JP4162303B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4162303B2
JP4162303B2 JP26191198A JP26191198A JP4162303B2 JP 4162303 B2 JP4162303 B2 JP 4162303B2 JP 26191198 A JP26191198 A JP 26191198A JP 26191198 A JP26191198 A JP 26191198A JP 4162303 B2 JP4162303 B2 JP 4162303B2
Authority
JP
Japan
Prior art keywords
insulating substrate
semiconductor device
semiconductor
resin
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26191198A
Other languages
Japanese (ja)
Other versions
JP2000091363A (en
Inventor
治雄 兵藤
孝行 谷
隆生 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26191198A priority Critical patent/JP4162303B2/en
Publication of JP2000091363A publication Critical patent/JP2000091363A/en
Application granted granted Critical
Publication of JP4162303B2 publication Critical patent/JP4162303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置に関し、特にパッケージ外形を縮小して実装面積を低減でき、更には製造に伴う材料の無駄を削減できる半導体装置の製造方法に関する。
【0002】
【従来の技術】
半導体装置の製造においては、ウェハからダイシングして分離した半導体チップをリードフレームに固着し、金型と樹脂注入によるトランスファーモールドによってリードフレーム上に固着された半導体チップを封止し、封止された半導体チップを個々の半導体装置毎に分離するという工程が行われている。このリードフレームには短冊状あるいはフープ状のフレームが用いられており、いずれにしろ1回の封止工程で複数個の半導体装置が同時に封止されている。
【0003】
図8は、トランスファーモールド工程の状況を示す図である。トランスファーモールド工程では、ダイボンド、ワイヤボンドにより半導体チップ1が固着されたリードフレーム2を、上下金型3A、3Bで形成したキャビティ4の内部に設置し、キャビティ4内にエポキシ樹脂を注入することにより、半導体チップ1の封止が行われる。このようなトランスファーモールド工程の後、リードフレーム2を各半導体チップ1毎に切断して、個別の半導体装置が製造される(例えば特開平05−129473号)。
【0004】
この時、図9に示すように、金型3の表面には多数個のキャビティ4a〜4dと、樹脂を注入するための樹脂源5と、ランナー6、及びランナー6から各キャビティ4a〜4dに樹脂を流し込むためのゲート7とが設けられている。これらは全て金型3表面に設けた溝である。短冊状のリードフレームであれば、1本のリードフレームに例えば10個の半導体チップ1が搭載されており、1本のリードフレームに対応して、10個のキャビティ4と10本のゲート7、及び1本のランナー6が設けられる。そして、金型3表面には例えばリードフレーム20本分のキャビティ4が設けられる。
【0005】
図10は、上記のトランスファーモールドによって製造した半導体装置を示す図である。トランジスタ等の素子が形成された半導体チップ1がリードフレームのアイランド8上に半田等のろう材9によって固着実装され、半導体チップ1の電極パッドとリード10とがワイヤ11で接続され、半導体チップ1の周辺部分が上記キャビティの形状に合致した樹脂12で被覆され、樹脂12の外部にリード端子10の先端部分が導出されたものである。
【0006】
【発明が解決しようとする課題】
従来のパッケージでは、外部接続用のリード端子10を樹脂12から突出させるので、リード端子10の先端部までの距離を実装面積として考慮しなくてはならず、樹脂12の外形寸法より実装面積の方が遥かに大きくなるという欠点がある。
【0007】
また、トランスファーモールド技術では、圧力をかけ続けた状態で硬化させることから、ランナー6とゲート7においても樹脂が硬化し、このランナー6等に残った樹脂は廃棄処分となる。そのため、上記のリードフレームを用いた手法では、製造すべき半導体装置個々にゲート7を設けるので、樹脂の利用効率が悪く、樹脂の量に対して製造できる半導体装置の個数が少ないという欠点があった。
【0008】
【課題を解決するための手段】
本発明は上述した従来の欠点に鑑みて成されたものであり、半導体チップを搭載する箇所の板厚が局所的に薄く、その他の部分の板厚が厚い絶縁基板を準備する工程と、
前記局所的に薄い部分に複数個の半導体チップを搭載する工程と、
前記複数個の半導体チップを共通の樹脂層で被覆する工程と、
前記半導体チップを囲むように、前記樹脂層と前記絶縁基板とを切断して個々の半導体装置を分離する半導体装置の製造方法であって、
前記局所的に薄い部分が前記半導体チップを複数個搭載可能な大きさを有し、
前記絶縁基板には前記局所的に薄い部分が縦横に複数個並んでいることを特徴とするものである。
【0009】
【発明の実施の形態】
以下に本発明の実施の形態を詳細に説明する。
【0010】
第1工程:図1、図2参照
まずは、例えば装置100個分に相当する大判基板32を準備する。この大判基板32は、例えば第1と第2の絶縁基板21a、21bの2枚を貼着したものである。第1の絶縁基板21aは板厚(図2:t1)が50〜200μのセラミックやガラスエポキシ等からなる基板であり、第2の絶縁基板11bは板厚(図2:t2)が100〜250μのセラミックやガラスエポキシ等からなる基板である。
【0011】
第2の絶縁基板21bには、半導体チップが2〜10個分、例えば4個分を搭載するに足りる大きさを有する貫通孔33が設けられており、貫通孔33の内部に第1の絶縁基板21aが露出する。従って、貫通孔33の部分では板厚が局所的に薄い(t1)のに対し、その他の領域では厚い板厚(t1+t2=t3)を具備する。そして、貫通孔33は縦横に規則的に複数個配置され、第2の絶縁基板21bが格子状のパターンで延在することになる。
【0012】
尚、1枚の基板で貫通孔33に相当する箇所に有底孔を設けて板厚の差を形成した基板を用いてもよい。
【0013】
図2に大判基板32の拡大平面図(A)と断面図(B)を示した。第2の絶縁基板21bの貫通孔33に露出した第1の絶縁基板21aの表面には、金メッキ層によりアイランド部24aが形成されており、裏面には同じく金メッキ層によって外部電極25aが形成されている。第1の絶縁基板21aにはこれを貫通するスルーホールが設けられており、該スルーホールの内部がタングステン、Ag−Pd、Au等の導電材料によって埋設されてアイランド部24と外部電極25aとが電気的に接続されている。第2の絶縁基板21bの表面には金メッキ層により内部電極24b、24cが描画され、第1の絶縁基板21aの裏面にはこれらに対応する箇所に金メッキパターンが描画されて外部電極25を形成している。内部電極24b、24c下部の第1の絶縁基板21aと第2の絶縁基板21bにはこれらを貫通するスルーホールが設けられ、該スルーホールの内部がタングステン、Ag−Pd、Au等の導電材料によって埋設されて内部電極24b、24cと外部電極25、25とが各々電気的に接続されている。
【0014】
同図において、線で囲んだ領域34が1つの半導体装置として後に切り出されることになる。
【0015】
第2工程:図3参照
斯かる状態の大判基板32に対して、半導体チップ22をダイボンドする。まずは貫通孔33内部のアイランド部24a上に接着剤27を供給し、アイランド部24a上に半導体チップ22を搬送し、固着する。そして、半導体チップ22上に形成したボンディングパッド28と内部電極24b、24cとをボンディングワイヤ29でワイヤボンドする。
【0016】
尚、本工程以降に行うダイシング工程により、ダイシングライン34で囲んだ領域を1つの半導体装置として切り出す。
【0017】
第3工程:図4参照
ダイボンドした半導体チップ22の全部を被覆するように、大判基板32の上に樹脂層23を形成してモールドする。モールドは、樹脂をポッティングによって供給して硬化させるか、或いは大判基板32一枚に対して1つのキャビティを有する上下金型によってモールドする。この樹脂層23は半導体チップ22を個別に被覆するものではなく、複数の半導体チップ22を連続した樹脂で一括して被覆する。例えば一枚の大判基板32に100個の半導体チップ22を搭載した場合は、100個全てのチップを一括して被覆する。ポッティングであれば無駄になる樹脂の量は極めて少ない。また、金型を用いたトランスファーモールドであっても、装置100個分に1本のゲートを設ければよいので、無駄にする量は少ない。
【0018】
第4工程:図5参照
幅が100〜300μのダイシングブレード35により、ダイシングライン34に沿って樹脂層23と第1と第2の絶縁基板21a、21bを同時に切断し、個々の半導体装置に分離する。個々の半導体装置の側面は本工程のダイシングによって形成されており、切断面には第1と第2の絶縁基板21a、21bの外周端面が露出し且つ樹脂層23と同一平面を形成する。
【0019】
以上に説明した製造方法は、以下のメリットを有する。
【0020】
多数個の素子をまとめて樹脂でパッケージングするので、個々にパッケージングする場合に比べて、無駄にする樹脂材料を少なくでき。材料費の低減につながる。
【0021】
モールド金型とリードフレームとの位置合わせ精度がプラス・マイナス50μ程度であるのに対して、ダイシング装置の位置あわせ精度はプラス・マイナス10μ程度と精度が高い。従って樹脂外形をダイシングで形成することにより、従来より外形寸法の小さなパッケージを得ることができる。
【0022】
大判基板32の略全体が比較的厚い板厚(t3)を有するので、製造工程において大判基板32の割れ、欠け等を防止し、その取り扱いを容易にする。一般的なセラミック基板は、その板厚が100μを下回ると機械的強度が不足し始めるので、本発明では、第1の絶縁基板21aだけを強度が不足しがちな板厚(t1)とし、第2の絶縁基板21bの板厚(t2)によって補強することにより、半導体チップ22を搭載する部分だけが薄い大判基板32を形成した。具体的には、第1の絶縁基板21aに対して第1の絶縁基板21aの板厚と同じか或いはそれ以上の板厚を持つ第2の絶縁基板21bを貼着して全体の板厚を150μ以上、例えば300μとする。これにより、大判基板32としては厚い板厚(t3)を有し局所的に薄い板厚(t1)を持つだけにとどまるので、製造を行う上では十分な機械的強度を持たせることが可能になるのである。尚、樹脂層23でモールドした後は、樹脂層23が機械的強度を保つ。
【0023】
しかも、第1の絶縁基板21aが約20mm×20mmの面積を超えて延在すると同じく割れが生じやすくなるので、局所的に薄い部分を点在させ、板厚の厚い部分を格子状に延在させることで強度を保った。
【0024】
これらにより、アイランド部24aの板厚(t1)だけを薄くできるので、半導体装置全体の高さを低く押さえることができる。本願発明者は、本願手法によって、縦×横×高さが、1.0mm×0.5mm×0.5mmの小型パッケージトランジスタを実現することができた。
【0025】
図6、図7に、上記製造方法によって形成した半導体装置を示した。図6(A)は本発明の半導体装置を示す断面図、図6(B)はその平面図、図7(A)は装置を上方から見たときの斜視図、図7(B)は装置を下方から見たときの斜視図である。
【0026】
図6、図7を参照して、この半導体装置は、第1と第2の絶縁基板21a、21bを貼着した絶縁基板21と、第1の絶縁基板21a上に固着した、トランジスタ素子などを形成した半導体チップ22と、半導体チップ22を含めて全体を封止する樹脂層23とを有する。
【0027】
半導体チップ22は第1の絶縁基板21aのアイランド部24aにAgペーストなどの接着剤27でダイボンドされており、半導体チップ22表面の電極パッド28と第2の絶縁基板21b表面に形成した内部電極24b、24cとが金ワイヤ29によって各々ワイヤボンドされている。この結果、外部電極25aがコレクタ電極となり、外部電極25b、25cがベースとエミッタの電極となる。そして、ダイボンド、ワイヤボンドが成された絶縁基板21の上を、エポキシ系の絶縁樹脂層23が被覆して半導体チップ22を封止し、且つ略直方体のパッケージ形状を形成している。
【0028】
パッケージ外形のうち、少なくとも4つの側面23a〜23dは金型表面によらず切断面によって構成されている。第1の絶縁基板21aの外周端面30及び第2の絶縁基板21bの外周端面31の1つは樹脂層23表面に露出しており、樹脂層23の側面23a、23b、23c、23dと連続する同一平面を成している。これらは、樹脂層23と各絶縁基板21a、21bとが、同時に切断工程、例えばダイシングブレードによって切断されることによって形成されている。
【0029】
第2の絶縁基板21bは、半導体チップ22の1つの側辺に対応する側面23dに沿って、一定の幅で延在している。その端部は側面23dに隣接する側面23b、23cに接しており、側面23b、23cには第2の絶縁基板21bの外周端面31の2辺が露出する。第2の絶縁基板21bの外周端面31の、残る1つは樹脂層23に埋没している。
【0030】
而して、本発明の半導体装置は、外部電極25a、25b、25cがパッケージの外形寸法より突出しない構造であるので、リードフレームを用いた半導体装置よりも更に小型化でき、更には実装したときの占有面積を低減し、高密度実装を実現できるものである。
【0031】
更に、絶縁基板21の表面に形成したアイランド部24aと内部電極24b、24cの金メッキ層は、樹脂層23の側面23a〜23dには達せず、絶縁基板21の全周にわたって、その端から30〜70μの距離だけ後退されている。また、第1の絶縁基板21aの裏面に形成した外部電極25a、25b、25cも、第1の絶縁基板21aの外周端面30から後退されている。この構成は、2つの利点を生む。
【0032】
利点の1つは、側面23a、23b、23c、23dをダイシングブレードで切断したときに得られる。即ち、導電材料として優れた性質を持つ金メッキ層は、同時に優れた延性を持つ素材である。そのため、金メッキ層をダイシングブレードで切断すると、ブレードによって金メッキ層が引き延ばされてバリが生じ、これが外観不良となるのである。ダイシングブレードに接触させないことで、この様な事故を防止できる。
【0033】
利点の2つは、上記の半導体装置をプリント基板上に実装したときに得られる。即ち、上記の半導体装置を実装するときは、プリント基板上に形成した導電パターンに第1の絶縁基板21aの外部電極25a、25b、25cを位置あわせして設置し、両者をはんだ付けすることによって固着するのであるが、金は半田に対して塗れ性が極めて高いという特質を持つ。そのため、パッケージの側面23a〜23dに金メッキ層が露出して半田と接触すると、半田が絶縁基板21と樹脂層23との界面に進入して、樹脂剥がれや電気的短絡という事故を引き起こすのである。パッケージの側面に金メッキ層を露出させないことで、この様な事故を防止できる。
【0034】
而して、半導体チップ22を搭載する箇所を部分的に薄くすることにより、半導体装置の全体高さ(図6のt4)を低く抑えることが可能である。
【0035】
更に、板厚を厚くする箇所として、内部電極24b、24cを設けた箇所を厚くすることにより、半導体チップ22上の電極パッド28と内部電極24b、24cとの高さを近似させることができる。これによって、ワイヤボンド工程においてワイヤのボンダビリティを改善し、ワイヤ29の「たれ」などによる半導体チップ23との接触事故などを避けることができる。
【0036】
【発明の効果】
以上に説明したように、本発明によれば、リードフレームを用いた半導体装置よりも更に小型化できるパッケージ構造を提供できる利点を有する。このとき、リード端子が突出しない構造であるので、実装したときの占有面積を低減し、高密度実装を実現できる。
【0037】
更に、多数個の半導体チップ22を連続した樹脂層23で一括モールドするので、装置1個あたりに消費する樹脂の量を節約でき、無駄を少なくすることができる。
【0038】
更に、第1の絶縁基板21aと第2の絶縁基板21bとで板厚の差を作ることにより、装置外形の高さ(t3)を抑えて小型パッケージを実現できる。
【0039】
更に、板厚が薄い部分を点在させ、板厚が厚い部分を格子状に配置することによって、製造上の大判基板32の取り扱いを容易にし、その割れ、欠けを防止できる利点を有する。
【0040】
更に、板厚が厚い箇所に内部電極24b、24cを配置することでワイヤボンドのボンダビリティを改善できる利点を有する。
【図面の簡単な説明】
【図1】本発明を説明するための斜視図である、
【図2】本発明を説明する為の(A)平面図、(B)断面図である。
【図3】本発明を説明する為の(A)平面図、(B)断面図である。
【図4】本発明を説明するための斜視図である、
【図5】本発明を説明するための斜視図である、
【図6】本発明を説明する為の(A)断面図、(B)平面図である。
【図7】本発明を説明する為の斜視図である。
【図8】従来例を説明する断面図である。
【図9】従来例を説明する平面図である。
【図10】従来例を説明する断面図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device, and more particularly to a method for manufacturing a semiconductor device that can reduce the package area by reducing the package outer shape and further reduce the waste of materials associated with the manufacturing.
[0002]
[Prior art]
In the manufacture of a semiconductor device, a semiconductor chip diced and separated from a wafer is fixed to a lead frame, and the semiconductor chip fixed on the lead frame is sealed by a transfer mold using a mold and resin injection. A process of separating a semiconductor chip for each individual semiconductor device is performed. A strip-like or hoop-like frame is used for the lead frame, and in any case, a plurality of semiconductor devices are simultaneously sealed in one sealing step.
[0003]
FIG. 8 is a diagram showing the situation of the transfer molding process. In the transfer molding process, the lead frame 2 to which the semiconductor chip 1 is fixed by die bonding or wire bonding is placed inside the cavity 4 formed by the upper and lower molds 3A and 3B, and epoxy resin is injected into the cavity 4 The semiconductor chip 1 is sealed. After such a transfer molding process, the lead frame 2 is cut for each semiconductor chip 1 to manufacture individual semiconductor devices (for example, Japanese Patent Laid-Open No. 05-129473).
[0004]
At this time, as shown in FIG. 9, a large number of cavities 4a to 4d, a resin source 5 for injecting resin, the runner 6, and the runner 6 to the cavities 4a to 4d on the surface of the mold 3. A gate 7 for pouring resin is provided. These are all grooves provided on the surface of the mold 3. In the case of a strip-like lead frame, for example, ten semiconductor chips 1 are mounted on one lead frame, and corresponding to one lead frame, ten cavities 4 and ten gates 7, And one runner 6 is provided. For example, a cavity 4 for 20 lead frames is provided on the surface of the mold 3.
[0005]
FIG. 10 is a view showing a semiconductor device manufactured by the transfer mold described above. The semiconductor chip 1 on which elements such as transistors are formed is fixedly mounted on the island 8 of the lead frame by a soldering material 9 such as solder, and the electrode pads of the semiconductor chip 1 and the leads 10 are connected by wires 11. The peripheral portion of the lead terminal 10 is covered with the resin 12 matching the shape of the cavity, and the leading end portion of the lead terminal 10 is led out of the resin 12.
[0006]
[Problems to be solved by the invention]
In the conventional package, since the lead terminal 10 for external connection protrudes from the resin 12, the distance to the tip of the lead terminal 10 must be taken into consideration as the mounting area. The disadvantage is that it is much larger.
[0007]
In the transfer mold technique, the resin is cured at the runner 6 and the gate 7 because the resin is cured while pressure is continuously applied, and the resin remaining on the runner 6 and the like is disposed of. For this reason, the above-described method using the lead frame has the disadvantage that the use efficiency of the resin is poor and the number of semiconductor devices that can be manufactured is small with respect to the amount of resin because the gate 7 is provided for each semiconductor device to be manufactured. It was.
[0008]
[Means for Solving the Problems]
The present invention has been made in view of the above-mentioned conventional drawbacks, and a step of preparing an insulating substrate having a locally thin plate thickness at a location where a semiconductor chip is mounted and a thick plate thickness at other portions;
Mounting a plurality of semiconductor chips on the locally thin portion;
Coating the plurality of semiconductor chips with a common resin layer;
A method of manufacturing a semiconductor device that separates individual semiconductor devices by cutting the resin layer and the insulating substrate so as to surround the semiconductor chip,
The locally thin portion has a size capable of mounting a plurality of the semiconductor chips,
The insulating substrate is characterized in that a plurality of locally thin portions are arranged vertically and horizontally.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0010]
First Step: See FIGS. 1 and 2 First, for example, a large substrate 32 corresponding to 100 devices is prepared. The large-sized substrate 32 is obtained by adhering two sheets of first and second insulating substrates 21a and 21b, for example. The first insulating substrate 21a is a substrate made of ceramic or glass epoxy having a plate thickness (FIG. 2: t1) of 50 to 200 μm, and the second insulating substrate 11b has a plate thickness (FIG. 2: t2) of 100 to 250 μm. A substrate made of ceramic, glass epoxy or the like.
[0011]
The second insulating substrate 21 b is provided with a through hole 33 having a size sufficient to mount 2 to 10 semiconductor chips, for example, 4 semiconductor chips. The substrate 21a is exposed. Therefore, the plate thickness is locally thin (t1) in the portion of the through hole 33, whereas the other regions have a thick plate thickness (t1 + t2 = t3). A plurality of through holes 33 are regularly arranged vertically and horizontally, and the second insulating substrate 21b extends in a lattice pattern.
[0012]
In addition, you may use the board | substrate which provided the bottomed hole in the location corresponded to the through-hole 33 in one board | substrate, and formed the difference in plate | board thickness.
[0013]
FIG. 2 shows an enlarged plan view (A) and a sectional view (B) of the large-sized substrate 32. An island portion 24a is formed by a gold plating layer on the surface of the first insulating substrate 21a exposed in the through hole 33 of the second insulating substrate 21b, and an external electrode 25a is also formed by a gold plating layer on the back surface. Yes. The first insulating substrate 21a is provided with a through hole penetrating the first insulating substrate 21a, and the inside of the through hole is buried with a conductive material such as tungsten, Ag-Pd, Au, etc., so that the island portion 24 and the external electrode 25a are formed. Electrically connected. Internal electrodes 24b and 24c are drawn on the surface of the second insulating substrate 21b by a gold plating layer, and a gold plating pattern is drawn on the corresponding back surface of the first insulating substrate 21a to form the external electrodes 25. ing. The first insulating substrate 21a and the second insulating substrate 21b below the internal electrodes 24b and 24c are provided with through holes penetrating them, and the inside of the through holes is made of a conductive material such as tungsten, Ag-Pd, or Au. The internal electrodes 24b and 24c are electrically connected to the external electrodes 25 and 25, respectively.
[0014]
In the figure, a region 34 surrounded by a line is cut out later as one semiconductor device.
[0015]
Second Step: See FIG. 3 The semiconductor chip 22 is die-bonded to the large substrate 32 in such a state. First, the adhesive 27 is supplied onto the island part 24a inside the through-hole 33, and the semiconductor chip 22 is transported and fixed onto the island part 24a. Then, the bonding pads 28 formed on the semiconductor chip 22 and the internal electrodes 24 b and 24 c are wire-bonded with bonding wires 29.
[0016]
It should be noted that a region surrounded by the dicing line 34 is cut out as one semiconductor device by a dicing process performed after this process.
[0017]
Third step: See FIG. 4 A resin layer 23 is formed on a large substrate 32 and molded so as to cover the entire die-bonded semiconductor chip 22. The mold is supplied with resin by potting and cured, or is molded by an upper and lower mold having one cavity for each large-sized substrate 32. The resin layer 23 does not individually cover the semiconductor chips 22 but covers a plurality of semiconductor chips 22 together with a continuous resin. For example, when 100 semiconductor chips 22 are mounted on one large-sized substrate 32, all 100 chips are covered together. If potting, the amount of resin that is wasted is very small. Further, even in the case of transfer molding using a mold, only one gate needs to be provided for 100 devices, so the amount of waste is small.
[0018]
4th process: With reference to FIG. 5, the resin layer 23 and the 1st and 2nd insulation board | substrates 21a and 21b are cut | disconnected simultaneously along the dicing line 34 with the dicing blade 35 whose width is 100-300 micrometers, and isolate | separates into each semiconductor device To do. The side surfaces of the individual semiconductor devices are formed by dicing in this step, and the outer peripheral end surfaces of the first and second insulating substrates 21a and 21b are exposed on the cut surfaces, and the same plane as the resin layer 23 is formed.
[0019]
The manufacturing method described above has the following merits.
[0020]
Since a large number of elements are packaged together with resin, it is possible to reduce the amount of resin material that is wasted compared to the case of individual packaging. It leads to reduction of material cost.
[0021]
The alignment accuracy between the mold die and the lead frame is about plus / minus 50 μm, whereas the alignment accuracy of the dicing apparatus is as high as about plus / minus 10 μm. Therefore, by forming the resin outer shape by dicing, a package having a smaller outer size than the conventional one can be obtained.
[0022]
Since almost the entire large-sized substrate 32 has a relatively thick plate thickness (t3), the large-sized substrate 32 is prevented from being cracked or chipped in the manufacturing process and easy to handle. Since a general ceramic substrate starts to have insufficient mechanical strength when its thickness is less than 100 μm, in the present invention, only the first insulating substrate 21a has a thickness (t1) that tends to have insufficient strength. By reinforcing with the plate thickness (t2) of the second insulating substrate 21b, the large substrate 32 in which only the portion on which the semiconductor chip 22 is mounted was thin was formed. Specifically, a second insulating substrate 21b having a thickness equal to or greater than the thickness of the first insulating substrate 21a is attached to the first insulating substrate 21a, so that the overall thickness is increased. 150 μm or more, for example, 300 μm. As a result, the large substrate 32 has a thick plate thickness (t3) and has only a thin plate thickness (t1) locally, so that it can have sufficient mechanical strength for manufacturing. It becomes. In addition, after molding with the resin layer 23, the resin layer 23 maintains mechanical strength.
[0023]
In addition, if the first insulating substrate 21a extends beyond an area of about 20 mm × 20 mm, cracks are also likely to occur. Therefore, locally thin portions are scattered, and thick portions are extended in a grid pattern. Strength was maintained by letting.
[0024]
As a result, only the thickness (t1) of the island portion 24a can be reduced, so that the height of the entire semiconductor device can be kept low. The inventor of the present application was able to realize a small package transistor having a length × width × height of 1.0 mm × 0.5 mm × 0.5 mm by the method of the present application.
[0025]
6 and 7 show a semiconductor device formed by the above manufacturing method. 6A is a cross-sectional view showing a semiconductor device of the present invention, FIG. 6B is a plan view thereof, FIG. 7A is a perspective view of the device viewed from above, and FIG. It is a perspective view when seeing from below.
[0026]
Referring to FIGS. 6 and 7, this semiconductor device includes an insulating substrate 21 having first and second insulating substrates 21a and 21b attached thereto, and a transistor element fixed on the first insulating substrate 21a. The formed semiconductor chip 22 and the resin layer 23 that seals the whole including the semiconductor chip 22 are included.
[0027]
The semiconductor chip 22 is die-bonded to the island portion 24a of the first insulating substrate 21a with an adhesive 27 such as an Ag paste, and the electrode pads 28 on the surface of the semiconductor chip 22 and the internal electrodes 24b formed on the surface of the second insulating substrate 21b. , 24c are wire-bonded to each other by a gold wire 29. As a result, the external electrode 25a becomes a collector electrode, and the external electrodes 25b and 25c become base and emitter electrodes. The insulating substrate 21 on which die bonding and wire bonding are formed is covered with an epoxy insulating resin layer 23 to seal the semiconductor chip 22 and form a substantially rectangular parallelepiped package shape.
[0028]
Of the package outer shape, at least four side surfaces 23a to 23d are constituted by cut surfaces regardless of the mold surface. One of the outer peripheral end surface 30 of the first insulating substrate 21a and the outer peripheral end surface 31 of the second insulating substrate 21b is exposed on the surface of the resin layer 23, and is continuous with the side surfaces 23a, 23b, 23c, and 23d of the resin layer 23. They are on the same plane. These are formed by simultaneously cutting the resin layer 23 and the respective insulating substrates 21a and 21b by a cutting process, for example, a dicing blade.
[0029]
The second insulating substrate 21 b extends with a certain width along the side surface 23 d corresponding to one side of the semiconductor chip 22. The end portions are in contact with the side surfaces 23b and 23c adjacent to the side surface 23d, and two sides of the outer peripheral end surface 31 of the second insulating substrate 21b are exposed on the side surfaces 23b and 23c. The remaining one of the outer peripheral end surfaces 31 of the second insulating substrate 21 b is buried in the resin layer 23.
[0030]
Thus, the semiconductor device of the present invention has a structure in which the external electrodes 25a, 25b, and 25c do not protrude from the outer dimensions of the package. It is possible to realize a high-density mounting by reducing the area occupied by the substrate.
[0031]
Furthermore, the gold plating layer of the island portion 24a and the internal electrodes 24b and 24c formed on the surface of the insulating substrate 21 does not reach the side surfaces 23a to 23d of the resin layer 23, and is 30 to 30 mm from the end over the entire circumference of the insulating substrate 21. It is retracted by a distance of 70μ. The external electrodes 25a, 25b, 25c formed on the back surface of the first insulating substrate 21a are also retracted from the outer peripheral end surface 30 of the first insulating substrate 21a. This configuration produces two advantages.
[0032]
One advantage is obtained when the side surfaces 23a, 23b, 23c, 23d are cut with a dicing blade. That is, a gold plating layer having excellent properties as a conductive material is a material having excellent ductility at the same time. For this reason, when the gold plating layer is cut with a dicing blade, the gold plating layer is stretched by the blade to generate burrs, which causes poor appearance. Such an accident can be prevented by not contacting the dicing blade.
[0033]
Two of the advantages are obtained when the semiconductor device is mounted on a printed circuit board. That is, when mounting the semiconductor device described above, the external electrodes 25a, 25b, 25c of the first insulating substrate 21a are aligned and placed on the conductive pattern formed on the printed circuit board, and the two are soldered together. Although it adheres, gold has the property that it is very wettable with solder. Therefore, when the gold plating layer is exposed on the side surfaces 23a to 23d of the package and comes into contact with the solder, the solder enters the interface between the insulating substrate 21 and the resin layer 23, causing an accident such as resin peeling or electrical short circuit. Such an accident can be prevented by not exposing the gold plating layer on the side surface of the package.
[0034]
Thus, by partially thinning the portion where the semiconductor chip 22 is mounted, the overall height of the semiconductor device (t4 in FIG. 6) can be kept low.
[0035]
Furthermore, the height of the electrode pad 28 on the semiconductor chip 22 and the internal electrodes 24b, 24c can be approximated by thickening the location where the internal electrodes 24b, 24c are provided as the location where the plate thickness is increased. As a result, the bondability of the wire can be improved in the wire bonding step, and an accident of contact with the semiconductor chip 23 due to “sag” of the wire 29 can be avoided.
[0036]
【The invention's effect】
As described above, according to the present invention, there is an advantage that it is possible to provide a package structure that can be further reduced in size as compared with a semiconductor device using a lead frame. At this time, since the lead terminal does not protrude, the occupied area when mounted can be reduced, and high-density mounting can be realized.
[0037]
Furthermore, since a large number of semiconductor chips 22 are collectively molded with the continuous resin layer 23, the amount of resin consumed per device can be saved and waste can be reduced.
[0038]
Furthermore, by making a difference in plate thickness between the first insulating substrate 21a and the second insulating substrate 21b, a small package can be realized while suppressing the height (t3) of the outer shape of the device.
[0039]
Further, the thin plate portions are interspersed and the thick plate portions are arranged in a lattice shape, thereby making it easy to handle the large substrate 32 in manufacturing and preventing the cracks and chips thereof.
[0040]
Furthermore, by arranging the internal electrodes 24b and 24c at a location where the plate thickness is thick, there is an advantage that the bondability of the wire bond can be improved.
[Brief description of the drawings]
FIG. 1 is a perspective view for explaining the present invention;
2A is a plan view and FIG. 2B is a sectional view for explaining the present invention.
3A is a plan view and FIG. 3B is a cross-sectional view for explaining the present invention.
FIG. 4 is a perspective view for explaining the present invention;
FIG. 5 is a perspective view for explaining the present invention;
6A is a sectional view and FIG. 6B is a plan view for explaining the present invention.
FIG. 7 is a perspective view for explaining the present invention.
FIG. 8 is a cross-sectional view illustrating a conventional example.
FIG. 9 is a plan view for explaining a conventional example.
FIG. 10 is a cross-sectional view illustrating a conventional example.

Claims (3)

半導体チップを搭載する箇所であって板厚が局所的に第1板厚である第1領域と、その他の部分であって前記第1板厚よりも厚い第2板厚の第2領域と、を有する絶縁基板を準備する工程と、
前記第1領域に複数個の半導体チップを搭載する工程と、
前記複数個の半導体チップを共通の樹脂層で被覆する工程と、
前記半導体チップを囲むように、前記樹脂層と前記絶縁基板とを切断して個々の半導体装置を分離する半導体装置の製造方法であって、
前記第1領域が前記半導体チップを複数個搭載可能な大きさを有し、
前記絶縁基板には前記第1領域が縦横に複数個並んでいることを特徴とする半導体装置の製造方法。
A first region in which the semiconductor chip is mounted and the plate thickness is locally the first plate thickness; and a second region in the other portion that is thicker than the first plate thickness ; Preparing an insulating substrate having :
Mounting a plurality of semiconductor chips in the first region ;
Coating the plurality of semiconductor chips with a common resin layer;
A method of manufacturing a semiconductor device that separates individual semiconductor devices by cutting the resin layer and the insulating substrate so as to surround the semiconductor chip,
The first region has a size capable of mounting a plurality of the semiconductor chips,
A method of manufacturing a semiconductor device, wherein a plurality of the first regions are arranged vertically and horizontally on the insulating substrate.
前記切断する工程がダイシング工程であることを特徴とする請求項1記載の半導体装置の製造方法  2. The method of manufacturing a semiconductor device according to claim 1, wherein the cutting step is a dicing step. 前記絶縁基板が、前記第1領域と同じ板厚を持つ第1の絶縁基板と、前記第1領域を形成する為の貫通孔を持つ第2の絶縁基板とを貼り合わせたものであることを特徴とする請求項1記載の半導体装置の製造方法。The insulating substrate is a laminate of a first insulating substrate having the same thickness as the first region and a second insulating substrate having a through hole for forming the first region. The method of manufacturing a semiconductor device according to claim 1, wherein:
JP26191198A 1998-09-16 1998-09-16 Manufacturing method of semiconductor device Expired - Fee Related JP4162303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26191198A JP4162303B2 (en) 1998-09-16 1998-09-16 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26191198A JP4162303B2 (en) 1998-09-16 1998-09-16 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2000091363A JP2000091363A (en) 2000-03-31
JP4162303B2 true JP4162303B2 (en) 2008-10-08

Family

ID=17368461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26191198A Expired - Fee Related JP4162303B2 (en) 1998-09-16 1998-09-16 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4162303B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030080642A (en) * 2002-04-10 2003-10-17 삼성전기주식회사 A Method for Fabricating Ceramic Chip Packages
NL1025300C2 (en) * 2004-01-22 2005-07-25 Fico Bv Support for electronic components and methods for enclosing and separating an electronic component.

Also Published As

Publication number Publication date
JP2000091363A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP3819574B2 (en) Manufacturing method of semiconductor device
US6410363B1 (en) Semiconductor device and method of manufacturing same
JP3877454B2 (en) Manufacturing method of semiconductor device
KR100369202B1 (en) A method of manufacturing a semiconductor device
JP3269025B2 (en) Semiconductor device and manufacturing method thereof
JP3877410B2 (en) Manufacturing method of semiconductor device
JP4073098B2 (en) Manufacturing method of semiconductor device
JP3877405B2 (en) Manufacturing method of semiconductor device
JP3203228B2 (en) Semiconductor device and manufacturing method thereof
JP3831504B2 (en) Lead frame
JP4162303B2 (en) Manufacturing method of semiconductor device
JPH11163007A (en) Manufacture of semiconductor device
JP4215300B2 (en) Manufacturing method of semiconductor device
JP3819607B2 (en) Semiconductor device and manufacturing method thereof
JP3877448B2 (en) Manufacturing method of semiconductor device
JP4698658B2 (en) Insulating substrate for mounting semiconductor chips
JP3710942B2 (en) Manufacturing method of semiconductor device
JP4911635B2 (en) Semiconductor device
JP5121807B2 (en) Manufacturing method of semiconductor device
JP3738144B2 (en) Manufacturing method of semiconductor device
JP4569048B2 (en) Surface mount semiconductor package and manufacturing method thereof
JP2000124167A (en) Manufacture of semiconductor device
JP2008205515A (en) Manufacturing method of semiconductor device
JP2001127235A (en) Lead frame and resin-sealed semiconductor device using the same, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees