embodiment. Note that each part of the above first and second embodiments may be combined arbitrarily.
本実施形態にかかるリード1における裏面12の面積は、第1実施形態の場合と比較して小さい。一方、内部面13のうち、内部面132、裏面12のx方向x1側に形成された内部面13(以下では、「内部面133」と記載する)、および、裏面12のx方向x2側に形成された内部面13(以下では、「内部面134」と記載する)の面積は、第1実施形態の場合と比較して大きい。本実施形態では、内部面131~134はつながっており、裏面12の周囲全体を囲むように形成されている。本実施形態では、複数の凸部16が、内部面131だけではなく、内部面132,133,134にも配置されている。本実施形態では、各凸部16のz方向視の形状、大きさ、および配列方法が、第1実施形態の第1変形例と同様になっている。なお、各凸部16のz方向視の形状、大きさ、および配列方法は特に限定されず、第1実施形態に示した様々なバリエーションが考えられる。
The area of the back surface 12 of the lead 1 according to this embodiment is smaller than that of the first embodiment. On the other hand, among the inner surfaces 13, the inner surface 132, the inner surface 13 formed on the x-direction x1 side of the back surface 12 (hereinafter referred to as the “inner surface 133”), and the x-direction x2 side of the back surface 12 The area of the formed inner surface 13 (hereinafter referred to as "inner surface 134") is larger than in the first embodiment. In this embodiment, the inner surfaces 131 to 134 are connected and formed so as to surround the entire circumference of the back surface 12 . In this embodiment, the plurality of protrusions 16 are arranged not only on the inner surface 131 but also on the inner surfaces 132 , 133 , and 134 . In this embodiment, the shape, size, and arrangement method of each projection 16 as viewed in the z-direction are the same as those of the first modification of the first embodiment. The shape, size, and arrangement method of each projection 16 when viewed in the z direction are not particularly limited, and various variations shown in the first embodiment are conceivable.
本実施形態によると、リード1の内部面131~134は、それぞれ、複数の凸部16および複数の凹部17を備えている。複数の凸部16および複数の凹部17を備えない場合と比較して、内部面131~134と封止樹脂8とが接する面積が大きくなる。したがって、内部面131~134に対する封止樹脂8の密着性が向上する。これにより、半導体装置A30は、内部面131~134における封止樹脂8の剥離を抑制できる。また、半導体装置A30は、半導体装置A10と共通する構成により、半導体装置A10と同等の効果を奏する。
According to this embodiment, the inner surfaces 131 to 134 of the lead 1 are provided with a plurality of protrusions 16 and a plurality of recesses 17, respectively. Compared to the case where the plurality of protrusions 16 and the plurality of recesses 17 are not provided, the contact area between the inner surfaces 131 to 134 and the sealing resin 8 is increased. Therefore, the adhesion of the sealing resin 8 to the inner surfaces 131-134 is improved. Thereby, the semiconductor device A30 can suppress peeling of the sealing resin 8 on the inner surfaces 131 to 134 . Further, the semiconductor device A30 has the same effect as the semiconductor device A10 due to the configuration common to the semiconductor device A10.
図22は、本開示の第4実施形態にかかる半導体装置A40を説明するための図である。図22は、半導体装置A40を示す底面図であり、図3に対応する図である。本実施形態にかかる半導体装置A40は、複数の凸部16がリード2の内部面23にも配置されている点で、第1実施形態にかかる半導体装置A10と異なる。本実施形態の他の部分の構成および動作は、第1実施形態と同様である。なお、上記の第1~3実施形態の各部が任意に組み合わせられてもよい。
FIG. 22 is a diagram for explaining a semiconductor device A40 according to the fourth embodiment of the present disclosure. FIG. 22 is a bottom view of the semiconductor device A40, corresponding to FIG. The semiconductor device A40 according to the present embodiment differs from the semiconductor device A10 according to the first embodiment in that a plurality of protrusions 16 are also arranged on the inner surface 23 of the lead 2 . The configuration and operation of other portions of this embodiment are the same as those of the first embodiment. Note that each part of the above first to third embodiments may be combined arbitrarily.
本実施形態にかかるリード2の内部面23は、y方向において裏面22に対してリード1側(y方向y1側)に形成された内部面23(以下では、「内部面231」と記載する)をさらに備えている。本実施形態では、複数の凸部16が、リード1の内部面131だけではなく、リード2の内部面231にも配置されている。なお、複数の凸部16は、リード2の他の内部面23に配置されてもよい。本実施形態では、各凸部16のz方向視の形状、大きさ、および配列方法が、第1実施形態の第1変形例と同様になっている。なお、各凸部16のz方向視の形状、大きさ、および配列方法は特に限定されず、第1実施形態に示した様々なバリエーションが考えられる。
The inner surface 23 of the lead 2 according to the present embodiment is formed on the lead 1 side (the y1 side in the y direction) with respect to the rear surface 22 in the y direction (hereinafter referred to as "inner surface 231"). is further provided. In this embodiment, the plurality of protrusions 16 are arranged not only on the inner surface 131 of the lead 1 but also on the inner surface 231 of the lead 2 . Note that the plurality of protrusions 16 may be arranged on another inner surface 23 of the lead 2 . In this embodiment, the shape, size, and arrangement method of each projection 16 as viewed in the z-direction are the same as those of the first modification of the first embodiment. The shape, size, and arrangement method of each projection 16 when viewed in the z direction are not particularly limited, and various variations shown in the first embodiment are conceivable.
本実施形態によると、リード1の内部面131およびリード2の内部面231は、それぞれ、複数の凸部16および複数の凹部17を備えている。複数の凸部16および複数の凹部17を備えない場合と比較して、内部面131,231と封止樹脂8とが接する面積が大きくなる。したがって、内部面131,231に対する封止樹脂8の密着性が向上する。これにより、半導体装置A40は、内部面131,231における封止樹脂8の剥離を抑制できる。また、半導体装置A40は、半導体装置A10と共通する構成により、半導体装置A10と同等の効果を奏する。
According to this embodiment, the inner surface 131 of lead 1 and the inner surface 231 of lead 2 are provided with a plurality of protrusions 16 and a plurality of recesses 17, respectively. The contact area between the inner surfaces 131 and 231 and the sealing resin 8 is increased compared to the case where the plurality of protrusions 16 and the plurality of recesses 17 are not provided. Therefore, the adhesion of the sealing resin 8 to the inner surfaces 131, 231 is improved. Thereby, the semiconductor device A40 can suppress peeling of the sealing resin 8 on the inner surfaces 131 and 231 . In addition, the semiconductor device A40 has the same effect as the semiconductor device A10 due to the configuration common to the semiconductor device A10.
図23は、本開示の第5実施形態にかかる半導体装置A50を説明するための図である。図23は、半導体装置A50を示す平面図であり、図2に対応する図である。本実施形態にかかる半導体装置A50は、半導体素子6の種類が第1実施形態にかかる半導体装置A10と異なり、また、さらにリード3を備えている点で、第1実施形態にかかる半導体装置A10と異なる。本実施形態の他の部分の構成および動作は、第1実施形態と同様である。なお、上記の第1~4実施形態の各部が任意に組み合わせられてもよい。
FIG. 23 is a diagram for explaining the semiconductor device A50 according to the fifth embodiment of the present disclosure. FIG. 23 is a plan view showing the semiconductor device A50, corresponding to FIG. The semiconductor device A50 according to the present embodiment is different from the semiconductor device A10 according to the first embodiment in the type of the semiconductor element 6, and is further provided with leads 3, unlike the semiconductor device A10 according to the first embodiment. different. The configuration and operation of other portions of this embodiment are the same as those of the first embodiment. It should be noted that each part of the above-described first to fourth embodiments may be combined arbitrarily.
本実施形態にかかる半導体装置A50は、リード3をさらに備えている。リード3は、リード1およびリード2から離間して配置されている。本実施形態では、リード2が半導体装置A50のy方向y2側でx方向x1側の端部(図23では左上の角部)に配置され、リード3が半導体装置A50のy方向y2側でx方向x2側の端部(図23では右上の角部)に配置されている。つまり、リード3は、y方向において、リード1に対してリード2と同じ側に配置されている。リード3は、半導体素子6に導通し、主面31、裏面32、内部面33、および連結端面34,35を備えている。
The semiconductor device A50 according to this embodiment further includes leads 3 . Lead 3 is spaced apart from lead 1 and lead 2 . In this embodiment, the lead 2 is arranged on the y-direction y2 side of the semiconductor device A50 at the end portion on the x-direction x1 side (the upper left corner in FIG. 23), and the lead 3 is arranged on the y-direction y2 side of the semiconductor device A50. It is arranged at the end on the direction x2 side (upper right corner in FIG. 23). That is, the lead 3 is arranged on the same side as the lead 2 with respect to the lead 1 in the y direction. The lead 3 is electrically connected to the semiconductor element 6 and has a principal surface 31 , a back surface 32 , an inner surface 33 , and connecting end surfaces 34 and 35 .
主面31および裏面32は、z方向において互いに反対側を向いている。主面31は、リード1の主面11と同じ側(z方向z2側)を向いている。主面31は、ワイヤ7が接合される面である。本実施形態では、主面31の形状は、矩形状からy方向y2側およびx方向x2側に突出した部分を有する形状である。y方向y2側に突出した部分は、半導体装置A50のy方向y2側の端縁まで達している。x方向x2側に突出した部分は、半導体装置A50のx方向x2側の端縁まで達している。なお、各突出した部分の数は特に限定されない。裏面32は、リード1の裏面12と同じ側(z方向z1側)を向いている。裏面32は、封止樹脂8から露出して、裏面端子になる。本実施形態では、裏面32の形状は、矩形状である。
The main surface 31 and the back surface 32 face opposite sides in the z direction. The main surface 31 faces the same side as the main surface 11 of the lead 1 (z2 side in the z direction). The main surface 31 is the surface to which the wire 7 is joined. In this embodiment, the shape of the main surface 31 is a rectangular shape having portions protruding in the y direction y2 and in the x direction x2. The portion protruding in the y direction y2 reaches the edge of the semiconductor device A50 on the y direction y2 side. The portion protruding in the x direction x2 reaches the edge of the semiconductor device A50 on the x direction x2 side. Note that the number of each projecting portion is not particularly limited. The back surface 32 faces the same side as the back surface 12 of the lead 1 (z1 side in the z direction). The rear surface 32 is exposed from the sealing resin 8 and becomes a rear surface terminal. In this embodiment, the shape of the back surface 32 is rectangular.
内部面33は、裏面32につながり、リード3の一部が裏面32から主面31側に凹んだ部分である。本実施形態では、内部面33は、裏面32のy方向y2側およびx方向x2側に、それぞれ形成されている。なお、内部面33の形状および配置位置は特に限定されない。内部面33は、たとえば、裏面32の周囲全体を囲むように形成されてもよいし、裏面32のy方向y1側またはx方向x1側にも形成されてもよい。リード3のうち内部面33が位置する部分の厚さ(z方向の寸法)は、裏面32が位置する部分の厚さより小さく、たとえば半分程度である。内部面33は、たとえばハーフエッチング処理により形成される。内部面33は、封止樹脂8から露出せず、封止樹脂8によって覆われている。これにより、リード3が封止樹脂8からz方向のz1側に剥離することが抑制される。
The inner surface 33 is connected to the back surface 32 and is a portion where a part of the lead 3 is recessed from the back surface 32 toward the main surface 31 side. In this embodiment, the inner surface 33 is formed on the y-direction y2 side and the x-direction x2 side of the back surface 32, respectively. The shape and arrangement position of the inner surface 33 are not particularly limited. For example, the inner surface 33 may be formed so as to surround the entire periphery of the back surface 32, or may be formed on the y-direction y1 side or the x-direction x1 side of the back surface 32 as well. The thickness (dimension in the z direction) of the portion of the lead 3 where the inner surface 33 is located is smaller than the thickness of the portion where the back surface 32 is located, for example about half. The inner surface 33 is formed, for example, by half-etching. The inner surface 33 is covered with the sealing resin 8 without being exposed from the sealing resin 8 . This prevents the leads 3 from peeling off from the sealing resin 8 toward the z1 side in the z direction.
連結端面34,35は、主面31および裏面32に直交する面であり、主面31および内部面33につながっている。連結端面34,35は、封止樹脂8から露出している。連結端面24は、1個であり、y方向y2側を向いている。連結端面35は、1個であり、x方向x2側を向いている。連結端面34,35は、製造工程における切断工程でのダイシングにより形成される。
The connecting end surfaces 34 , 35 are surfaces perpendicular to the main surface 31 and the back surface 32 and are connected to the main surface 31 and the inner surface 33 . The connecting end surfaces 34 and 35 are exposed from the sealing resin 8 . There is one connecting end surface 24, and it faces the y direction y2 side. There is one connection end surface 35, and it faces the x direction x2 side. The connecting end surfaces 34 and 35 are formed by dicing in the cutting process in the manufacturing process.
なお、リード3の形状は上記したものに限定されない。たとえば、裏面32が半導体装置A50のy方向y2側の端縁まで広がり、連結端面34が半導体装置A50のz方向z1側の端縁まで広がり、裏面32と連結端面34とがつながって連続的に封止樹脂8から露出してもよい。リード3の形状は、用途や仕様に応じて、適宜設計される。
The shape of the lead 3 is not limited to the one described above. For example, the back surface 32 extends to the edge of the semiconductor device A50 on the y-direction y2 side, the connection end surface 34 extends to the edge on the z-direction z1 side of the semiconductor device A50, and the back surface 32 and the connection end surface 34 are connected to form a continuous line. It may be exposed from the sealing resin 8 . The shape of the lead 3 is appropriately designed according to the application and specifications.
本実施形態にかかる半導体素子6は、たとえばMOSFET(metal-oxide-semiconductor field-effect transistor)である。なお、半導体素子6は、IGBT(Insulated Gate Bipolar Transistor)などの他のトランジスタであってもよい。半導体素子6は、素子主面61に配置された第3電極633をさらに備えている。本実施形態においては、第1電極631はソース電極であり、第2電極632はドレイン電極であり、第3電極633はゲート電極である。半導体素子6の第2電極632は、接合材79を介して、リード1に導通接続されている。これにより、リード1は、半導体素子6の第2電極632(ドレイン電極)に導通接続されて、ドレイン端子として機能する。半導体素子6の第1電極631は、ワイヤ7を介して、リード2に導通接続されている。これにより、リード2は、半導体素子6の第1電極631(ソース電極)に導通接続されて、ソース端子として機能する。半導体素子6の第3電極633は、ワイヤ7を介して、リード3に導通接続されている。これにより、リード3は、半導体素子6の第3電極633(ゲート電極)に導通接続されて、ゲート端子として機能する。
The semiconductor element 6 according to this embodiment is, for example, a MOSFET (metal-oxide-semiconductor field-effect transistor). The semiconductor element 6 may be another transistor such as an IGBT (Insulated Gate Bipolar Transistor). The semiconductor element 6 further includes a third electrode 633 arranged on the element main surface 61 . In this embodiment, the first electrode 631 is the source electrode, the second electrode 632 is the drain electrode, and the third electrode 633 is the gate electrode. A second electrode 632 of the semiconductor element 6 is conductively connected to the lead 1 via a bonding material 79 . Thereby, the lead 1 is conductively connected to the second electrode 632 (drain electrode) of the semiconductor element 6 and functions as a drain terminal. A first electrode 631 of the semiconductor element 6 is conductively connected to the lead 2 via the wire 7 . As a result, the lead 2 is conductively connected to the first electrode 631 (source electrode) of the semiconductor element 6 and functions as a source terminal. A third electrode 633 of the semiconductor element 6 is conductively connected to the lead 3 via the wire 7 . As a result, the lead 3 is conductively connected to the third electrode 633 (gate electrode) of the semiconductor element 6 and functions as a gate terminal.
本実施形態においても、リード1の内部面131は、複数の凸部16および複数の凹部17を備えている。複数の凸部16および複数の凹部17を備えない場合と比較して、内部面131と封止樹脂8とが接する面積が大きくなる。したがって、内部面131に対する封止樹脂8の密着性が向上する。これにより、半導体装置A50は、内部面131における封止樹脂8の剥離を抑制できる。また、半導体装置A50は、半導体装置A10と共通する構成により、半導体装置A10と同等の効果を奏する。
Also in this embodiment, the inner surface 131 of the lead 1 has a plurality of protrusions 16 and a plurality of recesses 17 . Compared to the case where the plurality of protrusions 16 and the plurality of recesses 17 are not provided, the contact area between the inner surface 131 and the sealing resin 8 is increased. Therefore, the adhesion of the sealing resin 8 to the inner surface 131 is improved. Thereby, the semiconductor device A50 can suppress peeling of the sealing resin 8 on the inner surface 131 . Moreover, the semiconductor device A50 has the same effect as the semiconductor device A10 due to the configuration common to the semiconductor device A10.
なお、本実施形態では、リード3がy方向において、リード1に対してリード2と同じ側に配置された場合について説明したが、これに限られない。リード3は、y方向において、リード1に対してリード2とは反対側に配置されてもよい。
In this embodiment, the case where the lead 3 is arranged on the same side as the lead 2 with respect to the lead 1 in the y direction has been described, but the present invention is not limited to this. Lead 3 may be arranged on the opposite side of lead 1 to lead 2 in the y-direction.
なお、上記第1~4実施形態では半導体素子6がダイオードである例を説明し、上記第5実施形態では半導体素子6がトランジスタである例を説明したが、これに限られない。半導体素子6の種類は特に限定されず、集積回路などの他の半導体素子であってもよい。また、上記第1~5実施形態では、2個または3個のリードが配置された場合について説明したが、これに限られない。配置されるリードの数および配置は特に限定されず、半導体素子6の素子主面61に配置された電極の数および配置に応じて、適宜設定される。
In the first to fourth embodiments, an example in which the semiconductor element 6 is a diode was described, and in the fifth embodiment, an example in which the semiconductor element 6 is a transistor was described, but the present invention is not limited to this. The type of semiconductor element 6 is not particularly limited, and other semiconductor elements such as integrated circuits may be used. Also, in the above-described first to fifth embodiments, the case where two or three leads are arranged has been described, but the present invention is not limited to this. The number and arrangement of leads to be arranged are not particularly limited, and are appropriately set according to the number and arrangement of electrodes arranged on the element main surface 61 of the semiconductor element 6 .
本開示にかかる半導体装置および半導体装置の製造方法は、先述した実施形態に限定されるものではない。本開示にかかるおよび半導体装置の各部の具体的な構成、および、本開示の半導体装置の製造方法の各工程の具体的な処理は、種々に設計変更自在である。本開示は、以下の付記に記載した実施形態を含む。
The semiconductor device and the semiconductor device manufacturing method according to the present disclosure are not limited to the above-described embodiments. The specific configuration of each part of the semiconductor device according to the present disclosure and the specific processing of each step of the method for manufacturing the semiconductor device of the present disclosure can be changed in design in various ways. The present disclosure includes embodiments described in the appendices below.
付記1.
半導体素子(6)と、
前記半導体素子が搭載された第1リード(1)と、
前記第1リードから、前記第1リードの厚さ方向に直交する第1方向に離間して配置され、かつ、前記半導体素子に導通する第2リード(2)と、
前記半導体素子を覆う封止樹脂(8)と、
を備え、
前記第1リードは、
前記半導体素子が接合された第1主面(11)と、
前記厚さ方向において前記第1主面とは反対側を向き、かつ、前記封止樹脂から露出する第1裏面(12)と、
前記第1裏面につながり、かつ、前記封止樹脂に覆われている第1内部面(131)と、
を備え、
前記第1内部面は、
前記第1裏面が向く側に突出する第1凸部(161)と、
前記第1凸部に対して前記厚さ方向と前記第1方向とに直交する第2方向に並び、かつ、前記第1凸部に対して前記第1主面が向く側に凹む第1凹部(17)と、
を備えている、半導体装置。
付記2.
前記第1内部面は、前記第1裏面が向く側に突出し、かつ、前記第1凸部に対して前記第2方向に並ぶ第2凸部(162)を備えている、付記1に記載の半導体装置。
付記3.
前記第1内部面は、前記第1裏面が向く側に突出し、かつ、前記第1凸部に対して前記第1方向に並ぶ第3凸部(163)を備えている、付記2に記載の半導体装置。
付記4.
前記第1内部面は、前記第1裏面が向く側に突出し、かつ、前記第2方向において前記第1凸部と前記第2凸部との間で、前記第1方向において前記第1凸部と前記第3凸部との間に位置する第4凸部(164)を備えている、付記3に記載の半導体装置。
付記5.
前記第4凸部は、前記厚さ方向視において前記第2凸部の頂点と前記第3凸部の頂点とを結ぶ線分上に位置する、付記4に記載の半導体装置。
付記6.
前記第1凸部および前記第1凹部は、前記第1方向に延びている、付記1に記載の半導体装置。
付記7.
前記第1凸部は、前記封止樹脂から露出しない、付記1ないし6のいずれかに記載の半導体装置。
付記8.
前記第1凸部は、前記第1主面からの前記厚さ方向の寸法(T2)が、前記第1リードの前記第1主面から前記第1裏面までの前記厚さ方向の寸法(T1)の50%以上90%以下である、付記1ないし7のいずれかに記載の半導体装置。
付記8-1.
前記第1凹部の底から前記第1凸部の頂点までの前記厚さ方向の寸法(T3)は、前記第1リードの前記第1主面から前記第1裏面までの前記厚さ方向の寸法(T1)の10%以上50%以下である、付記1ないし8のいずれかに記載の半導体装置。
付記9.
前記第1凸部および前記第1凹部は、前記第1方向において、前記第1裏面に対して前記第2リード側に配置されている、付記1ないし8のいずれかに記載の半導体装置。
付記10.(第3実施形態、図21)
前記第1内部面は、前記第1裏面が向く側に突出し、かつ、前記第1方向において、前記第1裏面に対して前記第2リードとは反対側に位置する第5凸部(16)を備えている、付記9に記載の半導体装置。
付記11.(第2実施形態、図20)
前記第1凸部および前記第1凹部は、前記第1方向において、前記第1裏面に対して前記第2リードとは反対側に配置されている、付記1ないし8のいずれかに記載の半導体装置。
付記12.(第4実施形態、図22)
前記第2リードは、
前記第1主面と同じ側を向く第2主面(21)と、
前記第1裏面と同じ側を向き、かつ、前記封止樹脂から露出する第2裏面(22)と、
前記第2裏面につながり、かつ、前記封止樹脂に覆われている第2内部面(23)と、を備え、
前記第2内部面は、前記第2裏面が向く側に突出する第6凸部(16)を備えている、付記1ないし11のいずれかに記載の半導体装置。
付記12-1.
前記半導体素子は、ダイオードである、付記1ないし12のいずれかに記載の半導体装置。
付記13.(第5実施形態、図23)
前記第1リードおよび前記第2リードから離間して配置され、かつ、前記半導体素子に導通する第3リード(3)をさらに備えている、付記1ないし12のいずれかに記載の半導体装置。
付記13-1.
前記第3リードは、前記第1方向において、前記第1リードに対して前記第2リードと同じ側に配置されている、付記13に記載の半導体装置。
付記13-2.
前記半導体素子は、トランジスタである、付記13に記載の半導体装置。
付記14.
厚さ方向において互いに反対側を向く第1主面および第1裏面を有する第1リードを備える半導体装置の製造方法であって、
前記厚さ方向において互いに反対側を向く主面および裏面を有する金属板を準備する工程(S11)と、
前記金属板の前記裏面に、前記第1裏面を形成するための第1マスク、および、複数の矩形状のマスクが市松模様状に配列された第2マスクを形成する工程(S12)と、
前記金属板に前記主面側および前記裏面側からエッチング処理を行うことで、リードフレームを作成する工程(S13)と、
前記リードフレームに半導体素子を接合する工程(S20)と、
前記半導体素子を覆う封止樹脂を形成する工程(S40)と、
前記リードフレームおよび前記封止樹脂を切断する工程(S50)と、
を備えている、半導体装置の製造方法。
付記15.
前記第2マスクは、前記矩形状のマスクが、前記厚さ方向に直交する第1方向、および、前記厚さ方向と前記第1方向とに直交する第2方向に、それぞれ3列以上配列されている、付記14に記載の半導体装置の製造方法。Appendix 1.
a semiconductor element (6);
a first lead (1) on which the semiconductor element is mounted;
a second lead (2) spaced apart from the first lead in a first direction perpendicular to the thickness direction of the first lead and conducting to the semiconductor element;
a sealing resin (8) covering the semiconductor element;
with
The first lead is
a first main surface (11) to which the semiconductor element is bonded;
a first rear surface (12) facing the side opposite to the first main surface in the thickness direction and exposed from the sealing resin;
a first inner surface (131) connected to the first back surface and covered with the sealing resin;
with
The first inner surface is
a first protrusion (161) protruding toward the side facing the first back surface;
A first concave portion arranged in a second direction orthogonal to the thickness direction and the first direction with respect to the first convex portion and concave on a side of the first convex portion facing the first main surface. (17) and
A semiconductor device comprising:
Appendix 2.
The first internal surface according toappendix 1, wherein the first inner surface is provided with a second convex portion (162) that protrudes toward the first back surface and is aligned in the second direction with respect to the first convex portion. semiconductor device.
Appendix 3.
According toappendix 2, the first inner surface has a third protrusion (163) that protrudes toward the first rear surface and is aligned in the first direction with respect to the first protrusion. semiconductor device.
Appendix 4.
The first inner surface protrudes toward the side facing the first back surface, and is between the first convex portion and the second convex portion in the second direction, and the first convex portion in thefirst direction 3. The semiconductor device of claim 3, further comprising a fourth protrusion (164) positioned between the third protrusion and the third protrusion.
Appendix 5.
The semiconductor device according to appendix 4, wherein the fourth protrusion is positioned on a line segment connecting a vertex of the second protrusion and a vertex of the third protrusion when viewed in the thickness direction.
Appendix 6.
The semiconductor device according toappendix 1, wherein the first protrusion and the first recess extend in the first direction.
Appendix 7.
7. The semiconductor device according to any one ofappendices 1 to 6, wherein the first protrusion is not exposed from the sealing resin.
Appendix 8.
The first protrusion has a dimension (T2) in the thickness direction from the first main surface that is equal to a dimension (T1) in the thickness direction from the first main surface to the first rear surface of the first lead. 8. The semiconductor device according to any one ofappendices 1 to 7, wherein 50% or more and 90% or less of ).
Appendix 8-1.
The dimension (T3) in the thickness direction from the bottom of the first recess to the top of the first protrusion is the dimension in the thickness direction from the first main surface to the first rear surface of the first lead. 9. The semiconductor device according to any one ofAppendixes 1 to 8, wherein (T1) is 10% or more and 50% or less.
Appendix 9.
9. The semiconductor device according to any one ofappendices 1 to 8, wherein the first protrusion and the first recess are arranged on the second lead side with respect to the first back surface in the first direction.
Appendix 10. (Third Embodiment, FIG. 21)
The first inner surface protrudes toward the first rear surface and is located on the opposite side of the first rear surface to the second lead in the first direction. The semiconductor device according to Appendix 9, comprising:
Appendix 11. (Second embodiment, FIG. 20)
9. The semiconductor according to any one ofappendices 1 to 8, wherein the first convex portion and the first concave portion are arranged on a side opposite to the second lead with respect to the first back surface in the first direction. Device.
Appendix 12. (Fourth embodiment, FIG. 22)
The second lead is
a second main surface (21) facing the same side as the first main surface;
a second back surface (22) facing the same side as the first back surface and exposed from the sealing resin;
A second inner surface (23) connected to the second back surface and covered with the sealing resin,
12. The semiconductor device according to any one ofappendices 1 to 11, wherein the second inner surface has a sixth projection (16) projecting toward the second back surface.
Appendix 12-1.
13. The semiconductor device according to any one ofAppendixes 1 to 12, wherein the semiconductor element is a diode.
Appendix 13. (Fifth embodiment, FIG. 23)
13. The semiconductor device according to any one ofappendices 1 to 12, further comprising a third lead (3) spaced apart from said first lead and said second lead and conducting to said semiconductor element.
Appendix 13-1.
14. The semiconductor device according toappendix 13, wherein the third lead is arranged on the same side as the second lead with respect to the first lead in the first direction.
Appendix 13-2.
14. The semiconductor device according toappendix 13, wherein the semiconductor element is a transistor.
Appendix 14.
A method of manufacturing a semiconductor device including a first lead having a first main surface and a first back surface facing opposite sides in a thickness direction, the method comprising:
a step of preparing a metal plate having a main surface and a back surface facing opposite to each other in the thickness direction (S11);
forming a first mask for forming the first back surface and a second mask in which a plurality of rectangular masks are arranged in a checkered pattern on the back surface of the metal plate (S12);
a step (S13) of creating a lead frame by etching the metal plate from the main surface side and the back surface side;
a step of bonding a semiconductor element to the lead frame (S20);
forming a sealing resin covering the semiconductor element (S40);
a step of cutting the lead frame and the sealing resin (S50);
A method of manufacturing a semiconductor device, comprising:
Appendix 15.
In the second mask, the rectangular masks are arranged in three or more rows in a first direction orthogonal to the thickness direction and in a second direction orthogonal to the thickness direction and the first direction. 15. The method of manufacturing a semiconductor device according toappendix 14, wherein
半導体素子(6)と、
前記半導体素子が搭載された第1リード(1)と、
前記第1リードから、前記第1リードの厚さ方向に直交する第1方向に離間して配置され、かつ、前記半導体素子に導通する第2リード(2)と、
前記半導体素子を覆う封止樹脂(8)と、
を備え、
前記第1リードは、
前記半導体素子が接合された第1主面(11)と、
前記厚さ方向において前記第1主面とは反対側を向き、かつ、前記封止樹脂から露出する第1裏面(12)と、
前記第1裏面につながり、かつ、前記封止樹脂に覆われている第1内部面(131)と、
を備え、
前記第1内部面は、
前記第1裏面が向く側に突出する第1凸部(161)と、
前記第1凸部に対して前記厚さ方向と前記第1方向とに直交する第2方向に並び、かつ、前記第1凸部に対して前記第1主面が向く側に凹む第1凹部(17)と、
を備えている、半導体装置。
付記2.
前記第1内部面は、前記第1裏面が向く側に突出し、かつ、前記第1凸部に対して前記第2方向に並ぶ第2凸部(162)を備えている、付記1に記載の半導体装置。
付記3.
前記第1内部面は、前記第1裏面が向く側に突出し、かつ、前記第1凸部に対して前記第1方向に並ぶ第3凸部(163)を備えている、付記2に記載の半導体装置。
付記4.
前記第1内部面は、前記第1裏面が向く側に突出し、かつ、前記第2方向において前記第1凸部と前記第2凸部との間で、前記第1方向において前記第1凸部と前記第3凸部との間に位置する第4凸部(164)を備えている、付記3に記載の半導体装置。
付記5.
前記第4凸部は、前記厚さ方向視において前記第2凸部の頂点と前記第3凸部の頂点とを結ぶ線分上に位置する、付記4に記載の半導体装置。
付記6.
前記第1凸部および前記第1凹部は、前記第1方向に延びている、付記1に記載の半導体装置。
付記7.
前記第1凸部は、前記封止樹脂から露出しない、付記1ないし6のいずれかに記載の半導体装置。
付記8.
前記第1凸部は、前記第1主面からの前記厚さ方向の寸法(T2)が、前記第1リードの前記第1主面から前記第1裏面までの前記厚さ方向の寸法(T1)の50%以上90%以下である、付記1ないし7のいずれかに記載の半導体装置。
付記8-1.
前記第1凹部の底から前記第1凸部の頂点までの前記厚さ方向の寸法(T3)は、前記第1リードの前記第1主面から前記第1裏面までの前記厚さ方向の寸法(T1)の10%以上50%以下である、付記1ないし8のいずれかに記載の半導体装置。
付記9.
前記第1凸部および前記第1凹部は、前記第1方向において、前記第1裏面に対して前記第2リード側に配置されている、付記1ないし8のいずれかに記載の半導体装置。
付記10.(第3実施形態、図21)
前記第1内部面は、前記第1裏面が向く側に突出し、かつ、前記第1方向において、前記第1裏面に対して前記第2リードとは反対側に位置する第5凸部(16)を備えている、付記9に記載の半導体装置。
付記11.(第2実施形態、図20)
前記第1凸部および前記第1凹部は、前記第1方向において、前記第1裏面に対して前記第2リードとは反対側に配置されている、付記1ないし8のいずれかに記載の半導体装置。
付記12.(第4実施形態、図22)
前記第2リードは、
前記第1主面と同じ側を向く第2主面(21)と、
前記第1裏面と同じ側を向き、かつ、前記封止樹脂から露出する第2裏面(22)と、
前記第2裏面につながり、かつ、前記封止樹脂に覆われている第2内部面(23)と、を備え、
前記第2内部面は、前記第2裏面が向く側に突出する第6凸部(16)を備えている、付記1ないし11のいずれかに記載の半導体装置。
付記12-1.
前記半導体素子は、ダイオードである、付記1ないし12のいずれかに記載の半導体装置。
付記13.(第5実施形態、図23)
前記第1リードおよび前記第2リードから離間して配置され、かつ、前記半導体素子に導通する第3リード(3)をさらに備えている、付記1ないし12のいずれかに記載の半導体装置。
付記13-1.
前記第3リードは、前記第1方向において、前記第1リードに対して前記第2リードと同じ側に配置されている、付記13に記載の半導体装置。
付記13-2.
前記半導体素子は、トランジスタである、付記13に記載の半導体装置。
付記14.
厚さ方向において互いに反対側を向く第1主面および第1裏面を有する第1リードを備える半導体装置の製造方法であって、
前記厚さ方向において互いに反対側を向く主面および裏面を有する金属板を準備する工程(S11)と、
前記金属板の前記裏面に、前記第1裏面を形成するための第1マスク、および、複数の矩形状のマスクが市松模様状に配列された第2マスクを形成する工程(S12)と、
前記金属板に前記主面側および前記裏面側からエッチング処理を行うことで、リードフレームを作成する工程(S13)と、
前記リードフレームに半導体素子を接合する工程(S20)と、
前記半導体素子を覆う封止樹脂を形成する工程(S40)と、
前記リードフレームおよび前記封止樹脂を切断する工程(S50)と、
を備えている、半導体装置の製造方法。
付記15.
前記第2マスクは、前記矩形状のマスクが、前記厚さ方向に直交する第1方向、および、前記厚さ方向と前記第1方向とに直交する第2方向に、それぞれ3列以上配列されている、付記14に記載の半導体装置の製造方法。
a semiconductor element (6);
a first lead (1) on which the semiconductor element is mounted;
a second lead (2) spaced apart from the first lead in a first direction perpendicular to the thickness direction of the first lead and conducting to the semiconductor element;
a sealing resin (8) covering the semiconductor element;
with
The first lead is
a first main surface (11) to which the semiconductor element is bonded;
a first rear surface (12) facing the side opposite to the first main surface in the thickness direction and exposed from the sealing resin;
a first inner surface (131) connected to the first back surface and covered with the sealing resin;
with
The first inner surface is
a first protrusion (161) protruding toward the side facing the first back surface;
A first concave portion arranged in a second direction orthogonal to the thickness direction and the first direction with respect to the first convex portion and concave on a side of the first convex portion facing the first main surface. (17) and
A semiconductor device comprising:
The first internal surface according to
According to
Appendix 4.
The first inner surface protrudes toward the side facing the first back surface, and is between the first convex portion and the second convex portion in the second direction, and the first convex portion in the
Appendix 5.
The semiconductor device according to appendix 4, wherein the fourth protrusion is positioned on a line segment connecting a vertex of the second protrusion and a vertex of the third protrusion when viewed in the thickness direction.
The semiconductor device according to
7. The semiconductor device according to any one of
The first protrusion has a dimension (T2) in the thickness direction from the first main surface that is equal to a dimension (T1) in the thickness direction from the first main surface to the first rear surface of the first lead. 8. The semiconductor device according to any one of
Appendix 8-1.
The dimension (T3) in the thickness direction from the bottom of the first recess to the top of the first protrusion is the dimension in the thickness direction from the first main surface to the first rear surface of the first lead. 9. The semiconductor device according to any one of
Appendix 9.
9. The semiconductor device according to any one of
Appendix 10. (Third Embodiment, FIG. 21)
The first inner surface protrudes toward the first rear surface and is located on the opposite side of the first rear surface to the second lead in the first direction. The semiconductor device according to Appendix 9, comprising:
9. The semiconductor according to any one of
The second lead is
a second main surface (21) facing the same side as the first main surface;
a second back surface (22) facing the same side as the first back surface and exposed from the sealing resin;
A second inner surface (23) connected to the second back surface and covered with the sealing resin,
12. The semiconductor device according to any one of
Appendix 12-1.
13. The semiconductor device according to any one of
13. The semiconductor device according to any one of
Appendix 13-1.
14. The semiconductor device according to
Appendix 13-2.
14. The semiconductor device according to
A method of manufacturing a semiconductor device including a first lead having a first main surface and a first back surface facing opposite sides in a thickness direction, the method comprising:
a step of preparing a metal plate having a main surface and a back surface facing opposite to each other in the thickness direction (S11);
forming a first mask for forming the first back surface and a second mask in which a plurality of rectangular masks are arranged in a checkered pattern on the back surface of the metal plate (S12);
a step (S13) of creating a lead frame by etching the metal plate from the main surface side and the back surface side;
a step of bonding a semiconductor element to the lead frame (S20);
forming a sealing resin covering the semiconductor element (S40);
a step of cutting the lead frame and the sealing resin (S50);
A method of manufacturing a semiconductor device, comprising:
In the second mask, the rectangular masks are arranged in three or more rows in a first direction orthogonal to the thickness direction and in a second direction orthogonal to the thickness direction and the first direction. 15. The method of manufacturing a semiconductor device according to
A10~A15,A20,A30,A40,A50:半導体装置
1:リード 11:主面 12:裏面
13,131~134:内部面 14:連結端面
15:連結端面 16,161~164:凸部
17:凹部 2:リード 21:主面 22:裏面
23:内部面 231:内部面 24:連結端面
25:連結端面 3:リード 31:主面 32:裏面
33:内部面 34:連結端面 35:連結端面
6:半導体素子 60:素子本体 61:素子主面
62:素子裏面 631:第1電極 632:第2電極
633:第3電極 7:ワイヤ 79:接合材
8:封止樹脂 81:樹脂主面 82:樹脂裏面
83,831~834:樹脂側面 91:金属板
911:主面 912:裏面
92,921,922,923:マスク
924:開口部 925:マスク 95:リードフレーム
951:主面 952:裏面 953:内部面
96:封止樹脂 962:裏面 A10 to A15, A20, A30, A40, A50: Semiconductor device 1: Lead 11: Main surface 12: Back surface 13, 131 to 134: Internal surface 14: Connection end surface 15: Connection end surface 16, 161 to 164: Convex portion 17: Recess 2: Lead 21: Main surface 22: Back surface 23: Internal surface 231: Internal surface 24: Connection end surface 25: Connection end surface 3: Lead 31: Main surface 32: Back surface 33: Internal surface 34: Connection end surface 35: Connection end surface 6 : Semiconductor element 60: Element body 61: Element principal surface 62: Element back surface 631: First electrode 632: Second electrode 633: Third electrode 7: Wire 79: Bonding material 8: Sealing resin 81: Resin principal surface 82: Resin back surface 83, 831 to 834: Resin side surface 91: Metal plate 911: Main surface 912: Back surface
92, 921, 922, 923: Mask 924: Opening 925: Mask 95: Lead frame 951: Main surface 952: Back surface 953: Internal surface 96: Sealing resin 962: Back surface
1:リード 11:主面 12:裏面
13,131~134:内部面 14:連結端面
15:連結端面 16,161~164:凸部
17:凹部 2:リード 21:主面 22:裏面
23:内部面 231:内部面 24:連結端面
25:連結端面 3:リード 31:主面 32:裏面
33:内部面 34:連結端面 35:連結端面
6:半導体素子 60:素子本体 61:素子主面
62:素子裏面 631:第1電極 632:第2電極
633:第3電極 7:ワイヤ 79:接合材
8:封止樹脂 81:樹脂主面 82:樹脂裏面
83,831~834:樹脂側面 91:金属板
911:主面 912:裏面
92,921,922,923:マスク
924:開口部 925:マスク 95:リードフレーム
951:主面 952:裏面 953:内部面
96:封止樹脂 962:裏面 A10 to A15, A20, A30, A40, A50: Semiconductor device 1: Lead 11: Main surface 12: Back
92, 921, 922, 923: Mask 924: Opening 925: Mask 95: Lead frame 951: Main surface 952: Back surface 953: Internal surface 96: Sealing resin 962: Back surface
Claims (15)
- 半導体素子と、
前記半導体素子が搭載された第1リードと、
前記第1リードから、前記第1リードの厚さ方向に直交する第1方向に離間して配置され、かつ、前記半導体素子に導通する第2リードと、
前記半導体素子を覆う封止樹脂と、
を備え、
前記第1リードは、
前記半導体素子が接合された第1主面と、
前記厚さ方向において前記第1主面とは反対側を向き、かつ、前記封止樹脂から露出する第1裏面と、
前記第1裏面につながり、かつ、前記封止樹脂に覆われている第1内部面と、
を備え、
前記第1内部面は、
前記第1裏面が向く側に突出する第1凸部と、
前記第1凸部に対して前記厚さ方向と前記第1方向とに直交する第2方向に並び、かつ、前記第1凸部に対して前記第1主面が向く側に凹む第1凹部と、
を備えている、半導体装置。 a semiconductor element;
a first lead on which the semiconductor element is mounted;
a second lead spaced apart from the first lead in a first direction perpendicular to the thickness direction of the first lead and conducting to the semiconductor element;
a sealing resin covering the semiconductor element;
with
The first lead is
a first main surface to which the semiconductor element is bonded;
a first rear surface facing the side opposite to the first main surface in the thickness direction and exposed from the sealing resin;
a first inner surface connected to the first back surface and covered with the sealing resin;
with
The first inner surface is
a first convex portion protruding toward the side facing the first back surface;
A first concave portion arranged in a second direction orthogonal to the thickness direction and the first direction with respect to the first convex portion and concave on a side of the first convex portion facing the first main surface. When,
A semiconductor device comprising: - 前記第1内部面は、前記第1裏面が向く側に突出し、かつ、前記第1凸部に対して前記第2方向に並ぶ第2凸部を備えている、請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein said first inner surface has a second protrusion projecting toward said first back surface and arranged in said second direction with respect to said first protrusion. .
- 前記第1内部面は、前記第1裏面が向く側に突出し、かつ、前記第1凸部に対して前記第1方向に並ぶ第3凸部を備えている、請求項2に記載の半導体装置。 3. The semiconductor device according to claim 2, wherein said first inner surface has a third protrusion projecting toward said first back surface and arranged in said first direction with respect to said first protrusion. .
- 前記第1内部面は、前記第1裏面が向く側に突出し、かつ、前記第2方向において前記第1凸部と前記第2凸部との間で、前記第1方向において前記第1凸部と前記第3凸部との間に位置する第4凸部を備えている、請求項3に記載の半導体装置。 The first inner surface protrudes toward the side facing the first back surface, and is between the first convex portion and the second convex portion in the second direction, and the first convex portion in the first direction 4. The semiconductor device according to claim 3, further comprising a fourth protrusion positioned between said third protrusion.
- 前記第4凸部は、前記厚さ方向視において前記第2凸部の頂点と前記第3凸部の頂点とを結ぶ線分上に位置する、請求項4に記載の半導体装置。 5. The semiconductor device according to claim 4, wherein said fourth protrusion is positioned on a line segment connecting a vertex of said second protrusion and a vertex of said third protrusion when viewed in said thickness direction.
- 前記第1凸部および前記第1凹部は、前記第1方向に延びている、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein said first protrusion and said first recess extend in said first direction.
- 前記第1凸部は、前記封止樹脂から露出しない、請求項1ないし6のいずれかに記載の半導体装置。 The semiconductor device according to any one of claims 1 to 6, wherein said first convex portion is not exposed from said sealing resin.
- 前記第1凸部は、前記第1主面からの前記厚さ方向の寸法が、前記第1リードの前記第1主面から前記第1裏面までの前記厚さ方向の寸法の50%以上90%以下である、請求項1ないし7のいずれかに記載の半導体装置。 The first protrusion has a dimension in the thickness direction from the first main surface that is 50% or more of a dimension in the thickness direction from the first main surface to the first rear surface of the first lead. % or less, the semiconductor device according to claim 1 .
- 前記第1凸部および前記第1凹部は、前記第1方向において、前記第1裏面に対して前記第2リード側に配置されている、請求項1ないし8のいずれかに記載の半導体装置。 9. The semiconductor device according to claim 1, wherein said first protrusion and said first recess are arranged on said second lead side with respect to said first back surface in said first direction.
- 前記第1内部面は、前記第1裏面が向く側に突出し、かつ、前記第1方向において、前記第1裏面に対して前記第2リードとは反対側に位置する第5凸部を備えている、請求項9に記載の半導体装置。 The first inner surface has a fifth protrusion projecting toward the first back surface and positioned on the opposite side of the first back surface to the second lead in the first direction. 10. The semiconductor device according to claim 9, wherein
- 前記第1凸部および前記第1凹部は、前記第1方向において、前記第1裏面に対して前記第2リードとは反対側に配置されている、請求項1ないし8のいずれかに記載の半導体装置。 9. The first convex portion and the first concave portion according to claim 1, wherein the first convex portion and the first concave portion are arranged on a side opposite to the second lead with respect to the first back surface in the first direction. semiconductor device.
- 前記第2リードは、
前記第1主面と同じ側を向く第2主面と、
前記第1裏面と同じ側を向き、かつ、前記封止樹脂から露出する第2裏面と、
前記第2裏面につながり、かつ、前記封止樹脂に覆われている第2内部面と、
を備え、
前記第2内部面は、前記第2裏面が向く側に突出する第6凸部を備えている、請求項1ないし11のいずれかに記載の半導体装置。 The second lead is
a second main surface facing the same side as the first main surface;
a second back surface facing the same side as the first back surface and exposed from the sealing resin;
a second inner surface connected to the second back surface and covered with the sealing resin;
with
12. The semiconductor device according to any one of claims 1 to 11, wherein said second inner surface has a sixth protrusion projecting toward said second back surface. - 前記第1リードおよび前記第2リードから離間して配置され、かつ、前記半導体素子に導通する第3リードをさらに備えている、請求項1ないし12のいずれかに記載の半導体装置。 13. The semiconductor device according to claim 1, further comprising a third lead spaced apart from said first lead and said second lead and conducting to said semiconductor element.
- 厚さ方向において互いに反対側を向く第1主面および第1裏面を有する第1リードを備える半導体装置の製造方法であって、
前記厚さ方向において互いに反対側を向く主面および裏面を有する金属板を準備する工程と、
前記金属板の前記裏面に、前記第1裏面を形成するための第1マスク、および、複数の矩形状のマスクが市松模様状に配列された第2マスクを形成する工程と、
前記金属板に前記主面側および前記裏面側からエッチング処理を行うことで、リードフレームを作成する工程と、
前記リードフレームに半導体素子を接合する工程と、
前記半導体素子を覆う封止樹脂を形成する工程と、
前記リードフレームおよび前記封止樹脂を切断する工程と、
を備えている、半導体装置の製造方法。 A method of manufacturing a semiconductor device including a first lead having a first main surface and a first back surface facing opposite sides in a thickness direction, the method comprising:
preparing a metal plate having a main surface and a back surface facing opposite to each other in the thickness direction;
forming a first mask for forming the first back surface and a second mask in which a plurality of rectangular masks are arranged in a checkered pattern on the back surface of the metal plate;
a step of etching the metal plate from the main surface side and the back surface side to create a lead frame;
bonding a semiconductor element to the lead frame;
forming a sealing resin covering the semiconductor element;
cutting the lead frame and the sealing resin;
A method of manufacturing a semiconductor device, comprising: - 前記第2マスクは、前記矩形状のマスクが、前記厚さ方向に直交する第1方向、および、前記厚さ方向と前記第1方向とに直交する第2方向に、それぞれ3列以上配列されている、請求項14に記載の半導体装置の製造方法。 In the second mask, the rectangular masks are arranged in three or more rows in a first direction orthogonal to the thickness direction and in a second direction orthogonal to the thickness direction and the first direction. 15. The method of manufacturing a semiconductor device according to claim 14, wherein
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021051003A JP2024099856A (en) | 2021-03-25 | 2021-03-25 | Semiconductor device and manufacturing method for semiconductor device |
JP2021-051003 | 2021-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022202242A1 true WO2022202242A1 (en) | 2022-09-29 |
Family
ID=83397023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/009631 WO2022202242A1 (en) | 2021-03-25 | 2022-03-07 | Semiconductor device and manufacturing method for semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024099856A (en) |
WO (1) | WO2022202242A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01296653A (en) * | 1988-05-25 | 1989-11-30 | Mitsubishi Electric Corp | Resin-sealed semiconductor device |
JP2000269401A (en) * | 1999-03-16 | 2000-09-29 | Toshiba Microelectronics Corp | Semiconductor device |
EP2369652A2 (en) * | 2010-03-25 | 2011-09-28 | LG Innotek Co., Ltd. | Light emitting device package and lighting system having the same |
JP2016111169A (en) * | 2014-12-05 | 2016-06-20 | Shマテリアル株式会社 | Lead frame and method of manufacturing the same |
JP2016201447A (en) * | 2015-04-09 | 2016-12-01 | 株式会社デンソー | Molded package |
JP2020074379A (en) * | 2013-04-16 | 2020-05-14 | ローム株式会社 | Semiconductor device |
-
2021
- 2021-03-25 JP JP2021051003A patent/JP2024099856A/en active Pending
-
2022
- 2022-03-07 WO PCT/JP2022/009631 patent/WO2022202242A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01296653A (en) * | 1988-05-25 | 1989-11-30 | Mitsubishi Electric Corp | Resin-sealed semiconductor device |
JP2000269401A (en) * | 1999-03-16 | 2000-09-29 | Toshiba Microelectronics Corp | Semiconductor device |
EP2369652A2 (en) * | 2010-03-25 | 2011-09-28 | LG Innotek Co., Ltd. | Light emitting device package and lighting system having the same |
JP2020074379A (en) * | 2013-04-16 | 2020-05-14 | ローム株式会社 | Semiconductor device |
JP2016111169A (en) * | 2014-12-05 | 2016-06-20 | Shマテリアル株式会社 | Lead frame and method of manufacturing the same |
JP2016201447A (en) * | 2015-04-09 | 2016-12-01 | 株式会社デンソー | Molded package |
Also Published As
Publication number | Publication date |
---|---|
JP2024099856A (en) | 2024-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3877401B2 (en) | Manufacturing method of semiconductor device | |
US7176557B2 (en) | Semiconductor device | |
JP3420153B2 (en) | Semiconductor device and manufacturing method thereof | |
US20060043613A1 (en) | Surface-mounting semiconductor device and method of making the same | |
JP3046024B1 (en) | Lead frame and method of manufacturing resin-encapsulated semiconductor device using the same | |
JPH11121644A (en) | Discrete semiconductor device and manufacture thereof | |
JP3877409B2 (en) | Manufacturing method of semiconductor device | |
JP3072291B1 (en) | Lead frame, resin-encapsulated semiconductor device using the same and method of manufacturing the same | |
JP4159348B2 (en) | Circuit device manufacturing method | |
JP3877402B2 (en) | Manufacturing method of semiconductor device | |
JP4987041B2 (en) | Manufacturing method of semiconductor device | |
JP2004247613A (en) | Semiconductor device and its manufacturing process | |
WO2022202242A1 (en) | Semiconductor device and manufacturing method for semiconductor device | |
JP2000114426A (en) | Single-sided resin sealing type semiconductor device | |
JP3877405B2 (en) | Manufacturing method of semiconductor device | |
JP4784945B2 (en) | Manufacturing method of semiconductor device | |
JP2006237503A (en) | Semiconductor device and its manufacturing process | |
JP4887346B2 (en) | Semiconductor device | |
JP5119092B2 (en) | Manufacturing method of semiconductor device | |
JP4066050B2 (en) | Resin-sealed semiconductor device and manufacturing method thereof | |
WO2023286720A1 (en) | Semiconductor device | |
JP2001077285A (en) | Lead frame and manufacture of resin-sealed semiconductor device using the same | |
JP5086315B2 (en) | Manufacturing method of semiconductor device | |
JP2009021630A (en) | Method of manufacturing semiconductor device | |
JP2001077275A (en) | Lead frame and manufacture of resin-sealed semiconductor device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22775038 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22775038 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |