JP3872305B2 - 太陽電池及びその製造方法 - Google Patents

太陽電池及びその製造方法 Download PDF

Info

Publication number
JP3872305B2
JP3872305B2 JP2001071610A JP2001071610A JP3872305B2 JP 3872305 B2 JP3872305 B2 JP 3872305B2 JP 2001071610 A JP2001071610 A JP 2001071610A JP 2001071610 A JP2001071610 A JP 2001071610A JP 3872305 B2 JP3872305 B2 JP 3872305B2
Authority
JP
Japan
Prior art keywords
main surface
solar cell
electrode
single crystal
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001071610A
Other languages
English (en)
Other versions
JP2002270864A (ja
Inventor
武紀 渡部
寛之 大塚
正俊 高橋
聡之 生島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001071610A priority Critical patent/JP3872305B2/ja
Priority to PCT/JP2002/000702 priority patent/WO2002061851A1/ja
Priority to KR1020037009945A priority patent/KR100831291B1/ko
Priority to US10/470,242 priority patent/US7294779B2/en
Priority to EP02711237A priority patent/EP1365455A4/en
Priority to CNB028043731A priority patent/CN1274032C/zh
Publication of JP2002270864A publication Critical patent/JP2002270864A/ja
Application granted granted Critical
Publication of JP3872305B2 publication Critical patent/JP3872305B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、機械的強度に優れた太陽電池及びその製造方法に関する。
【0002】
【従来の技術】
太陽電池の高効率化のために、受光面あるいは太陽電池の裏面に形成される電極の形状を工夫したものが多数ある。これらのうちでも、本発明に関連する電極コンタクト用溝部もしくは有底孔を半導体単結晶基板に機械的に刻設し、その溝部あるいは有底孔に電極となる金属を充填したような太陽電池が、例えば、2000年にアンカレジで開催された、第28回IEEE Photovoltaic Specialists Conferenceにおいて、2つの研究グループにより公知となっている。
【0003】
太陽電池の電極コンタクト用溝部を機械的に刻設する方法はドイツInstitut fur Solarenergieforschung Hameln/Emmerthalのグループによって、電極コンタクト用孔を機械的に刻設する方法はドイツFranhofer Institute for Solar Energy Systems ISEのグループによって、それぞれ独立に考案された。例えば、電極コンタクト用溝部を刻設する方法は具体的には以下のようである。酸化シリコン膜(もしくは窒化シリコン膜)等の絶縁膜を形成した半導体単結晶基板(例えば、シリコン単結晶基板等)上に、電極コンタクト用として、略平行の複数の溝部を機械的に刻設する。溝部の深さは5〜50μm、溝部の幅は数百μm程度とする。溝部は、数百〜数千枚からなる高速回転刃を、一回、もしくは数回基板上を走査して作製される。これらの溝部を刻設後、この主表面上に一様に金属を堆積し電極層とする。
【0004】
また、上記の電極コンタクト用として、一定間隔にて直線状に配列する形態に有底孔を形成することも可能である。この場合、有底孔の深さは溝部を形成した場合と同様に5〜50μm、有底孔の開口部の径は数百μm程度とされる。このような有底孔は、KrFエキシマレーザーもしくはNd:YAGレーザー等を所定の場所に照射することで形成される。
【0005】
これら方法によれば、表面の非コンタクト領域は、絶縁膜によりパッシベーション処理されており、光発生キャリアの表面再結合を抑え、太陽電池の高効率化に有効である。また、この方法は、溝部あるいは有底孔の形成のためにフォトリソ等の技術を必要としないため、比較的容易に電極コンタクト用の溝部もしくは有底孔の作製が可能である。
【0006】
【発明が解決しようとする課題】
一方、現在太陽電池に強く要求されているのは、高効率化及び低コスト化である。これらのうちで低コスト化は、薄型化により太陽電池に使用される単位面積あたりの半導体単結晶基板量を低減することで実現可能である。しかしながら、半導体単結晶基板を薄型化させると、作製される太陽電池の機械的強度が低下する。さらに、本発明者等によると前述した方法のように半導体単結晶基板に溝部あるいは有底孔を設けて電極を作製した場合、基板本体にダメージを与えることになるため機械的強度がさらに低下する場合があることがわかった。
【0007】
本発明の課題は、機械的強度に優れた太陽電池及びその製造方法を提供することにある。
【0008】
【課題を解決するための手段及び作用・効果】
上記課題を解決するために本発明の太陽電池は、面方位が略{100}である半導体単結晶基板の主表面の少なくともいずれかの側に該主表面が窪む形態にて凹部が形成され、該凹部は該主表面における配置形態が直線状になるように形成されるとともに、該凹部の内部全体に出力取出用の電極をなす導電体が充填された形態の充電電極ラインが複数形成されており、前記主表面上における前記各充填電極ラインの形成方向は、該形成方向に最も近い<110>方向とのなす鋭角側の角度が30°〜45°に形成されていることを特徴とする。
【0009】
さらに、上記のような本発明の太陽電池の製造方法は、面方位が略{100}である半導体単結晶基板の主表面の少なくともいずれかの側に該主表面が窪む形態にて凹部が形成され、該凹部は該主表面における配置形態が直線状になるように形成されるとともに、該凹部の内部全体に出力取出用の電極をなす導電体が充填された形態の前記主表面上における充填電極ラインの形成方向は、該形成方向に最も近い<110>方向とのなす鋭角側の角度が30°〜45°にて形成することを特徴とする。なお、本発明において電極をなす導電体としては、金属や透明導電層、あるいはこれらを順次積層させたものを使用することができる。
【0010】
なお、本明細書において充填電極ラインとは、半導体単結晶基板の主表面上に該主表面が窪む形態にて凹部を形成し、該凹部を電極をなす導電体にて充填することにより形成されるものであって、その凹部の半導体単結晶基板の主表面上における配置形態が直線状となるように形成されるものの総称である。例えば、上記充填電極ラインとは、半導体単結晶基板の主表面上に凹部として溝部を複数形成し、該各溝部を電極となる導電体にて充填させたものを例示することができる。また、半導体単結晶基板の主表面上に一定間隔にて直線状に複数の有底孔を形成し、該各有底孔を電極となる導電体にて充填させたものを例示することができる。さらに、このような充填電極ラインにおいて、その形成方向とは、直線状に形成される該充填電極ラインの、その直線方向をいうものとする。例えば、凹部として溝部を形成した場合においては、その溝部の長手方向をいうものとし、凹部として有底孔を形成した場合は、その各有底孔の最近接有底孔同士を結ぶ直線の方向をいうものとする。
【0011】
シリコン単結晶基板を始めとする半導体単結晶基板を用いて太陽電池を形成する場合、その主表面に形成される電極の配置方向については、従来、何らの考慮も払われてこなかった。しかしながら、本発明者らによれば、面方位が{100}である半導体単結晶基板(以下、単に{100}基板ともいう)の主表面上に上記のような充填電極ラインを、基板の主表面上において<110>方向に沿って形成すると、その形成方向に沿って半導体単結晶基板が容易に劈開し、破壊に至る場合があることがわかった。
【0012】
そこで、本発明においては、{100}基板の主表面に形成される各充填電極ラインの形成方向を、その形成方向に最も近い<110>方向とのなす鋭角側の角度が30°〜45°に設定することで、基板ひいては得られる太陽電池の機械的強度を大幅に向上することができ、特に、半導体単結晶基板の薄膜化を図った場合であっても、太陽電池の最終製品あるいは中間製品のハンドリングに際して、破壊等の不具合が発生することを効果的に防止ないし抑制することができる。
【0013】
さらに、太陽電池の製造方法において、その主表面に充填電極ラインを形成するに際して、その形成方向を、その形成方向に最も近い<110>方向とのなす鋭角側の角度が30°〜45°に形成することにより、太陽電池の製造途中における半導体単結晶基板の破壊等の不具合が発生することを効果的に防止ないし抑制することも可能である。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について図面を用いながら説明するが本発明は本実施の形態に限定されるものではない。図1(a)は本発明の一実施形態である太陽電池1を示すものである。さらに、図2はその第一主表面3a側の構造を拡大して示す断面模式図である。該太陽電池1においては、p型シリコン単結晶基板3(以下、単に基板3ともいう)の第一主表面3a(本実施形態においては、該主表面を裏面とする)上に、例えば幅数100μm程度、深さ100μm程度の多数の溝部2が互いに略平行に形成されており、該各溝部2が導電体5にて充填されて充填電極ライン40が形成されている(図1(a))。これらの溝部2は、例えば、同軸的に結合された一体回転する数百枚から数千枚の回転刃により一括刻設することができるが、数回の操作に分けて刻設してもよい。なお、本実施の形態においては、半導体単結晶基板として、シリコン単結晶インゴットから切り出されたp型シリコン単結晶基板3が使用されているが、本発明はこれに限られるものではない。
【0015】
さらに、本実施形態においては、p型シリコン単結晶基板(半導体単結晶基板)3の第一主表面3a上に絶縁膜4が形成されている。さらに、各充填電極ライン40を形成する溝部2が絶縁膜4を貫通する形態にて、各充填電極ライン40に充填された導電体5がp型シリコン単結晶基板3と接触するように形成されている。
【0016】
また、本実施の形態にかかる太陽電池1においては、p型シリコン単結晶基板3の第一主表面3a上に形成されている充填電極ライン40と連通する集電用電極が、該第一主表面3a上に形成されており、該集電用電極は、第一主表面3a全面を覆う形態の被膜電極層10として形成されている。なお、p型シリコン単結晶基板3上に形成される絶縁膜4としては、酸化シリコン膜、あるいは窒化シリコン膜等が好適に使用される。
【0017】
上記のような本実施形態の太陽電池1においては、p型シリコン単結晶基板3の第一主表面3aの面方位が{100}であって、各充填電極ラインを形成する溝部2は、第一主表面3a上において<110>方向と一致しない向きに形成されている。これにより、太陽電池1の機械的強度が向上する。なお、本明細書において、使用する単結晶基板の結晶主軸が、オフアングル付与により<100>から6゜程度まで傾いていても、該基板は{100}の面方位を有するものとみなす。
【0018】
図1(a)に示すように、{100}基板の第一主表面3aには、互いに直交する2つの<110>方向があるが、溝部2の形成方向は、これらのいずれの<110>方向とも一致しないように形成する。このとき、各溝部2の形成方向は、該形成方向に最も近い<110>方向とのなす鋭角側の角度が4゜〜45゜であるのがよい。該角度が4゜未満では、溝部方向をいずれかの<110>方向と一致させた場合と比較したときの、太陽電池1の機械的強度向上効果が十分に見込めなくなる場合がある。他方、双方の<110>方向について上記角度が45゜を超えることは幾何学的にありえない。そして、各溝部2の形成方向が、第一主表面3a上において<100>方向と平行となっている場合(すなわち、上記角度が45゜)に、容易劈開方向である<110>からの溝部形成方向の隔たりが最も大きくなるので、太陽電池1の機械的強度向上効果を最大限に引き出すことができる。
【0019】
次に、図1(b)に本発明の他の実施形態である太陽電池1’を示す。該太陽電池1’においては、p型シリコン単結晶基板3’の主表面3’a上に例えば、径数百μm、深さ5〜50μm程度の有底孔14が多数形成されており、該有底孔14の最近接有底孔14同士が互いに一定間隔にて直線状に形成されている。そして、これらの各有底孔14に電極となる導電体5’が充填され(図2参照)、一定間隔にて直線状に形成される最近接有底孔14の列が充填電極ライン40’を構成することになる。該充填電極ラインは、図2に示されるように、絶縁膜4’を貫通する形態にて形成される。そして、最近接有底孔14同士を結ぶ直線の方向を該充填電極ライン40’の形成方向としたとき、該充填電極ライン40’の形成方向は第一主表面3’a上において<110>方向とは一致しない方向となっている。なお、この充填電極ライン40’の形成方向は、前述の溝部2により充填電極ライン40が形成されている場合(図1(a)参照)と同様に、該形成方向に最も近い<110>方向とのなす鋭角側の角度が4゜〜45゜であるのがよく、第一主表面3’a上において<100>方向と平行(<110>方向となす角が45°)となっているのがさらによい。
【0020】
上記のような本実施形態にかかる太陽電池1、1’の製造方法を、図3を基に以下に述べる。ただし、本発明は、この方法で作製された太陽電池に限られるものではない。高純度シリコンにホウ素あるいはガリウム等のIII族元素をドープしたシリコン単結晶インゴットを用意し、ここから面方位{100}のp型シリコン単結晶基板3、3’を切り出す。なお、p型シリコン単結晶基板3、3’の比抵抗は、例えば、0.5〜5Ω・cmとする。p型シリコン単結晶基板3、3’は、CZ(Czochralski)法及びFZ(FloatingZone Melting)法いずれの方法によって作製されてもよいが、機械的強度の面から、CZ法で作製されるのが望ましい。なお、本発明特有の充填電極ライン形成方向の採用による機械的強度向上効果が顕著に得られるのは、基板厚が230μm以下の薄い基板を採用した場合である。
【0021】
上記のようなアズカット状態のp型シリコン単結晶基板3、3’の主表面(面方位{100}となっている)に対し、公知の方法によりテクスチャ構造の形成を行う。テクスチャ構造の形成後、塩酸、硫酸、硝酸、ふっ酸等、もしくはこれらの混合液の酸性水溶液中で洗浄するが、経済的及び効率的見地から、塩酸中での洗浄が好ましい。該テクスチャ構造の形成は、反射損失を低減するための主表面の面粗し処理として行なわれる。以上の工程後のp型シリコン単結晶基板3、3’を図3(a)に示す。
【0022】
このp型シリコン単結晶基板3、3’の第一主表面(裏面)3a、3’a上に、公知の方法により酸化シリコンもしくは窒化シリコン等の絶縁膜4、4’を例えば、気相成長(CVD:Chemical Vapor Deposition)法により50〜500nmの厚さで形成する(図3(b))。酸化シリコンもしくは窒化シリコン層生成プロセスは、常圧熱CVD法、減圧熱CVD法及び光CVD法等、いずれの方法も可能であるが、窒化シリコンをリモートプラズマCVD法を採用した場合、350〜400℃程度の低温プロセスであること、かつ、得られる酸化シリコンあるいは窒化シリコン等の絶縁膜4、4’における表面再結合速度を小さくすることが可能である等の点において、本発明に好適であるといえる。
【0023】
なお、第二主表面(図示せず:以下、本実施の形態においては該主表面をおもて面とする)を受光面とする場合は、この膜は、リンの拡散マスクとしても効果的であることから、この段階で、この基板の第二主表面上に、オキシ塩化リンを用いた気相拡散法により受光面にエミッタ層(図示せず)を形成してもよい。第一主表面3a、3’a上に形成されている絶縁膜4、4’により、第一主表面3a、3’aへのリンの拡散は防止される。エミッタ層の形成方法としては、上記の他に、五酸化リンを用いた塗布拡散法、リンイオンを注入するイオン打ちこみ法等、いずれの方法でも可能であるが、経済的観点からは、上記気相拡散法を採用するのが望ましい。例えば、オキシ塩化リン雰囲気中で、p型シリコン単結晶基板を約850℃で熱処理することにより、おもて面にn型エミッタ層を形成することができる。形成するエミッタ層の厚さは約0.5μm程度であり、シート抵抗は40〜100Ω/□とする。なお、この処理により基板表面に形成されるリンガラスは、フッ酸溶液中で除去する。
【0024】
上記のようにして、受光面となる第二主表面(おもて面)に、n型エミッタ層を形成して、基板内部にp−n接合部を形成する。
【0025】
以下、p型シリコン単結晶基板3、3’の第一主表面3a、3’aに形成される充填電極ライン40、40’の形成方法について述べる。まず、溝部2を形成して充填電極ライン40を形成する場合、p型シリコン単結晶基板3の主表面3aにおいて略平行となるような複数の溝部2を高速回転刃により形成し、該各溝部2に電極となる導電体5を充填することにより充填電極ライン40を形成する(図3(c)、(d))。具体的には、この電極コンタクト用溝部2は絶縁膜4を介して形成される。溝部2は、高速回転刃を用いて、例えば基板3の第一主表面3a上において<100>方向に刻設される。高速回転刃7の概形を図4に示す。例えば、直径103mm、長さ165mmの円筒部に100〜200本の凹凸形成刃11が取り付けられている。なお、p型シリコン単結晶基板3の第一主表面3a上に形成される溝部2の形態に応じて、適宜凹凸形成刃11の高さ及び形状を選択することも可能である。刃の高さは例えば、50〜100μm、刃の幅(形成される溝部2の幅に対応する)及び刃の間隔(形成される各溝部2同士の間隔に対応する)は数100μm程度とする。なお、刃の種類としては、例えば、ダイヤモンド刃(例えば、粒径5〜10μmのダイヤモンド砥粒を刃表面に一様に付着させたもの)を採用することができる。このような高速回転刃7を用い、切削水を噴射しながら1秒間に例えば約1〜4cmの速度で基板を切削し、溝部2を刻設する。このとき、溝部2の深さが略5〜50μmとなるよう凹凸形成刃11の高さ等を微調整する。p型シリコン単結晶基板3の第一主表面3aに形成されている絶縁膜4の厚さは、50〜500nm程度であるので、上記範囲の深さに溝部2を形成すれば、絶縁膜4を貫通する形態で、溝部2を形成することができる。これにより、溝部2を充填する導電体5がp型シリコン単結晶基板3と接触する形態にて充填電極ライン40を形成できる。なお、高速回転刃7は、ダイサーもしくはワイヤーソーでも代用が可能である。
【0026】
また、充填電極ライン40’を形成するために、p型シリコン単結晶基板3’に有底孔14を形成した太陽電池1’の場合においては、p型シリコン単結晶基板3’の主表面3’a側において一定間隔で直線状に配列する有底孔14を、該各最近接有底孔14同士を結ぶ直線の方向が前記<110>方向と一致しないように主表面上3’aにレーザーを照射して形成し、該各有底孔14に電極となる導電体5’を充填することにより充填電極ライン40’を形成する。有底孔14を形成するレーザーとしては炭酸ガスレーザー、アルゴンレーザー、YAGレーザー、ルビーレーザー、エキシマレーザー等が使用可能である。この中でも、レーザー光の波長に近い微細な加工が可能なこと、空気中にて加工が可能なこと等の点からKrF等のエキシマレーザーやNd:YAGレーザーが特に好適に使用される。有底孔14の形状は、円形、矩形いずれでも問題ない。さらに、有底孔14は、最近接有底孔14同士が一定の間隔にて直線状に配置され、該直線状に形成された有底孔14同士の組みを充填電極ライン40’として、該充填電極ライン40’の列が第一主表面3’a上にある一定間隔を持って周期的に配置される。有底孔14の配置及び、基板方向の関係の模式図を図5に示す。レーザーによって形成された有底孔14の、最近接有底孔14同士を結ぶ直線の方向(充填電極ライン40’の形成方向)12が、基板3’の主表面上において<110>方向と一致しない方向に設定される。さらに、12と方向を異にする第二最近接有底孔14同士を結ぶ直線の方向13においても、<110>方向と異なっているのがよい。
【0027】
上記のような有底孔14を形成するためのレーザーの照射条件は、レーザーの種類や絶縁膜4’の膜厚、さらに有底孔14の径等によって適宜決められる。例えば、パルス発振を利用する場合、周波数は1Hz〜100kHzが好ましく、レーザーの平均出力としては10mW〜1kWの範囲とするのが好ましい。なお、形成される絶縁膜4’の厚さは50〜500nmの範囲に設定されるので、少なくともこれ以上の深さ絶縁膜4が除去されるだけの出力のレーザーを照射するようにする。
【0028】
上記のように充填電極ライン40、40’を、溝部2あるいは有底孔14を導電体5、5’により充填することにより形成するとともに、該第一主表面3a、3’a全面を覆うように被膜電極層10を、例えば0.5〜2μm程度形成する(図3(d))。このとき、導電体5、5’及び被膜電極層10は、図3(c)に示す状態から、同一の工程により連続して形成される。
【0029】
導電体5、5’及び被膜電極層10には銀や銅等の金属のほか、導電性の酸化インジウム、酸化錫等を用いてもよいが、経済性、加工性の観点からアルミニウムが最も好ましい。導電体5、5’及び被膜電極層10の堆積は、スパッタ法、真空蒸着法、スクリーン印刷法等いずれの方法でも可能である。さらに、上記のように第一主表面3a、3’a全面に被膜電極層10を一様に堆積してもよいが、電極形成用のマスク等を用い、図6の如く、溝部(不図示)もしくは有底孔14を導電体5’にて充填することにより形成される充填電極ライン40’上に線状あるいは帯状の集電用電極17(以下、帯状電極17ともいう)を形成してもよい。なお、線状あるいは帯状に形成される集電用電極17は、充填電極ライン40’の形成方向と4〜90°の角をなす方向に形成することもできる。これにより、半導体単結晶基板(p型シリコン単結晶基板)ひいては太陽電池の機械的強度をさらに向上させることができる。なお、図6においては、有底孔14により充填電極ライン40’を形成した場合を示したが、溝部2により充填電極ライン40を形成した場合においても上記と同様の集電用電極17を形成することができる。
【0030】
上記のように第一主表面3aに電極となる導電体5あるいは被膜電極層10並びに帯状電極17等を形成した後、公知の方法により、第二主表面の反射防止膜及び電極の形成を行う。反射防止膜には、酸化シリコン、窒化シリコンをはじめ、酸化セリウム、アルミナ、二酸化錫、二酸化チタン、フッ化マグネシウム、酸化タンタル等、及びこれらを二種組み合わせた二層膜が使用され、いずれを用いても問題ない。反射防止膜形成には、PVD法、CVD法等が用いられ、いずれの方法でも可能である。高効率太陽電池作製のためには、窒化シリコンをリモートプラズマCVD法で形成したものが、小さな表面再結合速度が達成可能であり好ましい。第二主表面(おもて面)の電極は蒸着法、メッキ法、印刷法等で作製される。いずれの方法を用いても構わないが、低コストで高スループットのためには、印刷法が好ましい。銀粉末とガラスフリットを有機物バインダと混合した銀ペーストを原料とし、スクリーン印刷した後、熱処理して電極とする。
【0031】
なお、本発明においては、おもて面(第二主表面)及び裏面(第一主表面)の処理の順序はどちらを先に行っても何ら問題はない。また、上記本実施の形態においては、p型シリコン単結晶基板3、3’の第一主表面3a、3’a(裏面)に充填電極ライン40、40’を形成し、第二主表面を受光面とする場合についてのみ示したが、本発明はこれにかぎられるものではなく、受光面となる第二主表面に溝部あるいは有底孔等を形成することにより充填電極ラインを形成し、電極とした太陽電池においても同様の効果を有するものである。
【0032】
【実施例】
(実施例1)
厚さ150μmの、ホウ素ドープ{100}p型シリコン基板(比抵抗1Ω・cm)第一主表面(裏面)上に、窒化シリコンを100nm成膜後、<110>方向に対し、それぞれ0、30、45、60、90°の方向に、Disco社製のダイサー(DAD−2H/6H)を用いて、平行な溝部を作製した。溝部の幅、深さ、周期はそれぞれ450、50、600μmとした。この第一主表面上に全面にアルミニウムを堆積し、裏面電極とした。第二主表面(おもて面:受光面)には、公知の方法により、エミッタ層、反射防止膜、フィンガー電極、バスバー電極を順次形成し、片面受光型太陽電池を作製した。これら太陽電池の変換効率は、各々15〜17%であった。
【0033】
この太陽電池を、ダイサーを用いて18×100mmの大きさに切り出し、図7の如く、該試験片20の両端を2本の丸棒支点部21、21’(支点部外径28mm;支点間スパン長80mm)上に、溝部が形成されている面(第一主表面)を下向きにして、溝部方向が丸棒支点部21,21’の軸線と平行になるように載せ、その状態で試験片20の丸棒支点部21、21’間に位置する部分の長手方向中央に、同一寸法の丸棒支点部22を当てがって、該丸棒支点部22に下向きの曲げ荷重を付加することにより、三点曲げ試験を実施した。そして、丸棒支点部22’の変位−荷重曲線から、破壊に至る直前の試験片20’の最大変位23を求め、これを「たわみ」と定義して、各試験片20に対する測定を行なった。
【0034】
図8に、たわみの溝部方向依存性を示す。溝部の方向が<110>方向より45°すなわち<100>方向に形成された場合にたわみは最大となり、機械的強度に優れていることを示している。
【0035】
(実施例2)
実施例1と同様に、厚さ150μmの、ホウ素ドープ{100}p型シリコン基板(比抵抗1Ω・cm)裏面上に、窒化シリコンを100nm成膜後、KrFエキシマレーザーを用いて有底孔14を複数個形成し、該有底孔14の最近接有底孔同士が互いに一定間隔にて直線状になるように配置する。最近接有底孔同士の間隔を600μm、開口部の径を450μmφとし、レーザーの出力を調整して(例えば、レーザーエネルギー密度:23.6J/cm2 、発振周波数:100Hz、連続照射時間:約2.3秒)、該有底孔の深さを約50μmとした。最近接有底孔同士を結ぶ直線が、基板の<110>方向と成す角をα°とおき、αをそれぞれ0、30、45、60、90°の方向に試料を作製した。そして、第一主表面全面にアルミニウムを堆積し、裏面電極とした。おもて面には、公知の方法によりエミッタ層、反射防止膜、フィンガー電極、バスバー電極を順次形成し、片面受光型太陽電池を作製した。これら太陽電池の変換効率は、各々14〜17%であった。
【0036】
この太陽電池を、ダイサーを用いて18×100mmの大きさに切り出し、実施例1と同様のたわみ試験を行った。図9に、たわみのα依存性を示す。αが<110>方向より30°および60°近傍で、すなわち、最近接孔同士を結ぶ方向が<110>方向から外れた場合にたわみは最大となり、機械的強度に優れていることを示している。
【図面の簡単な説明】
【図1】本発明に係る太陽電池の電極コンタクト用溝部方向もしくは有底孔の配置及び基板の結晶方位の関係を示す図。
【図2】本発明に係る太陽電池の裏面要部の断面構造を例示した図。
【図3】本発明に係る太陽電池の電極作製方法の概要を示す図。
【図4】本発明に係る太陽電池の電極コンタクト用溝部作製に用いる高速回転刃の概形を示す図。
【図5】本発明に係る太陽電池の電極コンタクト用孔の配置及び基板方向の関係を示す図。
【図6】本発明に係る太陽電池の帯状の集電用電極及び有底孔の関係を示す図。
【図7】実施例における基板の設置方法及び基板のたわみの定義を示す図。
【図8】本発明の実施例1の基板のたわみの溝部方向依存性を示す図。
【図9】本発明の実施例2の基板のたわみのα依存性を示す図。
【符号の説明】
1、1’ 太陽電池
3、3’ p型シリコン単結晶基板(半導体単結晶基板)
3a、3’a 半導体単結晶基板の第一主表面
40、40’ 充填電極ライン
2 溝部
14 有底孔
4、4’ 絶縁膜
5、5’ 導電体
10 被膜電極層
17 集電用電極
7 高速回転刃
11 凹凸形成刃

Claims (11)

  1. 面方位が略{100}である半導体単結晶基板の主表面の少なくともいずれかの側に該主表面が窪む形態にて凹部が形成され、該凹部は該主表面における配置形態が直線状になるように形成されるとともに、該凹部の内部全体に出力取出用の電極をなす導電体が充填された形態の充電電極ラインが複数形成されており、
    前記主表面上における前記各充填電極ラインの形成方向は、該形成方向に最も近い<110>方向とのなす鋭角側の角度が30°〜45°に形成されていることを特徴とする太陽電池。
  2. 前記各充填電極ラインの形成方向は、前記主表面上において<100>方向と平行であることを特徴とする請求項に記載の太陽電池。
  3. 前記半導体単結晶基板の第一主表面に前記充填電極ラインが形成されており、第二主表面側が受光面となっていることを特徴とする請求項1又は2に記載の太陽電池。
  4. 前記半導体単結晶基板の前記第一主表面上には絶縁膜が形成されており、前記各充填電極ラインが前記絶縁膜を貫通する形態にて、前記各充填電極ラインに充填された導電体が前記半導体単結晶基板と接触するように形成されていることを特徴とする請求項に記載の太陽電池。
  5. 前記第一主表面上に形成されている前記充填電極ラインと連通する集電用電極が前記第一主表面上に形成されていることを特徴とする請求項に記載の太陽電池。
  6. 前記集電用電極は、前記第一主表面全面を覆う形態の被膜電極層であることを特徴とする請求項に記載の太陽電池。
  7. 前記集電用電極は前記充填電極ラインの上部に、帯状あるいは線状の形態にて形成されていることを特徴とする請求項に記載の太陽電池。
  8. 前記集電用電極は帯状あるいは線状に形成されているとともに、前記充填用電極ラインの形成方向と、4〜90°の角をなす方向に形成されていることを特徴とする請求項に記載の太陽電池。
  9. 面方位が略{100}である半導体単結晶基板の主表面の少なくともいずれかの側に該主表面が窪む形態にて凹部が形成され、該凹部は該主表面における配置形態が直線状になるように形成されるとともに、該凹部の内部全体に出力取出用の電極をなす導電体が充填された形態の前記主表面上における充填電極ラインの形成方向は、該形成方向に最も近い<110>方向とのなす鋭角側の角度が30°〜45°にて形成することを特徴とする太陽電池の製造方法。
  10. 前記半導体単結晶基板の主表面において互いに略平行となるような複数の溝部を形成し、該各溝部に電極となる導電体を充填することにより前記充填電極ラインを形成することを特徴とする請求項に記載の太陽電池の製造方法。
  11. 前記半導体単結晶基板の主表面側において一定間隔で直線状に配列する有底孔を、該各最近接有底孔同士を結ぶ直線の方向が、該形成方向に最も近い<110>方向とのなす鋭角側の角度が30°〜45°となるように前記主表面上にレーザーを照射して形成し、該各有底孔に電極となる導電体を充填するにより前記充填電極ラインを形成することを特徴とする請求項に記載の太陽電池の製造方法。
JP2001071610A 2001-01-31 2001-03-14 太陽電池及びその製造方法 Expired - Lifetime JP3872305B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001071610A JP3872305B2 (ja) 2001-03-14 2001-03-14 太陽電池及びその製造方法
PCT/JP2002/000702 WO2002061851A1 (en) 2001-01-31 2002-01-30 Solar cell and method for producing the same
KR1020037009945A KR100831291B1 (ko) 2001-01-31 2002-01-30 태양전지 및 태양전지의 제조방법
US10/470,242 US7294779B2 (en) 2001-01-31 2002-01-30 Solar cell and method for producing the same
EP02711237A EP1365455A4 (en) 2001-01-31 2002-01-30 SOLAR CELL AND METHOD FOR MANUFACTURING SAME
CNB028043731A CN1274032C (zh) 2001-01-31 2002-01-30 太阳能电池和制造太阳能电池的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001071610A JP3872305B2 (ja) 2001-03-14 2001-03-14 太陽電池及びその製造方法

Publications (2)

Publication Number Publication Date
JP2002270864A JP2002270864A (ja) 2002-09-20
JP3872305B2 true JP3872305B2 (ja) 2007-01-24

Family

ID=18929311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001071610A Expired - Lifetime JP3872305B2 (ja) 2001-01-31 2001-03-14 太陽電池及びその製造方法

Country Status (1)

Country Link
JP (1) JP3872305B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5197920B2 (ja) * 2006-02-15 2013-05-15 株式会社フジクラ 貫通電極基板及びその製造方法
JP5430245B2 (ja) * 2008-06-24 2014-02-26 キヤノン株式会社 機械電気変換素子及び機械電気変換装置の製造方法
JP2010251667A (ja) * 2009-04-20 2010-11-04 Sanyo Electric Co Ltd 太陽電池
JP2015219024A (ja) * 2014-05-14 2015-12-07 コニカミノルタ株式会社 格子、格子ユニット、湾曲型格子、湾曲型格子の製造方法及びx線撮像装置
CN112567496A (zh) * 2018-08-22 2021-03-26 株式会社村田制作所 设备用基板以及集合基板

Also Published As

Publication number Publication date
JP2002270864A (ja) 2002-09-20

Similar Documents

Publication Publication Date Title
KR100831291B1 (ko) 태양전지 및 태양전지의 제조방법
JP3838979B2 (ja) 太陽電池
EP1005095A1 (en) Photovoltaic element and method for manufacture thereof
EP2088632A2 (en) Method to form a photovoltaic cell comprising a thin lamina
US20050189013A1 (en) Process for manufacturing photovoltaic cells
KR20110097827A (ko) 깊은 홈 후측 콘택 광발전 태양 전지들
JP2010521824A (ja) 太陽電池
KR101659451B1 (ko) 태양전지 및 그 제조 방법
US9997647B2 (en) Solar cells and manufacturing method thereof
JP5408022B2 (ja) 太陽電池セル及びその製造方法
TW202224200A (zh) 背接觸式太陽電池及其製造
JP3872305B2 (ja) 太陽電池及びその製造方法
JPH1140832A (ja) 薄膜太陽電池およびその製造方法
JP6502147B2 (ja) 太陽電池の製造方法および太陽電池モジュールの製造方法
JP2001257371A (ja) 太陽電池作製方法及び太陽電池並びに集光型太陽電池モジュール
JP4378485B2 (ja) 太陽電池の製造方法
KR101024322B1 (ko) 태양전지용 웨이퍼 제조 방법, 그 방법으로 제조된 태양전지용 웨이퍼 및 이를 이용한 태양전지 제조 방법
JP4162373B2 (ja) 光起電力装置の製造方法
JP4149678B2 (ja) 太陽電池
JP4623952B2 (ja) 太陽電池素子の製造方法
JP4431712B2 (ja) 太陽電池の製造方法
JP5434806B2 (ja) 半導体デバイスの製造方法
JP2005327871A (ja) 太陽電池及びその製造方法
JP2001015780A (ja) シリコン系薄膜光電変換装置用裏面電極、およびそれを備えたシリコン系薄膜光電変換装置
US7994064B2 (en) Selective etch for damage at exfoliated surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3872305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151027

Year of fee payment: 9

EXPY Cancellation because of completion of term