JP3875251B2 - トランスペアレント多重化方法および装置 - Google Patents
トランスペアレント多重化方法および装置 Download PDFInfo
- Publication number
- JP3875251B2 JP3875251B2 JP2004570182A JP2004570182A JP3875251B2 JP 3875251 B2 JP3875251 B2 JP 3875251B2 JP 2004570182 A JP2004570182 A JP 2004570182A JP 2004570182 A JP2004570182 A JP 2004570182A JP 3875251 B2 JP3875251 B2 JP 3875251B2
- Authority
- JP
- Japan
- Prior art keywords
- frame
- multiplexed
- signal
- transparent
- frames
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 51
- 230000005540 biological transmission Effects 0.000 claims description 121
- 238000000926 separation method Methods 0.000 claims description 28
- 239000000284 extract Substances 0.000 claims description 12
- 230000001360 synchronised effect Effects 0.000 claims description 10
- 238000001514 detection method Methods 0.000 description 47
- 238000000605 extraction Methods 0.000 description 25
- 238000010586 diagram Methods 0.000 description 22
- 238000010521 absorption reaction Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 4
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
- H04J3/06—Synchronising arrangements
- H04J3/0602—Systems characterised by the synchronising information used
- H04J3/0605—Special codes used as synchronising signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/16—Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
- H04J3/1605—Fixed allocated frame structures
- H04J3/1611—Synchronous digital hierarchy [SDH] or SONET
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Time-Division Multiplex Systems (AREA)
Description
本発明はトランスペアレントの多重化伝送を実現するためのトランスペアレント多重化方法および装置、並びにトランスペアレント多重化信号分離方法および装置に関し、特にオーバヘッドを含めてトランスペアレント伝送を行うためのトランスペアレント多重化方法および装置、並びにトランスペアレント多重化信号分離方法および装置に関する。
ディジタル伝送方式の一形態として、クライアント信号をトランスペアレントに多重化、分離する伝送方式がある。ここで、クライアント信号は、SONET(Synchronous Optical NETwork)/SDH(Synchronous Digital Hierarchy)における多重化させる低速側の信号を指す。たとえば、速度がOC48の回線4回線分を多重化させOC192の速度の1つの回線とする場合、先のOC48信号がクライアント信号である。
トランスペアレント伝送を可能とさせるための従来の手法の1つとして、ディジタルラッパ(DW)技術により複数のクライアント信号を多重化し、ラッパのオーバヘッドにアウトバンド情報を付加する方法がある。ディジタルラッパ技術は、ITU−T(International Telecommunication Union−Telecommunication Standardization Sector:国際通信連合−通信標準化部門)勧告G.709に盛り込まれているOTN(Optical Transport Network:光伝送網)向けのフレームフォーマット技術である。しかし、この手法は多重化のための新たな制御の仕組みが必要となるため、方式が複雑になる。その結果、既存装置への適用が困難である。
別の手法として、インバンド情報の付加により疑似トランスペアレント伝送する方法がある。即ち、複数のクライアント信号(OCn×チャネル数)を一度、終端し、各々のSOH(Section OverHead)について特定の信号(E1,F1,D1−12,K1,K2等)を通過させ、SOHを再定義する方法である。これにより、見かけ上、トランスペアレント伝送が実現される。一度、終端する理由は、クライアントの信号が非同期であり、周波数偏差を有しているため、スタッフ、ポインタ処理を有していないSOHを通過させられないからである。
図12は、従来の伝送方式のネットワーク構成例を示すである。この例では、ネットワーク941〜944の伝送装置911〜914(それぞれ、A局、B局、C局、D局)から、ネットワーク951〜954の伝送装置921〜924(それぞれ、E局、F局、G局、H局)へ送る信号を多重化する。
図12の例では、互いに独立な発振クロック源(例.f1、f2、f3、f4)を有する複数の伝送装置911〜914からのクライアント信号(例えば、OC48#1〜#4)を、伝送装置931(X局)を介して、一度OC192の速度の回線に送出する。OC192速度の回線は、伝送装置932(Y局)に接続されており、伝送装置932経由で他の伝送装置921〜924に伝送される。この場合、伝送装置921〜924は、クライアント信号(例えば、OC48#5〜#8)を、所定の動作クロックfxでネットワーク951〜954上へ送出する。なお、伝送装置931,932には、OH処理部933,934が設けられ、SOHの再定義が行われる。
このように、オーバヘッドの再定義を行って、複数の低速のSDH信号を高速のSDH信号を用いて伝送可能とする技術として、OHのポインタアクションバイト(H3)を、オーバヘッドの周波数吸収ビットに使用するものがある(たとえば、特許文献1参照)。
特開2000−269912号公報(第5図)
トランスペアレント伝送を可能とさせるための従来の手法の1つとして、ディジタルラッパ(DW)技術により複数のクライアント信号を多重化し、ラッパのオーバヘッドにアウトバンド情報を付加する方法がある。ディジタルラッパ技術は、ITU−T(International Telecommunication Union−Telecommunication Standardization Sector:国際通信連合−通信標準化部門)勧告G.709に盛り込まれているOTN(Optical Transport Network:光伝送網)向けのフレームフォーマット技術である。しかし、この手法は多重化のための新たな制御の仕組みが必要となるため、方式が複雑になる。その結果、既存装置への適用が困難である。
別の手法として、インバンド情報の付加により疑似トランスペアレント伝送する方法がある。即ち、複数のクライアント信号(OCn×チャネル数)を一度、終端し、各々のSOH(Section OverHead)について特定の信号(E1,F1,D1−12,K1,K2等)を通過させ、SOHを再定義する方法である。これにより、見かけ上、トランスペアレント伝送が実現される。一度、終端する理由は、クライアントの信号が非同期であり、周波数偏差を有しているため、スタッフ、ポインタ処理を有していないSOHを通過させられないからである。
図12は、従来の伝送方式のネットワーク構成例を示すである。この例では、ネットワーク941〜944の伝送装置911〜914(それぞれ、A局、B局、C局、D局)から、ネットワーク951〜954の伝送装置921〜924(それぞれ、E局、F局、G局、H局)へ送る信号を多重化する。
図12の例では、互いに独立な発振クロック源(例.f1、f2、f3、f4)を有する複数の伝送装置911〜914からのクライアント信号(例えば、OC48#1〜#4)を、伝送装置931(X局)を介して、一度OC192の速度の回線に送出する。OC192速度の回線は、伝送装置932(Y局)に接続されており、伝送装置932経由で他の伝送装置921〜924に伝送される。この場合、伝送装置921〜924は、クライアント信号(例えば、OC48#5〜#8)を、所定の動作クロックfxでネットワーク951〜954上へ送出する。なお、伝送装置931,932には、OH処理部933,934が設けられ、SOHの再定義が行われる。
このように、オーバヘッドの再定義を行って、複数の低速のSDH信号を高速のSDH信号を用いて伝送可能とする技術として、OHのポインタアクションバイト(H3)を、オーバヘッドの周波数吸収ビットに使用するものがある(たとえば、特許文献1参照)。
ところで、理想的なトランスペアレント伝送とは、図12に示すA局−E局、B局−F局、C局−G局、D局−H局間から見たら、X局−Y局間は、4本の光ファイバが存在し、OC48#1、#2、#3、#4の信号がそのまま、スルー伝送されていることである。言い換えれば、A局−E局、B局−F局、C局−G局、D局―H局でOHも含めて通信者間で周波数同期化がされていることである。この場合、クライアントは、OC48の信号規格内で自由に通信ができると考える。一例としてSOHの未定義ビットを使ってネットワーク管理、端末間通信している場合などである。
しかし、従来の伝送方法においては、E局〜H局は、fxに一律、同期化されているため、SOHのE1(オーダワイア)、D1−D3(セクションデータ)等、予めクライアント(セクション間)の為に用意してあるビットは通過処理を行うが、先に未定義ビットを使った場合、終端のため、OC48のSOHは消失してしまい通信はできない。
たとえば、特許文献1に記載された技術では、オーバヘッドの周波数吸収ビットに使用されるポインタアクションバイト(h3)がセクションデータ・コミュニケーション・チャネルと衝突している。そのため、多重化される全てのチャネルについてトランスペアレント伝送を行うことができない(特許文献1の段落「0038」参照)。
この例のように、従来例ではクライアント側からみて完全なトランスペアレント伝送とは言えない。すなわち、トランスペアレント伝送を実現するためには、オーバヘッド(SOH)に関して、図12のA局〜D局とE局〜H局の対向局間の周波数同期化を図ることが必要である。
その一方で、昨今、回線リセールス等の新ビジネスの進展に伴い、クライアント信号の完全なトランスペアレント伝送が強く望まれている。たとえば、SOHを含めたトランスペアレント伝送が実現されれば、SOHに特別な制御信号を載せ、高度なデータ通信サービスを提供することも可能である。
しかし、従来の伝送方法においては、E局〜H局は、fxに一律、同期化されているため、SOHのE1(オーダワイア)、D1−D3(セクションデータ)等、予めクライアント(セクション間)の為に用意してあるビットは通過処理を行うが、先に未定義ビットを使った場合、終端のため、OC48のSOHは消失してしまい通信はできない。
たとえば、特許文献1に記載された技術では、オーバヘッドの周波数吸収ビットに使用されるポインタアクションバイト(h3)がセクションデータ・コミュニケーション・チャネルと衝突している。そのため、多重化される全てのチャネルについてトランスペアレント伝送を行うことができない(特許文献1の段落「0038」参照)。
この例のように、従来例ではクライアント側からみて完全なトランスペアレント伝送とは言えない。すなわち、トランスペアレント伝送を実現するためには、オーバヘッド(SOH)に関して、図12のA局〜D局とE局〜H局の対向局間の周波数同期化を図ることが必要である。
その一方で、昨今、回線リセールス等の新ビジネスの進展に伴い、クライアント信号の完全なトランスペアレント伝送が強く望まれている。たとえば、SOHを含めたトランスペアレント伝送が実現されれば、SOHに特別な制御信号を載せ、高度なデータ通信サービスを提供することも可能である。
本発明はこのような点に鑑みてなされたものであり、対向局間の周波数同期化を図り、クライアント側の信号をOHも含めてトランスペアレント伝送できるようにしたトランスペアレント多重化伝送装置を提供することを目的とする。
本発明では上記課題を解決するために、図1に示すようなトランスペアレント多重化方法が提供される。本発明に係るトランスペアレント多重化方法では、複数の伝送信号をトランスペアレントに多重化するために、次の処理を行う。まず、複数のチャネルから入力される複数のフレーム1,2を多重化し(ステップS1)、多重化された多重化フレーム5のオーバヘッド5b内のフレームバイト5aに、複数のフレーム1,2それぞれのクロック周波数を定義した制御情報を設定する(ステップS2)。
このようなトランスペアレント多重化方法によれば、複数のフレーム1,2が多重化され、多重化された多重化フレーム5のフレームバイト5aに、多重化される各フレームのクロック周波数が定義された制御情報6aが設定される。
また、上記課題を解決するために、複数の伝送信号がトランスペアレントに多重化された多重化フレーム5を複数のフレーム1,2に分離するためのトランスペアレント多重化信号分離方法において、多重化フレーム5のオーバヘッド5b内のフレームバイト5aから、複数のフレーム1,2それぞれのクロック周波数を定義した制御情報6aを抽出し、多重化フレーム5を複数のフレーム1,2に分離し、複数のフレーム1,2を、それぞれに対応するチャネルに対して、それぞれに対応するクロック周波数で出力する、ことを特徴とするトランスペアレント多重化信号分離方法が提供される。
このようなトランスペアレント多重化信号分離方法によれば、多重化フレーム5に重畳されている複数のフレーム1,2が、フレームバイト5aに設定されている制御情報6aに定義されたクロック周波数で出力される。
本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
本発明では上記課題を解決するために、図1に示すようなトランスペアレント多重化方法が提供される。本発明に係るトランスペアレント多重化方法では、複数の伝送信号をトランスペアレントに多重化するために、次の処理を行う。まず、複数のチャネルから入力される複数のフレーム1,2を多重化し(ステップS1)、多重化された多重化フレーム5のオーバヘッド5b内のフレームバイト5aに、複数のフレーム1,2それぞれのクロック周波数を定義した制御情報を設定する(ステップS2)。
このようなトランスペアレント多重化方法によれば、複数のフレーム1,2が多重化され、多重化された多重化フレーム5のフレームバイト5aに、多重化される各フレームのクロック周波数が定義された制御情報6aが設定される。
また、上記課題を解決するために、複数の伝送信号がトランスペアレントに多重化された多重化フレーム5を複数のフレーム1,2に分離するためのトランスペアレント多重化信号分離方法において、多重化フレーム5のオーバヘッド5b内のフレームバイト5aから、複数のフレーム1,2それぞれのクロック周波数を定義した制御情報6aを抽出し、多重化フレーム5を複数のフレーム1,2に分離し、複数のフレーム1,2を、それぞれに対応するチャネルに対して、それぞれに対応するクロック周波数で出力する、ことを特徴とするトランスペアレント多重化信号分離方法が提供される。
このようなトランスペアレント多重化信号分離方法によれば、多重化フレーム5に重畳されている複数のフレーム1,2が、フレームバイト5aに設定されている制御情報6aに定義されたクロック周波数で出力される。
本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
図1は、本発明の原理構成図である。
図2は、本発明の実施の形態のネットワーク構成例を示す図である。
図3は、フレームバイトの構成を示す図である。図3(A)はトランスペアレント用バイト確保前の状態を示しており、図3(B)はトランスペアレント用バイト確保後の状態を示している。
図4は、多重化するトランスペアレント用バイトの内容例を示す図である。
図5は、多重化回路のブロック構成例を示す図である。
図6は、分離回路のブロック構成例を示す図である。
図7は、多重化対象チャネルの動作速度差をポインタによって示す場合のフレーム構成例を示す図である。
図8は、多重化対象チャネルの動作速度差をスタッフ挿入によって吸収する場合のフレーム構成例を示す図である。
図9は、多重化回路を示すブロック図である。
図10は、分離回路を示すブロック図である。
図11は、トランスペアレント用バイトの内容例を示す図である。
図12は、従来の伝送方式のネットワーク構成例を示すである。
図2は、本発明の実施の形態のネットワーク構成例を示す図である。
図3は、フレームバイトの構成を示す図である。図3(A)はトランスペアレント用バイト確保前の状態を示しており、図3(B)はトランスペアレント用バイト確保後の状態を示している。
図4は、多重化するトランスペアレント用バイトの内容例を示す図である。
図5は、多重化回路のブロック構成例を示す図である。
図6は、分離回路のブロック構成例を示す図である。
図7は、多重化対象チャネルの動作速度差をポインタによって示す場合のフレーム構成例を示す図である。
図8は、多重化対象チャネルの動作速度差をスタッフ挿入によって吸収する場合のフレーム構成例を示す図である。
図9は、多重化回路を示すブロック図である。
図10は、分離回路を示すブロック図である。
図11は、トランスペアレント用バイトの内容例を示す図である。
図12は、従来の伝送方式のネットワーク構成例を示すである。
以下、本発明の実施の形態を図面を参照して説明する。
まず、実施の形態に適用される発明の概要について説明し、その後、実施の形態の具体的な内容を説明する。
図1は、本発明の原理構成図である。本発明に係るトランスペアレント多重化方法では、複数の伝送信号をトランスペアレントに多重化するために、以下の処理を行う。
まず、複数のチャネルから入力される複数のフレーム1,2を多重化する(ステップS1)。フレーム1は、オーバヘッド1b,1cやペイロード1d等で構成されている。オーバヘッド1bには、フレームバイト1aが含まれている。同様に、フレーム2は、オーバヘッド2b,2cやペイロード2d等で構成されている。オーバヘッド2bには、フレームバイト2aが含まれている。ここで、多重化の際には、フレームバイト1a,2aを除いたフレーム3,4が多重化される。
多重化された多重化フレーム5は、オーバヘッド5b,5cやペイロード5d等で構成されている。オーバヘッド5bには、フレームバイト5aが含まれている。なお、フレーム3,4を多重化した後のデータは、ペイロード5dに格納される。
また、多重化された多重化フレーム5のオーバヘッド5b内のフレームバイト5aに、複数のフレーム1,2それぞれのクロック周波数f1,f2を定義した制御情報を設定する(ステップS2)。たとえば、フレームバイト5a内の一部にフレーム同期信号6bを残し、他の部分に制御情報6aが設定される。フレーム同期信号6bは、たとえば、SONET/SDH伝送において、SOH(図1のオーバヘッド5b,5c)のA1,A2バイトの境界部分の所定バイトをフレーム同期信号6bの設定領域とする。
これにより、多重化される各フレーム1,2のクロック周波数f1,f2が定義された制御情報6aをフレームバイト5a内に有する多重化フレーム5が生成される。
このような多重化フレーム5が伝送装置で生成され、他の伝送装置に渡されると、当該他の伝送装置において、多重化フレーム5の分離が行われる。トランスペアレント多重化信号分離方法は、以下の通りである。
まず、多重化フレーム5のオーバヘッド5b内のフレームバイト5aから、複数のフレーム1,2それぞれのクロック周波数f1,f2を定義した制御情報6aを抽出する。次に、多重化フレーム5を複数のフレーム1,2に分離する。そして、複数のフレーム1,2を、それぞれに対応するチャネルに対して、それぞれに対応するクロック周波数f1,f2で出力する。
このようなトランスペアレント多重化信号分離方法によれば、多重化フレーム5に重畳されている複数のフレーム1,2が、フレームバイト5aに設定されている制御情報6aに定義されたクロック周波数f1,f2で出力される。
このようにして、フレーム1,2のフレームバイト1a,2a以外の全ての情報を多重化して、多重化フレーム5のペイロード5dに格納することができる。すなわち、フレーム1,2のオーバヘッド1b,1c,2b,2cも多重化されて伝送されることとなる。その結果、オーバヘッドを含めたトランスペアレント伝送が実現される。なお、フレーム1,2のフレームバイト1a,2aは、フレーム同期用の所定のビットパターンであるため、多重化して伝送しなくても、分離時に所定の内容を付加することで元の状態を再現できる。
しかも、フレーム1,2のクロック周波数f1,f2がフレームバイト5aに設定されているため、多重化フレーム5を受信した伝送装置では、フレームバイト5aを参照して、フレーム1,2のクロック周波数f1,f2を認識することができる。その結果、分離後のフレーム1,2を多重化前と同じクロック周波数f1,f2で伝送させることができ、対向局間の周波数同期化が可能となる。
また、多重化フレーム5のフレームバイト5aには、フレーム同期に必要なフレーム同期信号6bが残されているため、受信側において多重化フレーム5のフレーム同期を正しく行うことができる。
以下、図1に示すようなトランスペアレント伝送、SONET/SDH伝送上で実現する場合の実施の形態について具体的に説明する。すなわち、SONET/SDH伝送では、非同期で、周波数変動を有するクライアント信号(多重化対象のフレームを伝送する信号)を同期化し、高次レイアに多重化する際に、SOHのA1,A2バイトが、インターリーブの結果、連続したA1及びA2が並ぶ。このことに着目し、一部のA1,A2を残し、他の部分を周波数変動用の付加情報として利用する。
また、各クライアント信号をペイロードとするフレームを再構成する。さらに、多重化フレーム5には、クライアント信号の位置を示すポインタまたは、スタッフ情報を多重化する。これにより、対向局のクアラアント間の同期化を図り、トランスペアレント伝送を実現する。
図2は、本発明の実施の形態のネットワーク構成例を示す図である。図2に示すように、多重化したフレームを伝送する高速(たとえば、OC192)の伝送路13を介して2つの伝送装置11,12が接続されている。ここで、伝送装置11を「X局」、伝送装置12を「Y局」とする。伝送装置11には、OH処理部14が設けられており、OH処理部14によりOHの再構成が行われる。同様に、伝送装置12には、OH処理部15が設けられており、OH処理部15によりOHの解析、および元のフレームのOHの再現が行われる。なお、多重化、分離を行う伝送装置11,12では、OH終端処理を行わない。
X局の伝送装置11には、OC48の速度を有する4つの伝送装置21〜24が接続されている。伝送装置21を「A局」、伝送装置22を「B局」、伝送装置23を「C局」、伝送装置24を「D局」とする。
伝送装置21は、動作周波数(クロック周波数)f1のネットワーク41内に設けられている。伝送装置22は、クロック周波数f2のネットワーク42内に設けられている。伝送装置23は、クロック周波数f3のネットワーク43内に設けられている。伝送装置24は、クロック周波数f4のネットワーク44内に設けられている。
Y局の伝送装置12には、OC48の速度を有する4つの伝送装置31〜34が接続されている。伝送装置31を「E局」、伝送装置32を「F局」、伝送装置33を「G局」、伝送装置34を「H局」とする。
伝送装置31は、クロック周波数f1のネットワーク51内に設けられている。伝送装置32は、クロック周波数f2のネットワーク52内に設けられている。伝送装置33は、クロック周波数f3のネットワーク53内に設けられている。伝送装置34は、クロック周波数f4のネットワーク54内に設けられている。
ここで、SOHに関して、A局の伝送装置21とE局の伝送装置31との間(f1の同期)、B局の伝送装置22とF局の伝送装置32との間(f2に同期)、C局の伝送装置23とG局の伝送装置33との間(f3に同期)、E局の伝送装置24とH局の伝送装置34との間(f4に同期)でそれぞれ同期させ、SOHを含めたトランスペアレント伝送を行う。当然、ペイロードも正確に伝送される。
オーバヘッドとペイロードとを含めトランスペアレント伝送を実現するには、複数の非同期の低速SDH/SONET信号の周波数差の吸収が必要となる。すなわち、非同期の低速信号の周波数差を吸収し、高速信号に同期させる。このとき、ペイロード信号は、ポインタ等の技術を用いて処理することができる。ただし、オーバヘッド信号は、セクションおよびライン間で多重化するための周波数吸収のための付加ビットを有していない。
そこで、本実施の形態では、SOH内のA1,A2ビットを周波数吸収用のビットとして利用する。A1,A2ビットは、フレームバイトとよばれ、フレーム同期に使用される信号である。このA1ビットとA2ビットとは、複数のクライアント信号を多重化した場合、それぞれ同一符号が連続する。しかも、A1ビットとA2ビットとの境界部分が検出できれば、フレーム同期が可能である。従って、A1ビットとA2ビットとの境界部分以外の領域に周波数吸収のための制御情報を設定しても、フレーム同期に悪影響を与えることはない。以下、周波数吸収用の制御情報を格納する領域を、トランスペアレント用バイトと呼ぶ。
以下に、フレームバイトの構成に関し、トランスペアレント用バイト確保前と後とを比較して説明する。
図3は、フレームバイトの構成を示す図である。図3(A)はトランスペアレント用バイト確保前の状態を示しており、図3(B)はトランスペアレント用バイト確保後の状態を示している。なお、図3の例は、SDH/SONET伝送方式に従った伝送を行うときの、A1,A2バイトのフレーム構成である。
図3(A)に示すように、トランスペアレント用バイト確保前のフレームバイト71には、A1に設けられたNバイトの全てに、フレーム同期情報が設定されている。同様に、A2に設けられたNバイトの全てに、フレーム同期情報が設定されている。なお、Nは、SONETにおける伝送速度のレベルを示している。たとえばOC48の速度の場合、N=48であり、A1及びA2は、各々48バイト構成である。
ここで、クライアント信号の多重化が行われるとトランスペアレント用バイトが確保され、図3(B)に示すように、フレームバイト72において、A1バイトとA2バイトとの境界部分が残され、他の部分には周波数吸収用の制御情報が設定される。本実施の形態では、A1のN−1バイト及びNバイト目、A2の1及び2バイト目をフレーム同期パターンとして残し、他のバイトを余剰バイトと見做し、この部分に各チャネルの周波数吸収用の制御情報を多重化する。
図4は、多重化するトランスペアレント用バイトの内容例を示す図である。なお、トランスペアレント用バイトの総バイト数は、2N−4となる。すなわち、フレームバイト全体から、フレーム同期パターンを残す4バイト分を差し引いた容量がトランスペアレント用バイトの総バイト数となる。
制御情報73は、最高速度CH管理バイト部73aと位相差表示バイト73bとで構成される。最高速度CH管理バイト部73aは、多重化する回線OCn(STM−m)のうち、一番周波数の高いチャネルを示す情報を設定する領域である。最高速度CH管理バイト部73aの使用バイト数は、たとえば1バイトである。
位相差表示バイト73bは、各チャネルの最高速度チャネル周波数との差分(位相差)情報を設定する領域である。位相差表示バイト73bは、ポインタ方式かスタッフ方式かにより内容が異なる。ポインタ方式の場合は、位相差表示バイト73bには、各チャネルのデータの位置情報が設定される。ポインタ方式の場合の位相差表示バイト73bの使用バイト数は、たとえば、9×多重対象低次群フレーム数である。スタッフ方式の場合、位相差表示バイト73bにはスタッフビットの有無やスタッフビット数の情報が設定される。スタッフ方式の場合の位相差表示バイト73bの使用バイト数は、1×多重対象低次群フレーム数である。
次に、信号を多重化するための回路構成について説明する。
図5は、多重化回路のブロック構成例を示す図である。この例は、OC48が4チャネル分入力された場合を示している(OC48#1〜#4)。多重化回路は、光電気変換器81〜84、最高速度CH検出セレクタ85、逓倍器(PLL部)86、チャネル(CH)間位相検出部87、およびフレームバイト情報付加部88で構成される。
光電気変換器81〜84は、4チャネル分の入力信号それぞれに対応付けて設けられている。光電気変換器81〜84は、入力された光の信号を電気信号に変換する。光電気変換器81〜84で変換された電気信号は、最高速度チャネル(CH)検出セレクタ85とCH間位相検出部87とに対して出力される。
最高速度CH検出セレクタ85は、光電気変換器81〜84からクロック信号を受け取り、最も周波数が高いクロック信号を決定する。そして、最高速度CH検出セレクタ85は、最も周波数が高いクロック信号のチャネル(CH)番号を選択し、そのCH番号をフレームバイト情報付加部88に対して出力する。また、最も周波数が高いクロック信号を、逓倍器(PLL部)86に対して出力する。PLL部86は、入力されたクロックに同期した高次数クロック信号を生成し、フレームバイト情報付加部88に対して出力する。
CH間位相検出部87は、各チャネル間のクロック周波数の周波数差情報を生成する。これにより、最高速度CH検出セレクタ85で決定されたクロック周波数と他のチャネルとの周波数差情報が各チャネル毎に生成される。CH間位相検出部87は、生成した周波数差情報をフレームバイト情報付加部88に対して出力する。また、CH間位相検出部87は、各チャネルの信号からフレームバイトを削除(DROP)した後、それら各チャネルの信号をフレームバイト情報付加部88に対して出力する。
フレームバイト情報付加部88は、FIFO(Fast In Fast Out)のバッファであり、各チャネルの信号で伝送されるデータを一時的に格納する。そして、フレームバイト情報付加部88は、各チャネルの信号を、先のPLL部86から供給されるクロックに同期させる。さらに、フレームバイト情報付加部88は、最高速度CH検出セレクタ85で検出されたチャネル番号およびフレームパターンからなるフレーム同期を先頭に、CH間位相検出部87で計測された各チャネルの位相情報(周波数差情報)によって周波数差を吸収した他のチャネルの信号を多重化し、出力する。多重化の際の周波数差の吸収手法に関しては、位相情報をポインタで指し示してもよいし、スタッフィングを行ってもよい。これらの手法は、多重数に応じて選択することもできる。
このような構成の多重化回路により、次のように行われる。
まず、各チャネルの信号は、光電気変換器81〜84で電気信号に変換される。各チャネルの信号に基づいて、最高速度CH検出セレクタ85により最も周波数の高いチャネルが選択され、そのチャネルのチャネル番号がフレームバイト情報付加部88に伝えられる。たとえば、チャネル番号「CH#2」のチャネルの周波数が最も高いものとする。このとき、最も周波数の高いチャネルの信号に同期した高次数クロック信号がPLL部86で生成され、フレームバイト情報付加部88に供給される。
また、光電気変換器81〜84で電気信号に変換された信号に基づいて、CH間位相検出部87において各チャネル間の周波数差が検出され、フレームバイト情報付加部88に供給される。たとえば、最速チャネルがCH#2であれば、そのチャネルと他のチャネル(CH#1,CH#3,CH#4)との間の周波数差が検出される。また、CH間位相検出部87は、入力された各チャネルの信号からフレームバイトを除去し、フレームバイト情報付加部88に送る。
そして、フレームバイト情報付加部88において、各チャネルの信号が多重化される。その際、多重化された多重化フレームバイトには、周波数差分を吸収するための制御情報が付加される。多重化後のフレームバイトの内容は、図3(B)に示す通りである。
次に、分離部の構成について説明する。
図6は、分離回路のブロック構成例を示す図である。この例は、多重化された信号を、OC192の速度の信号をOC48で4チャネル分に分離する場合を示している(OC48#1〜#4)。分離回路は、CH間位相検出部91、CH分周比指定部92、PLL部93、CH間位相アライメント部94、および電気光変換器95〜98で構成される。
CH間位相検出部91は、多重化された信号の入力を受け、入力された信号からフレームパターンを検出する。そしてCH間位相検出部91は、フレームのオーバヘッドに多重化されている各チャネルの周波数差分情報を抽出する。抽出した周波数差分情報は、CH分周比指定部92に渡される。また、CH間位相検出部91は、入力された信号からフレーバイトを除去(DROP)し、PLL部93とCH間位相アライメント部94とに対して出力する。
CH分周比指定部92は、周波数差分情報から各チャネルクロック再生のための分周信号を生成する。CH分周比指定部92は、生成した分周信号をPLL部93に対して出力する。
PLL部93は、チャネル数分設けられている。図6の例では、4チャネル分の4つのPLLが設けられる。このPLL部93は、CH間位相検出部91からの信号に基づいて、CH分周比指定部92で生成された分周信号で指定された周波数のチャネル毎のクロック信号を再生する。PLL部93は、生成したクロック信号をCH間位相アライメント部94に対して出力する。
CH間位相アライメント部94は、PLL部から供給されたクロック信号に合わせて、多重化された信号から各チャネル信号を多重化された順序で読み出す。そして、CH間位相アライメント部94は、各チャネル信号にフレームバイト(A1,A2)を付加し、その後、各チャネル信号を電気光変換器95〜98に対して出力する。
電気光変換器95〜98は、各チャネルに対応付けて設けられている。電気光変換器95〜98は、入力された電気的な信号を光信号に変換し、出力する。
以上の様な構成の分離部により、次のような処理が行われる。
OC192の速度の信号がCH間位相検出部91に入力されると、CH間位相検出部91においてフレームパターンが検出され、各チャネルの周波数差分情報が検出されると共に、フレームバイトが除去される。
周波数差分情報はCH分周比指定部92に送られる。すると、CH分周比指定部92からPLL部93へ、周波数を指定する分周信号が送られる。PLL部93では、この分周信号に応じたチャネル毎のクロック信号が生成され、CH間位相アライメント部94に供給される。
CH間位相アライメント部94において、チャネル毎のクロック信号に従ってチャネル信号が読み出され、フレームバイト(A1,A2)を付加後、電気光変換器95〜98に送られる。そして、電気光変換器95〜98で各チャネルの信号が光信号に変換され、OC48の速度で出力される。
以上のような多重化および分離方式でSOHの周波数変動を吸収することにより、SOHのトランスペアレント伝送が可能となる。
次に、多重化後のフレーム内で多重化前の周波数差を示す方法として、ポインタによる方法と、スタッフによる方法とがある。以下、それぞれの方法で動作速度差(クロック周波数差)を示すときのフレーム構成について説明する。
図7は、多重化対象チャネルの動作速度差をポインタによって示す場合のフレーム構成例を示す図である。図7には、SONET(SDH)のフレーム構成に本発明を適用した場合の例を示している。なお、図7では、本発明の実施の形態の特徴を分かり易くするために、フレームバイトをオーバヘッドから分けて示しているが、実際にはフレームバイトもオーバヘッドの構成要素の1つである。
ここで、4チャネル分のOC48(チャネル番号がそれぞれ#1〜4)はクロック周波数が各々異なるものとする。チャネル番号「CH#1」のOC48のクロック周波数はf1、チャネル番号「CH#2」のOC48のクロック周波数はf2、チャネル番号「CH#3」のOC48のクロック周波数はf3、チャネル番号「CH#4」のOC48のクロック周波数はf4である。
チャネル番号「CH#1」のチャネルのフレーム110は、フレームバイト111、フレームバイト111以外のオーバヘッド(OH)112,113、およびペイロード114で構成される。チャネル番号「CH#2」のチャネルのフレーム120は、フレームバイト121、フレームバイト121以外のオーバヘッド(OH)122,123、およびペイロード124で構成される。チャネル番号「#3」のチャネルのフレーム130は、フレームバイト131、フレームバイト131以外のオーバヘッド(OH)132,133、およびペイロード134で構成される。チャネル番号「#4」のチャネルのフレーム140は、フレームバイト141、フレームバイト141以外のオーバヘッド(OH)142,143、およびペイロード144で構成される。
このような各チャネルのフレーム110,120,130,140が入力されると、各フレーム110,120,130,140からフレームバイト111,121,131,141が取り出され、新たなフレームバイト151が生成される。ここで、フレームバイト111,121,131,141が取り出された後のフレーム110a,120a,130a,140aが多重化の対象となる。
生成されたフレームバイト151には、多重化されるべきフレーム110a,120a,130a,140aの先頭を示すポインタ情報が設定される。また、このフレームバイト151には、クロック周波数が最高速のチャネルを指定する情報も含まれる。その後、フレーム110a,120a,130a,140aが多重化され、フレームバイト151と合わせて新たなフレーム150が生成される。
フレーム150は、フレームバイト151、オーバヘッド152,153、およびペイロード154で構成される。OC48の各チャネルのフレームバイト111,121,131,141を除いたフレーム110a,120a,130a,140aは、インターリーブ多重化され、フレーム150におけるペイロード154として扱われる。多重化は、たとえばTDM(Time Division Multiplex)方式で行われる。
図8は、多重化対象チャネルの動作速度差をスタッフ挿入によって吸収する場合のフレーム構成例を示す図である。図8には、SONET(SDH)のフレーム構成に本発明を適用した場合の例を示している。なお、図8では、本発明の実施の形態の特徴を分かり易くするために、フレームバイトをオーバヘッドから分けて示しているが、実際にはフレームバイトもオーバヘッドの構成要素の1つである。ここで、入力されるフレーム110,120,130,140の構成は、図7に示した例と同じである。
このような各チャネルのフレーム110,120,130,140が入力されると、各フレーム110,120,130,140からフレームバイト111,121,131,141が取り出され、新たなフレームバイト161が生成される。ここで、フレームバイト111,121,131,141が取り出された後のフレーム110a,120a,130a,140aが多重化の対象となる。
生成されたフレームバイト161には、各チャネルのスタッフの有無、および1フレーム当たりのスタッフビット数が設定される。また、このフレームバイト161には、クロック周波数が最高速のCHを指定する情報も含まれる。その後、フレーム110a,120a,130a,140aが多重化され、フレームバイト161と合わせて新たなフレーム160が生成される。
フレーム160は、フレームバイト161、オーバヘッド162,163、およびペイロード165で構成される。OC48の各チャネルのフレームバイト111,121,131,141を除いたフレーム110a,120a,130a,140aは、インターリーブ多重化され、フレーム160におけるペイロード165として扱われる。ペイロード165には、スタッフビット164aが設定されている。スタッフビット164aのビット数は、各チャネルの1フレーム当たりのスタッフビット数の和である。
以上のようなポインタ方式またはスタッフィング方式は、各々、メリット、デメリットを有している。ポインタ方式は、クライアント信号の位相合わせが不要なため、簡便であるが、多重数が多くなるとポインタを示す情報量が増大する。スタッフィングは、多重化の際、信号の先頭位置を決める必要があるため、充分なメモリが必要となる反面、制御情報は、ポインタ方式と比べて少ない。したがって、多重数に応じて使い分ける機能を付加することで、効率的な伝送が可能となる。
次に、トランスペアレント多重化方式の多重化回路と分離回路との具体的な回路構成例について説明する。
図9は、多重化回路を示すブロック図である。図9の例では、OC48(STM16)の速度の信号が4チャネル(CH#1〜CH#4)分入力されている。
CH#1の信号は、クロック抽出部211、伝送フレーム検出部241およびFIFO281に入力される。CH#2の信号は、クロック抽出部212、伝送フレーム検出部242およびFIFO282に入力される。CH#3の信号は、クロック抽出部213、伝送フレーム検出部243およびFIFO283に入力される。CH#4の信号は、クロック抽出部214、伝送フレーム検出部244およびFIFO284に入力される。
クロック抽出部211は、CH#1の信号からクロック信号を抽出し、クロック周波数f1の信号をカウンタ221と最大クロック(MAXCLK)選択部232とに伝える。クロック抽出部212は、CH#2の信号からクロック信号を抽出し、クロック周波数f2の信号をカウンタ222と最大クロック選択部232とに伝える。クロック抽出部213は、CH#3の信号からクロック信号を抽出し、クロック周波数f3の信号をカウンタ223と最大クロック選択部232とに伝える。クロック抽出部214は、CH#4の信号からクロック信号を抽出し、クロック周波数f4の信号をカウンタ224と最大クロック選択部232とに伝える。
カウンタ221〜224には、ローカル発信機(OSC:OSCillator)220から所定の周波数f0の信号が入力されている。OSC220の周波数f0は、CH#1〜CH#4の周波数の2倍以上が必要である。カウンタ221は、入力された信号の立ち上がり(または立ち下がり)の回数をカウントし、クロック信号数(COUNT#1)を最高速度チャネル(CH)検出部231に対して出力する。カウンタ222は、入力された信号の立ち上がり(または立ち下がり)の回数をカウントし、クロック信号数(COUNT#2)を最高速度CH検出部231に対して出力する。カウンタ223は、入力された信号の立ち上がり(または立ち下がり)の回数をカウントし、クロック信号数(COUNT#3)を最高速度CH検出部231に対して出力する。カウンタ224は、入力された信号の立ち上がり(または立ち下がり)の回数をカウントし、クロック信号数(COUNT#4)を最高速度CH検出部231に対して出力する。
最高速度CH検出部231は、クロック信号数(COUNT#1〜#4)の値の最大値を判定する。最高速度CH検出部231は、クロック信号数が最大値であるチャネルのチャネル(CH)番号を、OH多重化部300に出力する。また、最高速度CH検出部231は、クロック信号数が最大値であるチャネルの選択信号を、最大クロック選択部232と最大(MAX)伝送フレーム検出部251に出力する。
最大クロック選択部232は、最大値のCH選択信号に従って、クロック抽出部211〜214から送られた信号のうちの1つ(最高速度のチャネルの信号)を選択する。そして、最大クロック選択部232は、選択した信号を逓倍部(PLL部)233に対して送信する。
PLL部233は、STM64のクロック信号を生成し、生成したクロック信号を最大(MAX)クロックとしてカウンタ261〜264とFIFO281〜284に対して出力する。
伝送フレーム検出部241は、CH#1の信号を受け取り、CH#1の伝送フレームを検出し、検出した伝送フレームをカウンタ261と最大伝送フレーム検出部251とに対して出力する。伝送フレーム検出部242は、CH#2の信号を受け取り、CH#2の伝送フレームを検出し、検出した伝送フレームをカウンタ262と最大伝送フレーム検出部251とに対して出力する。伝送フレーム検出部243は、CH#3の信号を受け取り、CH#3の伝送フレームを検出し、検出した伝送フレームをカウンタ263と最大伝送フレーム検出部251とに対して出力する。伝送フレーム検出部244は、CH#4の信号を受け取り、CH#4の伝送フレームを検出し、検出した伝送フレームをカウンタ264と最大伝送フレーム検出部251とに対して出力する。
最大伝送フレーム検出部251は、最高速度CH検出部231から送られた選択信号に応じたチャネルの伝送フレームの信号を検出し、差分検出部271〜274に対して出力する。
カウンタ261は、最大クロックに同期して、入力された伝送フレームの信号の数をカウントし、カウントした値(COUNT#5)を差分検出部271に対して出力する。カウンタ262は、最大クロックに同期して、入力された伝送フレームの信号の数をカウントし、カウントした値(COUNT#6)を差分検出部272に対して出力する。カウンタ263は、最大クロックに同期して、入力された伝送フレームの信号の数をカウントし、カウントした値(COUNT#7)を差分検出部273に対して出力する。カウンタ264は、最大クロックに同期して、入力された伝送フレームの信号の数をカウントし、カウントした値(COUNT#8)を差分検出部274に対して出力する。
差分検出部271は、COUNT#5の値と最大伝送フレーム検出部251から送られる信号とに基づいて、CH#1の信号と最高速度CHの信号との差分を検出し、OH多重化部300に対して出力する。差分検出部272は、COUNT#6の値と最大伝送フレーム検出部251から送られる信号とに基づいて、CH#2の信号と最高速度CHの信号との差分を検出し、OH多重化部300に対して出力する。差分検出部273は、COUNT#7の値と最大伝送フレーム検出部251から送られる信号とに基づいて、CH#3の信号と最高速度CHの信号との差分を検出し、OH多重化部300に対して出力する。差分検出部274は、COUNT#8の値と最大伝送フレーム検出部251から送られる信号とに基づいて、CH#4の信号と最高速度CHの信号との差分を検出し、OH多重化部300に対して出力する。
FIFO281には、さらにクロック信号CK1と最大(MAX)クロックとが入力されている。FIFO282は、さらにクロック信号CK2と最大(MAX)クロックとが入力されている。FIFO283には、さらにクロック信号CK3と最大(MAX)クロックとが入力されている。FIFO284には、さらにクロック信号CK4と最大(MAX)クロックとが入力されている。
FIFO281は、クロック信号CK1に合わせて信号を読み込み、最大クロック信号に合わせて信号をOH抽出部291に対して出力する。FIFO282は、クロック信号CK2に合わせて信号を読み込み、最大クロック信号に合わせて信号をOH抽出部292に対して出力する。FIFO283は、クロック信号CK3に合わせて信号を読み込み、最大クロック信号に合わせて信号をOH抽出部293に対して出力する。FIFO284は、クロック信号CK4に合わせて信号を読み込み、最大クロック信号に合わせて信号をOH抽出部294に対して出力する。
OH抽出部291は、最大クロック信号に同期して、入力されたCH#1の信号からオーバヘッド(OH部)を抽出し、OH多重化部300に対して出力する。OH抽出部292は、最大クロック信号に同期して、入力されたCH#2の信号からオーバヘッド(OH部)を抽出し、OH多重化部300に対して出力する。OH抽出部293は、最大クロック信号に同期して、入力されたCH#3の信号からオーバヘッド(OH部)を抽出し、OH多重化部300に対して出力する。OH抽出部294は、最大クロック信号に同期して、入力されたCH#4の信号からオーバヘッド(OH部)を抽出し、OH多重化部300に対して出力する。
OH多重化部300は、OH抽出部291〜294から送られたOH部の多重化を行う。その際、OH多重化部300は、OH部内のフレームバイトの領域には、最高速度のCH番号で示されたチャネルを識別する情報と、最高速度のチャネルと比べたときの他のチャネルの速度の差分(クロックのパルス数)を示す情報とを設定する。そして、OH多重化部300は、多重化されたOHを出力する。
以上のような構成の多重化回路により、入力されたOC48の速度の信号が多重化され出力される。その際、多重化後のOHには、最高速度のチャネルを識別する情報と、そのチャネルと比較したときの他のチャネルの速度の差分を示す情報とが設定される。
図10は、分離回路を示すブロック図である。多重化された信号は、OH分離部400に入力される。OH分離部400は、入力された信号から各チャネルのOHを分離する。そして、OH分離部400は、入力された信号をCK抽出部411に送る。また、OH分離部400は、OH内のフレームバイトに含まれるチャネル毎の差分情報を最大(MAX)CH判定部412に対して出力するとともに、差分演算部431〜434に対して対応するチャネルの差分情報を出力する。CH#1の差分情報は差分演算部431に送られ、CH#2の差分情報は差分演算部432に送られ、CH#3の差分情報は差分演算部433に送られ、CH#4の差分情報は差分演算部434に送られる。さらに、OH分離部400は、チャネル毎のOH部をFIFO451〜454に対して出力する。FIFO451にはCH#1のOH部が出力され、FIFO452にはCH#2のOH部が出力され、FIFO453にはCH#3のOH部が出力され、FIFO454にはCH#4のOH部が出力される。
CK抽出部411は、入力された信号からクロック信号を抽出し、PLL部441〜444とFIFO451〜454とに対して出力する。
最大CH判定部412は、差分情報から速度が最大となるチャネルを判定し、そのチャネルのチャネル番号を差分演算部431〜434に対して出力する。
差分演算部431は、CH#1の信号の差分情報と、速度が最大となるチャネルのチャネル番号とから、そのチャネルからの差分(クロック信号のパルス数)を演算し、PLL部441に対して出力する。差分演算部432は、CH#2の信号の差分情報と、速度が最大となるチャネルのチャネル番号とから、そのチャネルからの差分(クロック信号のパルス数)を演算し、PLL部442に対して出力する。差分演算部433は、CH#3の信号の差分情報と、速度が最大となるチャネルのチャネル番号とから、そのチャネルからの差分(クロック信号のパルス数)を演算し、PLL部443に対して出力する。差分演算部434は、CH#4の信号の差分情報と、速度が最大となるチャネルのチャネル番号とから、そのチャネルからの差分(クロック信号のパルス数)を演算し、PLL部444に対して出力する。
PLL部441は、CK抽出部411から入力されるクロック信号(最高速度のクロック信号)と、差分演算部431から入力される差分とに基づいて、CH#1のクロック周波数f1のクロック信号を生成する。PLL部442は、CK抽出部411から入力されるクロック信号(最高速度のクロック信号)と、差分演算部432から入力される差分とに基づいて、CH#2のクロック周波数f2のクロック信号を生成する。PLL部443は、CK抽出部411から入力されるクロック信号(最高速度のクロック信号)と、差分演算部433から入力される差分とに基づいて、CH#3のクロック周波数f3のクロック信号を生成する。PLL部444は、CK抽出部411から入力されるクロック信号(最高速度のクロック信号)と、差分演算部434から入力される差分とに基づいて、CH#4のクロック周波数f4のクロック信号を生成する。
FIFO451は、PLL部441で生成されたf1のクロック信号を受け取り、OH分離部400で分離されたCH#1のOHを、OC48(STM16)の速度で送出する。FIFO452は、PLL部442で生成されたf2のクロック信号を受け取り、OH分離部400で分離されたCH#2のOHを、OC48(STM16)の速度で送出する。FIFO453は、PLL部443で生成されたf3のクロック信号を受け取り、OH分離部400で分離されたCH#3のOHを、OC48(STM16)の速度で送出する。FIFO454は、PLL部444で生成されたf4のクロック信号を受け取り、OH分離部400で分離されたCH#4のOHを、OC48(STM16)の速度で送出する。
このような分離回路により、多重化されたフレームのOHから各チャネルのOHが分離され、各チャネルのOHが各チャネルに応じたクロック周波数で出力される。
なお、上記の説明では、最高速度のチャネルのチャネル番号を示す情報をフレームバイトに設定するものとしているが、差分が「0」のCHを最高周波数のCHとみなすこともできる。この場合、最高速度のチャネルのチャネル番号を示す情報を多重化後のOHに含める必要がない。
以下に、差分が「0」のCHを最高周波数のCHとみなした場合のトランスペアレント用バイトの内容例について説明する。
図11は、トランスペアレント用バイトの内容例を示す図である。この例は、CH#1〜CH#4間の周波数偏差を3バイトとし(2.4GHzの0.01ppmの周波数偏差に相当)、OC48(STM16)のCH#2の周波数が最も高い(f2が最大値)と仮定する。また、他の各チャネルのクロック周波数を、f1=f2−0.001ppm(2.4GHzの1バイト相当)、f3=f2−0.006ppm(2.4GHzの2バイト相当)、f4=f2−0.009ppm(2.4GHzの2バイト相当)とする。
すると、図9の最高速度CH検出部231でCH#2の周波数が最も高いと判定され、OHのトランスペアレント用バイト510には、それぞれのチャネルの差分値が格納される。CH#1の差分値511は「00001000」である。CH#2の差分値512は「00000000」である。CH#3の差分値513は「00010000」である。CH#4の差分値514は「00100000」である。
このように、CH#2に関しては、全ての値が0であることにより、最高周波数であることが示されている。また、他のチャネルCH#1、CH#3,CH#4の差分値は、CH周波数偏差をビット数で示している。
なお、OC48のとき、A1バイトは、従来技術では48バイトの同じ同期パターンが格納される。同様に、A2バイトは、従来技術では48バイトの同じ同期パターンが格納される。したがって、トランスペアレント用バイト510として48×2−4=92バイトが確保される(同期パターンとして4バイト分利用した場合)。
このようなトランスペアレント用バイトを含むフレームが送信されると、受信側では、まず、CK抽出部411において、CH#2のクロック周波数f2が抽出される。そして、差分演算部431〜434とPLL部441〜444とにより、CH#1のクロック周波数f1=f2−(CH#1の差分値)、CH#3のクロック周波数f3=f2−(CH#3の差分値)、CH#4のクロック周波数f4=f2−(CH#4の差分値)が求められる。
以上のようにしてSONET/SDHにおいて、SOHも含めたトランスペアレント伝送が可能となる。クライアントにとっては、高次のレイアにて多重化しているのにも拘わらず、あたかもクライアントの速度のレイアで光ファイバ通信しているかのような通信形態が既存設備への影響なしに、容易にシステム構築できる。その結果、SOHの未定義ビットを使ってクライアント間の通信を行う場合であっても、SOHの未定義ビットを含めて通信相手に伝送することができる。
しかも、被多重化フレームのオーダワイア情報やセクションデータを多重化してトランスペアレントにより伝送したことにより、保守性が向上する。
なお、上記のトランスペアレント用バイトに、誤り訂正符号を付加することもできる。これにより、信頼性の高い通信を行うことができる。
また、フレームバイト(トランスペアレント用バイトを含む)以外の情報をスクランブル伝送することもできる。これにより、悪意の第三者からの不正行為を防止することができる。
また、上記の技術を用いて、トランスペアレント伝送を経由したマルチフレームの同期化も可能である。
以上説明したように本発明では、複数のチャネルのフレームそれぞれのクロック周波数をフレームバイトに設定するようにしたため、多重化フレームを受信した伝送装置では、フレームバイトを参照して多重化前のフレームのクロック周波数を認識することができる。その結果、分離後のフレームを多重化前と同じクロック周波数で伝送させることができ、対向局間の周波数同期化が可能となる。
上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
まず、実施の形態に適用される発明の概要について説明し、その後、実施の形態の具体的な内容を説明する。
図1は、本発明の原理構成図である。本発明に係るトランスペアレント多重化方法では、複数の伝送信号をトランスペアレントに多重化するために、以下の処理を行う。
まず、複数のチャネルから入力される複数のフレーム1,2を多重化する(ステップS1)。フレーム1は、オーバヘッド1b,1cやペイロード1d等で構成されている。オーバヘッド1bには、フレームバイト1aが含まれている。同様に、フレーム2は、オーバヘッド2b,2cやペイロード2d等で構成されている。オーバヘッド2bには、フレームバイト2aが含まれている。ここで、多重化の際には、フレームバイト1a,2aを除いたフレーム3,4が多重化される。
多重化された多重化フレーム5は、オーバヘッド5b,5cやペイロード5d等で構成されている。オーバヘッド5bには、フレームバイト5aが含まれている。なお、フレーム3,4を多重化した後のデータは、ペイロード5dに格納される。
また、多重化された多重化フレーム5のオーバヘッド5b内のフレームバイト5aに、複数のフレーム1,2それぞれのクロック周波数f1,f2を定義した制御情報を設定する(ステップS2)。たとえば、フレームバイト5a内の一部にフレーム同期信号6bを残し、他の部分に制御情報6aが設定される。フレーム同期信号6bは、たとえば、SONET/SDH伝送において、SOH(図1のオーバヘッド5b,5c)のA1,A2バイトの境界部分の所定バイトをフレーム同期信号6bの設定領域とする。
これにより、多重化される各フレーム1,2のクロック周波数f1,f2が定義された制御情報6aをフレームバイト5a内に有する多重化フレーム5が生成される。
このような多重化フレーム5が伝送装置で生成され、他の伝送装置に渡されると、当該他の伝送装置において、多重化フレーム5の分離が行われる。トランスペアレント多重化信号分離方法は、以下の通りである。
まず、多重化フレーム5のオーバヘッド5b内のフレームバイト5aから、複数のフレーム1,2それぞれのクロック周波数f1,f2を定義した制御情報6aを抽出する。次に、多重化フレーム5を複数のフレーム1,2に分離する。そして、複数のフレーム1,2を、それぞれに対応するチャネルに対して、それぞれに対応するクロック周波数f1,f2で出力する。
このようなトランスペアレント多重化信号分離方法によれば、多重化フレーム5に重畳されている複数のフレーム1,2が、フレームバイト5aに設定されている制御情報6aに定義されたクロック周波数f1,f2で出力される。
このようにして、フレーム1,2のフレームバイト1a,2a以外の全ての情報を多重化して、多重化フレーム5のペイロード5dに格納することができる。すなわち、フレーム1,2のオーバヘッド1b,1c,2b,2cも多重化されて伝送されることとなる。その結果、オーバヘッドを含めたトランスペアレント伝送が実現される。なお、フレーム1,2のフレームバイト1a,2aは、フレーム同期用の所定のビットパターンであるため、多重化して伝送しなくても、分離時に所定の内容を付加することで元の状態を再現できる。
しかも、フレーム1,2のクロック周波数f1,f2がフレームバイト5aに設定されているため、多重化フレーム5を受信した伝送装置では、フレームバイト5aを参照して、フレーム1,2のクロック周波数f1,f2を認識することができる。その結果、分離後のフレーム1,2を多重化前と同じクロック周波数f1,f2で伝送させることができ、対向局間の周波数同期化が可能となる。
また、多重化フレーム5のフレームバイト5aには、フレーム同期に必要なフレーム同期信号6bが残されているため、受信側において多重化フレーム5のフレーム同期を正しく行うことができる。
以下、図1に示すようなトランスペアレント伝送、SONET/SDH伝送上で実現する場合の実施の形態について具体的に説明する。すなわち、SONET/SDH伝送では、非同期で、周波数変動を有するクライアント信号(多重化対象のフレームを伝送する信号)を同期化し、高次レイアに多重化する際に、SOHのA1,A2バイトが、インターリーブの結果、連続したA1及びA2が並ぶ。このことに着目し、一部のA1,A2を残し、他の部分を周波数変動用の付加情報として利用する。
また、各クライアント信号をペイロードとするフレームを再構成する。さらに、多重化フレーム5には、クライアント信号の位置を示すポインタまたは、スタッフ情報を多重化する。これにより、対向局のクアラアント間の同期化を図り、トランスペアレント伝送を実現する。
図2は、本発明の実施の形態のネットワーク構成例を示す図である。図2に示すように、多重化したフレームを伝送する高速(たとえば、OC192)の伝送路13を介して2つの伝送装置11,12が接続されている。ここで、伝送装置11を「X局」、伝送装置12を「Y局」とする。伝送装置11には、OH処理部14が設けられており、OH処理部14によりOHの再構成が行われる。同様に、伝送装置12には、OH処理部15が設けられており、OH処理部15によりOHの解析、および元のフレームのOHの再現が行われる。なお、多重化、分離を行う伝送装置11,12では、OH終端処理を行わない。
X局の伝送装置11には、OC48の速度を有する4つの伝送装置21〜24が接続されている。伝送装置21を「A局」、伝送装置22を「B局」、伝送装置23を「C局」、伝送装置24を「D局」とする。
伝送装置21は、動作周波数(クロック周波数)f1のネットワーク41内に設けられている。伝送装置22は、クロック周波数f2のネットワーク42内に設けられている。伝送装置23は、クロック周波数f3のネットワーク43内に設けられている。伝送装置24は、クロック周波数f4のネットワーク44内に設けられている。
Y局の伝送装置12には、OC48の速度を有する4つの伝送装置31〜34が接続されている。伝送装置31を「E局」、伝送装置32を「F局」、伝送装置33を「G局」、伝送装置34を「H局」とする。
伝送装置31は、クロック周波数f1のネットワーク51内に設けられている。伝送装置32は、クロック周波数f2のネットワーク52内に設けられている。伝送装置33は、クロック周波数f3のネットワーク53内に設けられている。伝送装置34は、クロック周波数f4のネットワーク54内に設けられている。
ここで、SOHに関して、A局の伝送装置21とE局の伝送装置31との間(f1の同期)、B局の伝送装置22とF局の伝送装置32との間(f2に同期)、C局の伝送装置23とG局の伝送装置33との間(f3に同期)、E局の伝送装置24とH局の伝送装置34との間(f4に同期)でそれぞれ同期させ、SOHを含めたトランスペアレント伝送を行う。当然、ペイロードも正確に伝送される。
オーバヘッドとペイロードとを含めトランスペアレント伝送を実現するには、複数の非同期の低速SDH/SONET信号の周波数差の吸収が必要となる。すなわち、非同期の低速信号の周波数差を吸収し、高速信号に同期させる。このとき、ペイロード信号は、ポインタ等の技術を用いて処理することができる。ただし、オーバヘッド信号は、セクションおよびライン間で多重化するための周波数吸収のための付加ビットを有していない。
そこで、本実施の形態では、SOH内のA1,A2ビットを周波数吸収用のビットとして利用する。A1,A2ビットは、フレームバイトとよばれ、フレーム同期に使用される信号である。このA1ビットとA2ビットとは、複数のクライアント信号を多重化した場合、それぞれ同一符号が連続する。しかも、A1ビットとA2ビットとの境界部分が検出できれば、フレーム同期が可能である。従って、A1ビットとA2ビットとの境界部分以外の領域に周波数吸収のための制御情報を設定しても、フレーム同期に悪影響を与えることはない。以下、周波数吸収用の制御情報を格納する領域を、トランスペアレント用バイトと呼ぶ。
以下に、フレームバイトの構成に関し、トランスペアレント用バイト確保前と後とを比較して説明する。
図3は、フレームバイトの構成を示す図である。図3(A)はトランスペアレント用バイト確保前の状態を示しており、図3(B)はトランスペアレント用バイト確保後の状態を示している。なお、図3の例は、SDH/SONET伝送方式に従った伝送を行うときの、A1,A2バイトのフレーム構成である。
図3(A)に示すように、トランスペアレント用バイト確保前のフレームバイト71には、A1に設けられたNバイトの全てに、フレーム同期情報が設定されている。同様に、A2に設けられたNバイトの全てに、フレーム同期情報が設定されている。なお、Nは、SONETにおける伝送速度のレベルを示している。たとえばOC48の速度の場合、N=48であり、A1及びA2は、各々48バイト構成である。
ここで、クライアント信号の多重化が行われるとトランスペアレント用バイトが確保され、図3(B)に示すように、フレームバイト72において、A1バイトとA2バイトとの境界部分が残され、他の部分には周波数吸収用の制御情報が設定される。本実施の形態では、A1のN−1バイト及びNバイト目、A2の1及び2バイト目をフレーム同期パターンとして残し、他のバイトを余剰バイトと見做し、この部分に各チャネルの周波数吸収用の制御情報を多重化する。
図4は、多重化するトランスペアレント用バイトの内容例を示す図である。なお、トランスペアレント用バイトの総バイト数は、2N−4となる。すなわち、フレームバイト全体から、フレーム同期パターンを残す4バイト分を差し引いた容量がトランスペアレント用バイトの総バイト数となる。
制御情報73は、最高速度CH管理バイト部73aと位相差表示バイト73bとで構成される。最高速度CH管理バイト部73aは、多重化する回線OCn(STM−m)のうち、一番周波数の高いチャネルを示す情報を設定する領域である。最高速度CH管理バイト部73aの使用バイト数は、たとえば1バイトである。
位相差表示バイト73bは、各チャネルの最高速度チャネル周波数との差分(位相差)情報を設定する領域である。位相差表示バイト73bは、ポインタ方式かスタッフ方式かにより内容が異なる。ポインタ方式の場合は、位相差表示バイト73bには、各チャネルのデータの位置情報が設定される。ポインタ方式の場合の位相差表示バイト73bの使用バイト数は、たとえば、9×多重対象低次群フレーム数である。スタッフ方式の場合、位相差表示バイト73bにはスタッフビットの有無やスタッフビット数の情報が設定される。スタッフ方式の場合の位相差表示バイト73bの使用バイト数は、1×多重対象低次群フレーム数である。
次に、信号を多重化するための回路構成について説明する。
図5は、多重化回路のブロック構成例を示す図である。この例は、OC48が4チャネル分入力された場合を示している(OC48#1〜#4)。多重化回路は、光電気変換器81〜84、最高速度CH検出セレクタ85、逓倍器(PLL部)86、チャネル(CH)間位相検出部87、およびフレームバイト情報付加部88で構成される。
光電気変換器81〜84は、4チャネル分の入力信号それぞれに対応付けて設けられている。光電気変換器81〜84は、入力された光の信号を電気信号に変換する。光電気変換器81〜84で変換された電気信号は、最高速度チャネル(CH)検出セレクタ85とCH間位相検出部87とに対して出力される。
最高速度CH検出セレクタ85は、光電気変換器81〜84からクロック信号を受け取り、最も周波数が高いクロック信号を決定する。そして、最高速度CH検出セレクタ85は、最も周波数が高いクロック信号のチャネル(CH)番号を選択し、そのCH番号をフレームバイト情報付加部88に対して出力する。また、最も周波数が高いクロック信号を、逓倍器(PLL部)86に対して出力する。PLL部86は、入力されたクロックに同期した高次数クロック信号を生成し、フレームバイト情報付加部88に対して出力する。
CH間位相検出部87は、各チャネル間のクロック周波数の周波数差情報を生成する。これにより、最高速度CH検出セレクタ85で決定されたクロック周波数と他のチャネルとの周波数差情報が各チャネル毎に生成される。CH間位相検出部87は、生成した周波数差情報をフレームバイト情報付加部88に対して出力する。また、CH間位相検出部87は、各チャネルの信号からフレームバイトを削除(DROP)した後、それら各チャネルの信号をフレームバイト情報付加部88に対して出力する。
フレームバイト情報付加部88は、FIFO(Fast In Fast Out)のバッファであり、各チャネルの信号で伝送されるデータを一時的に格納する。そして、フレームバイト情報付加部88は、各チャネルの信号を、先のPLL部86から供給されるクロックに同期させる。さらに、フレームバイト情報付加部88は、最高速度CH検出セレクタ85で検出されたチャネル番号およびフレームパターンからなるフレーム同期を先頭に、CH間位相検出部87で計測された各チャネルの位相情報(周波数差情報)によって周波数差を吸収した他のチャネルの信号を多重化し、出力する。多重化の際の周波数差の吸収手法に関しては、位相情報をポインタで指し示してもよいし、スタッフィングを行ってもよい。これらの手法は、多重数に応じて選択することもできる。
このような構成の多重化回路により、次のように行われる。
まず、各チャネルの信号は、光電気変換器81〜84で電気信号に変換される。各チャネルの信号に基づいて、最高速度CH検出セレクタ85により最も周波数の高いチャネルが選択され、そのチャネルのチャネル番号がフレームバイト情報付加部88に伝えられる。たとえば、チャネル番号「CH#2」のチャネルの周波数が最も高いものとする。このとき、最も周波数の高いチャネルの信号に同期した高次数クロック信号がPLL部86で生成され、フレームバイト情報付加部88に供給される。
また、光電気変換器81〜84で電気信号に変換された信号に基づいて、CH間位相検出部87において各チャネル間の周波数差が検出され、フレームバイト情報付加部88に供給される。たとえば、最速チャネルがCH#2であれば、そのチャネルと他のチャネル(CH#1,CH#3,CH#4)との間の周波数差が検出される。また、CH間位相検出部87は、入力された各チャネルの信号からフレームバイトを除去し、フレームバイト情報付加部88に送る。
そして、フレームバイト情報付加部88において、各チャネルの信号が多重化される。その際、多重化された多重化フレームバイトには、周波数差分を吸収するための制御情報が付加される。多重化後のフレームバイトの内容は、図3(B)に示す通りである。
次に、分離部の構成について説明する。
図6は、分離回路のブロック構成例を示す図である。この例は、多重化された信号を、OC192の速度の信号をOC48で4チャネル分に分離する場合を示している(OC48#1〜#4)。分離回路は、CH間位相検出部91、CH分周比指定部92、PLL部93、CH間位相アライメント部94、および電気光変換器95〜98で構成される。
CH間位相検出部91は、多重化された信号の入力を受け、入力された信号からフレームパターンを検出する。そしてCH間位相検出部91は、フレームのオーバヘッドに多重化されている各チャネルの周波数差分情報を抽出する。抽出した周波数差分情報は、CH分周比指定部92に渡される。また、CH間位相検出部91は、入力された信号からフレーバイトを除去(DROP)し、PLL部93とCH間位相アライメント部94とに対して出力する。
CH分周比指定部92は、周波数差分情報から各チャネルクロック再生のための分周信号を生成する。CH分周比指定部92は、生成した分周信号をPLL部93に対して出力する。
PLL部93は、チャネル数分設けられている。図6の例では、4チャネル分の4つのPLLが設けられる。このPLL部93は、CH間位相検出部91からの信号に基づいて、CH分周比指定部92で生成された分周信号で指定された周波数のチャネル毎のクロック信号を再生する。PLL部93は、生成したクロック信号をCH間位相アライメント部94に対して出力する。
CH間位相アライメント部94は、PLL部から供給されたクロック信号に合わせて、多重化された信号から各チャネル信号を多重化された順序で読み出す。そして、CH間位相アライメント部94は、各チャネル信号にフレームバイト(A1,A2)を付加し、その後、各チャネル信号を電気光変換器95〜98に対して出力する。
電気光変換器95〜98は、各チャネルに対応付けて設けられている。電気光変換器95〜98は、入力された電気的な信号を光信号に変換し、出力する。
以上の様な構成の分離部により、次のような処理が行われる。
OC192の速度の信号がCH間位相検出部91に入力されると、CH間位相検出部91においてフレームパターンが検出され、各チャネルの周波数差分情報が検出されると共に、フレームバイトが除去される。
周波数差分情報はCH分周比指定部92に送られる。すると、CH分周比指定部92からPLL部93へ、周波数を指定する分周信号が送られる。PLL部93では、この分周信号に応じたチャネル毎のクロック信号が生成され、CH間位相アライメント部94に供給される。
CH間位相アライメント部94において、チャネル毎のクロック信号に従ってチャネル信号が読み出され、フレームバイト(A1,A2)を付加後、電気光変換器95〜98に送られる。そして、電気光変換器95〜98で各チャネルの信号が光信号に変換され、OC48の速度で出力される。
以上のような多重化および分離方式でSOHの周波数変動を吸収することにより、SOHのトランスペアレント伝送が可能となる。
次に、多重化後のフレーム内で多重化前の周波数差を示す方法として、ポインタによる方法と、スタッフによる方法とがある。以下、それぞれの方法で動作速度差(クロック周波数差)を示すときのフレーム構成について説明する。
図7は、多重化対象チャネルの動作速度差をポインタによって示す場合のフレーム構成例を示す図である。図7には、SONET(SDH)のフレーム構成に本発明を適用した場合の例を示している。なお、図7では、本発明の実施の形態の特徴を分かり易くするために、フレームバイトをオーバヘッドから分けて示しているが、実際にはフレームバイトもオーバヘッドの構成要素の1つである。
ここで、4チャネル分のOC48(チャネル番号がそれぞれ#1〜4)はクロック周波数が各々異なるものとする。チャネル番号「CH#1」のOC48のクロック周波数はf1、チャネル番号「CH#2」のOC48のクロック周波数はf2、チャネル番号「CH#3」のOC48のクロック周波数はf3、チャネル番号「CH#4」のOC48のクロック周波数はf4である。
チャネル番号「CH#1」のチャネルのフレーム110は、フレームバイト111、フレームバイト111以外のオーバヘッド(OH)112,113、およびペイロード114で構成される。チャネル番号「CH#2」のチャネルのフレーム120は、フレームバイト121、フレームバイト121以外のオーバヘッド(OH)122,123、およびペイロード124で構成される。チャネル番号「#3」のチャネルのフレーム130は、フレームバイト131、フレームバイト131以外のオーバヘッド(OH)132,133、およびペイロード134で構成される。チャネル番号「#4」のチャネルのフレーム140は、フレームバイト141、フレームバイト141以外のオーバヘッド(OH)142,143、およびペイロード144で構成される。
このような各チャネルのフレーム110,120,130,140が入力されると、各フレーム110,120,130,140からフレームバイト111,121,131,141が取り出され、新たなフレームバイト151が生成される。ここで、フレームバイト111,121,131,141が取り出された後のフレーム110a,120a,130a,140aが多重化の対象となる。
生成されたフレームバイト151には、多重化されるべきフレーム110a,120a,130a,140aの先頭を示すポインタ情報が設定される。また、このフレームバイト151には、クロック周波数が最高速のチャネルを指定する情報も含まれる。その後、フレーム110a,120a,130a,140aが多重化され、フレームバイト151と合わせて新たなフレーム150が生成される。
フレーム150は、フレームバイト151、オーバヘッド152,153、およびペイロード154で構成される。OC48の各チャネルのフレームバイト111,121,131,141を除いたフレーム110a,120a,130a,140aは、インターリーブ多重化され、フレーム150におけるペイロード154として扱われる。多重化は、たとえばTDM(Time Division Multiplex)方式で行われる。
図8は、多重化対象チャネルの動作速度差をスタッフ挿入によって吸収する場合のフレーム構成例を示す図である。図8には、SONET(SDH)のフレーム構成に本発明を適用した場合の例を示している。なお、図8では、本発明の実施の形態の特徴を分かり易くするために、フレームバイトをオーバヘッドから分けて示しているが、実際にはフレームバイトもオーバヘッドの構成要素の1つである。ここで、入力されるフレーム110,120,130,140の構成は、図7に示した例と同じである。
このような各チャネルのフレーム110,120,130,140が入力されると、各フレーム110,120,130,140からフレームバイト111,121,131,141が取り出され、新たなフレームバイト161が生成される。ここで、フレームバイト111,121,131,141が取り出された後のフレーム110a,120a,130a,140aが多重化の対象となる。
生成されたフレームバイト161には、各チャネルのスタッフの有無、および1フレーム当たりのスタッフビット数が設定される。また、このフレームバイト161には、クロック周波数が最高速のCHを指定する情報も含まれる。その後、フレーム110a,120a,130a,140aが多重化され、フレームバイト161と合わせて新たなフレーム160が生成される。
フレーム160は、フレームバイト161、オーバヘッド162,163、およびペイロード165で構成される。OC48の各チャネルのフレームバイト111,121,131,141を除いたフレーム110a,120a,130a,140aは、インターリーブ多重化され、フレーム160におけるペイロード165として扱われる。ペイロード165には、スタッフビット164aが設定されている。スタッフビット164aのビット数は、各チャネルの1フレーム当たりのスタッフビット数の和である。
以上のようなポインタ方式またはスタッフィング方式は、各々、メリット、デメリットを有している。ポインタ方式は、クライアント信号の位相合わせが不要なため、簡便であるが、多重数が多くなるとポインタを示す情報量が増大する。スタッフィングは、多重化の際、信号の先頭位置を決める必要があるため、充分なメモリが必要となる反面、制御情報は、ポインタ方式と比べて少ない。したがって、多重数に応じて使い分ける機能を付加することで、効率的な伝送が可能となる。
次に、トランスペアレント多重化方式の多重化回路と分離回路との具体的な回路構成例について説明する。
図9は、多重化回路を示すブロック図である。図9の例では、OC48(STM16)の速度の信号が4チャネル(CH#1〜CH#4)分入力されている。
CH#1の信号は、クロック抽出部211、伝送フレーム検出部241およびFIFO281に入力される。CH#2の信号は、クロック抽出部212、伝送フレーム検出部242およびFIFO282に入力される。CH#3の信号は、クロック抽出部213、伝送フレーム検出部243およびFIFO283に入力される。CH#4の信号は、クロック抽出部214、伝送フレーム検出部244およびFIFO284に入力される。
クロック抽出部211は、CH#1の信号からクロック信号を抽出し、クロック周波数f1の信号をカウンタ221と最大クロック(MAXCLK)選択部232とに伝える。クロック抽出部212は、CH#2の信号からクロック信号を抽出し、クロック周波数f2の信号をカウンタ222と最大クロック選択部232とに伝える。クロック抽出部213は、CH#3の信号からクロック信号を抽出し、クロック周波数f3の信号をカウンタ223と最大クロック選択部232とに伝える。クロック抽出部214は、CH#4の信号からクロック信号を抽出し、クロック周波数f4の信号をカウンタ224と最大クロック選択部232とに伝える。
カウンタ221〜224には、ローカル発信機(OSC:OSCillator)220から所定の周波数f0の信号が入力されている。OSC220の周波数f0は、CH#1〜CH#4の周波数の2倍以上が必要である。カウンタ221は、入力された信号の立ち上がり(または立ち下がり)の回数をカウントし、クロック信号数(COUNT#1)を最高速度チャネル(CH)検出部231に対して出力する。カウンタ222は、入力された信号の立ち上がり(または立ち下がり)の回数をカウントし、クロック信号数(COUNT#2)を最高速度CH検出部231に対して出力する。カウンタ223は、入力された信号の立ち上がり(または立ち下がり)の回数をカウントし、クロック信号数(COUNT#3)を最高速度CH検出部231に対して出力する。カウンタ224は、入力された信号の立ち上がり(または立ち下がり)の回数をカウントし、クロック信号数(COUNT#4)を最高速度CH検出部231に対して出力する。
最高速度CH検出部231は、クロック信号数(COUNT#1〜#4)の値の最大値を判定する。最高速度CH検出部231は、クロック信号数が最大値であるチャネルのチャネル(CH)番号を、OH多重化部300に出力する。また、最高速度CH検出部231は、クロック信号数が最大値であるチャネルの選択信号を、最大クロック選択部232と最大(MAX)伝送フレーム検出部251に出力する。
最大クロック選択部232は、最大値のCH選択信号に従って、クロック抽出部211〜214から送られた信号のうちの1つ(最高速度のチャネルの信号)を選択する。そして、最大クロック選択部232は、選択した信号を逓倍部(PLL部)233に対して送信する。
PLL部233は、STM64のクロック信号を生成し、生成したクロック信号を最大(MAX)クロックとしてカウンタ261〜264とFIFO281〜284に対して出力する。
伝送フレーム検出部241は、CH#1の信号を受け取り、CH#1の伝送フレームを検出し、検出した伝送フレームをカウンタ261と最大伝送フレーム検出部251とに対して出力する。伝送フレーム検出部242は、CH#2の信号を受け取り、CH#2の伝送フレームを検出し、検出した伝送フレームをカウンタ262と最大伝送フレーム検出部251とに対して出力する。伝送フレーム検出部243は、CH#3の信号を受け取り、CH#3の伝送フレームを検出し、検出した伝送フレームをカウンタ263と最大伝送フレーム検出部251とに対して出力する。伝送フレーム検出部244は、CH#4の信号を受け取り、CH#4の伝送フレームを検出し、検出した伝送フレームをカウンタ264と最大伝送フレーム検出部251とに対して出力する。
最大伝送フレーム検出部251は、最高速度CH検出部231から送られた選択信号に応じたチャネルの伝送フレームの信号を検出し、差分検出部271〜274に対して出力する。
カウンタ261は、最大クロックに同期して、入力された伝送フレームの信号の数をカウントし、カウントした値(COUNT#5)を差分検出部271に対して出力する。カウンタ262は、最大クロックに同期して、入力された伝送フレームの信号の数をカウントし、カウントした値(COUNT#6)を差分検出部272に対して出力する。カウンタ263は、最大クロックに同期して、入力された伝送フレームの信号の数をカウントし、カウントした値(COUNT#7)を差分検出部273に対して出力する。カウンタ264は、最大クロックに同期して、入力された伝送フレームの信号の数をカウントし、カウントした値(COUNT#8)を差分検出部274に対して出力する。
差分検出部271は、COUNT#5の値と最大伝送フレーム検出部251から送られる信号とに基づいて、CH#1の信号と最高速度CHの信号との差分を検出し、OH多重化部300に対して出力する。差分検出部272は、COUNT#6の値と最大伝送フレーム検出部251から送られる信号とに基づいて、CH#2の信号と最高速度CHの信号との差分を検出し、OH多重化部300に対して出力する。差分検出部273は、COUNT#7の値と最大伝送フレーム検出部251から送られる信号とに基づいて、CH#3の信号と最高速度CHの信号との差分を検出し、OH多重化部300に対して出力する。差分検出部274は、COUNT#8の値と最大伝送フレーム検出部251から送られる信号とに基づいて、CH#4の信号と最高速度CHの信号との差分を検出し、OH多重化部300に対して出力する。
FIFO281には、さらにクロック信号CK1と最大(MAX)クロックとが入力されている。FIFO282は、さらにクロック信号CK2と最大(MAX)クロックとが入力されている。FIFO283には、さらにクロック信号CK3と最大(MAX)クロックとが入力されている。FIFO284には、さらにクロック信号CK4と最大(MAX)クロックとが入力されている。
FIFO281は、クロック信号CK1に合わせて信号を読み込み、最大クロック信号に合わせて信号をOH抽出部291に対して出力する。FIFO282は、クロック信号CK2に合わせて信号を読み込み、最大クロック信号に合わせて信号をOH抽出部292に対して出力する。FIFO283は、クロック信号CK3に合わせて信号を読み込み、最大クロック信号に合わせて信号をOH抽出部293に対して出力する。FIFO284は、クロック信号CK4に合わせて信号を読み込み、最大クロック信号に合わせて信号をOH抽出部294に対して出力する。
OH抽出部291は、最大クロック信号に同期して、入力されたCH#1の信号からオーバヘッド(OH部)を抽出し、OH多重化部300に対して出力する。OH抽出部292は、最大クロック信号に同期して、入力されたCH#2の信号からオーバヘッド(OH部)を抽出し、OH多重化部300に対して出力する。OH抽出部293は、最大クロック信号に同期して、入力されたCH#3の信号からオーバヘッド(OH部)を抽出し、OH多重化部300に対して出力する。OH抽出部294は、最大クロック信号に同期して、入力されたCH#4の信号からオーバヘッド(OH部)を抽出し、OH多重化部300に対して出力する。
OH多重化部300は、OH抽出部291〜294から送られたOH部の多重化を行う。その際、OH多重化部300は、OH部内のフレームバイトの領域には、最高速度のCH番号で示されたチャネルを識別する情報と、最高速度のチャネルと比べたときの他のチャネルの速度の差分(クロックのパルス数)を示す情報とを設定する。そして、OH多重化部300は、多重化されたOHを出力する。
以上のような構成の多重化回路により、入力されたOC48の速度の信号が多重化され出力される。その際、多重化後のOHには、最高速度のチャネルを識別する情報と、そのチャネルと比較したときの他のチャネルの速度の差分を示す情報とが設定される。
図10は、分離回路を示すブロック図である。多重化された信号は、OH分離部400に入力される。OH分離部400は、入力された信号から各チャネルのOHを分離する。そして、OH分離部400は、入力された信号をCK抽出部411に送る。また、OH分離部400は、OH内のフレームバイトに含まれるチャネル毎の差分情報を最大(MAX)CH判定部412に対して出力するとともに、差分演算部431〜434に対して対応するチャネルの差分情報を出力する。CH#1の差分情報は差分演算部431に送られ、CH#2の差分情報は差分演算部432に送られ、CH#3の差分情報は差分演算部433に送られ、CH#4の差分情報は差分演算部434に送られる。さらに、OH分離部400は、チャネル毎のOH部をFIFO451〜454に対して出力する。FIFO451にはCH#1のOH部が出力され、FIFO452にはCH#2のOH部が出力され、FIFO453にはCH#3のOH部が出力され、FIFO454にはCH#4のOH部が出力される。
CK抽出部411は、入力された信号からクロック信号を抽出し、PLL部441〜444とFIFO451〜454とに対して出力する。
最大CH判定部412は、差分情報から速度が最大となるチャネルを判定し、そのチャネルのチャネル番号を差分演算部431〜434に対して出力する。
差分演算部431は、CH#1の信号の差分情報と、速度が最大となるチャネルのチャネル番号とから、そのチャネルからの差分(クロック信号のパルス数)を演算し、PLL部441に対して出力する。差分演算部432は、CH#2の信号の差分情報と、速度が最大となるチャネルのチャネル番号とから、そのチャネルからの差分(クロック信号のパルス数)を演算し、PLL部442に対して出力する。差分演算部433は、CH#3の信号の差分情報と、速度が最大となるチャネルのチャネル番号とから、そのチャネルからの差分(クロック信号のパルス数)を演算し、PLL部443に対して出力する。差分演算部434は、CH#4の信号の差分情報と、速度が最大となるチャネルのチャネル番号とから、そのチャネルからの差分(クロック信号のパルス数)を演算し、PLL部444に対して出力する。
PLL部441は、CK抽出部411から入力されるクロック信号(最高速度のクロック信号)と、差分演算部431から入力される差分とに基づいて、CH#1のクロック周波数f1のクロック信号を生成する。PLL部442は、CK抽出部411から入力されるクロック信号(最高速度のクロック信号)と、差分演算部432から入力される差分とに基づいて、CH#2のクロック周波数f2のクロック信号を生成する。PLL部443は、CK抽出部411から入力されるクロック信号(最高速度のクロック信号)と、差分演算部433から入力される差分とに基づいて、CH#3のクロック周波数f3のクロック信号を生成する。PLL部444は、CK抽出部411から入力されるクロック信号(最高速度のクロック信号)と、差分演算部434から入力される差分とに基づいて、CH#4のクロック周波数f4のクロック信号を生成する。
FIFO451は、PLL部441で生成されたf1のクロック信号を受け取り、OH分離部400で分離されたCH#1のOHを、OC48(STM16)の速度で送出する。FIFO452は、PLL部442で生成されたf2のクロック信号を受け取り、OH分離部400で分離されたCH#2のOHを、OC48(STM16)の速度で送出する。FIFO453は、PLL部443で生成されたf3のクロック信号を受け取り、OH分離部400で分離されたCH#3のOHを、OC48(STM16)の速度で送出する。FIFO454は、PLL部444で生成されたf4のクロック信号を受け取り、OH分離部400で分離されたCH#4のOHを、OC48(STM16)の速度で送出する。
このような分離回路により、多重化されたフレームのOHから各チャネルのOHが分離され、各チャネルのOHが各チャネルに応じたクロック周波数で出力される。
なお、上記の説明では、最高速度のチャネルのチャネル番号を示す情報をフレームバイトに設定するものとしているが、差分が「0」のCHを最高周波数のCHとみなすこともできる。この場合、最高速度のチャネルのチャネル番号を示す情報を多重化後のOHに含める必要がない。
以下に、差分が「0」のCHを最高周波数のCHとみなした場合のトランスペアレント用バイトの内容例について説明する。
図11は、トランスペアレント用バイトの内容例を示す図である。この例は、CH#1〜CH#4間の周波数偏差を3バイトとし(2.4GHzの0.01ppmの周波数偏差に相当)、OC48(STM16)のCH#2の周波数が最も高い(f2が最大値)と仮定する。また、他の各チャネルのクロック周波数を、f1=f2−0.001ppm(2.4GHzの1バイト相当)、f3=f2−0.006ppm(2.4GHzの2バイト相当)、f4=f2−0.009ppm(2.4GHzの2バイト相当)とする。
すると、図9の最高速度CH検出部231でCH#2の周波数が最も高いと判定され、OHのトランスペアレント用バイト510には、それぞれのチャネルの差分値が格納される。CH#1の差分値511は「00001000」である。CH#2の差分値512は「00000000」である。CH#3の差分値513は「00010000」である。CH#4の差分値514は「00100000」である。
このように、CH#2に関しては、全ての値が0であることにより、最高周波数であることが示されている。また、他のチャネルCH#1、CH#3,CH#4の差分値は、CH周波数偏差をビット数で示している。
なお、OC48のとき、A1バイトは、従来技術では48バイトの同じ同期パターンが格納される。同様に、A2バイトは、従来技術では48バイトの同じ同期パターンが格納される。したがって、トランスペアレント用バイト510として48×2−4=92バイトが確保される(同期パターンとして4バイト分利用した場合)。
このようなトランスペアレント用バイトを含むフレームが送信されると、受信側では、まず、CK抽出部411において、CH#2のクロック周波数f2が抽出される。そして、差分演算部431〜434とPLL部441〜444とにより、CH#1のクロック周波数f1=f2−(CH#1の差分値)、CH#3のクロック周波数f3=f2−(CH#3の差分値)、CH#4のクロック周波数f4=f2−(CH#4の差分値)が求められる。
以上のようにしてSONET/SDHにおいて、SOHも含めたトランスペアレント伝送が可能となる。クライアントにとっては、高次のレイアにて多重化しているのにも拘わらず、あたかもクライアントの速度のレイアで光ファイバ通信しているかのような通信形態が既存設備への影響なしに、容易にシステム構築できる。その結果、SOHの未定義ビットを使ってクライアント間の通信を行う場合であっても、SOHの未定義ビットを含めて通信相手に伝送することができる。
しかも、被多重化フレームのオーダワイア情報やセクションデータを多重化してトランスペアレントにより伝送したことにより、保守性が向上する。
なお、上記のトランスペアレント用バイトに、誤り訂正符号を付加することもできる。これにより、信頼性の高い通信を行うことができる。
また、フレームバイト(トランスペアレント用バイトを含む)以外の情報をスクランブル伝送することもできる。これにより、悪意の第三者からの不正行為を防止することができる。
また、上記の技術を用いて、トランスペアレント伝送を経由したマルチフレームの同期化も可能である。
以上説明したように本発明では、複数のチャネルのフレームそれぞれのクロック周波数をフレームバイトに設定するようにしたため、多重化フレームを受信した伝送装置では、フレームバイトを参照して多重化前のフレームのクロック周波数を認識することができる。その結果、分離後のフレームを多重化前と同じクロック周波数で伝送させることができ、対向局間の周波数同期化が可能となる。
上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
Claims (14)
- 複数の伝送信号をトランスペアレントに多重化するためのトランスペアレント多重化方法において、
複数のチャネルから入力される複数のフレームを多重化し、
多重化された多重化フレームのオーバヘッド内のフレームバイトに、複数の前記フレームそれぞれのクロック周波数を定義した制御情報を設定する、
ことを特徴とするトランスペアレント多重化方法。 - 前記フレームバイトの一部にフレーム同期用の信号を残し、他の部分に前記制御信号を設定することを特徴とする請求の範囲第1項記載のトランスペアレント多重化方法。
- 前記フレーム同期用の信号の設定に、少なくとも4バイト分の領域を使用することを特徴とする請求の範囲第2項記載のトランスペアレント多重化方法。
- 前記フレーム同期用の信号を設定する領域は、伝送プロトコルによって区分けされた2つの領域の境界部分であることを特徴とする請求の範囲第2項記載のトランスペアレント多重化方法。
- 前記制御情報には、最も周波数の高い最速チャネルを特定する最速チャネル情報と、前記最速チャネルの周波数と他のチャネルとの周波数差を示す周波数差情報とを含めることを特徴とする請求の範囲第1項記載のトランスペアレント多重化方法。
- 前記最速チャネルに対応付けて、周波数差0を設定することを特徴とする請求の範囲第5項記載のトランスペアレント多重化方法。
- 複数の前記フレームの多重化の際には、最も周波数の高い信号に他の信号を同期させることを特徴とする請求の範囲第1項記載のトランスペアレント多重化方法。
- 前記制御情報に、各前記フレームの先頭を指し示すポインタ情報を含めることを特徴とする請求の範囲第1項記載のトランスペアレント多重化方法。
- 前記制御情報に、各前記フレームに追加するスタッフパルスの数を示すスタッフィング情報を含めることを特徴とする請求の範囲第1項記載のトランスペアレント多重化方法。
- 多重化するチャネル数に応じて、各前記フレームの先頭を指し示すポインタ情報と、各前記フレームに追加するスタッフパルスの数を示すスタッフィング情報との何れかを前記制御情報に含めることを特徴とする請求の範囲第1項記載のトランスペアレント多重化方法。
- 複数の前記フレームの多重化の際には、複数の前記フレームのオーバヘッドを含めて多重化することを特徴とする請求の範囲第1項記載のトランスペアレント多重化方法。
- 複数の伝送信号がトランスペアレントに多重化された多重化フレームを複数のフレームに分離するためのトランスペアレント多重化信号分離方法において、
前記多重化フレームのオーバヘッド内のフレームバイトから、複数の前記フレームそれぞれのクロック周波数を定義した制御情報を抽出し、
前記多重化フレームを複数の前記フレームに分離し、
複数の前記フレームを、それぞれに対応するチャネルに対して、それぞれに対応する前記クロック周波数で出力する、
ことを特徴とするトランスペアレント多重化信号分離方法。 - 複数の伝送信号をトランスペアレントに多重化するトランスペアレント多重化装置において、
複数のチャネルから入力される複数のフレームを多重化する多重化部と、
多重化された多重化フレームのオーバヘッド内のフレームバイトに、複数の前記フレームそれぞれのクロック周波数を定義した制御情報を設定する制御情報設定部と、
を有することを特徴とするトランスペアレント多重化装置。 - 複数の伝送信号がトランスペアレントに多重化された多重化フレームを複数のフレームに分離するトランスペアレント多重化信号分離装置において、
前記多重化フレームのオーバヘッド内のフレームバイトから、複数の前記フレームそれぞれのクロック周波数を定義した制御情報を抽出する制御情報抽出部と、
前記多重化フレームを複数の前記フレームに分離する分離部と、
複数の前記フレームを、それぞれに対応するチャネルに対して、それぞれに対応する前記クロック周波数で出力する出力部と、
を有することを特徴とするトランスペアレント多重化信号分離装置。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2003/004146 WO2004088889A1 (ja) | 2003-03-31 | 2003-03-31 | トランスペアレント多重化方法および装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2004088889A1 JPWO2004088889A1 (ja) | 2006-07-06 |
JP3875251B2 true JP3875251B2 (ja) | 2007-01-31 |
Family
ID=33105368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004570182A Expired - Fee Related JP3875251B2 (ja) | 2003-03-31 | 2003-03-31 | トランスペアレント多重化方法および装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3875251B2 (ja) |
WO (1) | WO2004088889A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5356865B2 (ja) * | 2009-03-04 | 2013-12-04 | 富士通株式会社 | 光伝送装置及び光伝送方法 |
JP5628495B2 (ja) * | 2009-08-14 | 2014-11-19 | 日本電信電話株式会社 | デジタル多重伝送装置 |
JP5408339B2 (ja) * | 2010-03-30 | 2014-02-05 | 富士通株式会社 | 送信装置及び受信装置、並びに送信方法及び受信方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000269912A (ja) * | 1999-03-18 | 2000-09-29 | Fujitsu Ltd | 高速sdh信号による低速sdh信号の伝送方法と伝送装置 |
US7002986B1 (en) * | 1999-07-08 | 2006-02-21 | Nortel Networks Limited | Mapping arbitrary signals into SONET |
JP3529713B2 (ja) * | 1999-09-17 | 2004-05-24 | 日本電信電話株式会社 | 光伝送システム、同期多重伝送システム及び同期多重伝送方法 |
EP1246383A1 (en) * | 2001-03-28 | 2002-10-02 | Lucent Technologies Inc. | Data transmission system |
-
2003
- 2003-03-31 JP JP2004570182A patent/JP3875251B2/ja not_active Expired - Fee Related
- 2003-03-31 WO PCT/JP2003/004146 patent/WO2004088889A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JPWO2004088889A1 (ja) | 2006-07-06 |
WO2004088889A1 (ja) | 2004-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7555008B2 (en) | Method and apparatus for providing a Gigabit Ethernet circuit pack | |
US6522671B1 (en) | Protocol independent sub-rate device | |
CN101006668B (zh) | 用于任意客户机负荷和格式类型的客户机信号的传送的方法和装置 | |
US8135285B2 (en) | Optical transmission system and method | |
US7529487B2 (en) | System and method for transmitting data on return path of a cable television system | |
US20040156325A1 (en) | Optical transmission network with asynchronous mapping and demapping and digital wrapper frame for the same | |
CN114830593B (zh) | 通过分组传送网络传送恒定比特率客户端信号的系统和方法 | |
EP0450269B1 (en) | Phase locked loop arrangement | |
JPH0767099B2 (ja) | デイジタル広帯域信号の伝送方法 | |
US7002968B1 (en) | Transport system and transport method | |
US6714548B2 (en) | Digital clock recovery | |
US8923347B2 (en) | Data transmission involving multiplexing and demultiplexing of embedded clock signals | |
US6240106B1 (en) | Retiming arrangement for SDH data transmission system | |
JP3875251B2 (ja) | トランスペアレント多重化方法および装置 | |
US8160109B2 (en) | Method and system for synchronizing a transceiver and a downstream device in an optical transmission network | |
JP2001053705A (ja) | 伝送装置 | |
US20030235215A1 (en) | Apparatus and method for aggregation and transportation for plesiosynchronous framing oriented data formats | |
JP4941547B2 (ja) | 光伝送装置及び光伝送方法 | |
US7162536B1 (en) | Validation of a connection between arbitrary end-nodes in a communications network | |
Show et al. | Design of DS1 transport device in SDH network | |
JP2008092405A (ja) | 送信装置およびフレーマ回路の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061024 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061025 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |