JP3874544B2 - 色変換装置および色変換方法 - Google Patents

色変換装置および色変換方法 Download PDF

Info

Publication number
JP3874544B2
JP3874544B2 JP19593198A JP19593198A JP3874544B2 JP 3874544 B2 JP3874544 B2 JP 3874544B2 JP 19593198 A JP19593198 A JP 19593198A JP 19593198 A JP19593198 A JP 19593198A JP 3874544 B2 JP3874544 B2 JP 3874544B2
Authority
JP
Japan
Prior art keywords
data
hue
color
calculation
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19593198A
Other languages
English (en)
Other versions
JP2000032283A (ja
JP2000032283A5 (ja
Inventor
まさ子 浅村
周一 香川
喜子 幡野
博明 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19593198A priority Critical patent/JP3874544B2/ja
Priority to US09/349,946 priority patent/US6766049B2/en
Publication of JP2000032283A publication Critical patent/JP2000032283A/ja
Priority to US10/656,268 priority patent/US6904167B2/en
Priority to US10/862,461 priority patent/US7146044B2/en
Publication of JP2000032283A5 publication Critical patent/JP2000032283A5/ja
Application granted granted Critical
Publication of JP3874544B2 publication Critical patent/JP3874544B2/ja
Priority to US12/326,611 priority patent/USRE41199E1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/67Circuits for processing colour signals for matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6016Conversion to subtractive colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6075Corrections to the hue

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Image Communication Systems (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color, Gradation (AREA)
  • Image Processing (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、プリンタやビデオプリンタ、スキャナ等のフルカラー印刷関連機器、コンピュータグラフィックス画像を作成する画像処理機器、あるいはモニタ等の表示装置等に使用するデータ処理に関し、中でも赤/緑/青の3色で表現する画像データを使用機器等に合わせて色変換処理する色変換装置およびその方法に関する。
【0002】
【従来の技術】
印刷における色変換は、インクが純色でないことによる混色性や印画の非線形性で発生する画質劣化を補正し、良好な色再現性を持つ印刷画像を出力するために必須の技術である。また、モニタ等の表示装置においても、入力された色信号を表示する際、使用条件等に合わせ所望の色再現性をもつ画像を出力(表示)するため、色変換処理が行われている。
【0003】
従来、上記のような場合での色変換方式には、テーブル変換方式とマトリックス演算方式の2系統がある。
【0004】
テーブル変換方式は、赤と緑と青(以下、「R、G、B」と記す)で表現した画像データを入力し、ROMなどのメモリに予め記憶しているR、G、Bの画像データあるいはイエローとマゼンタとシアン(以下、「Y、M、C」と記す)の補色データを求める方法であり、任意の変換特性を採用できるため、色再現性に優れた色変換を実行できる長所がある。
【0005】
しかし、画像データの組合せ毎にデータを記憶させる単純な構成では、約400Mbitの大容量メモリになる。例えば、特願昭62−60520号公報には、メモリ容量の圧縮方法を開示しているが、それでも約5Mbitになる。したがって、この方式には、変換特性毎に大容量メモリを必要とするため、LSI化が困難な課題と、使用等の条件変更に柔軟に対応できないと言う課題がある。
【0006】
一方、マトリックス演算方式は、例えばR、G、Bの画像データよりY、M、Cの印刷データを求める場合は、下記の(42)式が基本演算式である。
【0007】
【数1】
Figure 0003874544
【0008】
ここで、i=1〜3、j=1〜3である。
【0009】
しかし、上記(42)式の単純な線形演算では、印画等の非線形性により良好な変換特性を実現できない。
【0010】
上記の変換特性を改良した方法が、特公平2−30226号公報の色補正演算装置に開示されており、下記(43)式のマトリックス演算式を採用している。
【0011】
【数2】
Figure 0003874544
【0012】
ここで、Nは定数、i=1〜3、j=1〜10である。
【0013】
上記(43)式は、無彩色成分と色成分が混在する画像データを直接使用するため、演算の相互干渉が発生する。つまり、係数を1つ変更すると、着目している成分または色相以外にも影響を与え、良好な変換特性を実現できないという課題がある。
【0014】
また、特開平5−260943号公報の色変換装置は、この解決策を開示している。図39は、特開平5−260943号公報におけるR、G、B画像データを印刷データC、M、Yに変換する色変換装置を示すブロック回路図であり、100は補数器、101はαβ算出器、102は色相データ算出器、103は多項式演算器、104はマトリックス演算器、105は係数発生器、106は合成器である。
【0015】
次に、動作を説明する。補数器100は、画像データR、G、Bを入力とし、1の補数処理した補色データCi、Mi、Yiを出力する。αβ算出器101は、この補色データの最大値βと最小値αおよび各データを特定する識別符号Sを出力する。
【0016】
色相データ算出器102は、補色データCi、Mi、Yiと最大値βと最小値αを入力とし、r=β−Ci、g=β−Mi、b=β−Yiおよびy=Yi−α、m=Mi−α、c=Ci−αの減算処理によって、6つの色相データr、g、b、y、m、cを出力する。ここで、これら6つの色相データは、この中の少なくとも2つがゼロになる性質がある。
【0017】
多項式演算器103は、色相データと識別符号Sを入力とし、r、g、b中でゼロでない2つのデータQ1、Q2と、y、m、c中でゼロでない2つのデータP1、P2を選択し、それらから多項式データT1=P1×P2、T3=Q1×Q2及びT2=T1/(P1+P2)、T4=T3/(Q1+Q2)を演算し、出力する。
【0018】
係数発生器105は、識別符号Sの情報をもとに、多項式データの演算係数U(Fij)と固定係数U(Eij)を発生する。マトリックス演算器104は、色相データy、m、cと多項式データT1〜T4および係数Uを入力とし、下記の(44)式の演算結果を色インクデータC1、M1、Y1として出力する。
【0019】
【数3】
Figure 0003874544
【0020】
合成器106は、色インクデータC1、M1、Y1と無彩色データであるαを加算し、印刷データC、M、Yを出力する。したがって、印刷データを求める演算式は、(45)式となる。
【0021】
【数4】
Figure 0003874544
【0022】
なお、(45)式では、画素集合に対する一般式を開示している。
【0023】
ここで、図40(A)〜(F)は、赤(R)、青(G)、緑(B)、イエロー(Y)、シアン(C)、マゼンタ(M)の6つの色相と色相データy、m、c、r、g、bの関係を模式的に示した図であり、各色相データは、3つの色相に関与している。また、図41(A)〜(F)は、上記6つの色相と乗算項m×y、r×g、y×c、g×b、c×m、b×rの関係を模式的に示した図であり、それぞれ6つの色相のうち特定の色相に関与していることが分かる。
【0024】
したがって、(45)式における6つの乗算項m×y、c×m、y×c、r×g、g×b、b×rは、それぞれ赤、青、緑、イエロー、シアン、マゼンタの6つの色相のうち特定の色相にのみ関与し、つまり、赤に対してはm×y、青に対してはc×m、緑に対してはy×c、イエローに対してはr×g、シアンに対してはg×b、マゼンタに対してはb×rのみが有効な乗算項となる。
【0025】
また、(45)式における6つの乗除算項m×y/(m+y)、c×m/(c+m)、y×c/(y+c)、r×g/(r+g)、g×b/(g+b)、b×r/(b+r)についても、それぞれ6つの色相のうち、特定の色相にのみ関与することとなる。
【0026】
以上より、上述の図39における色変換装置によると、特定の色相に関与する乗算項および乗除算項に係る係数を変化させることにより、着目している色相のみを、他の色相に影響を与えることなく、調整できる。
【0027】
また、上記の乗算項は、彩度に対して2次的な演算となり、乗除算項は、彩度に対して1次的な演算となる。したがって、乗算項と乗除算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。
【0028】
但し、この色変換法においても、色相に対する印画の非線形性は、未解決のままである。また、好みに応じて、特定の色相の色空間に占める領域の拡大または縮小が望まれる場合、具体的には、マゼンタ〜赤〜イエローと変化する色空間において、赤の占める領域の拡大または縮小が望まれるような場合には、従来のマトリックス演算型色変換方法は、この要求を満たすことが出来ない。
【0029】
【発明が解決しようとする課題】
従来の色変換装置または色変換方法は、ROMなどのメモリによるテーブル変換方式で構成されている場合は、大容量メモリが必要になり、変換特性を柔軟に変更することができない問題点があり、また、マトリックス演算方式で構成される場合は、着目する色相のみを調整できるが、赤、青、緑、イエロー、シアン、マゼンタの6つ色相間の変化の度合いを補正できないため、全色空間において良好な変換特性を実現できない問題点があった。
【0030】
この発明は上記のような問題点を解消するためになされたもので、赤、青、緑、イエロー、シアン、マゼンタの6つの色相に加え、更に6つの色相間の変化の度合いをも補正でき、また変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることを目的とする。
【0031】
【課題を解決するための手段】
本発明に係る色変換装置は、カラー画像を表す第1の色データを、当該第1の色データに対応する第2の色データに変換する色変換装置であって、
上記第1の色データにより表されるカラー画像を構成する複数の色成分の大きさを表す色相データを求める色相データ算出手段と、
上記色相データを用いて上記カラー画像における、赤、イエロー、緑、シアン、青、マゼンタのいずれかの色相に有効な第1の演算項を生成する手段と、
上記色相データを用いて、赤、イエロー、緑、シアン、青、マゼンタの隣接する色相間内の領域に有効な第2の演算項を生成する手段と、
上記第1および第2の演算項に与えられる所定のマトリクス係数を出力するマトリクス係数発生手段と、
上記第1および第2の演算項と、上記マトリクス係数との乗算を含むマトリクス演算により上記第2の色データを求めるマトリクス演算手段とを備え、
上記第2の演算項を生成する手段は、上記色相間内の領域における色の彩度に対して1次の関数となる演算項、および当該彩度に対して2次の関数となる演算項を上記第2の演算項として生成するものである。
【0032】
本発明に係る色変換方法は、カラー画像を表す第1の色データを、当該第1の色データに対応する第2の色データに変換する色変換方法であって、
上記第1の色データにより表されるカラー画像を構成する複数の色成分の大きさを表す色相データを求める工程と、
上記色相データを用いて上記カラー画像における、赤、イエロー、緑、シアン、青、マゼンタのいずれかの色相に有効な第1の演算項を生成する工程と、
上記色相データを用いて、赤、イエロー、緑、シアン、青、マゼンタの隣接する色相間内の領域に有効な第2の演算項を生成する工程と、
上記第1および第2の演算項に与えられる所定のマトリクス係数を出力する工程と、
上記第1および第2の演算項と、上記マトリクス係数との乗算を含むマトリクス演算により上記第2の色データを求める工程とを備え、
上記第2の演算項は、上記色相間内の領域における色の彩度に対して1次の関数となる演算項、および当該彩度に対して2次の関数となる演算項からなるものである。
【0033】
【発明の実施の形態】
以下、この発明をその実施の形態を示す図面に基づいて具体的に説明する。
実施の形態1.
図1はこの発明の実施の形態1による色変換装置の構成の一例を示すブロック図である。図において、R、G、Bは各画素ごとの画像情報である画像データであり、1は入力された画像データR、G、Bの最大値βと最小値αを算出し、各データを特定する識別符号を生成して出力するαβ算出器、2は画像データR、G、Bと上記αβ算出器1からの出力より色相データr、g、b、y、m、cを算出する色相データ算出器、3は多項式演算器、4はマトリックス演算器、5は係数発生器、6は合成器である。
【0034】
また、図2は、上記多項式演算器3の一構成例を示すブロック図である。図において、11は入力された色相データのうちゼロとなるデータを除去するゼロ除去器、12a、12bは乗算器、13a、13bは加算器、14a、14bは除算器、15は上記αβ算出器1からの識別符号に基づき、演算係数を発生し出力する演算係数発生器、16a、16bは上記演算係数発生器15からの出力が示す演算係数と入力データとの乗算を行う演算器、17、18は入力されたデータの最小値を選択し出力する最小値選択器、19は乗算器である。
【0035】
次に動作について説明する。入力された画像データR、G、B(Ri、Gi、Bi)はαβ算出器1および色相データ算出器2へと送られ、αβ算出器1は、入力画像データRi、Gi、Biの最大値βと最小値αを算出して出力するとともに、各データを特定する識別符号S1を生成し出力する。色相データ算出器2は、画像データRi、Gi、Biと上記αβ算出器1からの出力である最大値βと最小値αを入力とし、r=Ri−α、g=Gi−α、b=Bi−αおよびy=β−Bi、m=β−Gi、c=β−Riの減算処理を行い、6つの色相データr、g、b、y、m、cを出力する。
【0036】
このとき、上記αβ算出器1において算出される最大値β、最小値αは、β=MAX(Ri、Gi、Bi)、α=MIN(Ri、Gi、Bi)であり、色相データ算出器2において算出される6つの色相データr、g、b、y、m、cは、r=Ri−α、g=Gi−α、b=Bi−αおよびy=β−Bi、m=β−Gi、c=β−Riの減算処理によって得られているので、これら6つの色相データは、この中の少なくとも2つがゼロになる性質がある。例えば、最大値βがRi、最小値αがGiである場合(β=Ri、α=Gi)は、上記の減算処理よりg=0およびc=0となり、また、最大値βがRi、最小値αがBiである場合(β=Ri、α=Bi)は、b=0およびc=0となる。すなわち、最大、最小となるRi、Gi、Biの組み合わせにより、r、g、bの中で1つ、y、m、cの中で1つの合計2つの値がゼロとなることになる。
【0037】
したがって、上記αβ算出器1においては、6つの色相データのうちゼロとなるデータを特定する識別符号S1を生成し出力する。この識別符号S1は、最大値βと最小値αがRi、Gi、Biのうちどれであるかにより、データを特定する6種類の識別符号S1を生成することができ、図3は識別符号S1とRi、Gi、Biにおける最大値βと最小値αおよびゼロとなる色相データの関係を示す図である。なお、図中の識別符号S1の値はその一例を示すものであり、この限りではなく、他の値であってもよい。
【0038】
次に、色相データ算出器2からの出力である6つの色相データr、g、bおよびy、m、cは多項式演算手段3へと送られ、また、r、g、bについてはマトリックス演算器4へも送られる。多項式演算器3には上記αβ算出器1から出力される識別符号S1も入力されており、r、g、b中でゼロでない2つのデータQ1、Q2と、y、m、c中でゼロでない2つのデータP1、P2を選択して演算を行うのであるが、この動作を図2に従って説明する。
【0039】
多項式演算器3において、色相データ算出器2からの色相データとαβ算出器からの識別符号S1はゼロ除去器11へと入力され、ゼロ除去器11では、識別符号S1に基づき、r、g、b中でゼロでない2つのデータQ1、Q2とy、m、c中でゼロでない2つのデータP1、P2を出力する。ここで、上記ゼロ除去器11から出力されるデータQ1、Q2、P1、P2は、ゼロとなるデータを除く色相データから、Q1≧Q2、P1≧P2としてデータQ1、Q2、P1、P2が出力される。すなわち、図4に示すように、Q1、Q2、P1、P2を決定し、出力とする。例えば図3、4から、識別符号S1=0となる場合、r、bからQ1、Q2が、y、mからP1、P2が得られるのであるが、このとき、最大値β=Ri、最小値α=Giであるので、r(=β−α)≧b(=Bi−α)、m(=β−α)≧y(=β−Bi)となり、Q1=r、Q2=b、P1=m、P2=yとして出力する。なお、上記図3と同様、図4中の識別符号S1の値はその一例を示すものであり、この限りではなく、他の値であってもよい。
【0040】
そして、乗算器12aへは上記ゼロ除去器11からの出力データQ1、Q2が入力され、積T3=Q1×Q2を算出して出力し、乗算器12bへは上記ゼロ除去器11からの出力データP1、P2が入力され、T1=P1×P2を算出し出力する。加算器13aと13bは、それぞれ和Q1+Q2とP1+P2を出力する。除算器14aは上記乗算器12aからのT3と加算器13aからのQ1+Q2が入力され、T4=T3/(Q1+Q2)の商を出力し、除算器14bは上記乗算器12bからのT1と加算器13bからのP1+P2が入力され、T2=T1/(P1+P2)の商を出力する。
【0041】
演算係数発生器15には上記αβ算出手段1からの識別符号S1が入力され、演算器16a、16bにおいてデータQ2およびP2に対し乗算を行うための演算係数aq、apを示す信号を識別符号S1に基づき発生し、演算器16aへ演算係数aqを、演算器16bへは演算係数apを出力する。なお、この演算係数aq、apはそれぞれの色相データQ2およびP2に対応した係数が識別符号S1に応じて発生されることとなり、図4から識別符号S1に対しそれぞれ6種類の演算係数aq、apが発生される。演算器16aでは上記ゼロ除去器11からのデータQ2が入力され、演算係数発生器15からの演算係数aqとデータQ2による乗算aq×Q2を行い、その出力を最小値選択器17へ送り、演算器16bでは上記ゼロ除去器11からのデータP2が入力され、演算係数発生器15からの演算係数apとデータP2による乗算ap×P2を行い、その出力を最小値選択器17へ送る。
【0042】
最小値選択器17では、演算器16aおよび16bからの出力の最小値t6=min(aq×Q2、ap×P2)を選択し、最小値選択器18および乗算器19へと出力する。最小値選択器18にはゼロ除去器11からの出力データQ1も入力されており、Q1とt6=min(aq×Q2,ap×P2)の最小値T5=min(Q1,min(aq×Q2,ap×P2))を出力する。また、乗算器19にはゼロ除去器11からの出力データQ1も入力されており、Q1とt6=min(aq×Q2,ap×P2)の乗算Q1×t6を行い、積T6=Q1×min(aq×Q2,ap×P2)を出力する。以上、上述した多項式データT1、T2、T3、T4、T5、T6が、多項式演算器3の出力である。そして、この多項式演算器3の出力はマトリックス演算器4へと送られる。
【0043】
一方、図1の係数発生器5は、識別符号S1に基づき多項式データの演算係数U(Fij)と固定係数U(Eij)を発生し、マトリックス演算器4へと送る。 マトリックス演算器4は、上記色相データ算出器2からの色相データr、g、bと多項式演算器3からの多項式データT1〜T6、係数発生器5からの係数Uを入力とし、下記の(34)式の演算結果を画像データR1、G1、B1として出力する。
【0044】
【数5】
Figure 0003874544
【0045】
なお、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜6である。
【0046】
ここで、図5は、上記マトリックス演算器4における部分的な一構成例を示すブロック図であり、R1を演算し出力する場合について示している。図において、20a〜20gは乗算器、21a〜21fは加算器である。
【0047】
次に、図5の動作を説明する。乗算器20a〜20gは、色相データrと多項式演算器3からの多項式データT1〜T6と係数発生器5からの係数U(Eij)およびU(Fij)を入力とし、それぞれの積を出力する。加算器21a、21bは、各乗算器20b〜20eの出力である積を入力とし、入力データを加算し、その和を出力する。加算器21cは、乗算器20f、20gの出力である積を入力として入力データを加算し、その和を出力する。加算器21dは加算器21a、21bからのデータを加算し、加算器21eは加算器21d、21cからの出力を加算する。そして、加算器21fは加算器21eの出力と乗算器20aの出力を加算して、総和を画像データR1として出力する。なお、図5の構成例において、色相データrをgまたはbに置換すれば、画像データG1、B1を演算できる。
【0048】
蛇足であるが、係数(Eij)と(Fij)は、それぞれの色相データr、g、bに対応した係数が使用される。つまり、図5の構成をr、g、bに対し並列に3つ使用すれば、高速なマトリックス演算が可能になる。
【0049】
合成器6は、上記マトリックス演算器4からの画像データR1、G1、B1と上記αβ算出器1からの出力である無彩色データを示す最小値αが入力され、加算を行い、画像データR、G、Bを出力する。
よって、上記図1の色変換装置により色変換された画像データR、G、Bを求める演算式は、下記(1)式となる。
【0050】
【数6】
Figure 0003874544
【0051】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24であり、hry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)であり、aq1〜aq6およびap1〜ap6は上記図2における演算係数発生器15において発生される演算係数である。
【0052】
なお、(1)式の演算項と図1における演算項の数の違いは、図1における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(1)式は画素集合に対する一般式を開示している点にある。すなわち、6つの色相データには、図3において説明したように、少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(1)式における24個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(r,hrm)、r×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(1)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。
【0053】
また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0054】
図6(A)〜(F)は、6つの色相と色相データy、m、c、r、g、bの関係を模式的に示したものであり、各色相データはそれぞれ3つの色相に関与している。
【0055】
図7(A)〜(F)は、6つの色相と乗算項m×y、r×g、y×c、g×b、c×m、b×rの関係を模式的に示したものであり、各乗算項が特定の色相に関与している2次項であることが分かる。例えば、Wを定数として、赤に対してはr=W、g=b=0なので、y=m=W、c=0となる。したがって、y×m=W×Wとなり、他の5項は全てゼロになる。つまり、赤に対しては、m×yのみが有効な2次項になる。同様に、緑にはy×c、青にはc×m、シアンにはg×b、マゼンタにはb×r、イエローにはr×gだけが有効な2次項となる。
【0056】
上記(1)式と(34)式は、各色相の1つだけに有効な1次の乗除算項を含んでいる。この乗除算項は、r×g/(r+g)、g×b/(g+b)、b×r/(b+r)、m×y/(m+y)、c×m/(c+m)、y×c/(y+c)の6つであり、1次項の性質を持つ。例えば、Wを定数として、赤に対してはr=W、g=b=0なので、y=m=W、c=0となり、このとき、m×y/(m+y)=W/2であり、他の5項は全てゼロになる。したがって、赤に対しては、m×y/(m+y)のみが有効な1次項になる。同様に、緑にはy×c/(y+c)、青にはc×m/(c+m)、シアンにはg×b/(g+b)、マゼンタにはb×r/(b+r)、イエローにはr×g/(r+g)だけが有効な1次項となる。ここで、分子、分母がゼロの場合は、1次項をゼロとするものとする。
【0057】
次に、1次項と2次項の違いについて説明する。上述のように、赤に対しては、Wを定数とすると、m×y=W×Wとなり、他の乗算項は全てゼロになる。ここで、定数Wは、色相信号yとmの大きさを表すので、定数Wの大きさは、画素における色の鮮やかさ、彩度に依存する。m×y=W×Wであるので、乗算項m×yは、彩度に対して2次の関数となる。他の乗算項も、それらが有効となる色相において、それぞれ彩度に関して2次の関数となる。したがって、各乗算項が色再現に与える影響は、彩度の増加に従って、2次的に増加する。すなわち、乗算項は、色再現において彩度に対する2次補正項の役割を果たす2次項となる。
【0058】
一方、赤に対して、Wを定数とすると、m×y/(m+y)=W/2となり、他の乗除算項は全てゼロになる。ここで、定数Wの大きさは、画素における色の鮮やかさ、彩度に依存する。m×y/(m+y)=W/2であるので、乗除算項m×y/(m+y)は、彩度に対して1次の関数となる。他の乗除算項も、それらが有効となる色相において、それぞれ彩度に関して1次の関数となる。したがって、各乗除算項が色再現に与える影響は、彩度に関して1次の関数となる。すなわち、乗除算項は、色再現において、彩度に対する1次補正項の役割を果たす1次項となる。
【0059】
次に、図8(A)〜(F)は、6つの色相と比較データを用いた演算項min(r,hry)、min(g,hgy)、min(g,hgc)、min(b,hbc)、min(b,hbm)、min(r,hrm)の関係を模式的に示したものであり、上記(1)式および(34)式でのhry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)における演算係数aq1〜aq6およびap1〜ap6の値を1とした場合について示している。図8のそれぞれより、各比較データを用いた演算項が赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の中間領域の変化に関与していることが分かる。つまり、例えば赤〜イエローの中間点に対しては、Wを定数として、r=W、g=W/2、b=0なので、y=W、m=W/2、c=0であり、したがって、min(r,hry)=min(r,min(g、m))=W/2となり、他の5項は全てゼロになる。よって、赤〜イエローにはmin(r,hry)=min(r,min(g、m))のみが有効な1次演算項となり、同様に、イエロー〜緑にはmin(g、hgy)、緑〜シアンにはmin(g、hgc)、シアン〜青にはmin(b、hbc)、青〜マゼンタにはmin(b、hbm)、マゼンタ〜赤にはmin(r、hrm)だけが有効な1次演算項となる。
【0060】
また、図9(A)〜(F)は上記(1)式および(34)式でのhry、hrm、hgy、hgc、hbm、hbcにおける演算係数aq1〜aq6およびap1〜ap6を変化させた場合の6つの色相と比較データを用いた1次演算項の関係を模式的に示したものであり、図中の破線a1〜a6で示す場合は、例えばaq1〜aq6をap1〜ap6より大きい値とした場合の特性を示し、破線b1〜b6で示す場合は、例えばap1〜ap6をaq1〜aq6より大きい値とした場合の特性を示している。
【0061】
すなわち、赤〜イエローに対してはmin(r,hry)=min(r, min(aq1×g、ap1×m))のみが有効な1次演算項であるが、例えばaq1とap1の比を2:1とすると、図9(A)での破線a1のように、ピーク値が赤よりに関与する演算項となり、赤〜イエローの色相間における赤に近い領域に有効な演算項とすることができる。一方、例えばaq1とap1の比を1:2とすると、図9(A)での破線b1のような関係となり、ピーク値がイエローよりに関与する演算項となり、赤〜イエローの色相間におけるイエローに近い領域に有効な演算項とすることができる。同様に、イエロー〜緑にはmin(g、hgy)におけるaq3、ap3を、緑〜シアンにはmin(g、hgc)におけるaq4、ap4を、シアン〜青にはmin(b、hbc)におけるaq6、ap6を、青〜マゼンタにはmin(b、hbm)におけるaq5、ap5を、マゼンタ〜赤にはmin(r、hrm)におけるaq2、ap2を変化させることにより、それぞれの色相間の領域においても、その有効となる領域を変化させることができる。
【0062】
図10(A)〜(F)は、6つの色相と上記比較データと色相データを用いた乗算項である2次演算項r×hry、g×hgy、g×hgc、b×hbc、b×hbm、r×hrmの関係を模式的に示したものである。なお、図中の破線c1〜c6およびd1〜d6で示す場合は、hry、hrm、hgy、hgc、hbm、hbcにおける演算係数aq1〜aq6およびap1〜ap6を変化させた場合の特性を示しており、実線は演算係数aq1〜aq6およびap1〜ap6の値を1とした場合について示している。図10のそれぞれより、各比較データを用いた2次演算項が赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の中間領域の変化に関与していることが分かる。つまり、例えば赤〜イエローの中間点に対しては、Wを定数として、r=W、g=W/2、b=0なので、y=W、m=W/2、c=0であり、r×hry=r×min(g、m)=W×W/2となり、他の5項は全てゼロになる。よって、赤〜イエローにはr×hryのみが有効な2次演算項になり、同様に、イエロー〜緑にはg×hgy、緑〜シアンにはg×hgc、シアン〜青にb×hbc、青〜マゼンタにはb×hbm、マゼンタ〜赤にはr×hrmだけが有効な2次演算項となる。
【0063】
次に、比較データによる演算項においての1次項と2次項の違いについて説明する。上述のように、赤〜イエローの中間点に対しては、例えばWを定数として、r×hry=W×W/2となり、他の乗算項は全てゼロになる。そして、min(r、hry)=W/2となり、他の項は全てゼロになる。ここで、定数Wは、色相信号の大きさを表すので、定数Wの大きさは、画素における色の鮮やかさ、彩度に依存し、乗算項r×hryは、彩度に対して2次の関数となる。他の乗算項も、それらが有効となる色相間の領域において、それぞれ彩度に関して2次の関数となる。したがって、各乗算項が色再現に与える影響は、彩度の増加に従って、2次的に増加する。すなわち、乗算項は、色再現において、彩度に対する2次補正項の役割を果たす2次項となる。
【0064】
一方、1次項min(r、hry)は、1次項min(r、hry)=W/2なので、彩度に対して1次の関数となる。他の項も、それらが有効となる色相間の領域において、それぞれ彩度に関して1次の関数となる。したがって、各比較データによる1次項が色再現に与える影響は、彩度に関して1次の関数となる。すなわち、各比較データによる1次項は、色再現において、彩度に対する1次補正項の役割を果たす1次項となる。
【0065】
図11(a)および(b)は、6つの色相および色相間領域と有効な演算項の関係を示している。よって、係数発生器5において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算器3における演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0066】
ここで、上記図1による実施の形態1での係数発生器5での係数の一例を述べる。下記(33)式は、上記係数発生器5において発生する係数U(Eij)の一例を示している。
【0067】
【数7】
Figure 0003874544
【0068】
上記の場合で係数U(Fij)の係数を全てゼロとすると、色変換を実施しない場合となる。そして、係数U(Fij)の係数において、各乗算項と乗除算項、比較データによる1次項、2次項に係わる係数のうち、変化させたい色相または色相間の領域に関する演算項に係わる係数を定め、他の係数をゼロとすれば、その色相または色相間の領域のみの調整を行える。例えば、赤に関する1次演算項m×y/(m+y)に係わる係数を設定すれば、赤の色相を変化させ、赤〜イエローの色相間の割合を変化させるには1次項min(r、hry)に係わる係数および2次項r×hryに係わる係数を用いることとなる。
【0069】
また、多項式演算器3において、hry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)における演算係数aq1〜aq6およびap1〜ap6の値を1、2、4、8、…の整数値で変化させれば、演算器16aおよび16bにおいてビットシフトにより乗算を行うことができる。
【0070】
以上より、特定の色相、色相間領域に関与する演算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。また、上記の乗算項および比較データによる2次項は、彩度に対して2次的な演算となり、乗除算項および比較データによる1次項は、彩度に対して1次的な演算となり、したがって、1次項と2次項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態1では入力画像データR、G、Bに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0071】
なお、上記実施の形態1では、入力画像データR、G、Bをもとに色相データr、g、bおよびy、m、cと最大値β、最小値αを算出して各色相に係わる演算項を得て、マトリックス演算後、画像データR、G、Bを得る場合として説明したが、上記出力画像データR、G、Bを得た後、R、G、Bを補色データC、M、Yに変換してもよく、上記と同様の効果を奏する。
【0072】
また、上記実施の形態1では、ハードウェアにより図1の構成の処理を行う場合について説明しているが、色変換装置におけるソフトウェアにより同様の処理を行うことができることは言うまでもなく、上記実施の形態1と同様の効果を奏する。
【0073】
実施の形態2.
実施の形態1では、入力画像データR、G、Bをもとに色相データr、g、bおよびy、m、cと最大値β、最小値αを算出して各色相に係わる演算項を得て、マトリックス演算後、画像データR、G、Bを得る場合として説明したが、画像データR、G、Bを画像情報の一例である補色データC、M、Yに変換後、入力を補色データC、M、Yとして色変換を行うように構成することもできる。
【0074】
図12はこの発明の実施形態2による色変換装置の構成の一例を示すブロック図である。図において、補色データCi、Mi、Yiが画像情報の一例であり、3〜6は上記実施の形態1の図1におけるものと同一のものであり、10は補数器、1bは補色データの最大値βと最小値αおよび色相データを特定するための識別符号を生成するαβ算出器、2bは上記補数器10から補色データC、M、Yとαβ算出器1からの出力より色相データr、g、b、y、m、cを算出する色相データ算出器である。
【0075】
次に、動作を説明する。補数器10は、画像データR、G、Bを入力とし、1の補数処理した補色データCi、Mi、Yiを出力する。αβ算出器1bでは、この補色データの最大値βと最小値αおよび各色相データを特定するための識別符号S1を出力する。
【0076】
色相データ算出器2bは、補色データCi、Mi、Yiと上記αβ算出器1bからの最大値βと最小値αを入力とし、r=β−Ci、g=β−Mi、b=β−Yiおよびy=Yi−α、m=Mi−α、c=Ci−αの減算処理によって、6つの色相データr、g、b、y、m、cを出力する。ここで、これら6つの色相データは、この中の少なくとも2つがゼロになる性質があり、上記αβ算出器1bから出力される識別符号S1は、6つの色相データのうちゼロとなるデータを特定するものであり、最大値βと最小値αがCi、Mi、Yiのうちどれであるかにより、データを特定する6種類の識別符号となる。この6つの色相データのうちゼロとなるデータと識別符号との関係は上記実施の形態1での説明と同様であるので、その詳細な説明は省略する。
【0077】
次に、色相データ算出器2bからの出力である6つの色相データr、g、bおよびy、m、cは多項式演算手段3へと送られ、また、c、m、yについてはマトリックス演算器4へも送られる。多項式演算器3には上記αβ算出器1bから出力される識別符号S1も入力されており、r、g、b中でゼロでない2つのデータQ1、Q2と、y、m、c中でゼロでない2つのデータP1、P2を選択して演算を行うのであるが、この動作は上記実施の形態1における図2の動作と同一であるので、その詳細な説明は省略する。
【0078】
そして、この多項式演算器3の出力はマトリックス演算器4へと送られ、係数発生器5は、識別符号S1に基づき多項式データの演算係数U(Fij)と固定係数U(Eij)を発生し、マトリックス演算器4へと送る。マトリックス演算器4は、上記色相データ算出器2bからの色相データc、m、yと多項式演算器3からの多項式データT1〜T6、係数発生器5からの係数Uを入力とし、下記(35)の演算結果を画像データC1、M1、Y1として出力する。
【0079】
【数8】
Figure 0003874544
【0080】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜6である。
【0081】
なお、マトリックス演算器4における動作は、上記実施の形態1における図5において、入力される色相データをc(またはm、y)とし、C1(またはM1、Y1)を演算し出力する場合であり、同様の動作を行うので、その詳細な説明は省略する。
【0082】
合成器6は、上記マトリックス演算器4からの補色データC1、M1、Y1と上記αβ算出器1bからの出力である無彩色データを示す最小値αが入力され、加算を行い、画像データC、M、Yを出力する。よって、上記図12の色変換装置により色変換された画像データC、M、Yを求める演算式は、下記の(2)式となる。
【0083】
【数9】
Figure 0003874544
【0084】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24であり、hry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)であり、aq1〜aq6およびap1〜ap6は上記図2における演算係数発生器15において発生される演算係数である。
【0085】
なお、上記(2)式の演算項と図12における演算項の数の違いは、図12における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(2)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態1の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(2)式における24個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(r,hrm)、r×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(2)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。
【0086】
また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0087】
そして、上記(2)式の多項式演算器による演算項は、実施の形態1における(1)式の演算項と同一であり、したがって、6つの色相および色相間領域と有効な演算項の関係は図11(a)および(b)に示す場合と同一となる。よって、実施の形態1と同様、係数発生器5において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算器3における演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0088】
ここで、上記実施の形態2での係数発生器5での係数の一例としては、上記実施の形態1の場合と同様、式(33)による係数U(Eij)とし、係数U(Fij)の係数を全てゼロとすると、色変換を実施しない場合となる。そして、係数U(Fij)の係数において、乗算項と乗除算項、比較データによる演算項に係わる係数により補正を行うことで、演算項が係わる色相または色相間の領域の調整を行え、変化させたい色相または色相間の領域に関する演算項に係わる係数を定め、他の係数をゼロとすれば、その色相または色相間の領域のみの調整を行える。
【0089】
以上より、特定の色相に関与する乗算項および乗除算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、色相データの比較データを用いた1次項および2次項に係る係数を変化させることにより、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。また、上記の乗算項、比較データによる2次項は、彩度に対して2次的な演算となり、乗除算項、比較データによる1次項は、彩度に対して1次的な演算となり、したがって、各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態2では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0090】
なお、上記実施の形態2では、ハードウェアにより図12の構成の処理を行う場合について説明しているが、色変換装置におけるソフトウェアにより同様の処理を行うことができることは言うまでもなく、上記実施の形態2と同様の効果を奏する。
【0091】
実施の形態3.
実施の形態1ではマトリックス演算器4における部分的な一構成例を図5に示すブロック図であるとし、(1)式に示すように、色相データと各演算項および無彩色データであるR、G、Bの最小値αを加算して画像データR、G、Bを出力するよう構成したが、図13に示すように、係数発生器において無彩色データである最小値αに対する係数を発生することにより、無彩色成分を調整するよう構成することもできる。
【0092】
図13はこの発明の実施の形態3による色変換装置の構成の一例を示すブロック図である。図において、1〜3は上記実施の形態1の図1におけるものと同一のものであり、4bはマトリックス演算器、5bは係数発生器である。
【0093】
次に動作を説明する。入力データよりαβ算出器1より最大値β、最小値αおよび識別符号S1を求め、色相データ算出器2により6つの色相データを算出し、多項式演算器3において演算項を求める動作は上記実施の形態1と同一であるのでその詳細な説明は省略する。
【0094】
図13の係数発生器5bは、識別符号S1に基づき多項式データの演算係数U(Fij)と固定係数U(Eij)を発生し、マトリックス演算器4bへと送る。マトリックス演算器4bは、上記色相データ算出器2からの色相データr、g、bと多項式演算器3からの多項式データT1〜T6、αβ算出器1からの最小値αおよび係数発生器5bからの係数Uを入力とし、演算を行うのであるが、その演算式は下記の(36)式を使用し、無彩色成分を調整する。
【0095】
【数10】
Figure 0003874544
【0096】
なお、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜7である。
【0097】
ここで、図14はマトリックス演算器4bの部分的な構成例を示すブロック図であり、図14において、20a〜20g、21a〜21fは上記実施の形態1でのマトリックス演算器4と同一のものであり、22はαβ算出器1からの無彩色成分を示す最小値αと係数発生器5bからの係数Uを入力とし、その乗算を行う乗算器、23は加算器である。
【0098】
次に、図14の動作を説明する。乗算器20a〜20gは、色相データrと多項式演算器3からの多項式データT1〜T6と係数発生器5bからの係数U(Eij)およびU(Fij)を入力とし、それぞれの積を出力し、加算器21a〜21fにおいて、それぞれの積および和を加算するのであるが、その動作は実施の形態1におけるマトリックス演算器4での動作と同一である。乗算器22には、αβ算出器1からの無彩色成分に相当するR、G、Bデータの最小値αと係数発生器5bからの係数U(Fij)が入力されて乗算を行い、その積を加算器23へと出力し、加算器23で上記加算器21fからの出力と加算して、総和を画像データRの出力Rとして出力する。なお、図14の構成例において、色相データrをgまたはbに置換すれば、画像データG、Bを演算できる。
【0099】
ここで、係数(Eij)と(Fij)は、それぞれの色相データr、g、bに対応した係数が使用され、図14の構成をr、g、bに対し並列に3つ使用すれば、高速なマトリックス演算が可能になる。
【0100】
以上より、マトリックス演算器4bは各演算項および無彩色データである最小値αに対し係数により演算を行い、色相データと加算して画像データR、G、Bを出力し、このときの画像データを求める演算式は、下記(3)式となる。
【0101】
【数11】
Figure 0003874544
【0102】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0103】
尚、(3)式の演算項と図13での演算項の数の違いは、図13の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(3)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(3)式における25個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(r,hrm)、r×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(3)式の多項式データは、1画素について、25個のデータを7個の有効データに削減でき、この削減は、色相データの性質を巧みに活用して達成している。
【0104】
また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0105】
ここで、上記最小値αに係わる係数を全て1とすると、無彩色データは変換されず、入力データにおける無彩色データと同一の値となる。そして、マトリックス演算において係数を変化させれば、赤みの黒、青みの黒等の選択ができ、無彩色成分を調整できる。
【0106】
以上より、特定の色相に関与する乗算項および乗除算項と、色相間領域に関与する1次項および2次項それぞれに係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態3では入力画像データR、G、Bに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0107】
なお、上記実施の形態3では、マトリックス演算後画像データR、G、Bを得る場合として説明したが、上記出力画像データR、G、Bを得た後、R、G、Bを補色データC、M、Yに変換してもよく、マトリックス演算における係数を各色相および色相間領域と無彩色データである最小値αに対して変化できれば、上記と同様の効果を奏する。
【0108】
また、上記実施の形態1と同様、実施の形態3においても、上記の処理を色変換装置におけるソフトウェアにより同様の処理を行うことができることは言うまでもなく、上記実施の形態3と同様の効果を奏する。
【0109】
実施の形態4.
実施の形態2では(2)式に示すように、色相データと各演算項および無彩色データである最小値αを加算するよう構成したが、図15に示すように、係数発生器において無彩色データである最小値αに対する係数を発生することにより、無彩色成分を調整するよう構成することもできる。
【0110】
図15は、この発明の実施形態4による色変換装置の構成の一例を示すブロック図である。図において、10、1b、2bおよび3は上記実施の形態2の図12におけるものと同一のものであり、4b、5bは上記実施の形態3の図13におけるものと同一のものである。
【0111】
次に動作を説明する。画像データR、G、Bは補数器10に入力され、1の補数処理した補色データCi、Mi、Yiが出力され、αβ算出器1bで最大値β、最小値αおよび識別符号S1を求め、色相データ算出器2bにより6つの色相データを算出し、多項式演算器3において演算項を求める動作は上記実施の形態2の補色データC、M、Yの場合の処理と同一であるので、その詳細な説明は省略する。
【0112】
図15の係数発生器5bは、識別符号S1に基づき多項式データの演算係数U(Fij)と固定係数U(Eij)を発生し、マトリックス演算器4bへと送る。マトリックス演算器4bは、上記色相データ算出器2bからの色相データc、m、yと多項式演算器3からの多項式データT1〜T6、αβ算出器1bからの最小値αおよび係数発生器5bからの係数Uを入力とし、演算を行うのであるが、その演算式は下記の(37)式を使用し、無彩色成分を調整する。
【0113】
【数12】
Figure 0003874544
【0114】
なお、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜7である。
【0115】
なお、マトリックス演算器4bにおける動作は、上記実施の形態3における図14において、入力される色相データをc(またはm、y)とし、C(またはM、Y)を演算し出力する場合であり、同様の動作を行うので、その詳細な説明は省略する。
【0116】
以上より、マトリックス演算器4bは各演算項および無彩色データである最小値αに対し係数により演算を行い、色相データと加算して補色データC、M、Yを出力し、このときの画像データを求める演算式は、下記(4)式となる。
【0117】
【数13】
Figure 0003874544
【0118】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0119】
なお、(4)式の演算項と図15での演算項の数の違いは、図15の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(4)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(4)式における25個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(r,hrm)、r×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(4)式の多項式データは、1画素について、25個のデータを7個の有効データに削減でき、この削減は、色相データの性質を巧みに活用して達成している。
【0120】
また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0121】
ここで、上記最小値αに係わる係数を全て1とすると、無彩色データは変換されず、入力データにおける無彩色データと同一の値となる。そして、マトリックス演算において係数を変化させれば、赤みの黒、青みの黒等の選択ができ、無彩色成分を調整できる。
【0122】
以上より、特定の色相に関与する乗算項および乗除算項と、色相間領域に関与する1次項、2次項それぞれに係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態4では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0123】
また、上記実施の形態と同様、実施の形態4においても、上記の処理を色変換装置におけるソフトウェアにより同様の処理を行うことができることは言うまでもなく、上記実施の形態4と同様の効果を奏する。
【0124】
実施の形態5.
実施の形態1ないし4では多項式演算器3の一構成例を図2に示すブロック図であるとして、(1)式〜(4)式にあるような多項式データを演算して出力するよう構成したが、図16に示すよう構成し、多項式データを演算することもできる。
【0125】
図16は多項式演算器3の他の一構成例を示すブロック図である。図において、11〜18は上記図2における多項式演算器のものと同一のものである。19bは乗算器である。
【0126】
次に、図16の動作を説明する。なお、ゼロ除去器11の動作、乗算器12a、12b、加算器13a、13b、除算器14a、14bによりT3=Q1×Q2、T4=T3/(Q1+Q2)、T1=P1×P2、T2=T1/(P1+P2)を出力する動作、および演算係数発生器15、演算器16a、16b、最小値選択器17によりt6=min(aq×Q2、ap×P2)を出力し、最小値選択器18によりQ1とt6の最小値T5=min(Q1,min(aq×Q2,ap×P2))を出力する動作は、上記実施の形態における図2での動作と同一であるので、その詳細な説明は省略する。
【0127】
最小値選択器17からの出力t6=min(aq×Q2、ap×P2)は乗算器19bへも出力され、乗算器19bにはゼロ除去器11からの出力データP1も入力されており、P1とt6=min(aq×Q2,ap×P2)の乗算P1×t6を行い、積T6´=P1×min(aq×Q2,ap×P2)を出力する。したがって、多項式データT1、T2、T3、T4、T5およびT6´が、図16における多項式演算器の出力となり、この多項式演算器の出力はマトリックス演算器4または4bへと送られる。
【0128】
以上より、上記図16による多項式演算器3によれば、上記実施の形態1における図1の色変換装置により色変換された画像データR、G、Bを求める演算式は、下記の(5)式となる。
【0129】
【数14】
Figure 0003874544
【0130】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24であり、hry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)であり、aq1〜aq6およびap1〜ap6は上記図16における演算係数発生器15において発生される演算係数である。
【0131】
なお、上記(5)式の演算項と図16における演算項の数の違いは、図16における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(5)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態と同様、6つの色相データには、少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(5)式における24個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(r,hrm)、m×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(5)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0132】
ここで、図17(A)〜(F)は、6つの色相と上記比較データと色相データを用いた乗算項である2次演算項y×hry、y×hgy、c×hgc、c×hbc、m×hbm、m×hrmの関係を模式的に示したものである。なお、図中の破線c1〜c6およびd1〜d6で示す場合は、hry、hrm、hgy、hgc、hbm、hbcにおける演算係数aq1〜aq6およびap1〜ap6を変化させた場合の特性を示しており、実線は演算係数aq1〜aq6およびap1〜ap6の値を1とした場合について示している。図17のそれぞれより、各比較データを用いた2次演算項が赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の中間領域の変化に関与していることが分かる。
【0133】
つまり、例えば赤〜イエローの中間点に対しては、Wを定数として、r=W、g=W/2、b=0なので、y=W、m=W/2、c=0であり、y×hry=W×W/2となって、他の5項は全てゼロになる。
ここで、定数Wは、色相信号の大きさを表すので、定数Wの大きさは画素における色の鮮やかさ、彩度に依存し、乗算項r×hryは、彩度に対して2次の関数となる。他の乗算項も、それらが有効となる色相間の領域において、それぞれ彩度に関して2次の関数となる。したがって、各乗算項が色再現に与える影響は、彩度の増加に従って、2次的に増加する。すなわち、乗算項は、色再現において、彩度に対する2次補正項の役割を果たす2次項となる。よって、赤〜イエローにはy×hryのみが有効な2次演算項になり、同様に、イエロー〜緑にはy×hgy、緑〜シアンにはc×hgc、シアン〜青にc×hbc、青〜マゼンタにはm×hbm、マゼンタ〜赤にはm×hrmだけが有効な2次演算項となる。
【0134】
図18(a)および(b)は、6つの色相および色相間領域と有効な演算項の関係を示している。よって、係数発生器において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算器3における演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0135】
以上より、特定の色相に関与する乗算項および乗除算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、色相データの比較データを用いた1次項および2次項に係る係数を変化させることにより、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。また、上記の乗算項および比較データによる2次項は、彩度に対して2次的な演算となり、乗除算項および比較データによる1次項は、彩度に対して1次的な演算となり、したがって、1次項と2次項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態5では入力画像データR、G、Bに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0136】
また、上記実施の形態5では、ハードウェアにより図16の構成の処理を行う場合について説明しているが、色変換装置におけるソフトウェアにより同様の処理を行うことができることは言うまでもなく、上記実施の形態5と同様の効果を奏する。
【0137】
実施の形態6.
また、上記実施の形態5における図16による多項式演算器3によれば、上記実施の形態2における図12の色変換装置により色変換された補色データC、M、Yを求める演算式は、下記(6)式となる。
【0138】
【数15】
Figure 0003874544
【0139】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24であり、hry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)であり、aq1〜aq6およびap1〜ap6は上記図16における演算係数発生器15において発生される演算係数である。
【0140】
なお、(6)式の演算項と図16における演算項の数の違いは、図16における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(6)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(6)式における24個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(r,hrm)、m×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(6)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0141】
そして、上記(6)式の多項式演算器による演算項は、実施の形態5における(5)式の演算項と同一であり、したがって、6つの色相および色相間領域と有効な演算項の関係は図18(a)および(b)に示す場合と同一となる。よって、実施の形態5と同様、係数発生器において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算器3における演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0142】
以上より、特定の色相に関与する乗算項および乗除算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、色相データの比較データを用いた1次項および2次項に係る係数を変化させることにより、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。また、上記の乗算項および比較データによる2次項は、彩度に対して2次的な演算となり、乗除算項および比較データによる1次項は、彩度に対して1次的な演算となり、したがって、1次項と2次項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態6では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0143】
実施の形態7.
また、上記実施の形態5における図16による多項式演算器3によれば、上記実施の形態3における図13の色変換装置により色変換された画像データR、G、Bを求める演算式は、下記の(7)式となる。
【0144】
【数16】
Figure 0003874544
【0145】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0146】
尚、(7)式の演算項と図16での演算項の数の違いは、図16の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(7)式は画素集合に対する一般式を開示している点にある。 すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(7)式における25個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(r,hrm)、m×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(7)式の多項式データは、1画素について、25個のデータを7個の有効データに削減でき、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0147】
以上より、特定の色相に関与する乗算項および乗除算項と、色相間領域に関与する1次項および2次項それぞれに係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態7では入力画像データR、G、Bに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0148】
実施の形態8.
また、上記実施の形態5における図16による多項式演算器3によれば、上記実施の形態4における図15の色変換装置により色変換された補色データC、M、Yを求める演算式は、下記の(8)式となる。
【0149】
【数17】
Figure 0003874544
【0150】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0151】
尚、(8)式の演算項と図16での演算項の数の違いは、図16の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(8)式は画素集合に対する一般式を開示している点にある。 すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(8)式における25個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(r,hrm)、m×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(8)式の多項式データは、1画素について、25個のデータを7個の有効データに削減でき、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0152】
以上より、特定の色相に関与する乗算項および乗除算項と、色相間領域に関与する1次項および2次項それぞれに係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態8では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0153】
実施の形態9.
さらに、多項式演算器3の一構成例を図19に示すような場合として、多項式データを演算するよう構成することもできる。
【0154】
図19は多項式演算器3の他の一構成例を示すブロック図である。図において、11〜17は上記図2における多項式演算器のものと同一のものであり、19bは上記図16におけるものと同一のものである。18bは入力されたデータの最小値を選択し出力する最小値選択器である。
【0155】
次に、図19の動作を説明する。なお、ゼロ除去器11の動作、乗算器12a、12b、加算器13a、13b、除算器14a、14bによりT3=Q1×Q2、T4=T3/(Q1+Q2)、T1=P1×P2、T2=T1/(P1+P2)を出力する動作、および演算係数発生器15、演算器16a、16b、最小値選択器17によりt6=min(aq×Q2、ap×P2)を出力するまでの動作は、上記実施の形態における図2での動作と同一であるので、その詳細な説明は省略する。
【0156】
最小値選択器17からの出力t6=min(aq×Q2、ap×P2)は、最小値選択器18bおよび乗算器19bへと出力され、最小値選択器18bにはゼロ除去器11からの出力データP1も入力されており、P1とt6=min(aq×Q2,ap×P2)の最小値T5´=min(P1,min(aq×Q2,ap×P2))を出力する。また、乗算器19bにはゼロ除去器11からの出力データP1と最小値選択器17からの出力t6が入力されており、P1とt6=min(aq×Q2,ap×P2)の乗算P1×t6を行い、積T6´=P1×min(aq×Q2,ap×P2)を出力する。したがって、多項式データT1、T2、T3、T4およびT5´、T6´が、図19における多項式演算器の出力となり、この多項式演算器の出力はマトリックス演算器4または4bへと送られる。
【0157】
以上より、上記図19による多項式演算器3によれば、上記実施の形態1における図1の色変換装置により色変換された画像データR、G、Bを求める演算式は、下記の(9)式となる。
【0158】
【数18】
Figure 0003874544
【0159】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24であり、hry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)であり、aq1〜aq6およびap1〜ap6は上記図19における演算係数発生器15において発生される演算係数である。
【0160】
なお、上記(9)式の演算項と図19における演算項の数の違いは、図19における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(9)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態と同様、6つの色相データには、少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(9)式における24個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(m,hrm)、m×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(9)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0161】
ここで、図20(A)〜(F)は、6つの色相と、上記比較データを用いた1次演算項min(y,hry)、min(y,hgy)、min(c,hgc)、min(c,hbc)、min(m,hbm)、min(m,hrm)の関係を模式的に示したものである。なお、図中の破線a1〜a6およびb1〜b6で示す場合は、hry、hrm、hgy、hgc、hbm、hbcにおける演算係数aq1〜aq6およびap1〜ap6を変化させた場合の特性を示しており、実線は演算係数aq1〜aq6およびap1〜ap6の値を1とした場合について示している。図20のそれぞれより、各比較データを用いた1次演算項が赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の中間領域の変化に関与していることが分かる。
【0162】
つまり、例えば赤〜イエローの中間点に対しては、Wを定数として、r=W、g=W/2、b=0なので、y=W、m=W/2、c=0であり、min(y,hry)=W/2となって、他の5項は全てゼロになる。ここで、定数Wは色相信号の大きさを表すので、定数Wの大きさは、画素における色の鮮やかさ、彩度に依存し、1次項min(y、hry)は、彩度に対して1次の関数となる。他の項も、それらが有効となる色相間の領域において、それぞれ彩度に関して1次の関数となる。したがって、各比較データによる1次項が色再現に与える影響は、彩度に関して1次の関数となる。すなわち、各比較データによる1次項は、色再現において、彩度に対する1次補正項の役割を果たす1次項となる。よって、min(y,hry)のみが有効な1次演算項になり、同様に、イエロー〜緑にはmin(y、hgy)、緑〜シアンにはmin(c、hgc)、シアン〜青にはmin(c、hbc)、青〜マゼンタにはmin(m、hbm)、マゼンタ〜赤にはmin(m、hrm)だけが有効な1次演算項となる。
【0163】
なお、6つの色相と上記比較データと色相データを用いた乗算項である2次演算項y×hry、y×hgy、c×hgc、c×hbc、m×hbm、m×hrmの関係は、上記実施の形態5〜8における図17(A)〜(F)についての場合と同一であり、赤〜イエローに対してはy×hryのみが有効な2次演算項になり、イエロー〜緑にはy×hgy、緑〜シアンにはc×hgc、シアン〜青にc×hbc、青〜マゼンタにはm×hbm、マゼンタ〜赤にはm×hrmだけが有効な2次演算項となる。
【0164】
図21(a)および(b)は、6つの色相および色相間領域と有効な演算項の関係を示している。よって、係数発生器において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算器3における演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0165】
以上より、特定の色相に関与する乗算項および乗除算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、色相データの比較データを用いた1次項および2次項に係る係数を変化させることにより、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。また、上記の乗算項および比較データによる2次項は、彩度に対して2次的な演算となり、乗除算項および比較データによる1次項は、彩度に対して1次的な演算となり、したがって、1次項と2次項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態9では入力画像データR、G、Bに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0166】
また、上記実施の形態9では、ハードウェアにより図19の構成の処理を行う場合について説明しているが、色変換装置におけるソフトウェアにより同様の処理を行うことができることは言うまでもなく、上記実施の形態9と同様の効果を奏する。
【0167】
実施の形態10.
また、上記実施の形態9における図19による多項式演算器3によれば、上記実施の形態2における図12の色変換装置により色変換された画像データC、M、Yを求める演算式は、下記(10)式となる。
【0168】
【数19】
Figure 0003874544
【0169】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24であり、hry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)であり、aq1〜aq6およびap1〜ap6は上記図19における演算係数発生器15において発生される演算係数である。
【0170】
なお、(10)式の演算項と図19における演算項の数の違いは、図19における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(10)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(10)式における24個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(m,hrm)、m×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(10)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0171】
そして、上記(10)式の多項式演算器による演算項は、実施の形態9における(9)式の演算項と同一であり、したがって、6つの色相および色相間領域と有効な演算項の関係は図21(a)および(b)に示す場合と同一となる。よって、実施の形態9と同様、係数発生器において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算器3における演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0172】
以上より、特定の色相に関与する乗算項および乗除算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、色相データの比較データを用いた1次項および2次項に係る係数を変化させることにより、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。また、上記の乗算項および比較データによる2次項は、彩度に対して2次的な演算となり、乗除算項および比較データによる1次項は、彩度に対して1次的な演算となり、したがって、1次項と2次項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態10では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0173】
実施の形態11.
また、上記実施の形態9における図19による多項式演算器3によれば、上記実施の形態3における図13の色変換装置により色変換された画像データR、G、Bを求める演算式は、下記の(11)式となる。
【0174】
【数20】
Figure 0003874544
【0175】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0176】
なお、(11)式の演算項と図19での演算項の数の違いは、図19の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(11)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態と同様、6つの色相データには、少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(11)式における25個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(m,hrm)、m×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(11)式の多項式データは、1画素について、25個のデータを7個の有効データに削減でき、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0177】
以上より、特定の色相に関与する乗算項および乗除算項と、色相間領域に関与する1次項および2次項それぞれに係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態11では入力画像データR、G、Bに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0178】
実施の形態12.
また、上記実施の形態9における図19による多項式演算器3によれば、上記実施の形態4における図15の色変換装置により色変換された補色データC、M、Yを求める演算式は、下記の(12)式となる。
【0179】
【数21】
Figure 0003874544
【0180】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0181】
なお、(12)式の演算項と図19での演算項の数の違いは、図19の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(12)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態と同様、6つの色相データには、少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(11)式における25個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(m,hrm)、m×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(12)式の多項式データは、1画素について、25個のデータを7個の有効データに削減でき、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0182】
以上より、特定の色相に関与する乗算項および乗除算項と、色相間領域に関与する1次項および2次項それぞれに係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態12では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0183】
実施の形態13.
さらに、多項式演算器3の一構成例を図22に示すような場合とし、多項式データを演算するよう構成することもできる。
図22は多項式演算器3の他の一構成例を示すブロック図である。
図において、11〜17および19は上記図2における多項式演算器のものと同一のものである。18bは入力されたデータの最小値を選択し出力する最小値選択器である。
【0184】
次に、図22の動作を説明する。なお、ゼロ除去器11の動作、乗算器12a、12b、加算器13a、13b、除算器14a、14bによりT3=Q1×Q2、T4=T3/(Q1+Q2)、T1=P1×P2、T2=T1/(P1+P2)を出力する動作、および演算係数発生器15、演算器16a、16b、最小値選択器17によりt6=min(aq×Q2、ap×P2)を出力するまでの動作は、上記実施の形態における図2での動作と同一であるので、その詳細な説明は省略する。
【0185】
最小値選択器17からの出力t6=min(aq×Q2、ap×P2)は、最小値選択器18bおよび乗算器19へと出力され、最小値選択器18bにはゼロ除去器11からの出力データP1も入力されており、P1とt6=min(aq×Q2,ap×P2)の最小値T5´=min(P1,min(aq×Q2,ap×P2))を出力する。
また、乗算器19にはゼロ除去器11からの出力データQ1と最小値選択器17からの出力t6が入力されており、Q1とt6=min(aq×Q2,ap×P2)の乗算Q1×t6を行い、積T6=Q1×min(aq×Q2,ap×P2)を出力する。したがって、多項式データT1、T2、T3、T4、T6およびT5´が、図22における多項式演算器の出力となり、この多項式演算器の出力はマトリックス演算器4または4bへと送られる。
【0186】
以上より、上記図22による多項式演算器3によれば、上記実施の形態1における図1の色変換装置により色変換された画像データR、G、Bを求める演算式は、下記の(13)式となる。
【0187】
【数22】
Figure 0003874544
【0188】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24であり、hry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)であり、aq1〜aq6およびap1〜ap6は上記図22における演算係数発生器15において発生される演算係数である。
【0189】
なお、上記(13)式の演算項と図22における演算項の数の違いは、図22における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(13)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態と同様、6つの色相データには、少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(13)式における24個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(m,hrm)、r×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(13)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0190】
ここで、6つの色相と上記比較データを用いた1次演算項min(y,hry)、min(y,hgy)、min(c,hgc)、min(c,hbc)、min(m,hbm)、min(m,hrm)の関係は、上記実施の形態9〜12における図20(A)〜(F)と同一であり、また、6つの色相と上記比較データと色相データを用いた乗算項である2次演算項r×hry、g×hgy、g×hgc、b×hbc、b×hbm、r×hrmの関係は、上記実施の形態1〜4における図10(A)〜(F)の場合と同一である。したがって、各比較データを用いた1次演算項および2次演算項が赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の中間領域の変化に関与していることが分かり、赤〜イエローに対してはmin(y,hry)とr×hry、イエロー〜緑にはmin(y、hgy)とg×hgy、緑〜シアンにはmin(c、hgc)とg×hgc、シアン〜青にmin(c、hbc)とb×hbc、青〜マゼンタにはmin(m、hbm)とb×hbm、マゼンタ〜赤にはmin(m、hrm)とr×hrmが有効な1次および2次演算項となる。
【0191】
図23(a)および(b)は、6つの色相および色相間領域と有効な演算項の関係を示している。よって、係数発生器において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算器3における演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0192】
以上より、特定の色相に関与する乗算項および乗除算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、色相データの比較データを用いた1次項および2次項に係る係数を変化させることにより、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。また、上記の乗算項および比較データによる2次項は、彩度に対して2次的な演算となり、乗除算項および比較データによる1次項は、彩度に対して1次的な演算となり、したがって、1次項と2次項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態13では入力画像データR、G、Bをに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0193】
また、上記実施の形態13では、ハードウェアにより図22の構成の処理を行う場合について説明しているが、色変換装置におけるソフトウェアにより同様の処理を行うことができることは言うまでもなく、上記実施の形態13と同様の効果を奏する。
【0194】
実施の形態14.
また、上記実施の形態13における図22による多項式演算器3によれば、上記実施の形態2における図12の色変換装置により色変換された画像データC、M、Yを求める演算式は、下記(14)式となる。
【0195】
【数23】
Figure 0003874544
【0196】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24であり、hry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)であり、aq1〜aq6およびap1〜ap6は上記図22における演算係数発生器15において発生される演算係数である。
【0197】
なお、(14)式の演算項と図22における演算項の数の違いは、図22における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(14)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態と同様、6つの色相データには、少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(14)式における24個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(m,hrm)、r×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(14)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0198】
そして、上記(14)式の多項式演算器による演算項は、実施の形態13における(13)式の演算項と同一であり、したがって、6つの色相および色相間領域と有効な演算項の関係は図23(a)および(b)に示す場合と同一となる。よって、実施の形態13と同様、係数発生器において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。
また、多項式演算器3における演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0199】
以上より、特定の色相に関与する乗算項および乗除算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、色相データの比較データを用いた1次項および2次項に係る係数を変化させることにより、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。また、上記の乗算項および比較データによる2次項は、彩度に対して2次的な演算となり、乗除算項および比較データによる1次項は、彩度に対して1次的な演算となり、したがって、1次項と2次項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態14では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0200】
実施の形態15.
また、上記実施の形態13における図22による多項式演算器3によれば、上記実施の形態3における図13の色変換装置により色変換された画像データR、G、Bを求める演算式は、下記の(15)式となる。
【0201】
【数24】
Figure 0003874544
【0202】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0203】
なお、(15)式の演算項と図22での演算項の数の違いは、図22の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(15)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態と同様、6つの色相データには、少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(15)式における25個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(m,hrm)、r×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(15)式の多項式データは、1画素について、25個のデータを7個の有効データに削減でき、この削減は、色相データの性質を巧みに活用して達成している。
また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0204】
以上より、特定の色相に関与する乗算項および乗除算項と、色相間領域に関与する1次項および2次項それぞれに係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態15では入力画像データR、G、Bに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0205】
実施の形態16.
また、上記実施の形態13における図22による多項式演算器3によれば、上記実施の形態4における図15の色変換装置により色変換された補色データC、M、Yを求める演算式は、下記の(16)式となる。
【0206】
【数25】
Figure 0003874544
【0207】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0208】
なお、(16)式の演算項と図22での演算項の数の違いは、図22の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(16)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態と同様、6つの色相データには、少なくとも2つのデータがゼロになる性質があり、例えば、図3に示される最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(16)式における25個の演算項のうちm×y、b×r、b×r/(b+r)、m×y/(m+y)、min(m,hrm)、r×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(16)式の多項式データは、1画素について、25個のデータを7個の有効データに削減でき、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0209】
以上より、特定の色相に関与する乗算項および乗除算項と、色相間領域に関与する1次項および2次項それぞれに係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態16では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0210】
実施の形態17.
図24はこの発明の実施の形態17による色変換装置の他の構成例を示すブロック図である。図において、1、2および6は上記実施の形態1における図1の符号と同一のものである。3bは多項式演算器、4cはマトリックス演算器、5cは係数発生器である。
【0211】
また、図25は、上記多項式演算器3bの一構成例を示すブロック図である。図において、11、12aおよび12b、15〜19は上記実施の形態1における図2の多項式演算器3内のものと同一のものである。30a、30bは入力されたデータの最小値を選択し出力する最小値選択器である。
【0212】
次に、動作を説明する。図24におけるαβ算出器1、色相データ算出器2における動作は上記実施の形態1における動作と同一であるので、その詳細な説明は省略する。多項式演算器3bにおいては、αβ算出器1から出力される識別符号S1に基づき、r、g、b中でゼロでない2つのデータQ1、Q2と、y、m、c中でゼロでない2つのデータP1、P2を選択して演算を行うのであるが、この動作を図25に従って説明する。
【0213】
多項式演算器3bでは、入力された色相データr、g、bおよびy、m、cと識別符号S1はゼロ除去器11へと送られ、識別信号S1に基づき、r、g、b中でゼロでない2つのデータQ1、Q2とy、m、c中でゼロでない2つのデータP1、P2を出力する。乗算器12aへは上記ゼロ除去器11からの出力データQ1、Q2が入力され、積T3=Q1×Q2を算出して出力し、乗算器12bへは上記ゼロ除去器11からの出力データP1、P2が入力され、T1=P1×P2を算出し出力する。ここまでの動作は上記実施の形態1における図2の動作と同一であり、また、演算係数発生器15および演算器16a、16bと最小値選択器17、18および乗算器19での動作も上記実施の形態1における動作と同一であるので、その詳細な説明は省略する。
【0214】
最小値選択器30aへは上記ゼロ除去器11からの出力データQ1、Q2が入力され、最小値T8=min(Q1、Q2)を選択して出力し、最小値選択器30bへは上記ゼロ除去器11からの出力データP1、P2が入力され、最小値T7=min(P1、P2)を選択し出力する。以上の多項式データT1、T3、T5、T6、およびT7、T8が、多項式演算器3bの出力となり、この多項式演算器3bの出力はマトリックス演算器4cへと送られる。
【0215】
そして、図24の係数発生器5cは、識別符号S1に基づき、多項式データの演算係数U(Fij)と固定係数U(Eij)を発生し、マトリックス演算器4cへと送る。マトリックス演算器4cは、上記色相データ算出器2からの色相データr、g、bと多項式演算器3bからの多項式データT1、T3、T5〜T8と係数発生器5からの係数Uを入力とし、下記の(38)式の演算結果を画像データR、G、Bとして出力する。
【0216】
【数26】
Figure 0003874544
【0217】
なお、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜6である。
【0218】
ここで、図26は、上記マトリックス演算器4cにおける部分的な一構成例を示すブロック図であり、R1を演算し出力する場合について示している。図において、20a〜20gおよび21a〜21fは図5におけるものと同一のものを示している。
【0219】
次に、図26の動作を説明する。乗算器20a〜20gは、色相データrと多項式演算器3bからの多項式データT1、T3、T5、T6、T7、T8と係数発生器5cからの係数U(Eij)およびU(Fij)を入力とし、それぞれの積を出力する。加算器21a〜21cは、各乗算器20b〜20gの出力である積を入力とし、入力データを加算し、その和を出力する。加算器21dは加算器21a、21bからのデータを加算し、加算器21eは加算器21c、21dからのデータを加算する。そして加算器21fは加算器21eの出力と乗算器20aの出力を加算して、総和を画像データR1として出力する。なお、図26の構成例において、色相データrをgまたはbに置換すれば、画像データG1、B1を演算できる。
【0220】
蛇足であるが、係数(Eij)と(Fij)は、それぞれの色相データr、g、bに対応した係数が使用される。つまり、図26の構成をr、g、bに対し並列に3つ使用すれば、高速なマトリックス演算が可能になる。
【0221】
合成器6は、上記マトリックス演算器4cからの画像データR1、G1、B1と上記αβ算出器1からの出力である無彩色データを示す最小値αが入力され、加算を行い、画像データR、G、Bを出力する。よって、上記図24の色変換装置により色変換された画像データR、G、Bを求める演算式は、下記の(17)式となる。
【0222】
【数27】
Figure 0003874544
【0223】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24である。
【0224】
なお、(17)式と図24での演算項の数の違いは、図24の多項式演算器3bにおける演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(17)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態1の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(17)式における24個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(r,hrm)、r×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(17)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0225】
ここで、図27(A)〜(F)は、6つの色相と比較データによる演算項min(m、y)、min(r、g)、min(y、c)、min(g、b)、min(c、m)、min(b、r)の関係を模式的に示したものであり、各演算項は1次項の性質を持つ。例えば、Wを定数として、赤に対してはr=W、g=b=0なので、y=m=W、c=0となり、このとき、min(m、y)=Wであり、他の5項は全てゼロになる。ここで、定数Wの大きさは画素における色の鮮やかさ、彩度に依存し、min(m、y)=Wであるので、min(m、y)が色再現に与える影響は、彩度に対して1次の関数となる。つまり、色再現において、彩度に対する1次補正項の役割を果たす1次項となる。したがって、赤に対しては、min(m、y)のみが有効な1次項になり、同様に、他の比較データによる演算項も、それらが有効となる色相において、それぞれ彩度に関して1次の関数となり、緑にはmin(y、c)、青にはmin(c、m)、シアンにはmin(g、b)、マゼンタにはmin(b、r)、イエローにはmin(r、g)だけが有効な1次項となる。
【0226】
図28(a)および(b)は、上記図24における多項式演算器3bより得られる演算項に対し、6つの色相および色相間領域と有効な演算項の関係を示している。よって、係数発生器5cにおいて、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算器3bにおける演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0227】
ここで、上記実施の形態17での係数発生器5cでの係数の一例としては、上記実施の形態1の場合と同様、係数U(Eij)を上記(33)式とし、係数U(Fij)の係数を全てゼロとすると、色変換を実施しない場合となる。そして、係数U(Fij)の係数において、各乗算項と比較データによる演算項に係わる係数のうち、変化させたい色相または色相間の領域に関する演算項に係わる係数を定め、他の係数をゼロとすれば、その色相または色相間の領域のみの調整を行える。例えば、赤に関する1次演算項min(m、y)に係わる係数を設定すれば、赤の色相を変化させ、赤〜イエローの色相間の割合を変化させるには1次項min(r、hry)に係わる係数および2次項r×hryに係わる係数を用いることとなる。
【0228】
なお、上記実施の形態1〜16における1次の乗除算項T4=Q1×Q2/(Q1+Q2)、T2=P1×P2/(P1+P2)と、実施の形態17における比較データによる1次項T8=min(Q1、Q2)、T7=min(P1、P2)とは関与する色相はそれぞれ同一であるが、実施の形態17における比較データによる演算項の場合は、各色相データの最小値選択のみにより特定の色相に有効となる1次項を得ることができ、上記乗除算により演算項を求める場合よりも処理を簡単にでき、処理速度も早くできる。
【0229】
以上より、特定の色相に関与する乗算項および色相データの比較データを用いた1次演算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、色相間領域に関与する1次項および2次項についてそれぞれに係る係数を変化させることで、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。また、上記の乗算項および比較データによる2次項は、彩度に対して2次的な演算となり、比較データによる1次項は、彩度に対して1次的な演算となり、したがって、1次項と2次項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態17では入力画像データR、G、Bをに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0230】
なお、上記実施の形態17では、入力画像データR、G、Bをもとに色相データr、g、bおよびy、m、cと最大値β、最小値αを算出して各色相に係わる演算項を得て、マトリックス演算後、画像データR、G、Bを得る場合として説明したが、上記出力画像データR、G、Bを得た後、R、G、Bを補色データC、M、Yに変換してもよく、6つの色相データおよび最大値β、最小値αを得て、図28に示されるような各演算項を算出でき、マトリックス演算における係数を各色相および色相間領域に対して変化できれば、上記と同様の効果を奏する。
【0231】
なお、上記実施の形態17では、ハードウェアにより図24の構成の処理を行う場合について説明しているが、色変換装置におけるソフトウェアにより同様の処理を行うことができることは言うまでもなく、上記実施の形態17と同様の効果を奏する。
【0232】
実施の形態18.
上記実施の形態17では、入力画像データR、G、Bをもとに色相データr、g、bおよびy、m、cと最大値β、最小値αを算出して各色相に係わる演算項を得て、マトリックス演算後、画像データR、G、Bを得る場合として説明したが、画像データR、G、Bを補色データC、M、Yに変換後、入力を補色データC、M、Yとして色変換を行うように構成することもできる。
【0233】
図29はこの発明の実施の形態18による色変換装置の構成の一例を示すブロック図である。図において、1b、2b、10、6は上記実施の形態2の図12におけるものと、3b、4c、5cは上記実施の形態17の図24におけるものと同一のものである。
【0234】
次に、動作を説明する。補数器10は、画像データR、G、Bを入力とし、1の補数処理した補色データCi、Mi、Yiを出力する。αβ算出器1bでは、この補色データの最大値βと最小値αおよび各色相データを特定するための識別符号S1を出力する。
【0235】
色相データ算出器2bは、補色データCi、Mi、Yiと上記αβ算出器1bからの最大値βと最小値αを入力とし、r=β−Ci、g=β−Mi、b=β−Yiおよびy=Yi−α、m=Mi−α、c=Ci−αの減算処理によって、6つの色相データr、g、b、y、m、cを出力する。ここで、これら6つの色相データは、この中の少なくとも2つがゼロになる性質があり、上記αβ算出器1bから出力される識別符号S1は、6つの色相データのうちゼロとなるデータを特定するものであり、最大値βと最小値αがCi、Mi、Yiのうちどれであるかにより、データを特定する6種類の識別符号となる。この6つの色相データのうちゼロとなるデータと識別符号との関係は上記実施の形態1での説明と同様であるので、詳細な説明は省略する。
【0236】
次に、色相データ算出器2bからの出力である6つの色相データr、g、bおよびy、m、cは多項式演算手段3bへと送られ、また、c、m、yについてはマトリックス演算器4cへも送られる。多項式演算器3bには上記αβ算出器1bから出力される識別符号S1も入力されており、r、g、b中でゼロでない2つのデータQ1、Q2と、y、m、c中でゼロでない2つのデータP1、P2を選択して演算を行うのであるが、この動作は上記実施の形態17における図25の動作と同一であるので、その詳細な説明は省略する。
【0237】
そして、この多項式演算器3bの出力はマトリックス演算器4cへと送られ、係数発生器5cは、識別符号S1に基づき、多項式データの演算係数U(Fij)と固定係数U(Eij)を発生し、マトリックス演算器4cへと送る。マトリックス演算器4cは、上記色相データ算出器2bからの色相データc、m、yと多項式演算器3bからの多項式データT1、T3、T5〜T8および係数発生器5cからの係数Uを入力とし、下記の(39)式の演算結果を画像データC1、M1、Y1として出力する。
【0238】
【数28】
Figure 0003874544
【0239】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜6である。
【0240】
なお、マトリックス演算器4cにおける動作は、上記実施の形態17における図26において、入力される色相データをc(またはm、y)とし、C1(またはM1、Y1)を演算し出力する場合であり、同様の動作を行うので、その詳細な説明は省略する。
【0241】
合成器6は、上記マトリックス演算器4cからの補色データC1、M1、Y1と上記αβ算出器1bからの出力である無彩色データを示す最小値αが入力され、加算を行い、画像データC、M、Yを出力する。よって、上記図29の色変換装置により色変換された画像データC、M、Yを求める演算式は、下記の(18)式となる。
【0242】
【数29】
Figure 0003874544
【0243】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24である。
【0244】
なお、(18)式の演算項と図29における演算項の数の違いは、図29における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(18)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(18)式における24個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(r,hrm)、r×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(18)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0245】
そして、上記(18)式の多項式演算器による演算項は、実施の形態17における(17)式の演算項と同一であり、したがって、6つの色相および色相間領域と有効な演算項の関係は図28(a)および(b)に示す場合と同一となる。よって、実施の形態17と同様、係数発生器5cにおいて、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算器3bにおける演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0246】
ここで、上記実施の形態18での係数発生器5cでの係数の一例としては、上記実施の形態の場合と同様、係数U(Eij)を上記(33)式とし、係数U(Fij)の係数を全てゼロとすると、色変換を実施しない場合となる。そして、係数U(Fij)において、各乗算項と比較データによる演算項に係わる係数のうち、変化させたい色相または色相間の領域に関する演算項に係わる係数を定め、他の係数をゼロとすれば、その色相または色相間の領域のみの調整を行える。
例えば、赤に関する1次演算項min(m、y)に係わる係数を設定すれば、赤の色相を変化させ、赤〜イエローの色相間の割合を変化させるには1次項min(r、hry)に係わる係数および2次項r×hryに係わる係数を用いることとなる。
【0247】
以上より、特定の色相に関与する乗算項および色相データの比較データを用いた1次演算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、色相間領域に関与する1次項および2次項についてそれぞれに係る係数を変化させることで、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。また、2次演算項と1次演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態18では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0248】
なお、上記実施の形態18では、ハードウェアにより図29の構成の処理を行う場合について説明しているが、色変換装置におけるソフトウェアにより同様の処理を行うことができることは言うまでもなく、上記実施の形態18と同様の効果を奏する。
【0249】
実施の形態19.
上記実施の形態17ではマトリックス演算器4cにおける部分的な一構成例を図26に示すブロック図であるとし、(17)式に示すように構成したが、図30に示すように、係数発生器において無彩色データである最小値αに対する係数を発生することにより、無彩色成分を調整するよう構成することもできる。
【0250】
図30は、この発明の実施の形態19による色変換装置の構成の一例を示すブロック図である。
図において、1、2、3bは上記実施の形態17の図24におけるものと同一のものであり、4dはマトリックス演算器、5dは係数発生器である。
【0251】
次に動作を説明する。入力データよりαβ算出器1より最大値β、最小値αおよび識別符号S1を求め、色相データ算出器2により6つの色相データを算出し、多項式演算器3bにおいて演算項を求める動作は上記実施の形態17と同一であるのでその詳細な説明は省略する。
【0252】
図30の係数発生器5dは、識別符号S1に基づき多項式データの演算係数U(Fij)と固定係数U(Eij)を発生し、マトリックス演算器4dへと送る。マトリックス演算器4dは上記色相データ算出器2からの色相データr、g、bと多項式演算器3bからの多項式データT1、T3、T5〜T8およびαβ算出器1からの最小値αおよび係数発生器5dからの係数Uを入力とし、演算を行うのであるが、その演算式は下記の(40)式を使用し、無彩色成分を調整する。
【0253】
【数30】
Figure 0003874544
【0254】
なお、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜7である。
【0255】
ここで、図31はマトリックス演算器4dの部分的な構成例を示すブロック図であり、図31において、20a〜20g、21a〜21fは上記実施の形態17でのマトリックス演算器4cと同一のものであり、22、23は上記実施の形態3における図14のマトリックス演算器4bでのものと同一のものである。
【0256】
次に、図31の動作を説明する。乗算器20a〜20gは、色相データrと多項式演算器3bからの多項式データT1、T3、T5〜T8と係数発生器5dからの係数U(Eij)およびU(Fij)を入力とし、それぞれの積を出力し、加算器21a〜21fにおいて、それぞれの積および和を加算するのであるが、その動作は上記実施の形態におけるマトリックス演算器での動作と同一である。乗算器22には、αβ算出器1からの無彩色成分に相当するR、G、Bデータの最小値αと係数発生器5dからの係数U(Fij)が入力されて乗算を行い、その積を加算器23へと出力し、加算器23で上記加算器21fからの出力と加算して、総和を画像データRの出力Rとして出力する。
なお、図31の構成例において、色相データrをgまたはbに置換すれば、画像データG、Bを演算できる。
【0257】
ここで、係数(Eij)と(Fij)は、それぞれの色相データr、g、bに対応した係数が使用され、図31の構成をr、g、bに対し並列に3つ使用すれば、高速なマトリックス演算が可能になる。
【0258】
以上より、マトリックス演算器4dは各演算項および無彩色データである最小値αに対し係数により演算を行い、色相データと加算して画像データR、G、Bを出力し、このときの画像データを求める演算式は、下記の(19)式となる。
【0259】
【数31】
Figure 0003874544
【0260】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0261】
なお、(19)式の演算項と図30での演算項の数の違いは、図30の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(19)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(19)式における25個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(r,hrm)、r×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(19)式の多項式データは、1画素について、25個のデータを7個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0262】
ここで、上記最小値αに係わる係数を全て1とすると、無彩色データは変換されず、入力データにおける無彩色データと同一の値となる。そして、マトリックス演算において係数を変化させれば、赤みの黒、青みの黒等の選択ができ、無彩色成分を調整できる。
【0263】
以上より、特定の色相に関与する乗算項および色相データの比較データを用いた1次演算項と、色相間領域に関与する1次項および2次項それぞれに係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態19では入力画像データR、G、Bに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0264】
なお、上記実施の形態19では、マトリックス演算後画像データR、G、Bを得る場合として説明したが、上記出力画像データR、G、Bを得た後、R、G、Bを補色データC、M、Yに変換してもよく、マトリックス演算における係数を各色相および色相間領域と無彩色データである最小値αに対して変化できれば、上記と同様の効果を奏する。
【0265】
また、上記実施の形態と同様、実施の形態19においても、上記の処理を色変換装置におけるソフトウェアにより同様の処理を行うことができることは言うまでもなく、上記実施の形態19と同様の効果を奏する。
【0266】
実施の形態20.
実施の形態18では(18)式に示すように、色相データと各演算項および無彩色データである最小値αを加算するよう構成したが、図32に示すように、係数発生器において無彩色データである最小値αに対する係数を発生することにより、無彩色成分を調整するよう構成することもできる。
【0267】
図32は、この発明の実施形態20による色変換装置の構成の一例を示すブロック図である。図において、10、1b、2bおよび3bは上記実施の形態18の図29におけるものと同一のものであり、4d、5dは上記実施の形態19の図30におけるものと同一のものである。
【0268】
次に動作を説明する。画像データR、G、Bは補数器10に入力され、1の補数処理した補色データCi、Mi、Yiが出力され、αβ算出器1bで最大値β、最小値αおよび識別符号S1を求め、色相データ算出器2bにより6つの色相データを算出し、多項式演算器3bにおいて演算項を求める動作は上記実施の形態18の補色データC、M、Yの場合の処理と同一であるので、その詳細な説明は省略する。
【0269】
図32の係数発生器5dは、識別符号S1に基づき多項式データの演算係数U(Fij)と固定係数U(Eij)を発生し、マトリックス演算器4dへと送る。 次に、マトリックス演算器4dは、上記色相データ算出器2bからの色相データc、m、yと多項式演算器3bからの多項式データT1、T3、T5〜T8とαβ算出器1bからの最小値αおよび係数発生器5dからの係数Uを入力とし、演算を行うのであるが、その演算式は下記の(41)式を使用し、無彩色成分を調整する。
【0270】
【数32】
Figure 0003874544
【0271】
なお、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜7である。
【0272】
なお、マトリックス演算器4dにおける動作は、上記実施の形態19における図31において、入力される色相データをc(またはm、y)とし、C(またはM、Y)を演算し出力する場合であり、同様の動作を行うので、その詳細な説明は省略する。
【0273】
以上より、マトリックス演算器4dは各演算項および無彩色データである最小値αに対し係数により演算を行い、色相データと加算して補色データC、M、Yを出力し、このときの画像データを求める演算式は、下記(20)式となる。
【0274】
【数33】
Figure 0003874544
【0275】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0276】
なお、(20)式の演算項と図32での演算項の数の違いは、上記実施の形態の場合と同様に、図32の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(20)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(20)式における25個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(r,hrm)、r×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(20)式の多項式データは、1画素について、25個のデータを7個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0277】
ここで、上記最小値αに係わる係数を全て1とすると、無彩色データは変換されず、入力データにおける無彩色データと同一の値となる。そして、マトリックス演算において係数を変化させれば、赤みの黒、青みの黒等の選択ができ、無彩色成分を調整できる。
【0278】
以上より、特定の色相に関与する乗算項および色相データの比較データを用いた1次演算項と、色相間領域に関与する1次項および2次項それぞれに係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態20では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0279】
また、上記実施の形態と同様、実施の形態20においても、上記の処理を色変換装置におけるソフトウェアにより同様の処理を行うことができることは言うまでもなく、上記実施の形態20と同様の効果を奏する。
【0280】
実施の形態21.
実施の形態17〜20では多項式演算器3bの一構成例を図25に示す場合として多項式データを演算し出力するよう構成したが、図33に示すような構成とし多項式データを演算することもできる。
【0281】
図33は、多項式演算器3bの他の一構成例を示すブロック図である。図において、11、12a、12b、15〜18および30a、30bは上記実施の形態17の図25における多項式演算器のものと同一のものであり、19bは上記実施の形態5での図16におけるものと同一の乗算器である。
【0282】
次に、図33の動作を説明する。なお、ゼロ除去器11の動作、乗算器12a、12bによりT3=Q1×Q2、T1=P1×P2を出力する動作、最小値選択器30a、30bによりT8=min(Q1、Q2)、T7=min(P1、P2)を出力する動作、そして、演算係数発生器15、演算器16a、16b、最小値選択器17によりt6=min(aq×Q2、ap×P2)を出力し、最小値選択器18によりQ1とt6の最小値T5=min(Q1,min(aq×Q2,ap×P2))を出力する動作は、上記実施の形態17における図25での動作と同一であるので、その詳細な説明は省略する。
【0283】
最小値選択器17からの出力t6=min(aq×Q2、ap×P2)は乗算器19bへも出力され、乗算器19bにはゼロ除去器11からの出力データP1も入力されており、P1とt6=min(aq×Q2,ap×P2)の乗算P1×t6を行い、積T6´=P1×min(aq×Q2,ap×P2)を出力する。したがって、多項式データT1、T3、T5、T7、T8およびT6´が、図33における多項式演算器の出力となり、この多項式演算器の出力はマトリックス演算器4cまたは4dへと送られる。
【0284】
以上より、上記図33による多項式演算器3bによれば、上記実施の形態17における図24の色変換装置により色変換された画像データR、G、Bを求める演算式は、下記の(21)式となる。
【0285】
【数34】
Figure 0003874544
【0286】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24であり、hry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)であり、aq1〜aq6およびap1〜ap6は上記図33における演算係数発生器15において発生される演算係数である。
【0287】
なお、(21)式の演算項と図33における演算項の数の違いは、図33における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(21)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(21)式における24個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(r,hrm)、m×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(21)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0288】
ここで、6つの色相と上記比較データと色相データを用いた乗算項である2次演算項y×hry、y×hgy、c×hgc、c×hbc、m×hbm、m×hrmの関係は、図17(A)〜(F)に示す場合と同一であり、赤〜イエローにはy×hryのみが有効な2次演算項になり、同様に、イエロー〜緑にはy×hgy、緑〜シアンにはc×hgc、シアン〜青にc×hbc、青〜マゼンタにはm×hbm、マゼンタ〜赤にはm×hrmだけが有効な2次演算項となる。
【0289】
図34(a)および(b)は、6つの色相および色相間領域と有効な演算項の関係を示している。よって、係数発生器において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算器3bにおける演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0290】
以上より、特定の色相に関与する乗算項および色相データの比較データを用いた1次演算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、色相間領域に関与する1次項および2次項についてそれぞれに係る係数を変化させることで、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正でき、1次項と2次項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態21では入力画像データR、G、Bをに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0291】
また、上記実施の形態21では、ハードウェアにより図33の構成の処理を行う場合について説明しているが、色変換装置におけるソフトウェアにより同様の処理を行うことができることは言うまでもなく、上記実施の形態21と同様の効果を奏する。
【0292】
実施の形態22.
また、上記実施の形態21における図33による多項式演算器3bによれば、上記実施の形態18における図29の色変換装置により色変換された画像データC、M、Yを求める演算式は、下記の(22)式となる。
【0293】
【数35】
Figure 0003874544
【0294】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24であり、hry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)であり、aq1〜aq6およびap1〜ap6は上記図33における演算係数発生器15において発生される演算係数である。
【0295】
なお、(22)式の演算項と図33における演算項の数の違いは、図33における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(22)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(22)式における24個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(r,hrm)、m×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(22)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0296】
そして、上記(22)式の多項式演算器による演算項は、実施の形態21における(21)式の演算項と同一であり、したがって、6つの色相および色相間領域と有効な演算項の関係は図34(a)および(b)に示す場合と同一となる。よって、係数発生器において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算器3bにおける演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0297】
以上より、特定の色相に関与する乗算項および色相データによる比較データを用いた演算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、色相間領域に関与する1次項および2次項についてそれぞれに係る係数を変化させることで、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。また、2次演算項と1次演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態22では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0298】
実施の形態23.
また、上記実施の形態21における図33による多項式演算器3bによれば、上記実施の形態19における図30の色変換装置により色変換された画像データR、G、Bを求める演算式は、下記の(23)式となる。
【0299】
【数36】
Figure 0003874544
【0300】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0301】
なお、(23)式の演算項と図33での演算項の数の違いは、図33の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(23)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(23)式における25個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(r,hrm)、m×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(23)式の多項式データは、1画素について、25個のデータを7個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0302】
以上より、特定の色相に関与する乗算項および色相データによる比較データを用いた演算項と、色相間領域に関与する1次項および2次項についてそれぞれに係る係数を変化させることで、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態23では入力画像データR、G、Bに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0303】
実施の形態24.
また、上記実施の形態21における図33による多項式演算器3bによれば、上記実施の形態20における図32の色変換装置により色変換された補色データC、M、Yを求める演算式は、下記の(24)式となる。
【0304】
【数37】
Figure 0003874544
【0305】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0306】
なお、(24)式の演算項と図33での演算項の数の違いは、図33の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(24)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(24)式における25個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(r,hrm)、m×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(24)式の多項式データは、1画素について、25個のデータを7個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0307】
以上より、特定の色相に関与する乗算項および色相データによる比較データを用いた演算項と、色相間領域に関与する1次項および2次項についてそれぞれに係る係数を変化させることで、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態24では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0308】
実施の形態25.
さらに、多項式演算器3bの一構成例を図35に示すような構成の場合として、多項式データを演算することもできる。
【0309】
図35は、多項式演算器3の他の一構成例を示すブロック図である。図において、11、12a、12b、15〜17および30a、30bは上記実施の形態17の図25における多項式演算器のものと同一のものであり、18b、19bは上記実施の形態9での図19におけるものと同一である。
【0310】
次に、図35の動作を説明する。なお、ゼロ除去器11の動作、乗算器12a、12bによりT3=Q1×Q2、T1=P1×P2を出力する動作、最小値選択器30a、30bによりT8=min(Q1、Q2)、T7=min(P1、P2)を出力する動作、そして、演算係数発生器15、演算器16a、16b、最小値選択器17によりt6=min(aq×Q2、ap×P2)を出力する動作は、上記実施の形態17における図25での動作と同一であるので、その詳細な説明は省略する。
【0311】
最小値選択器17からの出力t6=min(aq×Q2、ap×P2)は、最小値選択器18bおよび乗算器19bへと出力され、最小値選択器18bにはゼロ除去器11からの出力データP1も入力されており、P1とt6=min(aq×Q2,ap×P2)の最小値T5´=min(P1,min(aq×Q2,ap×P2))を出力する。また、乗算器19bにはゼロ除去器11からの出力データP1と最小値選択器17からの出力t6が入力されており、P1とt6=min(aq×Q2,ap×P2)の乗算P1×t6を行い、積T6´=P1×min(aq×Q2,ap×P2)を出力する。したがって、多項式データT1、T3、T7、T8およびT5´、T6´が、図35における多項式演算器の出力となり、この多項式演算器の出力はマトリックス演算器4cまたは4dへと送られる。
【0312】
以上より、上記図35による多項式演算器3bによれば、上記実施の形態17における図24の色変換装置により色変換された画像データR、G、Bを求める演算式は、下記の(25)式となる。
【0313】
【数38】
Figure 0003874544
【0314】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24であり、hry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)であり、aq1〜aq6およびap1〜ap6は上記図35における演算係数発生器15において発生される演算係数である。
【0315】
なお、上記(25)式の演算項と図35における演算項の数の違いは、図35における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(25)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(25)式における24個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(m,hrm)、m×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(25)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0316】
ここで、6つの色相と上記比較データを用いた1次演算項min(y,hry)、min(y,hgy)、min(c,hgc)、min(c,hbc)、min(m,hbm)、min(m,hrm)の関係は、上記図20(A)〜(F)の場合と同一であり、赤〜イエローにはmin(y,hry)のみが有効な1次演算項になり、同様に、イエロー〜緑にはmin(y、hgy)、緑〜シアンにはmin(c、hgc)、シアン〜青にはmin(c、hbc)、青〜マゼンタにはmin(m、hbm)、マゼンタ〜赤にはmin(m、hrm)だけが有効な1次演算項となる。
【0317】
また、6つの色相と上記比較データと色相データを用いた乗算項である2次演算項y×hry、y×hgy、c×hgc、c×hbc、m×hbm、m×hrmの関係は、図17(A)〜(F)についての場合と同一であり、赤〜イエローに対してはy×hryのみが有効な2次演算項になり、イエロー〜緑にはy×hgy、緑〜シアンにはc×hgc、シアン〜青にc×hbc、青〜マゼンタにはm×hbm、マゼンタ〜赤にはm×hrmだけが有効な2次演算項となる。
【0318】
図36(a)および(b)は、6つの色相および色相間領域と有効な演算項の関係を示している。よって、係数発生器において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算器3bにおける演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0319】
以上より、特定の色相に関与する乗算項および色相データによる比較データを用いた演算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、色相間領域に関与する1次項および2次項についてそれぞれに係る係数を変化させることで、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。そして、1次項と2次項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができ、よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態25では入力画像データR、G、Bをに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0320】
また、上記実施の形態25では、ハードウェアにより図35の構成の処理を行う場合について説明しているが、色変換装置におけるソフトウェアにより同様の処理を行うことができることは言うまでもなく、上記実施の形態25と同様の効果を奏する。
【0321】
実施の形態26.
また、上記実施の形態25における図35による多項式演算器3bによれば、上記実施の形態18における図29の色変換装置により色変換された画像データC、M、Yを求める演算式は、下記の(26)式となる。
【0322】
【数39】
Figure 0003874544
【0323】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24であり、hry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)であり、aq1〜aq6およびap1〜ap6は上記図35における演算係数発生器15において発生される演算係数である。
【0324】
なお、(26)式の演算項と図35における演算項の数の違いは、図35における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(26)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(26)式における24個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(m,hrm)、m×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(26)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0325】
そして、上記(26)式の多項式演算器による演算項は、実施の形態25における(25)式の演算項と同一であり、したがって、6つの色相および色相間領域と有効な演算項の関係は図36(a)および(b)に示す場合と同一となる。よって、係数発生器において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算器3bにおける演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0326】
以上より、特定の色相に関与する乗算項および色相データによる比較データを用いた演算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、色相間領域に関与する1次項および2次項についてそれぞれに係る係数を変化させることで、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。また、2次演算項と1次演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態26では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0327】
実施の形態27.
また、上記実施の形態25における図35による多項式演算器3bによれば、上記実施の形態19における図30の色変換装置により色変換された画像データR、G、Bを求める演算式は、下記の(27)式となる。
【0328】
【数40】
Figure 0003874544
【0329】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0330】
なお、(27)式の演算項と図35での演算項の数の違いは、図35の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(27)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(27)式における25個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(m,hrm)、m×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(27)式の多項式データは、1画素について、25個のデータを7個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0331】
以上より、特定の色相に関与する乗算項および色相データによる比較データを用いた演算項と、色相間領域に関与する1次項および2次項についてそれぞれに係る係数を変化させることで、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態27では入力画像データR、G、Bに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0332】
実施の形態28.
また、上記実施の形態25における図35による多項式演算器3bによれば、上記実施の形態20における図32の色変換装置により色変換された補色データC、M、Yを求める演算式は、下記の(28)式となる。
【0333】
【数41】
Figure 0003874544
【0334】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0335】
なお、(28)式の演算項と図35での演算項の数の違いは、図35の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(28)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(28)式における25個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(m,hrm)、m×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(28)式の多項式データは、1画素について、25個のデータを7個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0336】
以上より、特定の色相に関与する乗算項および色相データによる比較データを用いた演算項と、色相間領域に関与する1次項および2次項についてそれぞれに係る係数を変化させることで、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態28では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0337】
実施の形態29.
さらに、多項式演算器3bの一構成例を図37に示すような場合とし、多項式データを演算することもできる。
【0338】
図37は、多項式演算器3の他の一構成例を示すブロック図である。図において、11、12a、12b、15〜17、19および30a、30bは上記実施の形態17の図25における多項式演算器のものと同一のものであり、18bは上記実施の形態13での図22におけるものと同一である。
【0339】
次に、図37の動作を説明する。なお、ゼロ除去器11の動作、乗算器12a、12b、によりT3=Q1×Q2、T1=P1×P2を出力し、最小値選択器30a、30bによりT8=min(Q1、Q2)、T7=min(P1、P2)を出力する動作、および演算係数発生器15、演算器16a、16b、最小値選択器17によりt6=min(aq×Q2、ap×P2)を出力するまでの動作は、上記実施の形態17における図25での動作と同一であるので、その詳細な説明は省略する。
【0340】
最小値選択器17からの出力t6=min(aq×Q2、ap×P2)は、最小値選択器18bおよび乗算器19へと出力され、最小値選択器18bにはゼロ除去器11からの出力データP1も入力されており、P1とt6=min(aq×Q2,ap×P2)の最小値T5´=min(P1,min(aq×Q2,ap×P2))を出力する。
また、乗算器19にはゼロ除去器11からの出力データQ1と最小値選択器17からの出力t6が入力されており、Q1とt6=min(aq×Q2,ap×P2)の乗算Q1×t6を行い、積T6=Q1×min(aq×Q2,ap×P2)を出力する。したがって、多項式データT1、T3、T7、T8、T6およびT5´が、図37における多項式演算器の出力となり、この多項式演算器の出力はマトリックス演算器4cまたは4dへと送られる。
【0341】
以上より、上記図37による多項式演算器3bによれば、上記実施の形態17における図24の色変換装置により色変換された画像データR、G、Bを求める演算式は、下記の(29)式となる。
【0342】
【数42】
Figure 0003874544
【0343】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24であり、hry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)であり、aq1〜aq6およびap1〜ap6は上記図37における演算係数発生器15において発生される演算係数である。
【0344】
なお、上記(29)式の演算項と図37における演算項の数の違いは、図37における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(29)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(29)式における24個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(m,hrm)、r×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(29)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0345】
ここで、6つの色相と上記比較データを用いた1次演算項min(y,hry)、min(y,hgy)、min(c,hgc)、min(c,hbc)、min(m,hbm)、min(m,hrm)の関係は、上記図20(A)〜(F)と同一であり、また、6つの色相と上記比較データと色相データを用いた乗算項である2次演算項r×hry、g×hgy、g×hgc、b×hbc、b×hbm、r×hrmの関係は、上記図10(A)〜(F)の場合と同一である。したがって、各比較データを用いた1次演算項および2次演算項が赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の中間領域の変化に関与していることが分かり、赤〜イエローに対してはmin(y,hry)とr×hry、イエロー〜緑にはmin(y、hgy)とg×hgy、緑〜シアンにはmin(c、hgc)とg×hgc、シアン〜青にmin(c、hbc)とb×hbc、青〜マゼンタにはmin(m、hbm)とb×hbm、マゼンタ〜赤にはmin(m、hrm)とr×hrmが有効な1次演算項および2次演算項となる。
【0346】
図38(a)および(b)は、6つの色相および色相間領域と有効な演算項の関係を示している。よって、係数発生器において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算器3bにおける演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0347】
以上より、特定の色相に関与する乗算項および色相データによる比較データを用いた演算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、色相間領域に関与する1次項および2次項についてそれぞれに係る係数を変化させることで、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。そして、1次項と2次項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができ、よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態29では入力画像データR、G、Bをに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0348】
また、上記実施の形態29では、ハードウェアにより図37の構成の処理を行う場合について説明しているが、色変換装置におけるソフトウェアにより同様の処理を行うことができることは言うまでもなく、上記実施の形態29と同様の効果を奏する。
【0349】
実施の形態30.
また、上記実施の形態29における図37による多項式演算器3bによれば、上記実施の形態18における図29の色変換装置により色変換された画像データC、M、Yを求める演算式は、下記の(30)式となる。
【0350】
【数43】
Figure 0003874544
【0351】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)ではi=1〜3、j=1〜24であり、hry=min(aq1×g、ap1×m)、hrm=min(aq2×b、ap2×y)、hgy=min(aq3×r、ap3×c)、hgc=min(aq4×b、ap4×y)、hbm=min(aq5×r、ap5×c)、hbc=min(aq6×g、ap6×m)であり、aq1〜aq6およびap1〜ap6は上記図37における演算係数発生器15において発生される演算係数である。
【0352】
なお、(30)式の演算項と図37における演算項の数の違いは、図37における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(30)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(30)式における24個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(m,hrm)、r×hrmの6個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、24個の演算項のうち6個の演算項を除く18個のデータはゼロとなり、したがって、(30)式の多項式データは、1画素について、24個のデータを6個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0353】
そして、上記(30)式の多項式演算器による演算項は、実施の形態29における(29)式の演算項と同一であり、したがって、6つの色相および色相間領域と有効な演算項の関係は図38(a)および(b)に示す場合と同一となる。よって、係数発生器において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算器3bにおける演算係数発生器15での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。
【0354】
以上より、特定の色相に関与する乗算項および色相データによる比較データを用いた演算項に係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目している色相のみを、他の色相に影響を与えることなく調整でき、更に、色相間領域に関与する1次項および2次項についてそれぞれに係る係数を変化させることで、赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。また、2次演算項と1次演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができる。また、上記実施の形態30では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0355】
実施の形態31.
また、上記実施の形態29における図37による多項式演算器3bによれば、上記実施の形態19における図30の色変換装置により色変換された画像データR、G、Bを求める演算式は、下記の(31)式となる。
【0356】
【数44】
Figure 0003874544
【0357】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0358】
なお、(31)式の演算項と図37での演算項の数の違いは、図37の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(31)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(31)式における25個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(m,hrm)、r×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(31)式の多項式データは、1画素について、25個のデータを7個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0359】
以上より、特定の色相に関与する乗算項および色相データによる比較データを用いた演算項と、色相間領域に関与する1次項および2次項についてそれぞれに係る係数を変化させることで、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態31では入力画像データR、G、Bに対して色変換を行うので、R、G、Bで表現する画像データを使用して画像処理を行う装置やモニタ等の表示装置において良好な色再現を行い、より効果を得ることが出来る。
【0360】
実施の形態32.
また、上記実施の形態29における図37による多項式演算器3bによれば、上記実施の形態20における図32の色変換装置により色変換された補色データC、M、Yを求める演算式は、下記の(32)式となる。
【0361】
【数45】
Figure 0003874544
【0362】
ここで、(Eij)ではi=1〜3、j=1〜3、(Fij)i=1〜3、j=1〜25である。
【0363】
なお、(32)式の演算項と図37での演算項の数の違いは、図37の多項式データ演算器における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、(32)式は画素集合に対する一般式を開示している点にある。すなわち、上記実施の形態の場合と同様、6つの色相データには少なくとも2つのデータがゼロになる性質があり、例えば、最大値βがRi、最小値αがGiである識別符号S1=0の場合は、g=0、c=0であり、よって、(32)式における25個の演算項のうちm×y、b×r、min(b、r)、min(m、y)、min(m,hrm)、r×hrmおよびαの7個の演算項を除く他の18個のデータはゼロとなる。他の識別符号の場合も同様に、色相データのうち少なくとも2つのデータがゼロとなるので、25個の演算項のうち7個の演算項を除く18個のデータはゼロとなり、したがって、(32)式の多項式データは、1画素について、25個のデータを7個の有効データに削減できることとなり、この削減は、色相データの性質を巧みに活用して達成している。また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像データでは全ての多項式データが有効になる。
【0364】
以上より、特定の色相に関与する乗算項および色相データによる比較データを用いた演算項と、色相間領域に関与する1次項および2次項についてそれぞれに係る係数を変化させることで、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整でき、1次項、2次項である各演算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができるのみならず、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換装置または色変換方法を得ることができ、また、上記実施の形態32では入力画像データR、G、Bを補色データC、M、Yに変換後、補色データC、M、Yに対して色変換を行うので、印刷装置等における印刷データC、M、Yの色変換のおいて良好な色再現を行い、より効果を得ることが出来る。
【0365】
【発明の効果】
本発明による色変換装置および色変換方法は、赤、イエロー、緑、シアン、青、マゼンタの隣接する色相間内の領域に有効な演算項を用いたマトリクス演算を行うことにより第2の色データを算出するので、大容量のメモリを必要とすることなく、上記色相間内の領域の色を独立に変換することができる
【図面の簡単な説明】
【図1】 実施の形態1による色変換装置の構成の一例を示すブロック図である。
【図2】 実施の形態1による色変換装置における多項式演算器3の構成の一例を示すブロック図である。
【図3】 実施の形態1による色変換装置における識別符号S1と最大値βおよび最小値α、0となる色相データの関係の一例を示す図である。
【図4】 実施の形態1による色変換装置における多項式演算器3のゼロ除去器11の動作を説明するための図である。
【図5】 実施の形態1による色変換装置におけるマトリックス演算器4の一部分の構成の一例を示すブロック図である。
【図6】 6つの色相と色相データの関係を模式的に示した図である。
【図7】 実施の形態1による色変換装置における乗算項と色相の関係を模式的に示した図である。
【図8】 実施の形態1による色変換装置における比較データによる1次項と色相の関係を模式的に示した図である。
【図9】 実施の形態1による色変換装置における多項式演算器3の演算係数発生器15において、演算係数を変化させた場合の比較データによる1次項と色相の関係を模式的に示した図である。
【図10】 実施の形態1による色変換装置における比較データによる2次項と色相の関係を模式的に示した図である。
【図11】 実施の形態1による色変換装置において各色相および色相間の領域に関与し、有効となる演算項の関係を示した図である。
【図12】 実施の形態2による色変換装置の構成の一例を示すブロック図である。
【図13】 実施の形態3による色変換装置の構成の一例を示すブロック図である。
【図14】 実施の形態3による色変換装置におけるマトリックス演算器4bの一部分の構成の一例を示す図である。
【図15】 実施の形態4による色変換装置の構成の一例を示すブロック図である。
【図16】 実施の形態5による色変換装置における多項式演算器3の他の構成の一例を示すブロック図である。
【図17】 実施の形態5による色変換装置における比較データによる2次項と色相の関係を模式的に示した図である。
【図18】 実施の形態5による色変換装置において各色相および色相間の領域に関与し、有効となる演算項の関係を示した図である。
【図19】 実施の形態9による色変換装置における多項式演算器3の他の構成の一例を示すブロック図である。
【図20】 実施の形態9による色変換装置における比較データによる1次項と色相の関係を模式的に示した図である。
【図21】 実施の形態9による色変換装置において各色相および色相間の領域に関与し、有効となる演算項の関係を示した図である。
【図22】 実施の形態13による色変換装置における多項式演算器3の他の構成の一例を示すブロック図である。
【図23】 実施の形態13による色変換装置において各色相および色相間の領域に関与し、有効となる演算項の関係を示した図である。
【図24】 実施の形態17による色変換装置の構成の一例を示すブロック図である。
【図25】 実施の形態17による色変換装置における多項式演算器3bの構成の一例を示すブロック図である。
【図26】 実施の形態17による色変換装置におけるマトリックス演算器4cの一部分の構成の一例を示すブロック図である。
【図27】 実施の形態17による色変換装置における1次演算項と色相の関係を模式的に示した図である。
【図28】 実施の形態17による色変換装置において各色相および色相間の領域に関与し、有効となる演算項の関係を示した図である。
【図29】 実施の形態18による色変換装置の構成の一例を示すブロック図である。
【図30】 実施の形態19による色変換装置の構成の一例を示すブロック図である。
【図31】 実施の形態19による色変換装置におけるマトリックス演算器4dの一部分の構成の一例を示す図である。
【図32】 実施の形態20による色変換装置の構成の一例を示すブロック図である。
【図33】 実施の形態21による色変換装置における多項式演算器3bの他の構成の一例を示すブロック図である。
【図34】 実施の形態21による色変換装置において各色相および色相間の領域に関与し、有効となる演算項の関係を示した図である。
【図35】 実施の形態25による色変換装置における多項式演算器3bの他の構成の一例を示すブロック図である。
【図36】 実施の形態25による色変換装置において各色相および色相間の領域に関与し、有効となる演算項の関係を示した図である。
【図37】 実施の形態29による色変換装置における多項式演算器3bの他の構成の一例を示すブロック図である。
【図38】 実施の形態29による色変換装置において各色相および色相間の領域に関与し、有効となる演算項の関係を示した図である。
【図39】 従来の色変換装置の構成の一例を示すブロック図である。
【図40】 従来の色変換装置における6つの色相と色相データの関係を模式的に示した図である。
【図41】 従来の色変換装置におけるマトリックス演算器104での乗算項と色相の関係を模式的に示した図である。
【符号の説明】
1、1b:αβ算出器 2、2b:色相データ算出器
3、3b:多項式演算器 4、4b〜4d:マトリックス演算器
5、5b〜5d:係数発生器 6:合成器
10:補数器 11:ゼロ除去器
12a、12b:乗算器 13a、13b:加算器
14a、14b:除算器 15:演算係数発生器
16a、16b:演算器 17:最小値選択器
18、18b:最小値選択器 19、19b:乗算器
20a〜20g:乗算器 21a〜21f:加算器
22:乗算器 23:加算器
30a、30b:最小値選択器

Claims (8)

  1. カラー画像を表す第1の色データを、当該第1の色データに対応する第2の色データに変換する色変換装置であって、
    上記第1の色データにより表されるカラー画像を構成する複数の色成分の大きさを表す色相データを求める色相データ算出手段と、
    上記色相データを用いて上記カラー画像における、赤、イエロー、緑、シアン、青、マゼンタのいずれかの色相に有効な第1の演算項を生成する手段と、
    上記色相データを用いて、赤、イエロー、緑、シアン、青、マゼンタの隣接する色相間内の領域に有効な第2の演算項を生成する手段と、
    上記第1および第2の演算項に与えられる所定のマトリクス係数を出力するマトリクス係数発生手段と、
    上記第1および第2の演算項と、上記マトリクス係数との乗算を含むマトリクス演算により上記第2の色データを求めるマトリクス演算手段とを備え、
    上記第2の演算項を生成する手段は、上記色相間内の領域における色の彩度に対して1次の関数となる演算項、および当該彩度に対して2次の関数となる演算項を上記第2の演算項として生成することを特徴とする色変換装置。
  2. 上記色相データ算出手段は、赤、緑、青の各成分の大きさを表す第1の色データRi,Gi,Bi、および当該第1の色データRi,Gi,Biの最小値αおよび最大値βを用いて算出される、上記カラー画像における赤、緑、青、イエロー、マゼンタ、シアンの各色成分の大きさを表すデータr=Ri−α,g=Gi−α,b=Bi−α,y=β−Bi,m=β−Gi,c=β−Riを上記色相データとして算出することを特徴とする請求項1に記載の色変換装置。
  3. 上記色相データ算出手段は、赤、緑、青の各成分の大きさを表す第1の色データRi,Gi,Biに補数処理を行うことにより、マゼンタ、シアン、イエローの各成分の大きさを表す補色データMi,Ci,Yiを算出する補数手段を備え、
    上記補色データMi,Ci,Yi、および当該補色データMi,Ci,Yiの最小値αおよび最大値βを用いて算出される、上記カラー画像における赤、緑、青、イエロー、マゼンタ、シアンの各色成分の大きさを表すデータr=β−Ci,g=β−Mi,b=β−Yi,y=Yi−α,m=Mi−α,c=Ci−αを上記色相データとして算出することを特徴とする請求項1に記載の色変換装置。
  4. 上記第2の演算項を生成する手段は、上記色相間内における特定の領域を指定するための係数ap1〜ap6,aq1〜aq6を発生する係数発生手段を備え、上記色相データに上記係数を乗じた乗算値を用いて、上記色相間内の領域における色の彩度に対して1次の関数となる演算項hry=min(aq1×g,ap1×m)、hrm=min(aq2×b,ap2×y)、hgy=min(aq3×r,ap3×c)、hgc=min(aq4×b,ap4×y)、hbm=min(aq5×r,ap5×c)、hbc=min(aq6×g,ap6×m)、および上記色相間内の領域における色の彩度に対して2次の関数となる演算項r×hry、r×hrm、g×hgy、g×hgc、b×hbm、b×hbcからなる上記第2の演算項を算出することを特徴とする請求項2または3に記載の色変換装置。
  5. カラー画像を表す第1の色データを、当該第1の色データに対応する第2の色データに変換する色変換方法であって、
    上記第1の色データにより表されるカラー画像を構成する複数の色成分の大きさを表す色相データを求める工程と、
    上記色相データを用いて上記カラー画像における、赤、イエロー、緑、シアン、青、マゼンタのいずれかの色相に有効な第1の演算項を生成する工程と、
    上記色相データを用いて、赤、イエロー、緑、シアン、青、マゼンタの隣接する色相間内の領域に有効な第2の演算項を生成する工程と、
    上記第1および第2の演算項に与えられる所定のマトリクス係数を出力する工程と、
    上記第1および第2の演算項と、上記マトリクス係数との乗算を含むマトリクス演算により上記第2の色データを求める工程とを備え、
    上記第2の演算項は、上記色相間内の領域における色の彩度に対して1次の関数となる演算項、および当該彩度に対して2次の関数となる演算項からなることを特徴とする色変換方法。
  6. 赤、緑、青の各成分の大きさを表す第1の色データRi,Gi,Bi、および当該第1の色データRi,Gi,Biの最小値αおよび最大値βを用いて算出される、上記カラー画像における赤、緑、青、イエロー、マゼンタ、シアンの各色成分の大きさを表すデータr=Ri−α,g=Gi−α,b=Bi−α,y=β−Bi,m=β−Gi,c=β−Riを上記色相データとして算出することを特徴とする請求項5に記載の色変換方法。
  7. 赤、緑、青の各成分の大きさを表す第1の色データRi,Gi,Biに補数処理を行うことにより、マゼンタ、シアン、イエローの各成分の大きさを表す補色データMi,Ci,Yiを算出し、
    上記補色データMi,Ci,Yi、および当該補色データMi,Ci,Yiの最小値αおよび最大値βを用いて算出される、上記カラー画像における赤、緑、青、イエロー、マゼンタ、シアンの各色成分の大きさを表すデータr=β−Ci,g=β−Mi,b=β−Yi,y=Yi−α,m=Mi−α,c=Ci−αを上記色相データとして算出することを特徴とする請求項5に記載の色変換装置。
  8. 上記色相間内における特定の領域を指定するための係数ap1〜ap6,aq1〜aq6を発生し、上記色相データに上記係数を乗じた乗算値を用いて、上記色相間内の領域における色の彩度に対して1次の関数となる演算項hry=min(aq1×g,ap1×m)、hrm=min(aq2×b,ap2×y)、hgy=min(aq3×r,ap3×c)、hgc=min(aq4×b,ap4×y)、hbm=min(aq5×r,ap5×c)、hbc=min(aq6×g,ap6×m)、および上記色相間内の領域における色の彩度に対して2次の関数となる演算項r×hry、r×hrm、g×hgy、g×hgc、b×hbm、b×hbcからなる上記第2の演算項を算出することを特徴とする請求項6または7に記載の色変換方法。
JP19593198A 1993-08-27 1998-07-10 色変換装置および色変換方法 Expired - Fee Related JP3874544B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19593198A JP3874544B2 (ja) 1998-07-10 1998-07-10 色変換装置および色変換方法
US09/349,946 US6766049B2 (en) 1993-08-27 1999-07-08 Color conversion device and method
US10/656,268 US6904167B2 (en) 1998-07-10 2003-09-08 Color conversion device and method
US10/862,461 US7146044B2 (en) 1994-08-18 2004-06-08 Color conversion device and method
US12/326,611 USRE41199E1 (en) 1994-08-18 2008-12-02 Color conversion device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19593198A JP3874544B2 (ja) 1998-07-10 1998-07-10 色変換装置および色変換方法

Publications (3)

Publication Number Publication Date
JP2000032283A JP2000032283A (ja) 2000-01-28
JP2000032283A5 JP2000032283A5 (ja) 2005-09-15
JP3874544B2 true JP3874544B2 (ja) 2007-01-31

Family

ID=16349365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19593198A Expired - Fee Related JP3874544B2 (ja) 1993-08-27 1998-07-10 色変換装置および色変換方法

Country Status (2)

Country Link
US (4) US6766049B2 (ja)
JP (1) JP3874544B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3584964B2 (ja) * 1999-10-14 2004-11-04 三菱電機株式会社 色変換装置及び色変換方法
EP1379077B1 (en) * 2001-04-13 2006-08-23 Mitsubishi Denki Kabushiki Kaisha Color conversion apparatus and color conversion method
US7956823B2 (en) * 2001-05-30 2011-06-07 Sharp Kabushiki Kaisha Color display device, color compensation method, color compensation program, and storage medium readable by computer
US8331663B2 (en) * 2007-06-28 2012-12-11 Qualcomm Incorporated Efficient image compression scheme to minimize storage and bus bandwidth requirements
JP5268617B2 (ja) * 2008-12-17 2013-08-21 キヤノン株式会社 画像形成装置、画像形成装置の制御方法及びコンピュータプログラム

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2050751B (en) 1979-05-30 1983-06-29 Crosfield Electronics Ltd Image-reproduction apparatus
US4665435A (en) * 1983-06-16 1987-05-12 Matsushita Electric Industrial Co., Ltd. Method and circuit arrangement for producing color picture signals for color reproduction
DE3347049C2 (de) 1983-12-24 1986-07-17 Dr.-Ing. Rudolf Hell Gmbh, 2300 Kiel Verfahren und Schaltungsanordnung zur Simulierung eines Mehrfarbendrucks auf einem Farbmonitor
JP2538555B2 (ja) 1985-07-16 1996-09-25 富士写真フイルム株式会社 画像ハ−ドコピ−作成装置
JPS6339188A (ja) 1986-08-01 1988-02-19 Oki Electric Ind Co Ltd フアイル入出力装置
DE3808818A1 (de) * 1987-03-16 1988-09-29 Mitsubishi Electric Corp Vorrichtung zur farbumsetzung
JPS63227181A (ja) 1987-03-16 1988-09-21 Mitsubishi Electric Corp 色変換法
JPS6428586A (en) 1987-07-23 1989-01-31 Nuclear Fuel Ind Ltd Nuclear fuel clad tube and manufacture thereof
US4989079A (en) 1987-10-23 1991-01-29 Ricoh Company, Ltd. Color correction device and method having a hue area judgement unit
JPH0821883B2 (ja) 1988-07-20 1996-03-04 松下電器産業株式会社 エコーキャンセラ
JP2887158B2 (ja) * 1989-06-14 1999-04-26 富士ゼロックス株式会社 画像処理装置
JP3008472B2 (ja) * 1990-10-05 2000-02-14 ブラザー工業株式会社 カラー画像処理装置
US5933252A (en) 1990-11-21 1999-08-03 Canon Kabushiki Kaisha Color image processing method and apparatus therefor
JP3082289B2 (ja) 1991-05-14 2000-08-28 富士ゼロックス株式会社 画像処理装置
JP2998278B2 (ja) * 1991-05-14 2000-01-11 富士ゼロックス株式会社 カラー画像記録装置におけるモノカラー編集方法及び装置
JP2734237B2 (ja) 1991-08-16 1998-03-30 三菱電機株式会社 カラー画像シミュレート方法
JP2994153B2 (ja) 1991-12-03 1999-12-27 株式会社リコー 色信号変換装置
JPH05183742A (ja) 1991-12-27 1993-07-23 Seiko Instr Inc 色補正パラメータ決定装置
US5963201A (en) * 1992-05-11 1999-10-05 Apple Computer, Inc. Color processing system
JPH06276399A (ja) * 1993-03-24 1994-09-30 Minolta Camera Co Ltd 画像処理装置
JP3128429B2 (ja) 1993-08-27 2001-01-29 三菱電機株式会社 画像処理方法および装置
JPH08321964A (ja) 1995-03-20 1996-12-03 Fuji Photo Film Co Ltd 色補正装置
US5809213A (en) 1996-02-23 1998-09-15 Seiko Epson Corporation Automatic color calibration of a color reproduction system
JPH1117974A (ja) 1997-06-20 1999-01-22 Matsushita Graphic Commun Syst Inc 画像処理装置
JP3432414B2 (ja) 1998-04-20 2003-08-04 三菱電機株式会社 色変換装置および色変換方法
JP3432468B2 (ja) 1999-01-27 2003-08-04 三菱電機株式会社 色変換装置および色変換方法
JP3611490B2 (ja) 1999-10-14 2005-01-19 三菱電機株式会社 色変換装置及び色変換方法
JP3652194B2 (ja) 1999-12-09 2005-05-25 三菱電機株式会社 画像表示装置
JP3560521B2 (ja) 1999-12-09 2004-09-02 三菱電機株式会社 画像表示装置

Also Published As

Publication number Publication date
US20040051890A1 (en) 2004-03-18
JP2000032283A (ja) 2000-01-28
USRE41199E1 (en) 2010-04-06
US6904167B2 (en) 2005-06-07
US6766049B2 (en) 2004-07-20
US20040223642A1 (en) 2004-11-11
US20030152265A1 (en) 2003-08-14
US7146044B2 (en) 2006-12-05

Similar Documents

Publication Publication Date Title
JP3432414B2 (ja) 色変換装置および色変換方法
JP3432468B2 (ja) 色変換装置および色変換方法
JP3611490B2 (ja) 色変換装置及び色変換方法
JP3698118B2 (ja) 色変換装置および色変換方法
JP2001111854A5 (ja)
US20050185840A1 (en) Color conversion device and color conversion mehtod
JP2004013385A5 (ja)
JPWO2003034710A1 (ja) 色変換装置および色変換方法
JP3807883B2 (ja) 色変換装置及び色変換方法
JP2001111857A5 (ja)
JP3560521B2 (ja) 画像表示装置
JP2001111855A5 (ja)
USRE41199E1 (en) Color conversion device and method
JP2000032283A5 (ja)
US6839150B1 (en) Color conversion device and color conversion method
JP3434814B2 (ja) 色変換装置および色変換方法
JP3434815B2 (ja) 色変換装置および色変換方法
JP3807920B2 (ja) 色変換装置及び色変換方法
JP3871495B2 (ja) 色変換装置及び色変換方法
JP3611491B2 (ja) 色変換方法及び色変換装置
JP3584971B2 (ja) 色変換方法及び色変換装置
JP2001186370A5 (ja)
JP2001111856A5 (ja)
JPWO2002084994A1 (ja) 色変換装置および色変換方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees